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Abstract

Nowadays, deep prediction models, especially graph neural networks, have a major place in critical
applications. In such context, those models need to be highly interpretable or being explainable by humans,
and at the societal scope, this understanding may also be feasible for humans that do not have a strong
prior knowledge in models and contexts that need to be explained. In the literature, explaining is a human
knowledge transfer process regarding a phenomenon between an explainer and an explainee. We propose EiX-
GNN (Eigencentrality eXplainer for Graph Neural Networks) a new powerful method for explaining graph
neural networks that encodes computationally this social explainer-to-explainee dependence underlying in
the explanation process. To handle this dependency, we introduce the notion of explainee concept assimibility
which allows explainer to adapt its explanation to explainee background or expectation. We lead a qualitative
study to illustrate our explainee concept assimibility notion on real-world data as well as a qualitative study
that compares, according to objective metrics established in the literature, fairness and compactness of our
method with respect to performing state-of-the-art methods. It turns out that our method achieves strong
results in both aspects.

1 Introduction
Graphs are widely used data structures involved in many real-world problems. Graph Neural Network (GNN)
[Scarselli et al.(2009)Scarselli, Gori, Tsoi, Hagenbuchner, and Monfardini] are artificial neural networks suited
for such data structure. For graph classification, node classification or link prediction tasks, GNN models have
shown impressive performances [Defferrard et al.(2016)Defferrard, Bresson, and Vandergheynst, Zhang & Chen(2018)Zhang and Chen].
Regarding real-life deployment, GNNmodels have shown impressive results for drugs design [Bapst et al.(2020)Bapst, Keck, Grabska-Barwińska, Donner, Cubuk, Schoenholz, Obika, Nelson, Back, Hassabis, and Kohli],
web recommendations [Ying et al.(2018)Ying, He, Chen, Eksombatchai, Hamilton, and Leskovec] or traffic fore-
casting [Derrow-Pinion et al.(2021)Derrow-Pinion, She, Wong, Lange, Hester, Perez, Nunkesser, Lee, Guo, Wiltshire, Battaglia, Gupta, Li, Xu, Sanchez-Gonzalez, Li, and Veličković].
A major drawback of those deep models is their occluded internal decisionnal processes, in particular in
critical applications, it raises confidence, trustworthy, privacy and security concerns. Explainable Artificial
Intelligence (XAI) is a set of methods that aims to tackle these issues by providing human-level meaning-
ful insights about deep model internals by explaining how those models behave. Explaining, understand-
ing, or interpreting, although they are different notions, are intrinsically human dependent and context-
dependent. So, it turns out that they are social notions. One of those social requirements is that an ex-
plainer must adapt its explanation formulation according to the relative background of the explainee regard-
ing the phenomenon to explain [Clough et al.(2019)Clough, Oksuz, Puyol-Antón, Ruijsink, King, and Schnabel,
Kim et al.()Kim, Wattenberg, Gilmer, Cai, Wexler, Viegas, and Sayres]. Several interesting XAI methods have
been proposed for explaining graph neural network models but they often fail to take into account the social
dependency when providing their explanations and rather focus only on the signal side of deep models to pro-
vide insights on deep model internals. In this contribution we provide a social-aware explaining method that
leverages background knowledge variability that is inherent in any social-related process while maintaining high
score regarding state-of-the-art objective assessment metrics. Firstly, we will frame the social context that the
explanation process depends on. Then we will introduce our approach in accordance with the numerical for-
mulation of the social context. Then we provide the relevancy of our method against compared methods with
a qualitative objective study on real-world applications and a quantitative objective study regarding objective
metrics widely used in the literature.
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2 Related Work
GNN is firstly introduced by [Scarselli et al.(2009)Scarselli, Gori, Tsoi, Hagenbuchner, and Monfardini] with
the message-passing scheme. They have been studied from the geometrical point of view and framed by
[Bronstein et al.(2021)Bronstein, Bruna, Cohen, and Veličković], from this point of view, as the generalizing
model of test-of-time models such as Convolutional Neural Network (CNN) that have achieved main results in
computer vision [Krizhevsky et al.(2012)Krizhevsky, Sutskever, and Hinton, Russakovsky et al.(2015)Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei]
or Transformers [Vaswani et al.()Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin]
in speech processing [Devlin et al.(2019)Devlin, Chang, Lee, and Toutanova] . Genuine GNN of [Scarselli et al.(2009)Scarselli, Gori, Tsoi, Hagenbuchner, and Monfardini]
has been widely extended by [Satorras et al.(2021)Satorras, Hoogeboom, and Welling, Battaglia et al.(2018)Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, Malinowski, Tacchetti, Raposo, Santoro, Faulkner, Gulcehre, Song, Ballard, Gilmer, Dahl, Vaswani, Allen, Nash, Langston, Dyer, Heess, Wierstra, Kohli, Botvinick, Vinyals, Li, and Pascanu,
Defferrard et al.(2016)Defferrard, Bresson, and Vandergheynst, Monti et al.(2018)Monti, Shchur, Bojchevski, Litany, Günnemann, and Bronstein,
Sanchez-Lengeling et al.(2020)Sanchez-Lengeling, Wei, Lee, Reif, Wang, Qian, McCloskey, Colwell, and Wiltschko,
Gilmer et al.(2017)Gilmer, Schoenholz, Riley, Vinyals, and Dahl, Gori et al.(2005)Gori, Monfardini, and Scarselli]
including Graph Convolutional Network (GCN) [Kipf & Welling(2017)Kipf and Welling] and Graph Atten-
tion Network (GAT) [Veličković et al.(2018)Veličković, Cucurull, Casanova, Romero, Liò, and Bengio] that also
achieve numerous results in their own fields. Explaining methods are divided in several paradigms. The common
approach is the model-based post-hoc local paradigm which consists in explaining each instance with including
optimized deep model in the loop for furnishing explanations. Under this paradigm, a serious amount of explain-
ing methods to GNN have emerged. Attribution methods scope is to provide relevance to features regarding their
impact on the classification, often under a white-box approach [Battaglia et al.(2018)Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, Malinowski, Tacchetti, Raposo, Santoro, Faulkner, Gulcehre, Song, Ballard, Gilmer, Dahl, Vaswani, Allen, Nash, Langston, Dyer, Heess, Wierstra, Kohli, Botvinick, Vinyals, Li, and Pascanu,
Pope et al.(2019)Pope, Kolouri, Rostami, Martin, and Hoffmann] that have model internal insights either thank
to model parameters and local behavior or with relative contribution approach [Yeh et al.(2019)Yeh, Hsieh, Suggala, Inouye, and Ravikumar].
Perturbation-based methods act in a black-box flavor (i.e., completely blind from model internal for explaining)
and their trouble model with node ablation procedure [Ying et al.(2019)Ying, Bourgeois, You, Zitnik, and Leskovec],
or edges ablation [Luo et al.(2020)Luo, Cheng, Xu, Yu, Zong, Chen, and Zhang, Schlichtkrull(2021)] or coun-
terfactual adjunctions [Lucic et al.(2022)Lucic, Hoeve, Tolomei, Rijke, and Silvestri]. Heuristic search methods
have also proven to be relevant for explaining as well as generative model [Yuan et al.(2020)Yuan, Tang, Hu, and Ji].
Additionally, explaining methods suited for node classifiers has brought relevant results [Huang et al.(2022)Huang, Yamada, Tian, Singh, and Chang,
Vu & Thai(2020)Vu and Thai]. Assessing the quality of those methods also remains a core challenge for the
XAI community and some metrics have been proposed. They deal with explanation fidelity towards ex-
plained deep models. As well, sparsity measure is used to show the explanation compactness. These met-
rics are actually derived from an informal formulation of desirable property explaining methods have to fulfill
[Jacovi & Goldberg(2020)Jacovi and Goldberg, Jacovi & Goldberg(2021)Jacovi and Goldberg, Lipton(2018), Murdoch et al.(2019)Murdoch, Singh, Kumbier, Abbasi-Asl, and Yu].
All these approaches share a common assumption: explaining a deep classifier relies on finding relevant sub-
structure on the instanced input that conserves the classifier behavior. Besides aforementioned methods show
interesting results, they always miss the inherently and intrinsically social dependence of the explanation process
[Kim et al.()Kim, Wattenberg, Gilmer, Cai, Wexler, Viegas, and Sayres, Bas(1980), Kulesza et al.(2013)Kulesza, Stumpf, Burnett, Yang, Kwan, and Wong,
Miller(2019)]. Notably that an explainer has to share his knowledge regarding a phenomenon to an explainee in
an explainee-understandable manner in order to have an effective explanation process profitable for the explainee
[Bechtel & Abrahamsen(2005)Bechtel and Abrahamsen, Glennan(2002), Chater & Oaksford(2006)Chater and Oaksford,
Keil(2006)]. In this study, we first provide a relevant method that achieves stronger explanation results regard-
ing state-of-the-art methods while fully encoding the explainee-knowledge dependency and more broadly the
social context any explanation process in dependent on.

