N
N

N

HAL

open science

Multiple Kernel Representation Learning on Networks
Abdulkadir Celikkanat, Yanning Shen, Fragkiskos D. Malliaros

» To cite this version:

Abdulkadir Celikkanat, Yanning Shen, Fragkiskos D. Malliaros.
tion Learning on Networks. IEEE Transactions on Knowledge and Data Engineering, In press,

10.1109/tkde.2022.3172048 . hal-03686085

HAL Id: hal-03686085
https://hal.science/hal-03686085

Submitted on 2 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Multiple Kernel Representa-

https://hal.science/hal-03686085
https://hal.archives-ouvertes.fr

Multiple Kernel Representation Learning on
Networks

Abdulkadir Celikkanat, Yanning Shen, and Fragkiskos D. Malliaros

Abstract—Learning representations of nodes in a low dimensional space is a crucial task with numerous interesting applications in
network analysis, including link prediction, node classification, and visualization. Two popular approaches for this problem are matrix
factorization and random walk-based models. In this paper, we aim to bring together the best of both worlds, towards learning node
representations. In particular, we propose a weighted matrix factorization model that encodes random walk-based information about
nodes of the network. The benefit of this novel formulation is that it enables us to utilize kernel functions without realizing the exact
proximity matrix so that it enhances the expressiveness of existing matrix decomposition methods with kernels and alleviates their
computational complexities. We extend the approach with a multiple kernel learning formulation that provides the flexibility of learning
the kernel as the linear combination of a dictionary of kernels in data-driven fashion. We perform an empirical evaluation on real-world
networks, showing that the proposed model outperforms baseline node embedding algorithms in downstream machine learning tasks.

Index Terms—Graph representation learning, node embeddings, kernel methods, node classification, link prediction

1 INTRODUCTION

ITH the development in data production, storage and
Wconsumption, graph data is becoming omnipresent;
data from diverse disciplines can be represented as graph
structures with prominent examples including various so-
cial, information, technological, and biological networks.
Developing machine learning algorithms to analyze, pre-
dict, and make sense of graph data has become a crucial task
with a plethora of cross-disciplinary applications [1], [2].
The major challenge in machine learning on graph data con-
cerns the encoding of information about the graph structural
properties into the learning model. To this direction, network
representation learning (NRL), a recent paradigm in network
analysis, has received substantial attention thanks to its
outstanding performance in downstream tasks, including
link prediction and classification. Representation learning
techniques mainly target to embed the nodes of the graph
into a lower-dimensional space in such a way that desired
relational properties among graph nodes are captured by
the similarity of the representations in the embedding space
(3], [4], [5], [6], [71, [8].

The area of NRL has been highly impacted by tradi-
tional nonlinear dimensionality reduction approaches [5],
[9]. Specifically, many proposed models had initially con-
centrated on learning node embeddings relying on matrix

o A. Celikkanat is with the Department of Applied Mathematics and
Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby,
Denmark. The research has been mostly conducted while the author was
with Paris-Saclay University, CentraleSupélec, Inria, Centre for Visual
Computing (CVN), 91190 Gif-Sur-Yvette, France
E-mail: abdcelikkanat@gmail.com

e Y. Shen is with the Department of EECS and the Center for Pervasive
Communications and Computing, University of California, Irvine, CA
92697, USA
E-mail: yannings@uci.edu

e F. D. Malliaros is with Paris-Saclay University, CentraleSupélec, Inria,
Centre for Visual Computing (CVN), 91190 Gif-Sur-Yvette, France
E-mail: fragkiskos.malliaros@centralesupelec.fr

Manuscript received XXX; revised XXX.

factorization techniques that encode structural node similar-
ity [5], [6], [7]. Nevertheless, most of those approaches are
not very efficient for large scale networks, mainly due to the
high computational and memory cost required to perform
matrix factorization. Besides, most such models require the
exact realization of the target matrix [1], [2].

