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Abstract

We show that the moduli space Pg(n) of marked branched projective structures of genus g

and branching degree n is a complex analytic space. In the case g ≥ 2 we show that Pg(n) is of

dimension 6g − 6 + n and we characterize its singular points in terms of their monodromy. We

introduce a notion of branching class, that is an infinitesimal description of branched projective

structures at the branched points. We show that the space Ag(n) of marked branching classes of

genus g and branching degree n is a complex manifold. We show that if n < 2g− 2 the space Pg(n)

is an affine bundle over Ag(n), while if n > 4g − 4 Pg(n) is an analytic subspace of Ag(n).

Introduction

Definition and Examples

Holomorphic projective structures were introduced at the end of the nineteenth century in relation

to linear differential equations of order 2. They were used in particular by Poincaré, as an analogous

for curves of genus at least 2 of elliptic functions, in his proof of the uniformization theorem of Rie-

mann surfaces. They were then thoroughly studied throughout the twentieth century, in particular by

Gunning (see for instance [Gun66]).

In [Man72], Mandelbaum introduced a notion of branched projective structures, that can be seen

as a generic generalization of the concept of projective structure.

Let us give a precise definition. Fix an oriented surface S.

Definition. A branched projective structure on S is the datum of

• An open cover (Ui)i∈I of S

• For each i ∈ I, a locally ramified covering fi : Ui → CP1 such that on the intersections Ui ∩ Uj ,

one has fi = gij ◦ fj, where gij ∈ PGL(2,C).

The number of ramifications of the maps fi, counted with multiplicity, is called the branching degree

of the branched projective structure.

In the case where the branching degree is zero, one gets projective structures, see [Dum09] and

[LM09] for overview papers. Here are a few examples of branched projective structures :
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Tautological projective structure The Riemann sphere CP1 is endowed with a trivial projective

structure, of branching degree zero, given by the indentity map.

Uniformizing projective structure Suppose the surface S is closed, and let X be a Riemann

surface with underlying differential surface S. Let π : X̃ → X be the universal covering of X. By the

uniformization theorem, X̃ ⊂ CP1 and Aut(π) ⊂ PGL(2,C). As a consequence, the local inverses of

the map π are charts of a projective structure on X, without ramification point, called the uniformizing

projective structure of X.

Pullback by a ramified covering Let S′ be another oriented surface endowed with a branched

projective structure (Vi, hi)i∈I , and let φ : S → S′ be a ramified covering. Then S inherits a pullback

projective structure : the open covering is
(
φ−1(Vi)

)
i∈I

and the family of charts is (hi ◦ φ)i∈I . In

particular, a ramified covering of the Riemann sphere can be seen as a branched projective structure.

Curve not preserved by a foliation There is a notion of projective structure transverse to a

foliation, see [Scá97]. Precisely, let M be a complex manifold and F a codimension 1 holomorphic

foliation on M . A projective structure transverse to F is an open cover (Ui)i∈I of M and holomorphic

submersions si : Ui → CP1, constant on the leaves of F , such that on the intersections Ui ∩ Uj one

has si = gij ◦ sj with gij ∈ PGL(2,C). Now if X ⊂ M is a complex curve that is not invariant by F ,

then X inherits a branched projective structure, whose branching degree is the number of tangencies

between X and F .

Linear differential equations of order 2 Projective structures with branching degree zero can be

obtained from equations of the form a(x)y′′(x)+b(x)y′(x)+c(x)y(x) = 0 where x is a local coordinate, y

is an unknown holomorphic function and a, b, c are holomorphic functions, with a nonvanishing. Given

a basis (y1, y2) of local solutions, the quotient y1
y2

is a local biholomorphism from an open subset of X

to CP1. If (w1, w2) is another basis of local solutions, then there exists α, β, γ, δ ∈ C with αδ−βγ 6= 0

such that w1 = αy1 + βy2 and w2 = γy1 + δy2. Thus there exists a Möbius transformation g =
(

α β
γ δ

)

such that w1
w2

= g ◦
(
y1
y2

)
. In other words, the equation defines a projective structure on X.

This description of projective structures gives rise to a notion of meromorphic projective structure,

corresponding to order 2 differential equations with meromorphic coefficients. This notion was studied

in particular in [AB20], [GM21], [GM20] and [Sér22]. Branched projective structures are very special

meromorphic projective structures, that are usually excluded from the studies of general meromorphic

projective structures.

Note that the notion of linear differential equations on Riemann surfaces is formalized in the notion

of opers, see [BD05]. In this language, projective structures are PGL(2,C)-opers. See [Fre07] for the

role of opers in the Langlands program. This thesis thus deals with branched PGL(2,C)-opers. The

notion of branched opers has been investigated in [FG10] and [BDH22]. See also [BDG19] for the link

between branched projective structures and logarithmic connections.
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Topological constructions Branched projective structures can also be modified by cut-and-paste

techniques, some preserving the branching degree, such as grafting or moving branch points, others

changing the branching degree, such as bubbling. See for instance [Dum09], [GKM00] or [CDF14].

These cut-and-paste techniques allow to construct branched projective structures of any degree.

Main Result

Suppose the surface S is closed, of genus g. Fix a nonnegative integer n ∈ N. There is a notion of

marked branched projective structure, similar to the notion of marked complex structure on S (see 2.3

for precise definitions). We are interested in the following space :

Pg(n) =
{marked branched projective structures on S}

{isomorphisms}
(1)

Given a marked branched projective structure (Ui, fi)i∈I with fi = gij ◦ fj, gij ∈ PSL(2,C), the

changes of charts gij are holomorphic maps, thus the (ramified) atlas (Ui, fi)i∈I defines a marked

complex structure on S. Denote by Tg the Teichmüller space for genus g, i.e. the space of isomorphism

classes of marked Riemann surfaces of genus g. One has a forgetful map

Teichg(n) : Pg(n) → Tg(n) (2)

Moreover, the family (gij)i,j∈I is a constant cocycle with values in PSL(2,C), and thus defines a

flat CP1-bundle on X, to which is associated a holonomy representation ρ ∈ Hom (π1(S),PSL(2,C)),

defined up to conjugation with an element of PSL(2,C). Thus there is a holonomy map

Holg(n) : Pg(n) → Hom (π1(S),PSL(2,C)) /PSL(2,C) (3)

The holonomy of branched projective structures has been extensively studied, see [GKM00], [CDF14],

[Le 23].

In the unbranched case, i.e. in the case n = 0, if g ≥ 2, it is well-known ([Gun66], [Hej75], [Hub81])

that the space Pg(0) is a smooth analytic space. Moreover the fiber of Teichg(0) of a marked complex

curve X ∈ Tg is an affine space, directed by the space of global holomorphic quadratic differentials on

X, H0
(
X,K⊗2

X

)
, and the holonomy map Holg(0) is a local biholomorphism. This very nice structure

of the moduli space of projective structures is one of the main reasons why they are extensively used.

The main result of this paper is an analog of these properties in the branched case (see theorems

2.3.7, 3.0.1 and 3.5.1 for more precise statements).

Theorem A. The space Pg(n) is an analytic space of dimension 6g − 6 + n. Morever, if g ≥ 2, one

has :

(i) A point p ∈ Pg(n) is singular if and only if its holonomy representations Holg(n)(p) are abelian

and fix a point in CP1.

(ii) The map Holg(n) is a holomorphic submersion over branched projective structures with nonele-

mentary holonomy.
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Recall that a representation ρ ∈ Hom (π1(S),PSL(2,C)) is said to be elementary if its image is

an elementary subgroup of PSL(2,C). A subgroup of PSL(2,C) is elementary if its action on the

hyperbolic space H
3 admits a finite orbit. Namely, elementary subgroups of PSL(2,C) are the ones

that fix a point in CP1, the ones that fix a pair of points in CP1 (conjugated to a subgroup of

{z 7→ az|a ∈ C
∗} ∪ {z 7→ a

z |a ∈ C
∗}), and the ones that fix a point in the interior of H

3 (spherical

subgroups). Note that the condition of having nonelementary holonomy in point (ii) is not optimal,

see theorem 3.5.1.

Theorem A answers a question asked in the appendix of [CDF14], where it is shown that the

fibers of Holg(n) over nonelementary representations are smooth analytic spaces. This also extends

results obtained by Mandelbaum in his papers introducing branched projective structures, see [Man72],

[Man73], [Man75].

The key point in the proof of theorem A is what we call branching classes. Their existence is due

to the fact that, unlike local biholomorphisms, local branched coverings are not all obtained from one

another by postcomposition with a local biholomorphism. See section 1 for details.

Structure of the Paper

In section 1, we introduce the notion of branching class over a curve with a divisor. We investigate

the reasons why branching classes are a useful tool for our purpose. These reasons are the very nice

structure of the space of branching classes over a fixed curve with divisor, and the very nice structure

of the space of branching classes with fixed branching class.

In section 2, we define the moduli spaces of branched projective structures Pg(n), and we exhibit

its analytic structure. We consider in turn the analytic structures of spaces of marked curves (the

Teichmüller spaces), the spaces of marked curves with divisors and the spaces of marked branching

classes, before being able to endow Pg(n) with an analytic structure. We also have to introduce a

technical notion of restricted branched projective structures, that we use as an intermediate between

branching classes and branched projective structures. We emphasize in this section the universal

properties of the moduli spaces we consider, working with relative branched projective structures, or

equivalently families of such structures, in the spirit of [Hub81].

In section 3 we study Pg(n) when the genus g is at least 2. Most of this section is dedicated

to the characterization of the singular points of Pg(n), and follows the same structure as section

2, considering in turn the moduli spaces of curves, divisors, branching classes, restricted branched

projective structures and finally branched projective structures. The last subsection is dedicated to

the study the holonomy map. The main tool for this section, in the spirit of [Hub81], is the Kodaira-

Spencer machinery that allows to identify the tangent space of a moduli space at a point with the first

cohomology group of infinitesimal automorphisms of this point.
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Notations

If X is a Riemann surface, TX denotes the tangent bundle of X and KX denotes its cotangent bundle,

which is also the canonical bundle of X.

If E is a holomorphic vector bundle on a complex manifold, we denote also by E its sheaf of

holomorphic sections.

Let z be a local coordinate on an open subset U of a Riemann surface, and φ = ϕ(z) a nonconstant

holomorphic function on U . The two following differential operators are studied in [Gun66] :

(i) We denote by [φ, z] the affine distorsion of φ in the coordinate z : [φ, z] = ϕ′′/ϕ′

(ii) We denote by {φ, z} the schwarzian derivative of φ in the coordinate z : [φ, z] = (ϕ′′/ϕ′)′ −
1
2 (ϕ

′′/ϕ′)2

1 Branching Classes

1.1 The Space of Branching Classes on a Curve with Divisor

Let X be a Riemann surface, x ∈ X and n ∈ N. Denote by (X,x) the germ of X at x, and by Rn
x the

complex manifold of 2(n+ 1)-jets of (n+ 1)-sheeted ramified coverings from (X,x) to CP1 :

Rn
x =

{
j2(n+1)
x φ

∣∣∣∣∣
φ germ at x of holomorphic (n+ 1)-fold

ramified covering with values in CP1

}
(4)

The group of Möbius transformations PSL(2,C) acts on Rn
x by postcomposition.

Proposition 1.1.1. The group PSL(2,C) acts freely on Rn
x. Moreover, the quotient PSL(2,C)\Rn

x is

a complex manifold of dimension n, isomorphic to C
n.

Proof. Take z a local coordinate on X centered at x. In an affine coordinate w of CP1 = C∪{∞}, an

element j
2(n+1)
x φ ∈ Rn

x can be written :

j2(n+1)
x φ = a0 + an+1z

n+1 + an+2z
n+2 + · · ·+ a2(n+1)z

2(n+1) (5)

with an+1 6= 0. Recall that the datum of a Möbius transformation g ∈ PSL(2,C) is equivalent to the

datum of its 2-jet at a0. If g = α0 + α1(w − a0) + α2(w − a0)
2 + O

(
(w − a0)

3
)
, the action of g on

j
2(n+1)
x φ writes

g · j2(n+1)
x φ = j2(n+1)

x g ◦ φ

= (α0 + a0) + α1an+1z
n+1 + α1an+2z

n+2 + · · · + α1a2n+1z
2n+1 +

(
α1a2(n+1) + α2a

2
n+1

)
z2(n+1)

(6)

Note that the coordinate w can be chosen so that neither φ(x) nor g(a0) is ∞ in the coordinate w. Since

an+1 6= 0, the coefficents of degree 0, n+1 and 2(n+1) of g·j
2(n+1)
x φ determine the 2-jet of g ∈ PSL(2,C)

at a0, thus g itself, showing that PSL(2,C) acts freely on Rn
x . Moreover the orbit of j

2(n+1)
x φ under

the action of PSL(2,C) is given by the complex parameters (an+2/an+1, an+3/an+1, . . . , a2n+1/an+1),

showing that the quotient PSL(2,C)\Rn
x is isomorphic to C

n.
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1.1 The Space of Branching Classes on a Curve with Divisor

Consider now D =
∑

i∈I nixi an effective divisor of degree n on X. A branching class on X of

divisor D is the choice for each point xi of D of an orbit for the action of PSL(2,C) on Rni
xi

. The space

AD
X of branching classes over (X,D) is thus given by

AD
X :=

∏

i∈I

PSL(2,C)\Rni
xi

(7)

IfD has finite degree, for instance if X is compact, AD
X is a complex manifold of dimension n =

∑r
i=1 ni.