3 Problem formulation
Explaining helps human experts to inspect deep models, in order to show issues, blind spots or to pre-
vent those models to potentially harm society. For explaining machine learning problems, the social context
[Selbst et al.(2019)Selbst, Boyd, Friedler, Venkatasubramanian, and Vertesi] and human being factor [noa(), Miller(2019)]
are core elements. Indeed, this explanation process involves an alignment of mental models. That alignment is
between what the machine learning model is doing and what the user thinks the model is doing. In order terms,
to achieve this information trading it requires a set of arguments that conjointly machine and user are aware
of and are able to deal with. Explaining machine learning model is thus a human-centric process and in or-
der to provide meaningful insight on how the model behaves to the user, the explanation process must be adapted
[Kim et al.()Kim, Wattenberg, Gilmer, Cai, Wexler, Viegas, and Sayres, Clough et al.(2019)Clough, Oksuz, Puyol-Antón, Ruijsink, King, and Schnabel].
Note that it is easier to shape machine outcomes representation than to force humans to think in far different
way that they are used to think. Consequently, it is the machine that has to be adapted to the user. But when
a user wants to have insightful explanations, they have to be expressed regarding a specific granularity. Indeed
a user with a high level of knowledge has different explanation expectations than a user with less knowledge
regarding the involved machine learning model.

2



More formally it can be reformulated as follows; explaining is a human knowledge transfer process involving
an explainer (e.g., machine) E? and an explainee Ẽ (e.g., user, engineer) concerning a phenomenon P (e.g.,
machine learning model). In order to have a profitable conversation (e.g., providing the explanation of P from
E? to Ẽ), both involved individuals must share a common vocabulary set. It means that shared ideas must be
expressed upon a shared set of concepts by both individuals. This allows the conversation to be profitable for
them. For explanation purposes, the term profitable means increasing the knowledge quantity of P of Ẽ thanks
to E? explanation. For explaining, those concepts are framed as atomic parts that, when carefully mixed, allow
the explainer E? to provide an explanation of P to the explainee Ẽ. However, those elementary bricks are chosen
conditionally to both knowledge quantity of E? and Ẽ that are also dependent on P . Indeed if the explainee Ẽ
has already a solid background or culture relatively to P , basic insights allowing shallow understanding of P
is already acquired by the explainee Ẽ. Only finer details must be provided by the explainer E? to explainee Ẽ
to have total understanding of P . On the contrary, an explainee Ẽ who has freshly begun to be interested in P
must assimilate the coarsed concepts relative to P before reaching the finest ones with the explainer E? having
to adapt his vocabulary complexity in order to be understandable.