Inspired by the field of natural language processing [10],
random-walk based embedding has gained considerable
attention (e.g., [3], [4], [11], [12], [13], [14]). Typically, these
methods firstly produce a set of node sequences by follow-
ing certain random walk strategy. Then, node representa-
tions are learned by optimizing the relative co-occurrence
probabilities of nodes within the random walks. Although
such random walk models follow similar approaches in
modeling the relationships between nodes and optimizing
the embedding vectors, their difference mainly stems from
the way in which node sequences are sampled [3], [4].

On a separate topic, kernel functions have often been
introduced along with popular learning algorithms, such
as PCA [15], SVM [16], Spectral Clustering [17], and Col-
laborative Filtering [18], to name a few. Most of traditional
learning models are insufficient to capture the underlying
substructures of complex datasets, since they rely on linear
techniques to model nonlinear patterns existing in data.
Kernel functions [19], on the other hand, allow mapping
non-linearly separable points into a (generally) higher di-
mensional feature space, so that the inner product in the
new space can be computed without needing to compute the
exact feature maps—bringing further computational bene-
fits. Besides, to further reduce model bias, multiple kernel
learning approaches have been proposed to learn optimal
combinations of kernel functions [20]. Nevertheless, despite
their wide applications in various fields [19], [21], kernel
and multiple kernel methods have not been thoroughly
investigated for learning node embeddings.

In this paper, we aim at combining matrix factorization
and random walks in a kernelized model for learning node

embeddings. The potential advantage of such a modeling
approach is that it allows for leveraging and combining
the elegant mathematical formulation offered by matrix
factorization with the expressive power of random walks
to capture a notion of “stochastic” node similarity in an
efficient way. More importantly, this formulation enables
leveraging kernel functions in the node representation learn-
ing task. Because of the nature of matrix factorization-based
models, node similarities can be viewed as inner products
of vectors lying in a latent space—which allows to utilize
kernels towards interpreting the embeddings in a higher
dimensional feature space using non-linear maps. Besides,
multiple kernels can be utilized to learn more discriminative
node embeddings. Note that, although graph kernels is a
well-studied topic in graph learning [22], it mainly focuses
on graph classification—a task outside of the scope of this
paper. To the best of our knowledge, random walk-based
multiple kernel matrix factorization has not been studied
before for learning node embeddings.

The main contributions of the present work can be
summarized as follows:

o We propose KERNELNE (Kernel Node Embeddings),
a novel approach for learning node embeddings by
incorporating kernel functions with models relying
on weighted matrix factorization, encoding random
walk-based structural information of the graph. We
further examine the performance of the model with
different types of kernel functions.

o To further improve expressiveness, we introduce
MKERNELNE, a multiple kernel learning formula-
tion of the model. It extends the kernelized weighted
matrix factorization framework by learning a linear
combination of a predefined set of kernels.

e We demonstrate how both models (single and mul-
tiple kernel learning) leverage negative sampling to
efficiently compute node embeddings.

o We extensively evaluate the proposed method’s per-
formance in node classification and link prediction.
We show that the proposed models generally outper-
form well-known baseline methods on various real-
world graph datasets. Besides, due to the efficient
model optimization mechanism, the running time is
comparable to the one of random walk models.

Notation. We use the notation M to denote a matrix, and
the term M, ,) represents the entry at the v’th row and
u’th column of the matrix M. M, .) indicates the v’th row
of the matrix.

Source code. The C++ implementation of the pro-
posed methodology can be reached at: https://
abdcelikkanat.github.io/projects/kernelNE/.

2 RELATED WORK

Node embeddings. Traditional dimension reduction meth-
ods such as Principal Component Analysis (PCA) [23], Lo-
cally Linear Embeddings [9], and ISOMAP [24] that rely on
the matrix factorization techniques, have considerably influ-
enced early approaches on learning node embeddings. For
instance, HOPE [7] learns embedding vectors by factorizing
a higher-order proximity matrix using SVD, while M-NMF

2

[25] leverages non negative matrix factorization aiming to
preserve the underlying community structure of the graph.
Similarly, NETMF [26] and its scalable variant NETSMF [27],
learn embeddings by properly factorizing a target matrix
that has been designed based on the Positive Pointwise
Mutual Information (PPMI) of random walk proximities.
Similarly, SDAE [28] uses the PPMI matrix with stacked
denoising autoencoders to learn the representations. SDNE
[29] adapts a deep neural network architecture to capture
the highly non-linear network patterns. Nevertheless, as
we have mentioned in Sec. 1, most of these models suffer
from high time complexity, while at the same time, they
assume an exact realization of the target matrix. For a
detailed description of matrix factorization models for node
embeddings, the reader can refer to [1], [2], [30].