Proposition 1.1.2. The space AD
X of branching classes over a Riemann surface with divisor (X,D)

is an affine space directed by the vector space H0 (X,KX |D) of jets of holomorphic differentials at the

points of D.

Proof. Let z be la local coordinate defined on an open subset U ⊂ X. Let x0 ∈ U and let φ1 =

ϕ1(z), φ2 = ϕ2(z) be nonconstant holomorphic functions on U such that φ1, φ2 are both ramified at

x0 with (n + 1) branches and have no other ramification points. Recall that [φ1, z] denotes the affine

distorsion ϕ′′
1/ϕ

′
1. A straightforward calculation shows the following (see also [Gun66]) :

(i) The quantity [φ1, z]dz is a meromorphic 1-form on U holomorphic away from x0 and with a simple

pole at x0 with residue n. In particular, the difference [φ2, z]dz−[φ1, z]dz is a holomorphic 1-form

on U .

(ii) The holomorphic 1-form [φ2, z]dz − [φ1, z]dz does not depend on the choice of the holomorphic

coordinate z on U .

(iii) If ω is a holomorphic 1-form on U , there exists a neigborhood V of x0 in U and a nonconstant

holomorphic function φ on V whose only ramification point is x0, where it has (n+1) branches,

such that ω = [φ, z]dz − [φ1, z]dz.

(iv) The n-jet at x0 j
n
x0

([φ2, z]dz − [φ1, z]dz) depends only on the 2n + 1-jet at x0 j
2n+1
x0

φ1.

(v) One has jnx0
([φ2, z]dz − [φ1, z]dz) = 0 if and only if there exists a local biholomorphism γ such

that j2n+1
x0

φ1 = j2n+1
x0

γ ◦ φ1.

These five properties imply that The space Anx0
U is an affine space, directed by the vector space

H0 (X,KU |nx0) of n-jets of holomorphic 1-forms at x0. The difference between the class of j
2(n+1)
x0 φ2

and the class of j
2(n+1)
x0 φ1 being given by jnx0

([φ2, z]dz − [φ1, z]dz) ∈ H
0 (X,KU |nx0).

Write D =
∑

i∈I nixi, and take a family of open sets (Ui)i∈I such that xi ∈ Ui and if i 6= j, Ui∩Uj =

∅. Then AD
X =

∏
i∈I A

nixi

Ui
is an affine space directed by the vector space

⊕r
i∈I H

0 (Ui,KUi
|nixi

) =

H0 (X,KX |D).

Remark 1.1.3. Let D =
∑

x∈X nxx be a divisor on a Riemann surface X, a = (ax)x∈X ∈
∏

x∈X PSL(2,C)\Rnx
x = AD

X a branching class over (X,D) and U ⊂ X an open subset. We denote by

D|U =
∑

x∈U nxx the divisor D restricted to U and by a|U = (ax)x∈U ∈
∏

x∈U PSL(2,C)\Rnx
x = A

D|U
U

the branching class a restricted to U .
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1.2 Branched Projective Structures and Branching Classes

1.2 Branched Projective Structures and Branching Classes

Let us first recall the definition of a branched projective structure.

Definition 1.2.1. A branched projective atlas on a Riemann surfaceX is given by an open cover (Ui)i∈I

of X, and for each i ∈ I a nonconstant holomorphic map fi : Ui → CP1 such that for any i, j ∈ I with

Ui ∩ Uj 6= 0 there is a Möbius transformation gij ∈ PSL(2,C) such that fi|Ui∩Uj
= gij ◦ fj|Ui∩Uj

.

Two branched projective atlases are said to be equivalent if their union is also a branched projective

atlas.

A branched projective structure on X is an equivalence class of branched projective atlases.

Let X be a Riemann surface, let p be a branched projective structure on X and (Ui, fi)i∈I an

atlas for p. On the intersections Ui ∩ Uj, fi is obtained from fj by postcomposition with a Möbius

transformation, so the vanishing orders of the differentials dfi and dfj are the same at any point of

Ui ∩Uj . Moreover at any point x ∈ Ui ∩Uj , if n is the (possibly zero) vanishing order of dfi (and thus

of dfj) at x, then fi and fj both determine elements of Rn
x in (4) that are in the same orbit under the

action of PSL(2,C).

The branched projective structure p thus determines two additional objects on X :

(i) An effective divisor D, called the branching divisor of p, given by the vanishing locus of the

differentials of the charts of p : D =
∑

x∈X nxx where nx is the vanishing order at x of the charts

of p defined at x.

(ii) A branching class a ∈ AD
X on X of divisor D, given by the orbits of the jets of charts of p at the

points of D.

For a branching class a over (X,D), let us denote by P a
X the set of branched projective structures

on X with branching class a (thus with branching divisor D).

Proposition 1.2.2. Let D be an effective divisor on a Riemann surface X. Let a ∈ AD
X be a branching

class over (X,D).

(i) There exists an obstruction c(a) ∈ H1
(
X,K⊗2

X (−D)
)

such that c(a) = 0 if and only if P a
X 6= ∅.

(ii) The set P a
X , if nonempty, is an affine space directed by the vector space H0

(
X,K⊗2

X (−D)
)

of

holomorphic quadratic differentials on X vanishing over the divisor D.

Let us state point (i) in a slighty more general framework. Let S be a sheaf of abelian groups on

X. By a sheaf of affine spaces directed by S we mean a sheaf S such that if U ⊂ X is an open subset,

the space of sections Γ(U,S) is either empty or an affine space directed by Γ(U,S). We say moreover

that S is locally nonempty if for any x ∈ X there exists an open neighborhood U of X such that

Γ(U,S) 6= 0.

Lemma 1.2.3. Let S be a sheaf of abelian groups over the Riemann surface X and S a locally nonempty

sheaf of affine spaces directed by S. There exists an obstruction c(S) ∈ H1(X,S) such that c(S) = 0

if and only if H0(X,S) 6= 0.
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1.2 Branched Projective Structures and Branching Classes

Proof. Since S is locally nonempty, there exists an open cover (Ui)i∈I ofX such that for each i ∈ I there

is a local section si ∈ Γ (Ui,S). For any i, j ∈ I, write cij = sj − si ∈ Γ (Uij,S) where Uij = Ui ∩ Uj .

The family (cij)i,j∈I is clearly a 1-cocycle for S and thus defines a cohomology class c(S) ∈ H1(X,S).

The class c(S) does not depend on the choice of the family (si)i∈I . Indeed, if (s′i)i∈I is another

such family and c′ij = s′j − s′i the corresponding cocycle, then one has c′ij − cij =
(
s′j − sj

)
− (s′i − si),

so that the cohomology class of the cocycle
(
c′ij − cij

)
i,j∈I

is 0. In particular, if H0(X,S) 6= 0 and s

is a global section of S, then one can take si = s|Ui
in which case cij = 0 thus c(S) = 0.

Reciprocally, if c(S) = 0, then up to refining the open cover (Ui)i∈I , there is a family (ti)i∈I such

that ti ∈ Γ (Ui,S) and cij = tj − ti. In that case, write s̃i = si− ti. The s̃i coincide on the intersections

Uij and thus glue together to provide a global section of S.

Proof. (of proposition 1.2.2)

Let us first focus on the affine structure of P a
X in case it is nonempty. Let z be la local coordinate

defined on an open subset U ⊂ X. Let x0 ∈ U and let a0 ∈ Anx0
X be a branching class of order n

at x0. Let also φ1 = ϕ1(z), φ2 = ϕ2(z) be nonconstant holomorphic functions on U such that φ1, φ2

are both ramified at x0 with (n + 1) branches and branching class a0. Suppose φ1 and φ2 have no

other ramification point. Recall that {φ1, z} denotes the Schwarzian derivative (ϕ′′
1/ϕ

′
1)

′− 1
2 (ϕ

′′
1/ϕ

′
1)

2.

It is well-known (see for instance [Gun66]) that the difference {φ2, z} − {φ1, z} does not depend on

the choice of coordinate z. Moreover, this difference vanishes uniformly on U if and only if there is a

Möbius transformation g ∈ PSL(2,C) such that φ2 = g ◦ φ1. A straightforward calculation shows the

following :

(i) The quantity {φ1, z} dz
⊗2 is a meromorphic quadratic differential on U that is holomorphic away

from x0 and admits a pole of order 2 at x0.

(ii) The coefficient of order −2 at x0 of {φ1, z} dz
⊗2 is 1−(n+1)2

2 .

(ii) The coefficients of order −1, 0, 1, . . . n − 1 at x0 of {φ1, z} dz
⊗2 determine and are determined

by the branching class of φ1 at x0. In particular, the difference {φ2, z} dz
⊗2 − {φ1, z} dz

⊗2 is a

holomorphic quadratic differential on U with a zero of order n at x0.

Moreover, it is a consequence of Fuchs’s local theory (see for instance [Man72] or [Sai16], section IX.1)

that if ω is a holomorphic quadratic differential on U with a zero of order n at x0, then on an open

neighborhood V of x0 in U , there exists a function φ3 such that ω = {φ3, z} dz
⊗2 − {φ1, z} dz

⊗2. The

function φ3 is ramified at x0, with (n+ 1) branches and branching class a0.

Now suppose P a 6= ∅ and let p1, p2 ∈ P a
X . Let respectively (Ui, φi) and (Ui, ψi) be atlases for p1 and

p2 and for each i ∈ I let zi be a coordinate on Ui. The above facts about schwarzian derivatives imply

that the local holomorphic quadratic differentials {ψi, zi} dz
⊗2
i −{φi, zi} dz

⊗2
i coincide on intersections

Ui∩Uj and the global quadratic differential ω obtained by gluing them is a section ofH0
(
X,K⊗2

X (−D)
)
.

We write p2−p1 := ω. Fuchs’s local theory ensures that any quadratic differential inH0
(
X,K⊗2

X (−D)
)

is obtained as the difference of two branched projective structures in P a
X . This shows that when P a

X 6= ∅,

it is an affine space directed by H0
(
X,K⊗2

X (−D)
)
.

Now we do not suppose P a
X 6= ∅ anymore. Denote by Pa

X the sheaf of branched projective structures

on X of divisor D and branching class a : if U ⊂ X is an open subset, the space of local sections
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Γ (U,Pa
X) is the space P

a|U
U of branched projective structures on U of divisor D|U and branching class

a|U . As we have just proved, the sheaf Pa
X is an affine sheaf directed by K⊗2

X (−D). The sheaf Pa
X

is moreover locally nonempty : if x ∈ X, any local holomorphic function around x with the right

branching order and branching class at x provides a local section of Pa
X . Thus by lemma 1.2.3, there is

a canonical cohomology class c (Pa
X) ∈ H1

(
X,K⊗2

X (−D)
)

that vanishes if and only if H0 (X,Pa
X) 6= 0.

We write c(a) := c (Pa
X).

2 Familes of Branched Projective Structures over a Family of Curves

By a family of complex curves, we mean a triple (S,X , π) where X and S are connected, reduced

analytic spaces and π : X → S is a proper and smooth morphism. The analytic space S is called the

base of F . It is equivalent to require that π is proper and locally trivial on X : each point of X admits

a neighborhood U ⊂ X such that V = π(U) ⊂ S is open and there exists an isomorphism of analytic

spaces φ : U ≃ V × Ω where Ω is an open subset of C and π = pr1 ◦φ, where pr1 is the projection on

the first factor. In particular, the fibers of π are smooth and in the case where S is smooth, π is a

holomorphic submersion. According to a theorem by Ehresmann (see for instance [Voi07]), π : X → S

is topologically a locally trivial bundle.

Given a family of complex curves F = (S,X , π), an analytic space S′ and a morphism of analytic

spaces f : S′ → S, we denote by f∗F = (S′, f∗X , f∗π) the pullback family of F by π : f∗X is the fiber

product S′ ×S X and f∗π is the projection on the first factor.

2.1 Families of Divisors over a Family of Curves

By a family of complex curves with divisors, or more shortly family of divisors, we mean a family

F = (S,X ,D, π), where (S,X , π) is a family of complex curves, and D is an effective Cartier divisor

on X that does not contain any fiber of π. Writing Xs = π−1({s}) (s ∈ S), Rouché’s theorem implies

that the degree of Ds = D|Xs does not depend on s. The degree of the family F is the degree of the

divisors Ds.

As in the case of families of curves, if f : S′ → S is a morphism of analytic spaces and F a family

of divisors, one can define the pullback f∗F of F by f : the base of f∗F is S and the fiber of f∗F over

s′ ∈ S′ is isomorphic to the fiber of F over f(s′) ∈ S′.

Let G be a family of complex curves, with base an analytic space T . A family of divisors over G

is a family of divisors F = (S,X ,D, π) along with a morphism f : S → T , such that the underlying

family of curves (S,X , π) is the pullback of G by f : (S,X , π) = f∗G. If g : S′ → S is a morphism

of analytic spaces, the pullback of F by g is still a family of divisors over G, the associated morphism

being f ◦ g : S′ → T . Take n ∈ N. The family F is a universal family of divisors of degree n over G if

for any analytic space S′ and any family F ′ of divisors of degree n over G with base S′, there exists a

unique morphism g : S′ → S such that F ′ = g∗F . A universal family of divisors of degree n over G, if

it exists, is clearly unique up to a unique isomorphism.