3.1 EiX-GNN
EiX-GNN (eigencentrality explainer for graph neural network) is a post-hoc local model-based explaining
method suited for any GNN classifiers. In our terminology, it provides its explanations according to a set of
atomic concepts. These concepts are for explanation processes what coins are for money exchanges, i.e., they are
the elementary parts of the explanation process that explainers, when explaining, will build their arguments upon
those atomic concepts. Those concepts must be carefully chosen by the explainer in order to match the explainee
background on the explained phenomenon. With assuming that the explainer has an optimal knowledge of a
phenomenon P regardless concept selection, the concept selection process depends on the background (relatively
to P ) of the explainee and P . EiX-GNN has been designed to integrate this social dependence on the explainee
background given a phenomenon to explain. Formally, we frame the set of explainee-admissible concepts as
a probability space Cp where concepts are Cp-valued random variable. Parameter p is the explainee concept
assimibility constrain. It is bounded as p ∈ [0, 1] and is proportional to the explainee concept assimibility given
P . In the following, except for contrary mentions, we consider the phenomenon P = (f?, G, Y ) where f? is
an optimized GNN classifier 1 which has been trained on a dataset D which (G, Y ) belongs to. In accordance
with the graph formulation we have used before, we consider in the following a graph G = (X,A) has been
composed of N ∈ N nodes and M ∈ N edges. We also assume that the explainee has an explainee concept
assimibility constraint p ∈ [0, 1]. EiX-GNN provides its explanation based on a conditioned local and global
explainee-suited concept ordering. Firstly, we introduce the concept generation procedure, then the global
concept ordering process which is the common thread of the overall explaining procedure is described. Finally,
the local concept ordering procedure is presented, this second step is a refining procedure that highly precise at
a node level the provided explanation.

Concept generation As mentioned above, concepts are atomic elements that allow the explainer to provide
its explanation. Given the explainee concept assimibility p, concept Cp is a Cp-valued random variable. This
variable is a subgraph of G such that |Cp| = b|G| × pc. Our motivation from the signal point of view is
to describe an insightful subpart of the signal evolving on a subdomain of G. Indeep in many deep-based
data representation tiny but numerous low-level informations (e.g., high frequencies in the picture) are gathered
along model depth to produce a unified high-level information (e.g., a probability distribution of classes that this
picture belongs to). Classes probability is understandable by any person interested in deep learning approaches
whereas high-frequency understanding is only doable for peoples with dedicated knowledge in image processing.
We have designed our concept generation process with respect to this data representation hierarchization, from
detailed expert-understandable representation to commonly understandable representation, involves in deep
representation methods. Once determined the desired explanation granularity thanks to p, we need to sample
those concepts from the initial graph G. We have selected sampling approaches which depend either on a
prior distribution or not. Sampling concept is thus a subgraph sampling process which has a combinatorial
aspect inherent of any subgraph sampling problems. Concepts are key components of our approach, they
have to be carefully selected since they are providing our raw materials for conceiving explanations. From all( |G|
|Cp|
)
possible subgraphs we can derive from G, some are more suited for providing explanation of P than

others. Assuming a uniform relevance distribution for explaining P among all those subgraphs is not adapted,
seamlessly, assuming that the sampling distribution is U( |G|

|Cp|)
is not adapted either. We rather consider a light

importance sampling approach that quantifies the prior relevance distribution of nodes conditionally to P . For
building such probability distribution, we apply a node ablation approach that assesses the importance of nodes
within their neighborhood with respect to P . Formally, for a neighboring node vj ∈ Ni = {vj |(vi, vj) ∈ E} ⊂ V

1see Appendix A.2 for details
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of vi. To quantify node ablation importance we define a random variable s : V 2 → R+ that measures the
relative disturbance effect between two nodes relatively to P (e.g., relative f? performance alteration impact
of removing vj from Ni). With assuming a uniform relevance distribution U|Ni| of nodes composing Ni, we
defined the prior relevance distribution αP of the node vi conditionally to P by:

αP (vi) = E
vj∼U|Ni|

[s(vi, vj)|vi, P ] (1)

With a normalizing constant F ∈ R∗ such that F−1
∑
vi∈V αP (vi) = 1 we obtain a prior node importance

probability distribution that allows more efficient sampling process for determining pertinent concepts with
respect to P . Once such prior distribution is determined, we sample in an i.i.d manner L ∈ N realizations of
Cp which we denote by (Ci)i∈{1,...,L} where each node composing the subgraph Ci has been sampled thanks to
the prior node sampling distribution. Next, we will present the procedure for hierarchizing those L concepts
relatively to P .

Global concept ordering Once concepts are sampled, we must find an ordering relationship in order to
classify their relevance according to P . Thanks to the prior node importance sampling approach, we have
already established such hierarchization but among all possible subgraphs of G with size |Cp| which considerably
reduces the research perimeter of the optimal substructure that will explain P . Instead, here we present an
ordering method that hierarchies pair-wisely concepts among the L sampled concepts. Considering these L
concepts, we build an operational research tree with G as root and these L concepts as leaves. Without any
further works, we do not know yet if a concept Ci is more relevant than another concept Cj for explaining P .
In order to provide such ordering, we derive from the sample a complete graph KL where each node represents
a concept and edge of KL represents the relative similarity between two concepts relatively to P . Since in this
context graph are seen as signal evolving on a precise deformation, we take into account each both aspects for
quantifying concept similarities pair wisely.