To further improve the expressiveness as well as to
alleviate the computational burden of matrix factorization
approaches, models that rely on random walk sampling
have been developed (e.g., [3], [4], [11], [12], [13], [14],
[31], [32], [33]). These models aim at modeling center-context
node relationships in random walk sequences, leveraging
advances on learning word embeddings in natural language
processing [10]. Due to the flexible way that random walks
can be defined, various formulations have been proposed,
with the two most well-known being DEEPWALK [3] and
NODE2VEC [4]. Most of these models though, are based on
shallow architectures which do not allow to model complex
non-linear data relationships, limiting the prediction capa-
bilities on downstream tasks (e.g., node classification) [30].
There are also recent efforts towards developing scalable
models relying on fast random projections for very large
networks [34], [35], [36], [37].

As will be presented shortly, in this paper we aim to
bring together the best of both worlds, by proposing an ef-
ficient random walk-based matrix factorization framework
that allows to learn informative embeddings.

Kernel methods. Although most algorithms in the broader
field of machine learning have been developed for the
linear case, real-world data often requires nonlinear models
capable of unveiling the underlying complex relationships
towards improving the performance of downstream tasks.
To that end, kernel functions allow computing the inner
product among data points in a typically high-dimensional
feature space, in which linear models could still be applied,
without explicitly computing the feature maps [19]. Because
of the generality of the inner product, kernel methods have
been widely used in a plethora of models, including Support
Vector Machine [16], PCA [15], spectral clustering [17], [38],
collaborative filtering [18], and non-negative matrix factor-
ization for image processing tasks [39], to name a few.
Kernel functions have also been utilized in the field
graph analysis. At the node level, diffusion kernels and
their applications [40] constitute notable instances. At the
graph level, graph kernels [41], such as the random walk and
Weisfeiler-Lehman kernels [22], have mainly been utilized to
measure the similarity between a pair of graphs for appli-
cations such as graph classification. Besides, they have also
used for capturing the temporal changes in time-evolving
networks [42]. Recent approaches have also been proposed
to leverage graph kernels for node classification, but in a

supervised manner [43]. Other related applications of kernel
methods on graphs include topology inference [44], [45],
signal reconstruction [46], and anomaly detection [47].

The expressiveness of kernel methods can further be
enhanced using multiple kernel functions in a way that the
best possible combination of a set of predefined kernels can
be learned [20], [48]. Besides improving prediction perfor-
mance, multiple kernels have also been used to combine
information from distinct heterogeneous sources (please see
[20] and [49] for a detailed presentation of several multiple
kernel learning algorithms and their applications). Exam-
ples include recent approaches that leverage multi-kernel
strategies for graph and image datasets [50], [51].

Despite the widespread applications of kernel and mul-
tiple kernel learning methods, utilizing them for learning
node embeddings via matrix factorization in an unsuper-
vised way is a problem that has not been thoroughly in-
vestigated. Previous works that are close to our problem
settings, which follow a methodologically different factor-
ization approach (e.g., leveraging nonnegative matrix fac-
torization [18]), targeting different application domains (e.g.,
collaborative filtering [52]). The multiple kernel framework
for graph-based dimensionality reduction proposed by Lin
et al. [53] is also close to our work. Nevertheless, their work
focuses mainly on leveraging multiple kernel functions to
fuse image descriptors in computer vision tasks properly.