It is a classical fact that for any family G of complex curves, there exists a universal family F of

divisors of degree n over G. Let us recall briefly the construction of F . Write G = (T,X , π). We set

S = Symn
T X the n-th symmetric power of X relatively to T , that comes with a map γ : S → T . The

9



2.2 Families of Branching Classes over a Family of Divisors

fiber of γ over t ∈ T is the n-th symmetric power of the fiber Xt of π over t. Note that S = {(t,D)|t ∈

T,D effective divisor of degree n on Xt}. The universal family F is defined as (S, γ∗X , γ∗π,D) where

D is the Cartier divisor on γ∗X such that for any s = (t,D) ∈ S, D|Xs = D, where Xs = γ∗π−1({s}).

If F ′ = (S′,X ′, π′,D′), along with a morphism f ′ : S′ → T is another family of divisors of degree n over

G, F ′ = g∗F where g : S′ → S is the analytic morphism defined for any s′ ∈ S′ by g(s′) =
(
f ′(s′),D′

s′
)

where X ′
s′ and Xf ′(s′) are identified (here Xt = π−1({t}), X ′

s′ = π′−1({s′}) and D′
s′ = D′|Xs′

). The

morphism g is clearly the only one such that F ′ = g∗F . See [BM14] for more details on spaces of

effective divisors.

2.2 Families of Branching Classes over a Family of Divisors

The following definition gives a meaning to the notion of a holomorphic deformation of a branching

class.

Definition 2.2.1. (i) Let X be a Riemann surface and D an effective divisor on X. A branched

atlas on the complex curve X with branching divisor D is the datum of an open covering (Ui)i∈I

of X, along with holomorphic functions fi : Ui → C whose branching divisors are D|Ui
, such that

the branching class of fi on Uij = Ui ∩ Uj is the same as the branching class of fj on Uij.

(ii) Let (S,X , π,D) be a family of divisors. A branched atlas on X relative to S, with branching

divisor D is the datum of an open covering (Ui)i∈I of X , along with holomorphic functions

fi : Ui → C such that for any s ∈ S, the family (Ui ∩ Xs, fi|Ui∩Xs)i∈I is a branched atlas on

Xs of divisor Ds. Two branched atlases are equivalent if their union is still a branched atlas. A

branching class on X relative to S, with branching divisor D is an equivalence class of branched

atlases on X relative to S, with branching divisor D.

We are now able to use a vocabulary similar to the one in subsection 2.1.

Definition 2.2.2. (i) Let n ∈ N. A family of complex curves with divisors (of degree n) and branch-

ing classes, or more shortly a family of branching classes (of degree n) is given by a family

F = (S,X , π,D, a) where (S,X , π,D) is a family of divisors (of degree n) and a is a branching

class on X relative to S, with branching divisor D.

(ii) Let G be a family of divisors (respectively of complex curves) of basis T . A family of branching

classes over G is a family of branching classes F of basis S, along with a morphism f : S → T

such that the underlying family of divisors (respectively of complex curves) is f∗G.

(iii) Let S be an analytic space, F a family of branching classes over G with basis S. The family F

is said to be universal if any family F ′ of branching classes over G is uniquely obtained as the

pullback of F by some morphism g : S′ → S, where S′ is the basis of F ′.

The discussion that will follow in this subsection can be summarized in the following proposition :

Proposition 2.2.3. Let G = (T,X , π,D) be a family of divisors. There exists a universal family F of

branching classes over G.

Moreover, the basis of F is an affine bundle over T , directed by the vector bundle π∗KX/T |D of

relative differentials on X restricted to D with respect to T .

10



2.2 Families of Branching Classes over a Family of Divisors

Remark 2.2.4. (i) With the notations of proposition 2.2.3, the fiber over t ∈ T of the vector bundle

π∗KX/T |D is H0 (Xt,KXt |Dt)

(ii) It is clear from definition 2.2.2 that the universal family in 2.2.3 is unique up to a unique

isomorphism.

(iii) It follows from proposition 2.2.3 that for any family of curves G, there exists a universal family

of branching classes over G. This is shown by applying proposition 2.2.3 to the universal family

of divisors over G.

For the rest of the subsection, fix a family of divisors G = (T,X , π,D). Let us denote by

AD
X =

{
(t, a)|t ∈ T, a ∈ ADt

Xt

}
(8)

the union of all the spaces of branching classes associated to one of the curves with divisor of the family

G. There is an obvious projection

δ : AD
X ։ T (9)

For each t ∈ T , according to proposition 1.1.2, the fiber δ−1(s) = ADs

Xs
is an affine space directed by

the vector space H0(Xt,KXt |Dt) =
(
π∗

(
KX/T |D

))
t
. In order to get on AD

X the structure of an affine

bundle on T directed by the vector bundle π∗
(
KX/S |D

)
, it is enough to specify local holomorphic

sections of δ.

Remark that, up to restricting T , there exists a branched atlas on X relative to T with branching

divisor D. Indeed, take t ∈ T and to any point yk of Dt =
∑r

k=1 nk · yk, associate a neighborhood

Uk of yk in X and a function gk : Uk → C such that D ∩ Uk is the zero locus of gk. Write V =

π(U1) ∩ · · · ∩ π(Ur) ⊂ T . It is a neighborhood of t. Let also (Wi, fi)i∈I be a relative atlas (i.e. a

branched relative atlas with divisor zero) for the family π−1(V )\D. Such a relative atlas exists because

the family (T,X , π) is locally trivial on X . The union of the families (Wi, fi)i∈I and (Uk, gk)1≤k≤r is

a branched relative atlas for the family π−1(V ) with branching divisor D|π−1(V ).

The datum of a branching class a on X relative to T with branching divisor D defines a section

σa : T → AD
X of the projection δ : σa(t) is the branching class of the branched atlas a restricted to Xt.

Lemma 2.2.5. Let a1 and a2 be two branching classes on X relative to T with divisor D. For each

t ∈ T , write σa2(t) = σa1(t) + φ(t) ∈ ADt

Xt
, with φ(t) ∈ H0(Xt,KXt |Dt). Then φ is a holomorphic

section of the vector bundle π∗(KX/T |D).

Proof. Take t0 ∈ T , and let y ∈ Xt be a point of Dt. The local triviality on X of (T,X , π) implies that

there exists a local neighborhood V of t0 in T , an open neighborhood U ⊂ X of y with π(U) = V , and

local coordinates (z, w) : U → V × C with π(z, w) = z. Without loss of generality, suppose U is the

domain of a chart both in a1 and a2. Take charts f, g : U → C of a1 and a2 respectively. According to

the proof of proposition 1.1.2, it is enough to show that the function

∂2wg

∂wg
−
∂2wf

∂wf
: U → C

is holomorphic.

11



2.2 Families of Branching Classes over a Family of Divisors

The functions f and g have the same branching divisor when restricted to each fiber of X, i.e. the

functions ∂wg et ∂wf have the same vanishing locus. Thus there exists a nonvanishing holomorphic

function h : U → C
∗ such that ∂wg = h · ∂wf . Thus one has ∂2wg/∂wg − ∂2wf/∂wf = ∂wh/h, which is

holomorphic.

As a consequence of lemma 2.2.5, AD
X admits a structure of affine bundle for which the sections

coming from branched relative atlases on G are holomorphic.

Lemma 2.2.6. Let σ : T → AD
X be a holomorphic section. There exists a branching class a on X ,

relative to T and of divisor D such that σ = σa.

Proof. The union of two branched relative atlases with the same branching classes given by σ is still

a branched relative atlas with relative branching classes given by σ. As a consequence, it is enough to

prove the lemma locally on T .

Take t ∈ T . Up to restricting T to an open neighborhood of t, there exists a relative branching

class a0 on G, with associated section σa0 : T → AD
X . Let y ∈ Xt be a point of Dt. Let (U, f) be a

chart of an atlas in a0 with y ∈ U . Since (T,X , π) is locally trivial on X , up to restricting U , one

has a local biholomorphism (z, w) : U → V × C, where V = π(U) and π(z, w) = z. The difference

σ − σa0 is a section of the vector bundle π∗(KX/T |D) on T , that can be seen as a section of the vector

bundle KX/T |D on the analytic space D. With this point of view, up to restricting U , (σ − σa0)|U

is given by φ|D, where φ is a section on U of KX/T , given by φ = ϕ(z, w)dw. Up to restricting U

again (in particular so that it is contractible), there exists a holomorphic function that never vanishes

h : U → C
∗ such that ϕ = ∂wh/h. By restricting U once more, one gets a function g : U → C such

that ∂wg = h · ∂wf . The branching divisor of g is then D|U and its branching classes on the fibers of

π are given by σ.

By doing so at each point of Dt, by restricting T to the intersection of the obtained open sets π(U),

and then by completing with a relative atlas on X\D, one gets a branched relative atlas a on G with

σ = σa.

The pullback family of divisors δ∗G =
(
AD

X , δ
∗X , δ∗π, δ∗D

)
comes with a tautological relative

branching class a0 : if (t, a) ∈ AD
X , the branching class defined by a0 on (δ∗π)−1 (t, a) = Xt with

divisor Dt is a. Let us show that a0 is indeed a relative branching class. The pullback by δ of a relative

branching class on X relative to T of divisor D is clearly a branching class on δ∗X , relative to AD
X of

divisor δ∗D. Thus the analytic space Aδ∗D
δ∗X of branching classes on the fibers of δ∗G is the analytic

fiber product AD
X ×T AD

X . The tautological relative branching class a0 comes from the diagonal section

of Aδ∗D
δ∗X , that is holomorphic.

The family F :=
(
AD

X , δ
∗X , δ∗π, δ∗D, a0

)
, along with the morphism δ : AD

X → T is a family of

branching classes over G.

Lemma 2.2.7. The family F above, along with the map δ, is a universal family of branching classes

over G.

Proof. Let F ′ = (S′,X ′, π′,D′, a′), along with a morphism f ′ : S′ → T , be a family of branching

classes over G. For any s′ ∈ S′, the relative branched atlas a′ defines a branching class as′ over
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2.3 Families of Branched Projective Structures

(
X ′

s′ ,D
′
s′
)
≃

(
Xf ′(s′),Df ′(s′)

)
. Thus we get a map g : S′ → AD

X given by g(s′) = (f ′(s′), as′). One has

f ′ = δ ◦ g, for any s′ ∈ S′, the fiber of F ′ over s′ is identified to the fiber of F over g(s′), and g is the

only map from S′ to AD
X that fulfills these two conditions.

To complete the proof of the lemma, we only need to show that g is analytic. Clearly, AD′

X ′ is

the analytic fiber product AD′

X ′ = S′ ×T AD
X . By lemma 2.2.6, the relative branching class a′ gives an

analytic section σa of AD′

X ′ , that can be viewed as an analytic morphism σa : S
′ → S′×T AD

X . The map

g is this analytic morphism composed with the projection on AD
X , which is analytic.

2.3 Families of Branched Projective Structures

The following definition gives a meaning to the notion of a holomorphic deformation of a branched

projective structure.

Definition 2.3.1. Let (S,X , π,D, a) be a family of branching classes. A branched projective atlas on

X relative to S with branching divisor D and relative branching class a is the datum of an atlas on

X , relative to S, of divisor D and relative branching class a such that the branched atlas induced on

each Xs is a branched projective atlas. Two relative branched projective atlases are equivalent if their

union is still a relative branched projective atlas. A branched projective structure relative to S with

branching divisor D and relative branching class a is an equivalence class of branched projective atlases

on X relative to S with branching divisor D and relative branching class a.

We are now able to introduce a vocabulary similar to the ones in subsections 2.1 and 2.2.

Definition 2.3.2. (i) Let n ∈ N. A family of complex curves with divisors (of degree n), branching

classes and branched projective structures, or more shortly a family of branched projective struc-

tures (of degree n) is given by a family F = (S,X , π,D, a, p) where (S,X , π,D, a) is a family of

branching classes (of degree n) and p is a branched projective structure on X relative to S, with

branching divisor D and branching class a.

(ii) Let G be a family of branching classes (respectively of complex curves, respectively of divisors)

of basis T . A family of branched projective structures over G is a family of branched projective

structures F of basis S, along with a morphism f : S → T such that the underlying family of

branching classes (respectively of complex curves, respectively of divisors) is f∗G.

(iii) Let S be an analytic space, F a family of branched projective structures over G with basis S.

The family F is said to be universal if any family F ′ of branched projective structures over G is

uniquely obtained as the pullback of F by some morphism g : S′ → S, where S′ is the basis of

F ′.

The aim of this section is to prove the following proposition :

Proposition 2.3.3. Let G be a family of branching classes. There exists a universal family of branched

projective structures over G.

Remark 2.3.4. It is clear from definition 2.2.2 that the universal family in proposition 2.3.3 is unique

up to a unique isomorphism.
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2.3 Families of Branched Projective Structures

Before diving into the proof of proposition 2.3.3 in the next subsections, let us state a corollary

that is one of the main results of this paper. Let us firsrt recall the definition of a marked Riemann

surface.

Definition 2.3.5. Let X be a compact Riemann surface. Let F = (X,S, π) be a family of Riemann

surfaces

(i) If X has genus 0, a marking on X is the datum of 3 distinct points on X. A marking on F is

the datum of three holomorphic sections of π that do not intersect with each other.