Relative concept domain similarity We define the domain similarity between two concepts Ci, Cj ∈
(Cl)l∈{1,...L} as the relative edge density between Ci and Cj . The graph edge density of a concept Ci, denote
d(Ci) is the ratio between the actual edges composing Ci over the total number of possible edges Ci can be
composed of. For a graph G = (X,A) with N nodes and M edges, it is defined as follows:

d(G) =
(2× 1{A=AT } + 1{A 6=AT })M

N(N − 1)
(2)

It measures how Ci tends to be a complete graph. We choose this measure because of the local aggrega-
tion operation involve in many GNN models. We know that complete subgraphs aggregate much more signal
than sparser ones. This is due to the local invariance operation involved in any geometric deep learning mod-
els, especially GNN [Bronstein et al.(2021)Bronstein, Bruna, Cohen, and Veličković]. Admittedly, aggregating
numerous neighboring signal does not imply to aggregate more relevant information of this neighboring than
with more sparse structures. Nevertheless, doing so will produce in statistically a fairer estimation of the local
information relevance given P than it can be done on more degenerated localities. In other terms, this approach
allows yielding statistically more fidel local representations of P .

Relative concept signal similarity The concept signal similarity quantifies how similar f? behaviors are
with respect to P when the signal is propagated over a given concept subdomain and when it is propagated
over another subdomain supplied by another concept. Let assume that we considered two concepts Ci and Cj ,
the case where Ci is similar to Cj given P means that f? sees equivalently Ci and Cj . Considering Ci does not
provide any added value than solely considering Cj itself, with respect to P . As a similarity metric between two
concepts Ci and Cj we use the Kullbach-Liebler divergence of both inferred probability distributions of Ci and
Cj thanks to f?. Formally, we frame sf?(Ci, Cj) : Cp → R+ as the f? behavior similarity metric concerning Ci
and Cj by:

sf?(Ci, Cj) = DKL(f
?(Ci)||f?(Cj)) (3)

where DKL(·||·) denotes the Kullbach-Liebler divergence. This metric is widely used in machine learning
problems. It has been deeply studied in various applications, especially for deep-based classification problems.
In such problems, data representation is rendered as probability laws, and Kullbach-Liebler divergence is used
in this context to quantify the similarity between inferred and groundtruth probability laws.
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Domain and signal relevancy unification We introduce here our process for unifying those two modalities
in order to have a global concept ordering. For each modality, we have obtained real values quantifying the
relative marginal relevance of each concept. Given a concept, we obtained the relative joint relevancy (i.e., the
relative global concept relevancy) by multiplying each marginal value (i.e., the relative concept domain revelancy
value and the relative concept signal similarity). More formally , computing the relative global ordering concept
revelancy between concept Ci and Cj is the real value ai,j defined by:

ai,j =
d(Ci)

d(Cj)
× sf?(Ci, Cj),∀i, j ∈ {1, · · · , L}2 (4)

From now, instead of considering L × L relative local ordering values, we want to hierarchies globally those
L concepts with a global concept ordering strategy. Since the relative global concept relevancy can be seen
as interactive strengths between concepts, a natural representation to render those relational interactions are
graph themselves. Thereby, we consider the graph KL composed of L nodes that represent concepts with an
adjacency matrix A(KL) which entries are determined by ai,j . However, although we have obtained most L
meaningful concepts thank to previous processes, we look, at global scope, for the most dissimilar concepts
pairwise ordonnance. Indeed, from explanation point of view, two highly similar concepts Ci and Cj (i.e., ai,j is
low) bring similar insights regarding the explanation. In other terms, it produces redundant information that is
unnecessary and may flood and alter the user understanding of phenomenon P . Higher values in A(KL) stand
for those less redundant concepts (relatively) regarding the explanation of P . But what is the concept that is
both relevant and less redundant among concept candidates ? This question can be reformulated under graph
theory by which node has the higher normalized centrality. A good approach is to compute the PageRank
[Page et al.(1999)Page, Brin, Motwani, and Winograd] of each node of KL. Once obtained it gives a total
ordering relation between nodes of KL (i.e., concepts). Formally, we consider:

Â(KL) = Λ(A(KL)e)−1A(KL) (5)

which is the normalized version of A(KL) where e the unit vector of size L and for any fixed-size vector x,Λ(x)
denotes the diagonal matrix containing x in its diagonal.

Â(KL)
T
is a stochastic version ofA(KL) that by definition always admit a right eigenvector r with eigenvalue

equal to 1. Under this context, this eigenvector r defines a probability law and its components are PageRank
values of each node. Regarding the explanation process, the PageRank centrality measures yield a global
concept ordering scheme where concept candidate with highest PageRank value is the explicative representant
that proposes the less information redundancy while being in both modalities relevant. This global concept
ordering procedure allows to tremendously shrink the search space to find relevant subgraphs which is known to
be a combinatorial problem. Once addressed this refinement, we can go further and we propose a less coarsening
approach that assesses relevancy at G nodes scope that we framed as the local concept ordering procedures.