In this paper we propose novel unsupervised models for
node embeddings, that implicitly perform weighted matrix
decomposition in a higher-dimensional space through ker-
nel functions. The target pairwise node proximity matrix
is properly designed to leverage information from random
walk sequences, and thus, our models do not require the
exact realization of this matrix. Both single and multiple
kernel learning formulations are studied. Emphasis is also
put on optimization aspects to ensure that node embeddings
are computed efficiently.

3 MODELING AND PROBLEM FORMULATION

Let G = (V,€) be a graph where ¥V = {1,...,n} and
E C V x V are the vertex and edge sets, respectively.
Our goal is to find node representations in a latent space,
preserving properties of the network. More formally, we
define the general objective function of our problem as a
weighted matrix factorization [54], as follows:

argmmHW@ (M — ABT)H %(HAH%—&-HBH%) , (1)

Regularization term, R(A, B)

Error term

where M € R™*"™ is the target matrix constructed based
on the desired properties of a given network, which is
used to learn node embeddings A, B € R"*¢, and | - ||»
denotes the Frobenius norm. We will use R(A, B) to denote
the regularization term of Eq. (1). Each element W, ,, of
the weight matrix W € R™*" captures the importance of
the approximation error between nodes v and u, and ©
indicates the Hadamard product. Depending on the desired
graph properties that we are interested in encoding, there
are many possible alternatives to choose matrix M; such
include the number of common neighbors between a pair

3

of nodes, higher-order node proximity based on the Adamic-
Adar or Katz indices [7], as well leveraging multi-hop infor-
mation [6]. Here, we will design M as a sparse binary matrix
utilizing information of random walks over the network.

As we have mentioned above, random walk-based
node embedding models (e.g., [3], [4], [11], [14], [55],
[56], [57]) have received great attention because of their
good prediction performance and efficiency on large scale-
networks. Typically, those models generate a set of node
sequences by simulating random walks; node represen-
tations are then learned by optimizing a model which
defines the relationships between nodes and their con-
texts within the walks. More formally, for a random walk
w = (ws,...,wy), the context set of center node w; € V
appearing at the position / of the walk w is defined by
{wi—vy, ..., w1, W41, ..., W4~ }, where «y is the window
size which is the furthest distance between the center and
context nodes. The embedding vectors are then obtained by
maximizing the likelihood of occurrences of nodes within
the context of given center nodes. Here, we will also follow
a similar random walk strategy, formulating the problem
using a matrix factorization framework.

Let M,) be a binary value which equals to 1 if node
u appears in the context of v in any walk. Also, let F, ,)
be 2 - v - #(v), where #(v) indicates the total number
of occurrences of node v in the generated walks. Setting
each term W, ,) as the square root of F,), the objective
function in Eq. (1) can be expressed under a random walk-
based formulation as follows:

2
arg min | W @ (M - ABT) +R(A,B)
AB F
2
—argmin |[VF © (M - ABT) +R(A,B)
AB F
2
_argmmz Z Fyu) ((v,u) — <A[u],B[U]>>+R(A,B)
veVueV
2
=arg mlnz 22 ~v-#(v < <A[u], B[1)]>)—&—7?,(A7 B)
AB veVueV

=arg minz Z Z#(v,s)([uz s]— <A[u], Bv] >>j—R(A, B)

B yevuey sev

—argmind | > #@.5)Y ([u:s] - <A[u], B[v] >)iR(A, B)

AB veEV seV ue

<

=arg min Z #,s)
AB (v, s)€V2 u€

V([u s]—<A[u],B[v]>>+R(A,B)

2

“argmin Y™ 3 3 5 [(uney =) (AL, Biwi)) +

AB yewi= 1|j|<yuey
J#0

R(A,B), ()

where each w € VI indicates a random walk of length
L in the collection W, #(v,s) denotes the number of
appearances of the center and context pairs (v,s) in the
collection W, [-] is the the Iverson bracket, and R(A,B)
is the regularization term. Note that, in the equation above,
the last line follows from the fact that #(v, s) is equal to

zero for the pairs which are not center-context, and the term
Y wew Zlel Zwﬂ <., traverses all center-context pairs in the
collection. Matrix A in Eq. (2) indicates the embedding
vectors of nodes when they are considered as centers; those
will be the embeddings that are used in the experimental
evaluation. The choice of matrix M and the reformulation
of the objective function, offers a computational advantage
during the optimization step. Moreover, such formulation
also allows us to further explore kernelized version in order
to exploit possible non-linearity of the model.