(ii) If X has genus 1 and S is a differential surface of genus 1, a marking on X with reference S is the

datum of a point in X and an isotopy class of diffeomorphisms from S toX. A marking on F with

reference S is the datum of a holomorphic section of π, and an isotopy class of diffeomorphisms

from S ×X to X that commute with π.

(iii) If X has genus g ≥ 2 and S is a differential surface of genus g, a marking on X with reference S

is the datum of an isotopy class of diffeomorphisms from S to X. A marking on F with reference

S is the datum of an isotopy class of diffeomorphisms from S ×X to X that commute with π.

A marked compact Riemann surface is a compact Riemann surface with a marking, where a differential

surface S is supposed fixed.

In particular, there is at most one isomorphism between two marked Riemann surfaces.

Marked (families of) divisors (respectively branching classes, respectively branched projective struc-

tures) are (families of) divisors (respectively branching classes, respectively branched projective struc-

tures) along with a marking on the underlying (family of) curves. A marked family of divisors (respec-

tively branching classes, respectively branched projective structures) F is said to be over a marked

family of curves (respectively divisors, respectively branching classes) G if F is given as the pullback

of G by an analytic morphism.

Propositions 2.2.3 and 2.3.3 remain true if we consider marked families : the marking on the

universal family is obtained by pulling back the marking of the base family.

Let us give a definition of a universal family, that is not over another family :

Definition 2.3.6. Take n, g ∈ N A family F of (marked) Riemann surfaces (respectively divisors

of degree n, respectively branching classes of degree n, respectively branched projective structures of

degree n) of genus g is said to be universal if any other such family F ′ can be given in a unique way

as a pullback of F ′.

Let g ∈ N. There is no universal family of curves of genus g. In particular the tautological family

over the moduli space Mg of genus g curves is not universal, since nontrivial isotrivial families are not

pullbacks of it. There exists however a universal family of marked Riemann surfaces of genus g, given

by Ug = (Tg,Xg, πg,mg), where Tg is the Teichmüller space for curves of genus g, Xg is the tautological

family over Tg, πg is the projection and mg is the tautological marking. For n ∈ N, denote by Udiv
g (n)

the marked family of divisors of degree n obtained as the universal family of divisors of degree n over

Ug, along with the pullback marking.
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Let Ubc
g (n) be the universal marked family of branching classes over Udiv

g (n), given by proposition

2.2.3, and let Ubps
g (n) be the universal marked family of branched projective structures over Ubc

g (n),

given by proposition 2.3.3. The family Ubps
g (n) is clearly the universal family of marked branched

projective structures of genus g and degree n. Denote by Pg(n) the basis of the family Ubps
g (n). Now

let p be a marked branched projective structure of degree n and genus n. The structure p can be

seen as a family over a single-point analytic space {x}. By universality of Ubps
g (n), the exists a unique

morphism f : {x} → Pg(n) such that the family p is the pullback of Ubps
g (n) by f . To the structure p

is thus associated a unique point in Pg(n). In particular, the structure p is isomorphic to the fiber of

Ubps
g (n) over the associated point. Clearly, two marked branched projective structures of genus g and

degree n have the same associate point if and only if they are isomorphic, and any point in Pg(n) is

associated to the fiber of Ubps
g (n) over itself. In this way we get a bijection between the analytic space

Pg(n) and the set of isomorphism classes of marked branched projective structures of degree n and

genus g. We thus have the following corollary of proposition 2.3.3 :

Theorem 2.3.7. Let n, g ∈ N. The moduli space of isomorphism classes of marked branched projective

structures of genus g and degree n is an analytic space Pg(n), and is the basis of a universal family

Ubps
g (n) of marked branched projective structures of genus g and degree n. Moreover, the fiber of Ubps

g (n)

over a branched projective structure p ∈ Pg(n) is p itself.

Let us now give a proof for proposition 2.3.3

2.4 Schwarzian Parametrization in Family

Let g, n ∈ N. Fix a family of branching classes G = (T,X , π,D, a) of genus g and degree n.

Lemma 2.4.1. Suppose given p0 a branched projective structure on X relative to T and of relative

branching class a.

(i) If p is a branched projective structure on X relative to T and of relative branching class a,

then the difference p − p0 is a holomorphic section of the vector bundle K⊗2
X/T (−D) over X :

p− p0 ∈ H0
(
X ,K⊗2

X/T (−D)
)
.

(ii) If q ∈ H0
(
X ,K⊗2

X/S(−D)
)
, then there exists a projective structure p on X relative to T and of

relative branching class a such that p− p0 = q.

Proof. (i) Let (z, w) be a local coordinate on U ⊂ X adapted to the locally trivial family on X ,

(T,X , π), i.e. with z = z̃ ◦ π, where z̃ is a local coordinate on T . Let φ0 : U → CP1 be a

local chart of p0 on U and φ : U → CP1 a local chart of p on U . The difference p − p0 is the

meromorphic relative quadratic differential

q =
((
∂w(∂

2
wφ/∂wφ)− 1/2(∂2wφ/∂wφ)

2
)
−

(
∂w(∂

2
wφ0/∂wφ0)− 1/2(∂2wφ0/∂wφ0)

2
))
dw⊗2

But p0 and p, when restricted to the fibers of π, define branched projective structures with the

same branching class, thus for any t ∈ T , q|Xt is a local holomorphic section of K⊗2
Xt

(−Dt). As

a consequence, the relative quadratic differential q is a local holomorphic section of K⊗2
X/T (−D).
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(ii) Take x ∈ X , U an open neighborhood of x, (U, φ0) a chart of p0, and (z, w) a coordinate on U

adapted to the locally trivial family (T,X , π). Write q|U = udw⊗2. Up to restricting U , according

to Cauchy-Lipschitz’s theorem, there exists φ : U → CP1 a holomorphic solution of the partial dif-

ferential equation ∂w(∂
2
wφ/∂wφ)− 1/2(∂2wφ/∂wφ)

2 = u+
(
∂w(∂

2
wφ0/∂wφ0)− 1/2(∂2wφ0/∂wφ0)

2
)
.

As a consequence of proposition 1.2.2, φ defines on U a relative branched projective structure

with relative branching class a. By doing so around each point of X , one gets a branched projec-

tive atlas on X relative to S of relative branching class a. This atlas defines a relative branched

projective structure p, and one has p− p0 = q.

For any t ∈ T , write at the branching class defined by a on the fiber of G over t. Consider

Pa
X =

{
(t, p)|t ∈ T, p ∈ P at

Xt

}
(10)

the union of the spaces of branched projective structures on the fibers of G. There is an obvious map

α : Pa
X → T (11)

According to proposition 1.2.2, for any t ∈ T , the fiber α−1(t) is either empty or an affine space di-

rected by H0
(
Xt,K

⊗2
Xt

(−Dt)
)
, according to whether the cohomology class c(at) ∈ H1

(
Xt,K

⊗2
Xt

(−Dt)
)

vanishes or not. Thus studying the structure of Pa
X is essentially studying the variation with t of the

space H0
(
Xt,K

⊗2
Xt

(−Dt)
)

and the cohomology class c(at)

Write BRa
X the sheaf on X of branched projective structures on X relative to T of relative branching

class a : the space of sections Γ (U,BRa
X ) is the set of branched projective structures on U relative

to π(U) of relative branching class a|π(U). Lemma 2.4.1 implies that BRa
X is a sheaf of affine spaces

directed by the line bundle K⊗2
X/T (−D). Moreover BRa

X is clearly locally nonempty. In particular, it

comes with a cohomology class C(a) ∈ H1
(
X ,K⊗2

X/T (−D)
)

with C(a) = 0 if and only if H0(X ,BRa
X ) 6=

∅, i.e. if and only if there exists a branched projective structure on X , relative to T of relative branching

class a.

Leray spectral sequence gives an exact sequence (see [Voi02]) :

H1
(
T, π∗K

⊗2
X/T (−D)

)
→ H1

(
X ,K⊗2

X/T (−D)
)

χG
−−→ H0

(
T,R1π∗K

⊗2
X/T (−D)

)
(12)

Write

c(a) = χG(C(a)) (13)

Recall Riemann-Roch formula for K⊗2
Xt

(−Dt) :

h0
(
Xt,K

⊗2
Xt

(−Dt)
)
− h1

(
Xt,K

⊗2
Xt

(−Dt)
)
= 3g − 3− n (14)

Let us finish this subsection by showing proposition 2.3.3 in the special cases where the branching

degree n is either small enough or large enough when compared to the genus g.

Suppose h0
(
X,K⊗2

Xt
(−Dt)

)
, thus h1

(
X,K⊗2

Xt
(−Dt)

)
, does not depend on t ∈ T . Then the sheaves
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2.4 Schwarzian Parametrization in Family

π∗K
⊗2
X/T (−D) and R1π∗K

⊗2
X/T (−D) are vector bundles, and the section c(a) in (13) satisfies for any

t ∈ T : c(a)(s) = c (at).

Denote by Z ⊂ T the zero locus of the section c(a), which is an analytic subspace. Let ι : Z → T

be the holomorphic immersion. In other words, there exists a branched projective structure of divisor

Dt and class at on Xt if and only if t ∈ Z. Let G′ = (Z, ι∗X , ι∗π, ι∗D, ι∗a). The space Z is exactly the

image of the map α in (11) and the space Pa
X in (10) satisfies

Pa
X =

{
(s, p)|s ∈ Z, p ∈ P at

Xt

}
= Pι∗a

ι∗X (15)

The map χG′ , defined as in (12), is the zero map. Moreover, if Z is Stein, the exact sequence (12)

applied to the family G′ has vanishing first term, which implies that the second term also vanishes.

As a consequence, up to restricting Z to an open subset, there are branched projective structures on

ι∗X relative to Z and of branching class ι∗a (such structures do not necessarily exist globally on Z,

see [Zha19]).

By lemma 2.4.1, the map α : Pa
X ։ Z is an affine bundle directed by the vector bundle

(ι∗π)∗K
⊗2
ι∗X/Zι∗a

X

(−ι∗D) = π∗K
⊗2
X/T (−D)

∣∣∣
Z
, and whose local holomorphic sections are given by the

(local on Z) branched projective structures on ι∗X relative to Z and with branching class ι∗a. In

particular, the map α is holomorphic.

The pullback family of branching classes α∗G = (Pa
X , α

∗X , α∗π, α∗D, α∗a) comes with a tautological

relative branched projective structure p0 : if (t, p) ∈ Pa
X , the branched projective structure defined by

p0 on (α∗π)−1 (t, p) = Xt with branching class at is p.

The discussion around lemma 2.2.7 applies mutatis mutandis, to show that the family

(Pa
X , α

∗X , α∗π, α∗D, α∗a, p0), along with the morphism α : Pa
X → T is a universal family of branched

projective structures over G.

If n < 2g− 2, by Serre duality, for any t ∈ T , h1
(
Xt,K

⊗2
Xt

(−Dt)
)
= h0 (Xt, TXt (Dt)) = 0, because

deg (TXt (Dt)) < 0. In particular h1
(
Xt,K

⊗2
Xt

(−Dt)
)

and h0
(
Xt,K

⊗2
Xt

(−Dt)
)

do not depend on t ∈ T .

In that case the section c(a) takes values in the zero vector bundle, thus Z = T and Pa
X is an affine

bundle over T .

On the other extreme, if n > 4g−4, then deg
(
K⊗2

Xt
(−Dt)

)
< 0, so h0

(
Xt,K

⊗2
Xt

(−Dt)
)
= 0. Again

h0
(
Xt,K

⊗2
Xt

(−Dt)
)

and h1
(
Xt,K

⊗2
Xt

(−Dt)
)

are both independant of t ∈ T . Moreover the fibers of

α : Pa
X → T contain at most one point. In that case Pa

X is an analytic subspace of T .

One has the following proposition, which is a particular case of proposition 2.3.3 :

Proposition 2.4.2. Recall n, g ∈ N, G = (T,X ,D, π, a) is a family of complex curves of genus g with

divisors of degree n and branching classes and Pa
X is the set of branched projective structures on the

fibers of G.

(i) If n < 2g− 2, the space Pa
X defined in (10) is an affine bundle on T directed by the vector bundle

π∗

(
K⊗2

X/T (−D)
)
.

(ii) If n > 4g − 4, the space Pa
X is an analytic subspace of T .

In both cases, Pa
X is the basis of a universal family of branched projective structures over G.
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2.5 Branched Projective Structures Restricted to a Divisor

Remark 2.4.3. In the limit case n = 2g−2, the set T0 of points t ∈ T for which h1(Xt,K
⊗2
Xt

) 6= 0 is the

set of points for which Dt is a canonical divisor of Xt. If T ′ = T\T0, α
−1(T ′) ⊂ Pa

X |T is an affine bundle

over T ′. It is striking that according to [FR21], the branching divisor being canonical for the underlying

complex curve is necessary for a branched projective structure to be a critical point of the holomorphic

map Mλ,ρ → Tg. Here Tg is the Teichmüller space for genus g, λ is a partition of k ≤ 2g − 2, ρ is a

non-elementary representation of π1(R) in PGL(2,C) and Mλ,ρ is the complex manifold of branched

projective structures on a curve of genus g with monodromy ρ and whose branching points follow the

partition λ. Moreover, it is proved in [FR21] that the condition is sufficient if the underlying complex

curve is hyperelliptic and the divisor is reduced.