Local concept ordering Considering only subgraph-level as the only set of explanation arguing terms may
lead to incomplete formulation of explanations. Indeed, although in underlying manner, nodes relevance is
already partially encoded in concept relevance quantification processes, nodes composing these subgraphs may
have themselves their own role on the global concept ordering outcomes; that given a concept; node has no-
uniform contribution to this outcome. Besides that purely signal-based argue, in many real-life applications,
nodes may represent atoms for molecule representations or city on a roadmap for traffic forecasting and therefore
have their own semantic embeddings that may not be rendered in a single subgraph-level focus. That is
why, including such node-level data have to be included in our explanation conception pipeline. To carefully
quantifying the contribution of each node within a concept candidate Ci we have exploited game theory. It
consists in computing the Shapley value [Shapley(1951)] of each node i composing Ci. The Shapley value is a
conceptual solution in cooperative game theory quantifying how important the marginal role of a player has
in the game outcome. Considering a coalition of K ∈ N players indexed within Q = {1, . . . ,K} playing a
cooperative game with a game payoff v : P(Q)→ R where P(Q) denotes all possible subsets of Q. The Shapley
value of a player i ∈ Q, is defined by:

γQ(i) = K E
j∼UK

[
E

S⊂Q\{i}
[v(S ∪ {i})− v(S)) | |S| = j]

]
(6)

We denote further γj(i) the Shapley value of the node i of concept Cj .

Global and local concept gathering Under our context, given a node i that belongs to a concept Cj ,
computing the Shapley value of i required to consider all possible subgraphs of Cj and compute, according
to them, the perturbing effects of i regarding f? at Cj scope. Numerically, γj(i) provides a precise con-
cept relevance value of node i belonging to Cj regarding P ([Duval & Malliaros(2021)Duval and Malliaros,
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Yuan et al.(2021)Yuan, Yu, Wang, Li, and Ji]). Note that this value γj(i) remains dependent to Cj definition.
From the computational point of view, the assessment requires O(2b|G|×pc) inferences of f? which can be inten-
sive, even intractable in practice and is by definition dependent on the explainee concept assimibility constraint
p. To overcome this issue, we can estimate each γj(i) by a Monte Carlo estimation strategy with an error rate
bounded. Those computations produce a set of L node-level explaining assessments (γj)j ⊂ Rb|G|×pc where
each γj is normalized by its L1 norm. We then extend each γj to γextj ∈ RN , such that for node i:

γextj [i] =

{
γj [i] if i ∈ Cj
0 otherwise

And we concatenate columns wisely each γextj defined for a explainee concept assimibility constrain p in
Γp ∈ RN×L. Finally, our explanation map EiX-GNNL,p(P ) 2 of the phenomenon P with an explainee con-
cept assimibility constrain p is algebraically defined as below:

EiX-GNNL,p(P ) = ΓpΛ(r)eT (7)

The explanation map EiX-GNNL,p(P ) ∈ RN describes the relevance of each feature describing the phenomenon
P with respect to p. In the context of deep graph classification, it described the normalized relevance of each node
composing G regarding f? with feature granularity of size p. Now we lead a quantitative and a qualitative study
on real-world applications as well as providing an impact study regarding the explainee concept assimibility
that we have introduced.

4 Results

4.1 Experimental setup
Datasets To assess our method we have used four real-world datasets that are made of human intelligible fea-
tures : MNISTSuperpixels [Monti et al.(2017)Monti, Boscaini, Masci, Rodola, Svoboda, and Bronstein], PRO-
TEINS [Borgwardt et al.(2005)Borgwardt, Ong, Schönauer, Vishwanathan, Smola, and Kriegel], MSRC [Shotton et al.(2009)Shotton, Winn, Rother, and Criminisi,
Winn et al.(2005)Winn, Criminisi, and Minka], REDDIT-BINARY [Yanardag & Vishwanathan(2015)Yanardag and Vishwanathan].
These datasets are widely used in the literature for illustrating GNN explainer. We give further details regarding
those datasets in Appendix A.1.

Learning procedures We have used two main GNN configurations for classifying our instances. Either based
on GCN or GAT modules, astonishingly both produce similar results in terms of test accuracy. But GCN-based
model is less parametrized than GAT-based one, so we have selected GCN models. Models architecture and
learning setup are described in Appendix A.2.

Comparing methods For comparing our results, we have retained three state-of-the-art methods that achieve
strong results for explaining GNN: GNNExplainer [Ying et al.(2019)Ying, Bourgeois, You, Zitnik, and Leskovec],
SubgraphX [Yuan et al.(2021)Yuan, Yu, Wang, Li, and Ji], PGExplainer [Luo et al.(2020)Luo, Cheng, Xu, Yu, Zong, Chen, and Zhang].
We give further details regarding these methods in Appendix A.3 .

Objective assessment metrics Assessing explanation quality or relevance given a phenomenon often deals
with requiring a P -specialist approval. Context-free and objective method has been proposed for quantifying ex-
planation method relevance. Two of them have been widely used in the literature [Duval & Malliaros(2021)Duval and Malliaros,
Pope et al.(2019)Pope, Kolouri, Rostami, Martin, and Hoffmann, Yuan et al.(2021)Yuan, Yu, Wang, Li, and Ji],
namely Infidelity [Yeh et al.(2019)Yeh, Hsieh, Suggala, Inouye, and Ravikumar] and spatial sparsity [Duval & Malliaros(2021)Duval and Malliaros,
Pope et al.(2019)Pope, Kolouri, Rostami, Martin, and Hoffmann, Yuan et al.(2021)Yuan, Yu, Wang, Li, and Ji].
We have used them to lead our quantitative study. Further details are provided in Appendix B.1.

4.2 Qualitative assessment: a real-world application
For illustrating our method we have oriented our experiment in an omniscient setup: L = 70 allowing drawning
complex explanations with large argumentation basis and p = 0.05 for focusing on finest data details. We
discuss afterward the marginal impact of each of these parameters in regard with the omniscient setup as a
baseline. Each instance of REDDIT-BINARY is a discussion involving users with varying knowledge regarding
the discussion topic. Some users have a serious understanding of the subject and can be seen as experts.