4 KERNEL-BASED REPRESENTATION LEARNING

Most matrix factorization techniques that aim to find latent
low-dimensional representations (e.g., [7], [26], [27]), adopt
the Singular Value Decomposition (SVD) provides the best
approximation of the objective function stated in Eq. (1),
as long as the weight matrix is uniform [58]. Nevertheless,
in our case the weight matrix is not uniform, therefore
we need the exact realization of the target matrix in order
to perform SVD. To overcome this limitation, we leverage
kernel functions to learn node representations via matrix
factorization.

Let (X, dx) be a metric space and H be a Hilbert space of
real-valued functions defined on X. A Hilbert space is called
reproducing kernel Hilbert space (RKHS) if the point evaluation
map over H is a continuous linear functional. Furthermore,
a feature map is defined as a function ® : X — H from the
input space X into feature space H. Every feature map defines
a kernel K : X x X — R as follows:

K(x,y) == (2(x), ®(y))

It can be seen that K(-,-) is symmetric and positive definite
due to the properties of an inner product space.

A function g : X = Ris induced by K, if there exists h € H
such that g = (h, ®(-)) for a feature vector ® of kernel K.
Note that, this is independent of the definition of the feature
map ® and space H [59]. Let Z,, := {g : X — R | 3h €
Hs.t.g = (h, ®())} be the set of induced functions by kernel
K. Then, a continuous kernel K on a compact metric space
(X, dx) is universal, if the set Z,; is dense in the space of all
continuous real-valued functions C(X). In other words, for
any function f € C(X) and € > 0, there exists g, € Z,
satisfying

V(x,y) € X2.

||f - gh”oo S €,

where g, is defined as (h, ®(-)) for some h € H.

In this paper, we consider universal kernels, since we
can always find h € H satisfying |(h, ¢(z;)) — a;| < € for
given {z1,...,2n} C X, {a1,...,an} C Rand ¢ > 0 by
Proposition 1. If we choose «;’s as the entries of a row of
our target matrix M, then the elements » and ¢(x;) indicate
the corresponding row vectors of A and B, respectively.
Then, we can obtain a decomposition of the target matrix by
repeating the process for each row. However, the element i
might not always be in the range of feature map ®; in this
case, we will approximate the correct values of M.

Proposition 1 (Universal kernels [59]). Let (X, d) be a compact
metric space and K(-,-) be a universal kernel on X. Then, for
all compact and mutually disjoint subsets Si,...,S, C X, all

4

at,...,0n € R, and all € > 0, there exists a function g induced
by K with||g|| ., < max; |a;| + € such that

n
gis — > ails,|| <e
i=1

where S := J;_, S; and gjs is the restriction of g to S.

Universal kernels also provide a guarantee for the injec-
tivity of the feature maps, as shown in Lemma 2; therefore,
we can always find y € X, such that ®(y) = h if h € ®(X).
Otherwise, we can learn an approximate pre-image solution
by using a gradient descent technique [60].

Lemma 2 ([59]). Every feature map of a universal kernel is
injective.

Proof. Let ®(-) : X — H be a feature vector of the kernel
K(-,-). Assume that ® is not injective, so we can find a pair
of distinct elements z,y € X such that ®(z) = P(y) and
x # y. By Proposition 1, for any given € > 0, there exists a
function g = (h, ®(-)) induced by K for some h € H, which
satisfies

H9|s - (1s, — 1s,) LO <e,

where S := S; US; for the compact sets S; = {z} and So =
{y}. Then, we have that [(®(x), h) — (®(y), h))| > 2—2¢e. In
other words, we obtain ®(z) # ®(y), which contradicts our
initial assumption. O