2.5 Branched Projective Structures Restricted to a Divisor

To prove proposition 2.3.3 in its full generality, we need to introduce a technical notion of branched

projective structure restricted to a divisor. It can be seen as a notion of jet of projective structure. It

can also be seen as a way to precise the information contained in a branching class in order to get an

analog of proposition 1.2.2 without the ambiguity in point (ii).

Let X be a Riemann surface, along with an effective divisor D and a branching class a over D. Let

D′ be an effective divisor on X.

Definition 2.5.1. Let U and U ′ be two open neighborhoods of D′ in X. Write V = U ∩U ′. Let p1, p2

be branched projective structures, defined respectively on U and U ′, of divisor D|U (respectively D|U ′)

and branching class a|U (respectively a|U ′). The projective structures p1 and p2 are said to coincide

over the divisor D′ if the difference p2|V − p1|V ∈ H0
(
V,K⊗2

V (−D|V )
)

vanishes over the divisor D′,

i.e. p2|V − p1|V ∈ H0
(
V,K⊗2

X (−D|V −D′|V )
)
.

A branched projective structure restricted to D′ of divisor D and branching class a is an equivalence

class for the above equivalence relation. We denote by P a
X,D′ the set of branched projective structures

of divisor D and branching class a restricted to D′.

Any local holomorphic map defined around the points of D′ with branching class a determines an

element of P a
X,D′ . Proposition 1.2.2 implies the following :

Proposition 2.5.2. Let D be an effective divisor on a Riemann surface X, let a ∈ AD
X and D′ an

effective divisor on X. The space P a
X,D′ is an affine space directed by H0

(
X,K⊗2

X (−D)|D′

)
.

Now let r ∈ P a
X,D′ be a branched projective structure on X with branching class a restricted to D′.

We denote by Pa,r
X the space of branched projective structures of branching class a whose restriction

to D′ is r. The following proposition is a clear consequence of proposition 1.2.2.

Proposition 2.5.3. Let D be an effective divisor on a Riemann surface X, a ∈ AD
X and D′ an effective

divisor on X. Let r ∈ Pa
X,D′ be a restricted branched projective structure.

(i) There exists an obstruction c(a, r) ∈ H1
(
X,K⊗2

X (−D −D′)
)

such that c(a, r) = 0 if and only if

P a,r
X 6= ∅.

(ii) The set P a,r
X , if nonempty, is an affine space directed by the vector space H0

(
X,K⊗2

X (−D −D′)
)
.

In particular, if D′ is chosen so that deg(D) + deg(D′) > 4g − 4, h0
(
X,K⊗2

X (−D −D′)
)
= 0 thus

P a,r
X contains at most one point.

18



2.6 Families of Restricted Branched Projective Structures

2.6 Families of Restricted Branched Projective Structures

In this subsection we complete the proof of proposition 2.3.3. By a family of branching classes with

auxiliary divisors of degree n′ we mean a family (T,X , π,D, a,D′) where (T,X , π,D, a) is a family of

branching classes and D′ is an effective divisor on X that contains no fiber of π, such that the restriction

of D′ to any fiber of π has degree n′.

Definition 2.6.1. Let G = (T,X , π,D, a,D′) be a family of branching classes with auxiliary divisors.

Let U and U ′ be two open neighborhoods of D′ in X . Denote V = U ∩ U ′. Let p1, p2 be relative

branched projective structures, defined respectively on U and U ′, of divisor D|U (respectively D|U ′),

and of branching class a|U (respectively a|U ′). The projective structures p1 and p2 are said to coincide

over the divisor D′ if the difference p2|V − p1|V ∈ H0(V,K⊗2
V/T (−D|V)) vanishes over the divisor D′, i.e.

p2|V − p1|V ∈ H0(V,K⊗2
V/T (−D|V −D′)).

A branched projective structure on X , relative to T , restricted to D′ of divisor D and branching

class a is an equivalence class for the above equivalence relation.

Definition 2.6.2. (i) Let n′ ∈ N. A family of restricted branched projective structures of auxiliary

degree n′ is given by a family F = (S,X , π,D, a,D′, r) where (S,X , π,D, a,D′) is a family of

branching classes with auxiliary divisors of degree n′ and r is a branched projective structure on

X relative to S, restricted to D′, with branching divisor D and branching class a.

(ii) Let G be a family of branching classes with auxiliary divisors of basis T . A family of restricted

branched projective structures over G is a family of restricted branched projective structures F of

basis S, along with a morphism f : S → T such that the underlying family of branching classes

with auxiliary divisors is f∗G.

(iii) Let S be an analytic space, F a family of restricted branched projective structures over G with

basis S. The family F is said to be universal if any family F ′ of restricted branched projective

structures over G is uniquely obtained as the pullback of F by some morphism g : S′ → S, where

S′ is the basis of F ′.

Fix G = (T,X , π, a) a family of branching classes of genus g and degree n, as well as an effective

divisor D′ that contains no fiber of G. Write H the corresponding family of branching classes with

auxiliary divisors and n′ the auxiliary degree.

For t ∈ T , write respectively Xt, Dt, at and D′
t the curve, branching divisor, branching class and

auxiliary divisor in the fiber of H. Consider

Pa
X ,D′ =

{
(t, r)|t ∈ T, r ∈ P at

Xt,D′
t

}
(16)

the union of the spaces of restricted projective structures on the fibers of H. There is an obvious map

α : Pa
X ,D′ → T (17)

The following lemma is a direct consequence of lemma 2.4.1 :
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2.6 Families of Restricted Branched Projective Structures

Lemma 2.6.3. Let r0 be a branched projective structure on X , relative to T , restricted to D′, of divisor

D and relative branching class a.

(i) If r is another such structure, then the difference r − r0 is a holomorphic section of the vector

bundle K⊗2
X/T (−D)|D′ .

(ii) If q ∈ H0
(
D′,K⊗2

X/T (−D)|D′

)
is a section, then there exists r a branched projective structure on

X , relative to T , restricted to D′, of relative branching class a, such that r− r0 = q.

The dimension of H0
(
D′

t,K
⊗2
Xt

(−Dt) |D′
t

)
does not depend on t ∈ T . Thus π∗

(
K⊗2

X/T (−D)|D′

)
is

a vector bundle on T , and the datum of a section in H0
(
D′,K⊗2

X/T (−D)|D′

)
is the same as the datum

of a section in H0
(
T, π∗

(
K⊗2

X/T
(−D)|D′

))
. As a consequence, Pa

X ,D′ has the structure of an affine

bundle over T , whose holomorphic (local) sections are the ones defined by (local over T ) families of

branched projective structures on G restricted to D′.

The pullback family of branching classes α∗G =
(
Pa
X ,D′ , α∗X , α∗π, α∗D, α∗a

)
comes with a tau-

tological relative branched projective structure r0 restricted to α∗D′ : if (t, r) ∈ Pa
X ,D′, the branched

projective structure defined by r0 on (α∗π)−1 (t, r) = Xt with branching class at is r.

The discussion around lemma 2.2.7 applies mutatis mutandis, to show that the family(
Pa
X ,D′ , α∗X , α∗π, α∗D, α∗a, α∗D′, r0

)
, along with the morphism α : Pa

X → T is a universal family

of branched projective structures over H. We thus have the following lemma :

Lemma 2.6.4. If G is a family of branching classes with auxiliary divisors, there exists a universal

family of restricted branched projective structures over G.

Now let I = (T,X , π,D, a,D′, r) be a family of restricted branched projective structures with genus

g, branching degree n and auxiliary degree n′. Suppose n + n′ > 4g − 4. Denote by rt the restricted

branched projective structure in I over t ∈ T . Consider

Pa,r
X =

{
(t, p)|t ∈ T, p ∈ P at,rt

Xt

}
(18)

the set of branched projective structures whose restrictions are given by the fibers of I . There is an

obvious map

ρ : Pa,r
X → T (19)

According to proposition 2.5.3, the fiber of ρ over t ∈ T is either empty or an affine space directed

by H0
(
Xt,K

⊗2
Xt

(−Dt −D′
t)
)
. Since moreover deg(Dt) + deg(D′

t) = n + n′ > 4g − 4, the line bundle

K⊗2
Xt

(−Dt −D′
t) has negative degree, thus has no nonzero section. As a consequence, the fibers of α

contain at most one point, and Pa,r
X can be seen as a subset of T .

Similarly to subsection 2.4, consider the sheaf BRa,r
X of branched projective structures on X , relative

to T , branched on D, of relative branching class a, whose restriction to D′ is r. This is a locally

nonempty sheaf of affine spaces directed by K⊗2
X/T (−D − D′) and thus is associated to a cohomology

class C(a, r) ∈ H1
(
X,K⊗2

X/T (−D −D′)
)

that vanishes if and only if BRa,r
X has global sections. One

also has an exact sequence similar to (12) :

H1
(
T, π∗K

⊗2
X/T (−D −D′)

)
→ H1

(
X ,K⊗2

X/T (−D −D′)
)

χH−−→ H0
(
T,R1π∗K

⊗2
X/T (−D −D′)

)
(20)
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2.6 Families of Restricted Branched Projective Structures

Write

c(a, r) = χH

(
C(a, r)

)
(21)

Since h0
(
K⊗2

Xt
(−Dt −D′

t)
)

vanishes for any t ∈ T , Riemann-Roch formula implies that

h1
(
K⊗2

Xt
(−Dt −D′

t)
)

does not depend on t ∈ T , so that R1π∗K
⊗2
X/T (−D − D′) is a vector bundle

on T of which c(a, r) is a holomorphic section. For any t ∈ T , one has c(a, r) = c(at, rt). Thus Pa,r
X is

the zero locus of the section c(a, r).

Let I ′ =
(
Pa,r
X , ρ∗X , ρ∗π, ρ∗D, ρ∗a, ρ∗D′, ρ∗r

)
. The map χI′ , defined as in (20), is the zero map.

Moreover, if T is Stein, the exact sequence (20) has vanishing first term, which implies that the second

term also vanishes as soon as χI vanishes. As a consequence, up to restricting Pa,r
X to an open subset,

there is a branched projective structure on ρ∗X relative to Pa,r
X of branching class ρ∗a and whose

restriction to ρ∗D′ is r. Such a relative branched projective structure is unique since the fibers of ρ

contain at most one element. We denote it by p0.

A family of branched projective structures over the family of restricted branched projective structures

I = (T,X , π,D, a,D′, r) is a family of branched projective structures F1 = (T1,X1, π1,D1, a1, p1) along

with a morphism f : T → T ′ such that the family of branching classes (T1,X1, π1,D1, a1) is the pullback

by f of (T,X , π,D, a) and the restriction of p1 to f∗D′ is f∗r. Such a family F1 is universal if any

other such family is uniquely obtained as a pullback of F1.

Clearly, the family of branched projective structures
(
Pa,r
X , ρ∗X , ρ∗π, ρ∗D, ρ∗a, p0

)
, along with the

morphism ρ : Pa,r
X → T is a universal family of branched projective structures over I . We have shown:

Lemma 2.6.5. Let I be a family of restricted branched projective structures of genus g, branching

degree n and auxiliary degree n′. If n + n′ > 4g − 4, there exists a universal family of branched

projective structures over I.

Now we are able to complete the proof of proposition 2.3.3. Let G be a family of branching

classes of genus g and branching degree n, of basis TG . Take D′ a divisor on the total space of G

that contains no fiber of G and let H be the corresponding family of branching classes with auxiliary

divisors. Write n′ the auxiliary degree of H, and choose D′ such that n + n′ > 4g − 4. Let I

be the universal family of restricted projective structures over H, TI its basis and fGI : TI → TG

the associated morphism. Now let F , of basis TF , be the universal family of branched projective

structures over I . Write fIF : TF → TI the associated morphism. The family F , along with the

morphism fGF = fGI ◦ fIF : TF → TG is a family of branched projective structures over G.

Let F1, of basis TF1 with a morphism fGF1 : TF1 → TG , be another family of branched projective

structures over G. By restricting the relative branched projective structure of F1 to the pullback

auxiliary divisor f∗GF1
D′, one gets a family of restricted branched projective structures I1, of basis TF1 ,

over the family H, the associated morphism being fGF1 . By universality of I , the family I1 is the

pullback of I by some morphism fIF1 verifying fGF1 = fGI ◦ fIF1 . As a consequence, F1 is a family of

branched projective structures over I , the associated morphism being given by fIF1 . By universality

of F , there exists a morphism fFF1 : TF1 → TF such that F1 = f∗FF1
F and fIF1 = fIF ◦ fFF1 thus

fGF1 = fGF ◦ fFF1 .

It remains to show that fFF1 is the unique such morphism. Suppose given f : TF1 → TF such that

F1 = f∗F and fGF1 = fGF ◦ f . The family of restricted branched projective structures I1 is obtained
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by pulling back I by the morphism f ◦ fIF . By universality of I , one has fIF ◦ f = fIF1 . Thus F1

is the pullback of F by f as a family of branched projective structures over I . Since F is a universal

such family, f = fFF1 . This concludes the proof of proposition 2.3.3.