2Code repository will be released after reviewing process.
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Explaining those discussions, in terms of user interactivity, consist in looking for those experts as mentioned in
[Ying et al.(2019)Ying, Bourgeois, You, Zitnik, and Leskovec].

Figure 1: Threads explanation with EiX-GNN

It turns out that expert is actually users that are responding the most to all other users. In graph theory ter-
minology, those experts are represented by node with highest relative degree. Under the omniscient setup, EiX-
GNN highlights those expert users and it locates them in a graph with low attribution to users with low inter-
activity (low knowledge) and high attribution to users with high interactivity (high knowledge), i.e., experts (Fig-
ure 1). Those results are in accordance with those obtained in [Ying et al.(2019)Ying, Bourgeois, You, Zitnik, and Leskovec].
Now we measure the marginal impact of each of p and L on some thread explanations and we compared such
explanations with the omniscient baseline which is seen as the practically upper bound of quality explanations
that required both high understanding and high knowledge (i.e., retrieving only most relevant information,
localizing carefully thread experts). From the social point of view, we seek to qualify the marginal impact of
these two parameters on the social expressiveness of EiX-GNN explanations. What we expect to get is to have
uncomplete explanation with an uncomplete concept basis (i.e low L) and coarsed explanation with a large
explainee concept assimibility constraint p, all in regard with a complete and finest explanation through the
omniscient baseline.

(a) p = 0.7 (b) p = 0.3 (c) p = 0.2 (d) p = 0.1
(e) Omniscient base-
line

Figure 2: Social expressiveness: explainee concept assimibility constraint variation

Explainee concept assimibility constraint: qualitative impact In this sequence of explanations of the
same thread, we have made an explainee concept assimibility constraint variation and we have fixed the concept
basis width. Low value of p stands for low explainee concepts assimibility constraint meaning that the explainee
is able to reach finest understanding of the phenomenon. Here, it signifies to be able to precisely recognize
thread expert which is the most relevant information in the context of REDDIT-BINARY classification. The
opposite scheme appears with high value explainee concept assimibility constraint. We observe that as long
as we raise the constraint penalty (p decreases), we gain insights (Figures 2c, 2d) with respect to explanation
precision and we incrementally increase the knowledge quantity until reaching the omniscient regime (Figure
2e).

• p = 0.7: explanation is based on large concepts providing coarse knowledge, single interactivity users have
quite important role in the explanation and experts have higher explaining value. This explanation is not
the finest one but allow explainee to have an imprecise but global view of the thread. For low knowledge
requirements, this explanation is suitable (Figure 2a).

• p = 0.3: we observe here that specialist-level information is far more emphasized than previously. We
have experts recognizing and less insightful information are much discarded (single interaction users that
are not specialists) (Figure 2b).

• p = 0.2: the previous tendency has been accelerated, specialist knowledge is far more mentioned than the
poor knowledge (Figure 2c).

• p = 0.1: we have almost reached the omniscient regime and we have gained an understanding comparable
to specialist one (Figure 2d).
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Globally we observe that this explainee concept assimibility constraint behaves as a social-aware explanation
fine tuner. High constraint provides general-trended information, this information is general but imprecise. It
provides a global idea about the underlying phenomenon. It thus allows non-specialist individuals to handle
those explanation of the phenomenon. As long as the constraint is raised, we tend to reach expert understanding
of the explained phenomenon by including only finest details and discarding entities that only are able to supply
generalities that are only dedicated to non-specialist peoples.

(a) L = 10 (b) L = 30 (c) L = 50 (d) Omniscient baseline

Figure 3: Social expressiveness: concept basis variation

Number of concepts: qualitative impact We observe that as long as the number of concepts L increases
from low width (Figure 3a) to high-width (Figure 3c) the explainer is able to furnish more and more precise
explanations. So, as much as the concept basis width increases, we are getting closer to the omniscient baseline
(Figure 3d). Actually, this behavior can be expected since if the explainer is able to provide explanation based
on large arguments basis, we obtain precise and meaningful explanations 3.

4.3 Quantitative assessment on real-world data
Objectives metrics overall benchmarking As a global view regarding state-of-the-art methods, we have
compared objective metrics between each dataset and each method. For EiX-GNN, we have used the omniscient
setup presented above. We find out that our method proposes numerically fewer infidel explanations with at
least a factor 102 on MNISTSuperpixel and REDDIT-BINARY and MSRC-21 and a factor 10 on PROTEINS
and MSRC-9. As well, our method outperforms other compared methods regarding the sparsity of explanation
maps by at least a factor 103 on MNISTSuperpixel and REDDIT-BINARY, a factor 104 on MSRC-9, a factor
102 on MSRC-21 and a factor 10 on PROTEINS. We provide in Appendix B.1 a summarizing table (Table 1)
with a detailed version of these measurements.

(a) Von Neumann Entropy (b) Infidelity (Unit) (c) Infidelity (Gaussian noise)

Figure 4: Impact of p regarding objective metrics

Explainee concept assimibility constraint: quantitative impact Regarding the explainee concept as-
simibility constraint, we find out that in average it does not have an impact on the infidelity of the explanation
toward the classifier has shown in Figure 4. Moreover, specialist-level explanation is more concise so inherently
sparser as shown by Figures 2d, 3c. It means that the value of p does not impact the explanation quality pro-
vided by EiX-GNN and that EiX-GNN still provides relevant explanation regardless the explainee knowledge
for a given phenomenon.