4.1 Single Kernel Node Representation Learning

Following the kernel formulation described above, we can
now perform matrix factorization in the feature space by
leveraging kernel functions. In particular, we can move the
inner product from the input space X to the feature space H,
by reformulating Eq. (2) as follows:

arilglinz >y Z([wz+jZU}—<‘1>(A(u,:>)7¢(B<wl,:>)>)2

= wewW =1 |j|<yu€eV
370

+R(A,B)

g = 3 3 s (e B

WwEW I=1 |j|<~y u€V
Jj#0

+R(A,B). (3)

In this way, we obtain a kernelized matrix factorization
model for node embeddings based on random walks. For
the numerical evaluation of our method, we use the follow-
ing universal kernels [59], [61]:

2
e
Ke(x,y) = exp (”y>

c€eR
o

1
(14 Ix - yI?)”

where K and Kg correspond to the Gaussian and Schoenberg
kernels respectively. We will refer to the proposed kernel-
based node embeddings methodology as KERNELNE (the

KS(Xay): UGR-H

Vs Vo

Uy U1 U3 Up

o-ofe-e-e-eejo0

U, U2 Uy Us Ug 1,;9 u l
Aw) —o @ e e]—“Context nodes
~ /
mmmmmE B,y o« Cent d
(v) U]—’ enter node
o()
e 000000 | Buy

Ug Ug

P(Aw)

a) Input Network

b) Performing Random Walks

¢) Learning representations

Fig. 1. Schematic representation of the KERNELNE model. Node sequences are firstly generated by following a random walk strategy. By using the
co-occurrences of node pairs within a certain window size, node representations are learned by optimizing their maps in the feature space.

two different kernels will be denoted by GAUSS and SCH).
A schematic representation of the basic components of the
proposed model is given in Fig. 1.

4.1.1 Model Optimization

The estimation problem for both parameters A and B is,
unfortunately, non-convex. Nevertheless, when we consider
each parameter separately by fixing the other one, it turns
into a convex problem. By taking advantage of this property,
we employ Stochastic Gradient Descent (SGD) [62] in the
optimization step of each embedding matrix. Note that, for
each context node w;; in Eq. (3), we have to compute the
gradient for each node u € V, which is computationally
intractable. However, Eq. (3) can be divided into two parts
with respect to the values of [w;4; = u] €{0,1}, as follows:

> ([wzﬂ:?@ - K(A<u,:>7B<wu:>)>2

uey

= (1— K(A(ut;), B(wl,:))) 2+ Z (K (A(u*,:)v B(wlﬁ)))z

u” €V\{wi4;}
2
(1K (A B)\ 1, JE (KA B)]

:<1_

K(A(m),B(w,,;)) tRE [K(A(u::),B(wh;))r,

positive sample

where k := |[V| — 1 and u" := wi;;. To this end, we
apply negative sampling [10] which is a variant of noise-
contrastive estimation [63], proposed as an alternative to solve
the computational problem of hierarchical softmax. For each
context node u™ € Cy(w;), we sample k negative instances
u~ from the noise distribution p~. Then, we can rewrite the
objective function Eq. (3) in the following way:

Fs :argmm Z Z Z

AB ew =1 i<y
J#0

k

=
Uy

negative sample

<(1 K(A w0 Bluns))2

1
~p~
Equation (4) corresponds to the objective function of the
proposed KERNELNE model. In the following subsection,

we will study how this model could be further extended to
leverage multiple kernels.

4.2 Multiple Kernel Node Representation Learning

Selecting a proper kernel function K(:,-) and the corre-
sponding parameters (e.g., the bandwidth of a Gaussian
kernel) is a critical task during the learning phase. Nev-
ertheless, choosing a single kernel function might impose
potential bias, causing limitations on the performance of
the model. Having the ability to properly utilize multiple
kernels could increase the expressiveness of the model,
capturing different notions of similarity among embeddings
[20]. Besides, learning how to combine such kernels, might
further improve the performance of the underlying model.
In particular, given a set of base kernels {K;} X ;, we aim to
find an optimal way to combine them, as follows:

¥) = Fe({KiGx.)M o)),

where the combination function f. is parameterized on ¢ €
RE that indicates kernel weights. Due to the generality of
the multiple kernel learning framework, f. can be either a
linear or nonlinear function.