3 Holonomy and Singularities of the Moduli Space of Marked Branched

Projective Structures in Genus at Least Two

In this section, we prove the following theorem. Recall that if n, g ∈ N, Pg(n) stands for the moduli

space of isomorphism classes of branched projective of genus g and branching degree n.

Theorem 3.0.1. Let n, g ∈ N, with g ≥ 2. Let p be a branched projective structure of genus g and

branching degree n on a marked Riemann surface X. Let ρ ∈ Hom (π1(X),PSL(2,C)) be a monodromy

representation for g. The branched projective structure p is a singular point of the moduli space Pg(n)

if and only if the image Im ρ ⊂ PSL(2,C) of the monodromy representation ρ has commutative image

and the action of Im ρ on CP1 admits a fixed point.

Remark 3.0.2. (i) It is equivalent to say that p is a singular point of Pg(n) if and only if, up to

conjugation, Im ρ is contained either in {z 7→ αz, α ∈ C
∗} or in {z 7→ z + α,α ∈ C}.

(ii) In particular, branched projective structures with nonelementary holonomy are smooth points of

Pg(n). The holonomy of a branched projective structure whose degree is either odd or smaller

than 2g − 2 is nonelementary (see [GKM00]). Thus if n is odd or n < 2g − 2, then Pg(n) is

smooth.

(iii) A branched projective structure in Pg(n) is a smooth point if and only if its holonomy is a smooth

point of the analytic space Hom (π1(X),PGL(2,C)) (see [Hub81] for singularities of the latter),

where X is the underlying Riemann surface.

(iv) The holonomy ρ ∈ Hom (π1(X),PGL(2,C)) of a branched projective structure p is only defined

up to conjugation with an element of PGL(2,C). However, the criterium on ρ for p to be singular

does not depend on the choice of ρ.

In order to study the singularities of Pg(n), we need to have an insight in its the tangent spaces.

We achieve this by studying the infinitesimal automorphisms of branched projective structures.

3.1 Infinitesimal Automorphisms of a Branched projective Structure

Let X be a compact Riemann surface of genus g ≥ 2 and p a branched projective structure on

X of branching divisor D and branching class a ∈ AD
X . Denote by Λp the sheaf of infinitesimal

automorphisms of the branched projective structure p. A local vector field V defined on a open subset

U ⊂ X is a local section of Λp if the flow of V (defined at small times on relatively compact subsets of

U) preserves the charts of p. More precisely, if φtV is the flow of V at time t ∈ C, then V ∈ Γ (U,Λp)

if and only if for any relatively compact open subset U ′ ⊂ U , any chart f : U ′ → CP1 of p and any

small enough t ∈ C, the map f ◦ φtV is again a chart of p.
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3.1 Infinitesimal Automorphisms of a Branched projective Structure

The sheaf Λp is a subsheaf of TX
(
−Dred

)
, where Dred is the reduced divisor associated to the

branching divisor D. A germ of holomorphic vector field V(x) at x ∈ X is in the stalk of Λp at x if and

only if V(x) is the pullback of a germ of projective vector field by some chart of p.

Let ρ ∈ Hom(π1(X),PSL(2,C) be a monodromy representation of p. Let Adp be the sheaf on X

whose stalk at x ∈ X contains germs of meromorphic vector fields at x that are obtained by pulling

back a germ of projective vector field by a chart of the branched projective structure p. In particular,

Adp is a subsheaf of the sheaf of meromorphic functions on X and Λp is a subsheaf of Adp. The

sheaf Adp is a local system whose stalks are 3-dimensional Lie algebras modeled on sl(2,C), and whose

holonomy is given by ρ, where PSL(2,C) acts on its Lie algebra by the adjoint action.

Let x ∈ X be a branched point of p of degree n and z a local coordinate of X centered at x

such that f(z) = zn+1 ∈ CP1 = C∪{∞} is a chart of p. The pullback by f of the vector field

W =
(
a0 + a1ζ + a2ζ

2
)
∂ζ , where ζ is the classical coordinate on CP1 = C∪{∞}, is given by

f∗W =

(
a0

1

zn
+ a1z + a2z

n+2

)
∂z (22)

This implies that the quotient Adp /Λp is supported on the branched points of p and the stalk of

Adp /Λp at any branched point of p is a complex line, whatever the branching degree. The short exact

sequence

0 → Λp → Adp → Adp /Λp → 0 (23)

gives in cohomology the long exact sequence (recall that X has no infinitesimal automorphism, so

H0 (X,Λp) = 0)

0 → H0 (X,Adp) → H0 (X,Adp /Λp) → H1 (X,Λp) → H1 (X,Adp) → 0 →

→ H2 (X,Λp) → H2 (X,Adp) → 0
(24)

In particular, the injection Λp → Adp induces an isomorphism H2 (X,Λp) ≃ H2 (X,Adp).

The sheaf cohomology of the local system Adp is the same as its cohomology with local coefficients,

see [Ste43]. Moreover, Poincaré duality provides an isomorphism H2 (X,Adp) ≃ H0 (X,Adp), where

the latter group is the homology with local coefficients of Adp, see [Sun17] and references therein. We

have the following lemma, see [Whi78].

Lemma 3.1.1. Let L0 ⊂ g be the linear subspace generated by the family (ρ(γ) ·W −W )γ∈π1(X)
W∈g

. Let

L1 ⊂ g be the linear subspace of fixed points of the action on π1(X) on g : L1 = {W ∈ g|∀γ ∈

π1(X), ρ(γ) ·W =W}. One has

(i) H0 (X,Adp) = g/L0

(ii) H0 (X,Adp) = L1

Take W ∈ g. Recall that g is the Lie algebra of projective vector fields, so W can be written W =(
a0 + a1ζ + a2ζ

2
)
∂ζ . A computation shows that if g ∈ G is the Möbius transformation g : ζ 7→ αζ+β

γζ+δ ,

then

(i) If α = δ = 1, γ = 0, i.e. g is parabolic fixing ∞ ∈ CP1, then g ·W =W+
(
(a2β

2−a1β)−2a2βζ
)
∂ζ
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3.2 Tangent Spaces of the Universal Spaces of Divisors

(ii) If β = γ = 0, δ = 1, i.e. g is either elliptic or loxodromic fixing 0 and ∞ in CP1, then

g ·W =W +
(
a0(α− 1) + a2(

1
α − 1)ζ2

)
∂ζ

As a consequence, there are three cases for the dimensions of the spaces in equation (24). Here we

denote by r the number of branched points of p, without taking the multiplicity into account, so

that h0 (X,Adp /Λp) = r. Recall that the Euler characteristic of X is given by the alternate sum

of the betti numbers of the cohomology of any local system on X, so in particular 3(2 − 2g) =

h0 (X,Adp)−h
1 (X,Adp)+h

2 (X,Adp) (here the factor 3 stands for the dimension of the model space

for coefficients g).

(i) If the image of ρ is the trivial subgroup of G, L0 = {0}, L1 = g, so h0 (X,Adp) = 3,

and h2 (X,Λp) = h2 (X,Adp) = h0 (X,Adp) = 3. As a consequence h1 (X,Adp) = 6g, and

h1 (X,Λp) = 6g − 3 + r.

(ii) Suppose the image Im(ρ) ⊂ G is not the trivial subgroup but all the nontrivial elements of

Im(ρ) have the same set of fixed points. More precisely, the nontrivial elements of Im(ρ) are

either all parabolic transformations with the same fixed point (conjugate to z 7→ z + β), or all

loxodromic or elliptic tranformations with the same two fixed points (conjugate to z 7→ αz).

Then h0 (X,Adp) = 1, and h2 (X,Λp) = h2 (X,Adp) = h0 (X,Adp) = 1. As a consequence

h1 (X,Adp) = 6g − 4, and h1 (X,Λp) = 6g − 5 + r.

(iii) In the other cases, i.e. if the image Im(ρ) ⊂ G contains at least two nontrivial transformations g1

and g2 with g1 not fixing a fixed point of g2, then h0 (X,Adp) = 0, and h2 (X,Λp) = h2 (X,Adp) =

h0 (X,Adp) = 0. As a consequence h1 (X,Adp) = 6g − 6, and h1 (X,Λp) = 6g − 6 + r.

Remark 3.1.2. The group h2 (X,Λp) is nonzero if and only if the monodromy representation ρ is a

singular point of Hom (π1(X), G) (see [Hub81]).

3.2 Tangent Spaces of the Universal Spaces of Divisors

Let n, g ∈ N with g ≥ 2. Following subsection 2.3, let Ug = (Tg,Xg, πg,mg) be the universal family of

marked Riemann surfaces of genus g (mg is the marking). In particular Tg is the Teichmüller space.

Let Udiv
g (n) =

(
Tg(n),X

div
g (n), πdivg (n),mdiv

g (n),Ddiv
g (n)

)
be the universal family of marked curves of

genus g with divisors of degree n, and let γg(n) : Tg(n) → Tg be the forgetful morphism. In particular,

Tg(n) is the moduli space of marked Riemann surfaces with divisors.

A partition of n is an ordered finite sequence of stictly positive integers (k1 ≤ k2 ≤ · · · ≤ kr) with

k1 + · · · + kr = n. Denote by Part(n) the set of partitions of n. Let (X,D,m) ∈ Tg(n) : X is a

Riemann surface, m is a marking on X, and D is a divisor of degree n on X. The divisor D is given

by D = k1 · x1 + · · · + kr · xr with ki ∈ N
∗, xi ∈ X pairwise distinct and k1 + · · · + kr = n. The ki’s

can be chosen to be ordered, so that the sequence (k1, . . . , kr) is a partition of n, uniquely determined

by D.

In this way we define a map ̟ : Tg(n) → Part(n). For any partition κ = (k1 ≤ · · · ≤ kr) of n,

̟−1(κ) is a smooth 3g − 3 + r-dimensional analytic subspace of Tg(n) (see [BM14] for details on the

structure of the symmetric powers of a smooth curve). Let us denote this space by Tg(κ) = ̟−1(κ),
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3.2 Tangent Spaces of the Universal Spaces of Divisors

and by Ug(κ) =
(
Tg(κ),X

div
g (κ),Ddiv

g (κ),mdiv
g (κ), πdivg (κ)

)
the restriction of the family Ug(n) to the

basis Tg(κ). Let us also denote by γg(κ) : Tg(κ) → Tg the forgetful submersion, restriction of γg(n).

Finally, denote by Symκ(X) the submanifold of the symmetric power Symn(X) containing the divisors

whose associated partition is κ.

Let us now focus on the space Tg(κ) from the point of view of infinitesimal deformations of marked

curves with divisor. Let (X,D,m) ∈ Tg(κ) be a smooth marked complex curve with divisor (m is the

marking on X). One has a first exact sequence:

0 →
(
TSymκ(X)

)
D
→

(
TTg(κ)

)
(X,D,m)

→
(
TTg

)
(X,m)

→ 0 (25)

and another one, denoting by Dred the reduced divisor on X with the same support as D :

0 → TX

(
−Dred

)
→ TX → TX |Dred → 0 (26)

Since g ≥ 2, one has in cohomology :

0 → H0 (X,TX |Dred) → H1
(
X,TX

(
−Dred

))
→ H1 (X,TX ) → 0 (27)

There is an obvious isomorphism ι :
(
TSymκ(X)

)
D

∼
−→ H0 (X,TX |Dred). One also has an isomorphism

KS :
(
TTg

)
(X,m)

∼
−→ H1 (X,TX), called the Kodaira-Spencer isomorphism, of which we recall the

definition.

Consider the exact sequence

0 → TXg/Tg → TXg

dπg
−−→ π∗gTTg → 0 (28)

By applying the left exact functor πg∗, it gives a morphism of vector bundles πg∗π
∗
gTTg = TTg →

R1πg∗TXg/Tg . The map KS is the former isomorphism restricted to the fiber above (X,m) (the equality

πg∗π
∗
gTTg = TTg stands because πg has compact fibers). It is a property of the Teichmüller space that

the map KS is an isomorphism (see for instance [EE69]).

Let us denote by Ddiv
g (κ) the restriction of the divisor Ddiv

g (n) to the manifold X div
g (κ). The

reduced divisor associated to Ddiv
g (κ), denoted by Ddiv

g (κ)red, is a complex manifold (a smooth analytic

subspace), that is transverse to the fibers of πdivg (κ). As a consequence, when writing the Kodaira-

Spencer exact sequence (28) for the family Udiv
g (κ), we can restrict to the vector fields on X div

g (κ) that

are tangent to Ddiv
g (κ)red :

0 → TXdiv
g (κ)/Tg(κ)

(
−Ddiv

g (κ)red
)
→ TXdiv

g (κ)

(
− logDdiv

g (κ)red
) dπdiv

g (κ)
−−−−−→ πdivg (κ)∗TTg(κ) → 0 (29)

Recall that TXdiv
g (κ)

(
− logDdiv

g (κ)red
)

is the sheaf of vector fields on X div
g (κ) that are tangent

to Ddiv
g (κ)red. Note that the reason why, in the above diagram, the arrow dπdivg (κ) is surjective

is that Ddiv
g (κ)red is a smooth analytic subspace transverse to the fibers of dπdivg (κ). By applying

the left exact functor πdivg (κ)∗, one obtains in particular a morphism of vector bundles TTg(κ) →

R1πdivg (κ)∗TXdiv
g (κ)/Tg(κ)

(
−Ddiv

g (κ)red
)
. By looking at that morphism at the point (X,D,m) ∈ Tg(κ),
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one obtains a linear map

KSdiv :
(
TTg(κ)

)
(X,D,m)

→ H1
(
X,TX

(
−Dred

))
(30)

It is easy to see that the following diagram commutes :

0
(
TSymκ(X)

)
D

(
TTg(κ)

)
(X,D,m)

(
TTg

)
(X,m)

0

0 H0 (X,TX |Dred) H1
(
X,TX

(
−Dred

))
H1 (X,TX) 0

ι KSdiv KS
(31)

By the five lemma, we have :

Lemma 3.2.1. The map KSdiv in (30) is an isomorphism.