3An analogous vision can be made with the neural network complexity that, if adapted to the learning task, allows to have
powerful model.
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(a) Von Neumann Entropy (b) Infidelity (Unit) (c) Infidelity (Gaussian noise)

Figure 5: Impact of L regarding objective metrics

Number of concepts: quantitative impact For the concept basis width, we recover numerically our
statement regarding the fact that large argument basis favors to produce expressive explanations which are
prone to be on one hand less infidel and, on the other hand, more concise as shown in Figure 5.

5 Conclusion
It is common to encounter deep learning models and especially GNN for tackling academic and industrial
problems notably in sensitive contexts such as healthcare, autonomous driving, etc. Their powerfulness is often
at the expense of having humanly unintelligible decision processes that these models design. It raises serious
issues for a safety deployment of these models in our society. We need to explain their inner working in order
to gain insights and rendering them trustworthy. Nonetheless, explaining processes are profitable only and
only if explanations are suited to the explainee. State-of-the-art methods often provide absolute explanation
regardless explainee background or expectation and fail to include such explainee dependency although widely
discussed in the literature. In this study, we address this concern with EiX-GNN, a new approach that fully
integrates this ubiquitous dependency with defining the explainee concept assimibility notion allowing to adapt
the explanation process to the explainee. We lead a qualitative study in regards with this social aspect over real-
world data and we compared, with respect to objective metrics used in literature, the fairness and compactness
properties in comparison with relevant state-of-the-art methods. In both settings, we provide meaningful results
by, addressing the explainee-dependency issue and, outperforming state-of-the-art methods according to widely
used objective metrics.
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A Experimental setup details

A.1 Datasets details
In order to provide meaningful results, we chose real-world datasets that incorporate human intelligible features.
These datasets are often used [Baldassarre & Azizpour(2019)Baldassarre and Azizpour, Duval & Malliaros(2021)Duval and Malliaros,
Huang et al.(2022)Huang, Yamada, Tian, Singh, and Chang, Lucic et al.(2022)Lucic, Hoeve, Tolomei, Rijke, and Silvestri,
Pope et al.(2019)Pope, Kolouri, Rostami, Martin, and Hoffmann, Schnake et al.(2021)Schnake, Eberle, Lederer, Nakajima, Schütt, Müller, and Montavon,
Ying et al.(2019)Ying, Bourgeois, You, Zitnik, and Leskovec, Yuan et al.(2020)Yuan, Tang, Hu, and Ji, Yuan et al.(2021)Yuan, Yu, Wang, Li, and Ji]
to illustrate explaining methods for GNN-based classifiers. Each of the following datasets is suited for graph clas-
sification problems. Note that REDDIT-BINARY does not need any prior knowledge to assess any explanation
map and groundtruth explanation is easy to consider as mentioned in [Ying et al.(2019)Ying, Bourgeois, You, Zitnik, and Leskovec],
on the contrary to PROTEINS which require chemical knowledge. In the following, we found details regarding
used datasets:

MNISTSuperpixel [Monti et al.(2017)Monti, Boscaini, Masci, Rodola, Svoboda, and Bronstein] is a dataset
composed of 60000 graphs, that each represents a superpixel version of the well-known handwritten digit MNIST
[Lecun et al.(1998)Lecun, Bottou, Bengio, and Haffner] dataset. Each MNISTSuperpixels instance is a graph
representation of the original MNIST instance. Two vertices are linked according to their spatial proximity.

PROTEINS [Borgwardt et al.(2005)Borgwardt, Ong, Schönauer, Vishwanathan, Smola, and Kriegel] is a dataset
counting 1113 labeled graphs. Each graph represents a protein that is classified as enzymes or non-enzymes.
Nodes represent the amino acids and two nodes are connected if they also share the same spatial locality.

MSRC [Shotton et al.(2009)Shotton, Winn, Rother, and Criminisi, Winn et al.(2005)Winn, Criminisi, and Minka]
datasets are used in image semantic segmentation problems. Each image in converted into a semantic superpixel
version of it. In MSRC-9, which is composed of 221 labeled graphs, semantics label are distributed among 8
semantic labels. In the MSRC-21 version, composed of 563 labeled graphs, extends the number of possible
semantic labels to 21.

REDDIT-BINARY [Yanardag & Vishwanathan(2015)Yanardag and Vishwanathan] is a dataset composed
of 2000 graphs where each of them represents a question/answer-based thread of Reddit, namely r/IAmA and
r/AskReddit. In these graphs, node represents users and there is a link between two users if one has answered
the other.

A.2 Classifier details
Here the general framework of graph classification problems under the view of GNN models.

A.2.1 Supervised graph classification problems

For G,Y two measurable spaces, we define F(G,Y) the set of measurable functions going from G to Y. Given
an i.i.d sampled finite dataset D ⊂ G × Y where each element Zi = (Gi, Yi) is a graph Gi and its label Yi
representing the class it belongs to. A loss function is mapping L : F(G,Y) × D → R quantifying how well
a learning mapping f ∈ Fa,θ ⊂ F(G,Y) associated Gi to its true label Yi conditioned by a neural network
architecture a and a learning parameter θ. For a given architecture â, we seek f? such that:

f? = argmin
fθ∈Fâ,θ

E
Z∼D̂

[L(fθ, Z)] with E
Z∼D̂

[L(fθ, Z)] =
∫
D̂
L(fθ, z)dPZ(z) (8)

where D̂ is fθ-unseen data and Z = (G, Y ) where G is a G-valued random variable, Y is a Y-valued random
variable and PZ is the image probability measure of Z in D̂. In the context of graph classification, f is a GNN
model and L is the cross-entropy loss between the inferred label conditional probability law and its ground
truth-conditional probability law.