3.3 Tangent Spaces of the Universal Spaces of Branching Classes

Let X be a Riemann surface of genus g ≥ 2, D a divisor on X and a ∈ AD
X a branching class. Let U

be an open set in X and let V ∈ Γ(U, TX(−Dred)). For any t ∈ R near 0, denote by φtV the flow of V

at time t. Write

χa(V ) = lim
t→0

(φtV )
∗a− a

t
∈ Γ(U,KX |D)

where the pullback of branching classes is the pullback of jets of holomorphic maps (thus the pullback

of holomorphic maps).

Let ζ be a nonconstant holomorphic map on U , whose jets at the points of D|U are representatives

of the branching class a|U . In particular, ζ has branching divisor D|U . Write V = f(ζ)∂ζ , where f

is a multivalued holomorphic function. A straightforward computation shows that χa(V ) = f ′′(ζ)dζ.

As a consequence, if D|U = nx with x ∈ U and if z is a local coordinate centered at x and such that

ζ = zn+1, then if V = (a1z+ a2z
2 + · · · )∂z , the section χa(V ) ∈ Γ(U,KX |D) is given in the coordinate

z by :

χa(V ) =
(
(n+ 2)a2 + 2(n + 3)a3z + 3(n + 4)a4z

2 + · · ·+ n(2n+ 1)an+1z
n−1

)
dz (32)

In particular, the morphism of sheaves χa : TX(−Dred) → KX |D is surjective. Denoting by Γa its

kernel, one gets an exact sequence:

0 → Γa → TX

(
−Dred

)
χa
−→ KX |D → 0 (33)

and thus in cohomology

0 → H0(X,KX |D) → H1(X,Γa) → H1
(
X,TX

(
−Dred

))
→ 0 (34)

Let n ∈ N. Following subsection 2.3, let Ubc
g =

(
Ag(n),X

bc
g (n), πbcg (n),mbc

g (n),Dbc
g (n), abcg (n)

)
be

the universal family of marked branching classes of genus g and degree n. Write δg(n) : Ag(n) → Tg(n)

the forgetful morphism. According to subsection 2.2, Ag(n) is an affine bundle over Tg(n).

For any partition κ of the integer n, denote by Ag(κ) the bundle Ag(n) ։ Tg(n) restricted to

the basis Tg(κ) ⊂ Tg(n). Let Ubc
g (κ) =

(
Ag(κ),X

bc
g (κ),Dbc

g (κ), πbcg (κ), abcg (κ)
)

be the pullback by the

26



3.4 Tangent Spaces of the Universal Spaces of Branched Projective Structures

inclusion Ag(κ) → Ag(n) of the family Ubc
g (n). Denote by δg(κ) the restriction of δg(n) to Ag(κ).

Let (X,D, a,m) ∈ Ag(n) be a marked curve with divisor of degree n and branching class. Denote by

κ the partition of n associated to the divisorD. It is a consequence of proposition 1.1.2 that the tangent

space of the fiber AD
X = δg(κ)

−1(X,D,m) at a is
(
TAD

X

)
a
= H0(X,KX |D). Moreover we saw in section

3.2 that there is a Kodaira-Spencer isomorphism KSdiv :
(
TTg(κ)

)
(X,D,m)

∼
−→ H1

(
X,TX

(
−Dred

))
. As

a consequence, similarly to section 3.2, one has identifications between the kernels and cokernels of the

exact sequences (34) and

0 →
(
TAD

X

)
a
→

(
TAg(κ)

)
(X,D,a,m)

→
(
TTg(κ)

)
(X,D,m)

→ 0 (35)

Let K (respectively Krel) be the subsheaf of TXbc
g (κ) (respectively TXbc

g (κ)/Ag(κ)) that contains the

vector fields preserving the relative branched atlas abcg (κ). The Kodaira-Spencer exact sequence for

the family X bc
g (κ), when restricted to the vector fields preserving abcg (κ), is given by :

0 → Krel → K → πbcg (κ)∗TAg(κ) → 0 (36)

Applying the left exact functor πbcg (κ)∗, one gets a morphism of sheaves TAg(κ) → R1πbcg (κ)∗K
rel.

In particular, at the point (X,D, a,m), this morphism gives a linear map :

KSbc :
(
TAg(κ)

)
(X,D,a,m)

→ H1 (X,Γa) (37)

It is easy to see that the following diagram is commutative :

0
(
TAD

X

)
a

(
TAg(κ)

)
(X,D,a,m)

(
TTg(κ)

)
(X,D,m)

0

0 H0 (X,KX |D) H1 (X,Γa) H1
(
X,TX

(
−Dred

))
0

KSbc KSdiv
(38)

Since KSdiv is an isomorphism by lemma 3.2.1, we have the following lemma :

Lemma 3.3.1. The map KSbc in (37) is an isomorphism.

3.4 Tangent Spaces of the Universal Spaces of Branched Projective Structures

Let X be a Riemann surface of genus g ≥ 2, D a divisor on X, a ∈ AD
X a branching class and p ∈ P a

X

a branched projective structure. Let U be an open subset of X and let V ∈ Γ(U,Γa), where Γa is

defined in (33). For any t ∈ R that is near 0, the flow of V at time t is denoted by φtV . Note that, by

definition of Γa, V ∈ Γa means that for all t near 0 one has
(
φtV

)∗
a− a = 0. Write

ξp(V ) = lim
t→0

(φtV )
∗p− p

t
∈ Γ

(
U,K⊗2

X (−D)
)

(39)

Let ζ be a chart on U of the branched projective structure p. Write V = f(ζ)∂ζ , where f is a

multivalued holomorphic function. A straightforward computation shows that ξp(V ) = f ′′′(ζ)dζ⊗2.
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Suppose D|U = nx with x ∈ U and let z be a coordinate centered at x such that ζ = zn+1. Write

V = (a1z + a2z
2 + · · · )∂z. Then

ξp(V ) =



∑

k≥1

k(k + n+ 1)(k − (n+ 1))ak+1z
k−2


 dz⊗2

According to equation (32), V is a section of Γa if and only if a2 = a3 = · · · = an+1 = 0. As a

consequence :

ξp(V ) =



∑

l≥n

(l + 2)(l + n+ 3)(l − n+ 1)al+3z
l


 dz⊗2 (40)

Since for any l ≥ n, (l+2)(l+n+3)(l−n+1) 6= 0, the morphism of sheaves ξp : Γa → K⊗2
X (−D)

is surjective. Denote by Λp its kernel. It is the sheaf of infinitesimal automorphisms of p. There is an

exact sequence :

0 → Λp → Γa
ξp
−→ K⊗2

X (−D) → 0 (41)

which gives, by taking cohomologies, an exact sequence :

0 → H0
(
X,K⊗2

X (−D)
)
→ H1(X,Λp) → H1 (X,Γa) → H1

(
X,K⊗2

X (−D)
)
→ H2(X,Λp) → 0 (42)

For any n ∈ N, according to subsection 2.3, write Ubps
g (n) =

(
Pg(n),X

bps
g (n), πbpsg (n),mbps

g (n),

Dbps
g (n), abpsg (n), pbpsg (n)

)
the universal family of marked branched projective structures of genus g and

degree n. In particular Pg(n) is the moduli space of marked branched projective structures of degree

n and genus g. Denote by αg(n) : Pg(n) → Ag(n) the forgetful map.

3.4.1 Case n < 2g − 2 or n > 4g − 4

Let us first handle the case, corresponding to the framework of proposition 2.4.2, where the branching

degree n and the genus g verify n < 2g − 2 or n > 4g − 4.

In this subsubsection we prove the following proposition, which, combined with the study of sub-

section 3.1, shows theorem 3.0.1.

Proposition 3.4.1. Take g ≥ 2 and n ∈ N.

(i) If n < 2g − 2, the analytic space Pg(n) is smooth.

(ii) If n > 4g−4 and p ∈ Pg(n), p is a smooth point of Pg(n) if and only if its sheaf Λp of infinitesimal

automorphisms satisfies H2 (X,Λp) = 0.

Proof. In the case n < 2g − 2, according to proposition 2.4.2, Pg(n) is an affine bundle on the smooth

variety Ag(n), thus it is smooth. The case n > 4g−4 is more subtle, it is the reason why we introduced

the Kodaira-Spencer machinery.

From now on, suppose n > 4g − 4. Consider the vector bundle on Ag(n) whose fiber over a

point (X,D, a,m) is H1
(
X,K⊗2

X (−D)
)
, and denote by cg(n) = c

(
abcg (n)

)
its global section defined
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in (13). By proposition 2.4.2, the map αg(n) is an embedding and thus identifies Pg(n) with an

analytic subspace of Ag(n). More precisely, we saw in the proof of proposition 2.4.2 that the subspace

Pg(n) ⊂ Ag(n) is given by the zeroes of the section cg(n). In particular, if (X,D, a,m) ∈ Pg(n) ⊂

Ag(n), one has cg(n)(X,D, a,m) = 0. In that case, the differential (dcg(n))(X,D,a,m) is a linear map

from
(
TAg(n)

)
(X,D,a,m)

to H1
(
X,K⊗2

X (−D)
)
. We will show that this differential is surjective for any

p ∈ Ag(n) such that H2 (X,Λp) = 0, which implies smoothness of Pg(n) at p.

For any partition κ of the integer n, denote by Pg(κ) the restriction of the bundle Pg(n) ։ Ag(n)

to the basis Ag(κ) ⊂ Ag(n). Let Ubps
g (κ) =

(
Pg(κ),X

bps
g (κ), πbpsg (κ),mbps

g (κ),Dbps
g (κ), abpsg (κ)

)
be the

pullback of the family Ubps
g (n) by the inclusion Pg(κ) → Pg(n). Denote by αg(κ) the restriction of

αg(n) to Pg(κ).

Let (X,D, a, p,m) ∈ Ag(n) be a marked curve with divisor of degree n, branching class and

branched projective structure. Let κ be the partition of n associated to the divisor D. Proposi-

tion 1.2.2 implies that the tangent space of the fiber P a
X = αg(κ)

−1(X,D, a,m) at p is
(
TP a

X

)
p
=

H0
(
X,K⊗2

X (−D)
)
. Moreover, as we saw in section 3.3, there is a Kodaira-Spencer isomorphism

KSbc :
(
TAg(κ)

)
(X,D,a,m)

∼
−→ H1 (X,Γa). Thus the first (respectively the third) terms of the two exact

sequences (42) and

0 →
(
TP a

X

)
p
→

(
TPg(κ)

)
(X,D,a,p,m)

→
(
TAg(κ)

)
(X,D,a,m)

dcg(κ)(X,D,a,m)
−−−−−−−−−−→ H1

(
X,K⊗2

X (−D)
)

(43)

are identified.

Let G (respectively Grel) be the subsheaf of T
Xbps

g (κ)
(respectively T

Xbps
g (κ)/Pg(κ)

) of vector fields

preserving the relative branched projective structure pg(n). The Kodaira-Spencer exact sequence for

the family X bps
g (κ), when restricted to vector fields preserving pg(n), is given by :

0 → Grel → G → πbpsg (κ)∗TPg(κ) → 0 (44)

By applying the left exact functor πbpsg (κ)∗, one gets a morphism of sheaves TPg(κ) → R1πbpsg (κ)∗G
rel.

In particular, at the point (X,D, a, p,m), one gets a linear map

KSbps :
(
TPg(κ)

)
(X,D,a,p,m)

→ H1 (X,Λp) (45)

Since n > 4g − 4,
(
TP a

X

)
p
= H0

(
X,K⊗2

X (−D)
)
= 0. Thus one has the following diagram, that is

easily seen to be commutative :

0
(
TPg(κ)

)
(X,D,a,p,m)

(
TAg(κ)

)
(X,D,a,m)

H1
(
X,K⊗2

X (−D)
)

0 H1 (X,Λp) H1 (X,Γa) H1
(
X,K⊗2

X (−D)
)

H2 (X,Λp)

KSbps KSbc

dcg(κ)

(46)

Since KSbc is an isomorphism, one has :

Lemma 3.4.2. The map KSbps in (45) is an isomorphism. Moreover the differential dcg(κ) is sur-
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jective at any point p of Pg(κ) such that H2 (X,Λp) = 0.

Let p ∈ Pg(κ) be such that H2 (X,Λp) = 0. Since the restricted differential at dcg(κ) is surjective

at p, the total differential dcg(n) is a fortiori surjective at p. This implies that p is a smooth point

of Pg(n) ⊂ Ag(n). Reciprocally, if H2 (X,Λp) 6= 0 and D is reduced, then h1 (X,Λp) = 6g − 6 + n +

h2 (X,Λp) > 6g − 6 + n, so p is singular.