A.2.2 Learning details

Except for the classification task on MNISTSuperpixel, we have trained two GNN models : one based on GCN
[Kipf & Welling(2017)Kipf and Welling] and the other based on GAT [Veličković et al.(2018)Veličković, Cucurull, Casanova, Romero, Liò, and Bengio]
that we name here generically as the descriptor module of the classifier. We chained two descriptor modules
then we feed outputs to a global average pooling layer, a linear module is then used to classify with softmax
function. In between layers, we use Relu function as activation function. For the MNISTSuperpixels dataset,
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we use four chained descriptor modules and tanh as an activation function. All these different implementations
use the ADAM [Kingma & Ba(2017)Kingma and Ba] version of the stochastic gradient descend approach with
the same learning parameter equals to 10−4. We use an Intel © Xeon Silver 4208 and Nvidia © Tesla A100
40 GB GPU for our training during 100 epochs. Under this consideration, we have obtained for each dataset
an accurate classifier as accurate as those used in comparing method experiments.

A.3 Comparing method details
As comparing methods, we have used three black-box model-based local post-hoc methods that have achieved
strong results in the literature. We give here additional details regarding these methods.

GNNExplainer [Ying et al.(2019)Ying, Bourgeois, You, Zitnik, and Leskovec] is a local post-hoc model-based
explaining method suited for GNN. It looks after which subgraphs, derived from the input graph, contain the
highest mutual information with the this one. This method has achieved strong results on many explanations
problems.

SubgraphX [Yuan et al.(2021)Yuan, Yu, Wang, Li, and Ji] is also a local post-hoc model-based explaining
method suited for GNN. From the input graph, it uses a Monte Carlo Tree Search method to find heuristically
relevant substructures for explanations purposes.

PGExplainer [Luo et al.(2020)Luo, Cheng, Xu, Yu, Zong, Chen, and Zhang] share the same idea as GN-
NExplainer but is rather concentrated on which edges in the input graph is important to conserve the classifier
expressivity.

B Objective assessment metric details
Explaining internal decision processes involved in classification problems are often linked with the necessity to
assess obtained saliency maps meaningfulness. Thus it requires task-related expert assessment which is subjec-
tive and consequently biased. Literature has proposed several objective metrics that are expert independent to
evaluate quantitatively the quality of explanation maps.

Infidelity [Yeh et al.(2019)Yeh, Hsieh, Suggala, Inouye, and Ravikumar] quantifies in which manner the ex-
planation maps provided by an explanation mapping φ of predictions made by an optimized classifier f? change
when an input X is perturbed by a random variable I following a perturbation density B. It is defined by:

Infd(φ, f?,X) = E
I∼B

[(ITφ(X, f?)− (f?(X)− f?(X− I)))2] (9)

The perturbing distributionB is used to be a standard normal distribution, as mentioned in [Yeh et al.(2019)Yeh, Hsieh, Suggala, Inouye, and Ravikumar].

Sparsity Generally speaking, concise explanations are preferred than wide explanations that drown perti-
nent information. This statement does not dependent on the context of the explanations, so it is an ob-
jective statement. The Von Neumann entropy appears to be a good candidate for measuring such sparsity
[Hurley & Rickard(2009)Hurley and Rickard] . The Von Neumann entropy of a probability distribution encodes
the uncertainty amount induced in this probability distribution. It can be seen as a sparsity metric since if the
distribution mass is spatially concentrated on the domain (i.e., lower entropy) it induced that explanation argu-
ments are clearly identified. On the contrary, if the entropy is important, it means that explicative elements are
blurry diffused and scattered on the domain which is less insightful for the user. For a probability distribution
π ∈ [0, 1]d it is defined as :

H(π) = −E
π
[ln(π)] (10)

B.1 Summarized quantitative results
Here we have summarized quantitive results we have obtained when we have benchmarked our methods with
comparing methods over real-world datasets. As mentioned by the ↓ symbol, the lower the better.
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Dataset Explainer Entropy (↓) Infidelity (Gaussian) (↓) Infidelity (Unit) (↓)

MNISTSuperpixels

EiX-GNN
GNNExplainer
PGExplainer
SubgraphX

9.41E-01
1.30E+03
1.21E+03
1.70E+02

5.69E+00
2.43E+05
1.80E+04
1.31E+03

5.69E+00
2.44E+05
1.80E+04
1.31E+04

PROTEINS

EiX-GNN
GNNExplainer
PGExplainer
SubgraphX

9.37E-01
5.21E+01
7.02E+01
1.40E+01

2.38E-01
3.36E+02
8.23E+00
4.56E+01

2.78E-01
3.47E+02
8.21E+00
4.56E+01

MSRC-9

EiX-GNN
GNNExplainer
PGExplainer
SubgraphX

9.02E-01
7.84E+01
8.69E+01
4.45E+01

2.29E-05
1.14E+03
2.31E+03
2.69E+03

9.68E-05
1.12E+03
2.29E+03
2.70E+03

REDDIT-BINARY

EiX-GNN
GNNExplainer
PGExplainer
SubgraphX

4.02E-01
6.71E+01
5.61E+01
3.95E+01

2.64E-02
5.17E+03
2.35E+02
1.11E+03

4.63E-01
5.14E+03
2.36E+02
1.110E+03

MSRC-21

EiX-GNN
GNNExplainer
PGExplainer
SubgraphX

8.54E-01
2.79E+02
1.90E+05
4.82E+03

2.02E+00
1.03E+04
8.74E+02
3.67E+04

2.05E+00
1.04E+04
8.74E+02
3.67E+04

Table 1: Comparison between EiX-GNN and compared method over three objective quality assessment measures
for benchmarked datasets
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