Finally, let p ∈ Pg(n) be any branched projective structure such that h2 (X,Λp) > 0. It is shown in

[CDF14] that p is the limit in Pg(n) of a sequence (pn)n∈N of branched projective structures with the

same holonomy as p and reduced branching divisor. By subsection 3.1, the dimension of H2 (X,Λp)

depends only on the holonomy of ρ, thus the pn are all singular points of Pg(n), and since the singular

locus is closed, p is itself a singular point.

3.4.2 General Case

In order to address the case where 2g − 2 ≤ n ≤ 4g − 4, we need to have a closer look at the point of

view on Pg(n) given in subsection 2.6, and to work with restricted branched projective structures.

Let X be a Riemann surface of genus g ≥ 2, D and D′ divisors on X, a ∈ AD
X a branching class and

r ∈ P a
X,D′ a jet of branched projective structure. Let U be an open subset of X and let V ∈ Γ(U,Γa),

where Γa is defined in (33). For any t ∈ R that is near 0, the flow of V at time t is still denoted by

φtV . Write

ξ̃r(V ) = lim
t→0

(φtV )
∗r − r

t
∈ Γ

(
U,K⊗2

X (−D)|D′

)
(47)

According to equation 40, the morphism of sheaves ξ̃r : Γa → K⊗2
X (−D)|D′ is surjective. Denote by Λ̃r

its kernel, so that there is an exact sequence :

0 → Λ̃r → Γa
ξ̃r
−→ K⊗2

X (−D)|D′ → 0 (48)

which gives, by taking cohomologies, an exact sequence :

0 → H0
(
X,K⊗2

X (−D)|D′

)
→ H1

(
X, Λ̃r

)
→ H1(X,Γa) → 0 (49)

Fix n ∈ N. Let D be a divisor on X bc
g (n) such that D contains no fiber of the map πbcg (n) :

X bc
g (n) → Ag(n). Let n be the degree of the restriction of D to the fibers of X bc

g (n). Choose D such

that n+ n > 4g − 4.

Applying lemma 2.6.4, let us write Ug (n,D) =
(
Pg(n,D),Xg(n,D), πg(n,D),mg(n,D),Dg(n,D),

ag(n,D),D′, rg(n,D)
)

the universal family of restricted branched projective structures over the family

of branching classes with auxiliary divisors
(
Ag(n),X

bc
g (n), πbcg (n),mbc

g (n),Dbc
g (n), abcg (n),D

)
. Let

αg(n,D) : Pg(n,D) → Ag(n) be the forgetful morphism. It is an affine bundle by subsection 2.6.

For any partition κ of the integer n, denote by Pg(κ,D) the restriction of the bundle αg(n,D) :

Pg(n,D) → Ag(n) to the basis Ag(κ) ⊂ Ag(n). Let Ug(κ,D) = (Pg(κ,D),Xg(κ,D),Dg(κ,D),

πg(κ,D), ag(κ,D),D′(κ), rg(κ,D)) be the pullback by the inclusion Pg(κ,D) → Pg(n,D) of the family

Ug(n,D). Denote by αg(κ,D) the restriction of αg(n,D) to Pg(κ,D).

Let r ∈ Pg(n,D). Let (X,D, a,m) ∈ Ag(n) be the marked curve with divisor of degree n and
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branching class, image of r by the map αg(n,D). Let D′ be the divisor of degree n on X, restriction of

D to the fiber of X bc
g (n) over (X,D, a,m). Denote by κ the partition of n associated to the divisor D.

The tangent space of the fiber P a
X,D′ = α(κ,D)−1(X,D, a,m) at r is

(
TP a

X,D′

)
r
= H0(X,K⊗2

X (−D)|D′),

according to proposition 2.5.2.

Moreover we saw that there is a Kodaira-Spencer isomorphism KSbc :
(
TAg(κ)

)
(X,D,a,m)

∼
−→

H1 (X,Γa). As a consequence, one has identifications between the kernels and cokernels of the ex-

act sequences (49) and

0 →
(
TP a

X,D′

)
r
→

(
TPg(κ,D)

)
r
→

(
TAg(κ)

)
(X,D,a,m)

→ 0 (50)

Let GD (respectively Grel
D ) be the subsheaf of TXg(κ,D) (respectively TXg(κ,D)/Pg(κ,D)) that contains

the vector fields preserving the restricted relative projective structure rg(n,D). The Kodaira-Spencer

exact sequence for the family Xg(κ,D), when restricted to the vector fields preserving rg(κ,D), is given

by :

0 → Grel
D → GD → πg(κ,D)∗TPg(κ,D) → 0 (51)

Applying the left exact functor πg(κ,D)∗, one gets a morphism of sheaves TPg(κ,D) → R1πg(κ,D)∗G
rel
D .

In particular, at the point r, this morphism gives a linear map

KSD :
(
TPg(κ,D)

)
r
→ H1

(
X, Λ̃r

)
(52)

It is easy to see that the following diagram is commutative :

0
(
TP a

X,D′

)
r

(
TPg(κ,D)

)
r

(
TAg(κ)

)
(X,D,a,m)

0

0 H0
(
X,K⊗2

X (−D)|D′

)
H1

(
X, Λ̃r

)
H1 (X,Γa) 0

KSD KSbc (53)

Since KSbc is an isomorphism, we have the following lemma :

Lemma 3.4.3. The map KSD in (52) is an isomorphism.

Since n + n > 4g − 4, one has a vector bundle on Pg(n,D) whose fiber over a point r ∈ P a
X,D′

is H1
(
X,K⊗2

X (−D −D′)
)
. Denote by cg(n,D) = c(ag(n,D), rg(n,D)) its global section defined in

section 2.6. According to section 2.6, the space Pg(n) is an analytic subspace of Pg(n,D), namely the

vanishing locus of the section cg(n,D). In particular, for any p ∈ Pg(n), the differential (dcg(n,D))p is

a linear map from
(
TPg(n,D)

)
p

to H1
(
X,K⊗2

X (−D −D′)
)
, where X is the curve underlying p, D is the

branching divisor of p and D′ is the auxiliary divisor. We will show that this differential is surjective

for any p ∈ Pg(n) such that H2 (X,Λp) = 0, which implies smoothness of Pg(n) at p.

For any partition κ of the integer n, Pg(κ) is the intersection of the subspace Pg(n) ⊂ Pg(n,D)

with Pg(κ,D) ⊂ Pg(n,D). Recall that the family Ubps
g (κ) is the pullback of the family Ubps

g (n) by the

inclusion Pg(κ) → Pg(n).
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3.5 The Holonomy Map

Let (X,D, a, p,m) ∈ Pg(n) be a marked curve with divisor of degree n, branching class and

branched projective structure. Let κ be the partition of n associated to the divisor D. Denote by r

the branched projective structure p, seen as an element of Pg(κ,D).

Denote by G (respectively Grel) the subsheaf of T
Xbps

g (κ)
(respectively T

Xbps
g (κ)/Pg(κ)

) containing

vector fields preserving the relative branched projective structure pg(κ). The Kodaira-Spencer exact

sequence for the family Xg(κ,D), when restricted to vector fields preserving pg(κ), is given by :

0 → Grel → G → πbpsg (κ)∗TPg(κ) → 0 (54)

By applying the left exact functor πbpsg (κ)∗, one gets a morphism of sheaves TPg(κ) → R1πbpsg (κ)∗G
rel.

At the point (X,D, a, p,m), one gets a linear map

KSbps :
(
TPg(κ)

)
(X,D,a,p,m)

→ H1 (X,Λp) (55)

It is easy to see that the following diagram is commutative, where D′ is the auxiliary divisor for

the branching class a and r is p restricted to D′ :

0
(
TPg(κ)

)
(X,D,a,p,m)

(
TPg(κ,D)

)
r

H1
(
X,K⊗2

X (−D −D′)
)

0 H1 (X,Λp) H1
(
X, Λ̃r

)
H1

(
X,K⊗2

X (−D −D′)
)

H2 (X,Λp)

KSbps KSD

(dcg(κ ,D))r

(56)

Since KSD is an isomorphism, one has :

Lemma 3.4.4. The map KSbps in (55) is an isomorphism. Moreover the differential dcg(κ,D) is

surjective at any point p of Pg(κ) such that H2 (X,Λp) = 0.

Take p ∈ Pg(κ) such that H2 (X,Λp) = 0. Since the restricted differential dcg(κ,D) is surjective

at p, the total differential dcg(n,D) is a fortiori surjective at p. This implies that p is a smooth

point of Pg(n) ⊂ Pg(n,D). Reciprocally, if H2 (X,Λp) 6= 0 and D is reduced, then h1 (X,Λp) =

6g − 6 + n+ h2 (X,Λp) > 6g − 6 + n, so p is singular.

Finally, let p ∈ Pg(n) be any branched projective structure such that h2 (X,Λp) > 0. It is shown in

[CDF14] that p is the limit in Pg(n) of a sequence (pn)n∈N of branched projective structures with the

same holonomy as p and reduced branching divisor. By subsection 3.1, the dimension of H2 (X,Λp)

depends only on the holonomy of ρ, thus the pn are all singular points of Pg(n), and since the singular

locus is closed, p is itself a singular point.

3.5 The Holonomy Map

Let S be a surface of genus g (with g ≥ 2). Denote by Hom⋆ (π1(S),PSL(2,C)) the space of group

morphisms ρ : π1(S) → PSL(2,C) such that Im ρ ⊂ PSL(2,C) is not abelian and is not conjugated to

a subgroup of the group {z 7→ az|a ∈ C
∗}∪

{
z 7→ a

z |a ∈ C
∗
}

1. In particular, Hom⋆ (π1(S),PSL(2,C))

1This second condition is necessary for the action by conjugation of PSL(2,C) to be free
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contains all non-elementary representations. The space Hom⋆ (π1(S),PSL(2,C)) is an open subspace of

Hom (π1(S),PSL(2,C)). The space Hom⋆ (π1(S),PSL(2,C)) is a smooth analytic space (see [Hub81])

and the group PSL(2,C) acts freely and properly by conjugation on Hom⋆ (π1(S),PSL(2,C)). As a

consequence, the quotient Hom⋆ (π1(S),PSL(2,C)) /PSL(2,C) is a smooth analytic space.

Denote by Pg(n)
⋆ the subset of Pg(n) of branched projective structures whose holonomy lies in

Hom⋆ (π1(S),PSL(2,C)). There is a map Holg(n)
⋆ : Pg(n)

⋆ → Hom⋆ (π1(S),PSL(2,C)) /PSL(2,C)

that to a branched projective structure associates the conjugacy class of its holonomy representations.

The space Pg(n)
⋆ is clearly an open subset of Pg(n), and it is smooth by theorem 3.0.1. Since Pg(n)

⋆

is the basis of a family of branched projective structures, the map Holg(n)
⋆ is holomorphic.

Theorem 3.5.1. The holonomy map Holg(n)
⋆ : Pg(n)

⋆ → Hom⋆ (π1(S),PSL(2,C)) /PSL(2,C) is a

holomorphic submersion.

Let Xg be the PSL(2,C)-character variety associated to S, i.e. the GIT quotient

Hom (π1(S),PSL(2,C)) //PSL(2,C), that is an analytic space. There is an analytic morphism Holg(n) :

Pg(n) → Xg, that to a branched projective structure associates its holonomy. There is an obvious map

ι : Hom⋆ (π1(S),PSL(2,C)) /PSL(2,C) → Xg, that verifies in particular Holg(n) = ι ◦Holg(n)
∗. In re-

striction to the preimage of the smooth locus of Xg, the map ι is a biholomorphism. As a consequence,

theorem 3.5.1 implies :

Corollary 3.5.2. In restriction to the preimage of the smooth locus of the character variety Xg, the

holonomy map Holg(n) : Pg(n) → Xg is a holomorphic submersion.

Proof. (of theorem 3.5.1)

Take p ∈ Pg(n)
∗, with underlying Riemann surface X. Let ρ ∈ Hom⋆ (π1(S),PSL(2,C)) be a

holonomy representation of p, and write [ρ] = Holg(n)
⋆(p). It is proved in [Hub81] that the tangent

space of Hom⋆ (π1(S),PSL(2,C)) /PSL(2,C) at [ρ] is H1(X,Adp), where Adp is defined in subsection

3.1.

Hubbard also proved in [Hub81] that in the case n = 0, the differential at p of the holonomy

map, i.e. dpHolg(0)
⋆ : TpPg(0) → H1(X,Adp), is given by the Kodaira-Spencer at p of the universal

family U bps
g (0). The situation is almost the same in the branched case (n > 1), with two differences.

Firstly the Kodaira-Spencer map KSbps (see subsection 3.4) is only defined on TpPg(κ), where κ is

the partition of n associated to the branching divisor of p. Secondly KSbps takes values in the first

cohomology group of the subsheaf Λp of Adp (see subsection 3.1). However there is a canonical map

φ : H1(X,Λp) → H1(X,Adp), coming from the inclusion Λp ⊂ Adp.

Thus the proof of Hubbard gives in the branched case :

dpHolg(n)
⋆|TpPg(κ) = φ ◦KSbps (57)

Since φ is surjective according to (24) and KSbps is an isomorphism, dpHolg(n)
⋆|TpPg(κ) is surjective,

thus dpHolg(n)
⋆ is a fortiori surjective, which proves that Holg(n)

⋆ is a submersion.
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