In this paragraph, we examine how to further strengthen
the proposed kernelized weighted matrix factorization, by
linearly combining multiple kernels. Let Ky,...,Kx be a
set of kernel functions satisfying the properties presented in
the previous paragraph. Then, we can restate the objective
function as follows:

2
Funr: —argmlnz Z Z (1_261 (A(wy,,), B (wz,r)))
CweWwli=1|j|<y > =1
2
)aB(wL,t))) >
I:lfi:l
u, ~p

J#0
A 2 2 B 2
+ 5 (IAIG+ IBIE) + Slil3,

+zk:(§:ciKl(A
}T

Ke(x,

©)

where ¢ = [c1,...,ck] € RX. Here, we introduce an
additional parameter c; representing the contribution of the
corresponding kernel K;. 8 > 0 is a trade-off parameter,
and similarly, the coefficients ci,...,cx are optimized by
fixing the remaining model parameters A and B. Equation
(5) corresponds to the objective function of the proposed

multiple kernel learning model MKERNELNE. Unlike the
common usage of multiple kernels methods [20], here we
do not constrain the coefficients to be non-negative. We
interpret each entry of the target matrix as a linear combina-
tion of inner products of different kernels’ feature maps. As
discussed in the previous sections, our main intuition relies
on obtaining more expressive embeddings by projecting the
factorization step into a higher dimensional space.
Algorithm 1 summarizes the pseudocode of the pro-
posed approach. For a given collection of random walks W,
we first determine the center-context node pairs (w;, wyy;)
in the node sequences. Recall that, for each center node
in a walk, its surrounding nodes within a certain distance
7, define its context. Furthermore, the corresponding em-
bedding vectors By, .) of center node w; and A(wl) of
context wy; are updated by following the rules which we
describe in detail below. Note that, we obtain two different
representations, A,) and By, .), for each node v € V since
the node can have either a center or context role in the walks.
The gradients in Alg. 2 are given below. For notation
simplicity, we denote each K;(A ,..), B(y,:)) by K;(u,v).

VagoFu= (2ZCZVA()(ch)

VKi(u, ,v)Ki(u, ,))

(ur 50)

Ci

A

4.3 Complexity Analysis

For the generation of walks, the biased random walk
strategy proposed in NODE2VEC is used, which can be
performed in O(|W)| - L) steps [4] for the pre-computed
transition probabilities, where L indicates the walk length
and W denotes the set of walks. For the algorithm’s learning
procedure, we can carry out Line 5 of Algorithm 1 at most
2y - [W| - L times for each center-context pair, where ~y
represents the window size. The dominant operation in
Algorithm 2 is the multiplication operation of update rules
in Lines 6, 7, and 9; the running time can be bounded by
O(k - K - d), where k is the number of negative samples
generated per center-context pair, K is the number of ker-
nels, and d is the representation size. To sum up, the overall
running time of the proposed approach can be bounded by
O(y-W|-L-K-d-k) steps.

Algorithm 1 MKERNELNE

Input: Graph G = (V,€)
Representation size d
Set of walks W
Window size ~
Kernel function K
Kernel parameter(s) o
Output: Embedding matrix A
1: Initialize matrices A, B € R?*¢
/* Extract center-context node pairs */

2: for each w = (wy,...,wr) € W do

3: forl<«+ 1to L do

4 forj #0 <+ —yto~y do

5; A, B, c + UPDATEEMB(A, B, ¢, w;, wi1;, K, 0)
6 end for

7. end for

8: end for

Algorithm 2 UPDATEEMB
Input: Graph G = (V,€)
Embedding matrices A and B
Kernel coefficients ¢ = (cq, . ..
Kernel function(s) K
Center and context nodes v and u
Learning rate n
Distribution for generating negative samples p~
Output: Embedding matrix A
1: node_list + [u]
/* Extract negative samples x*/
2: for s +— 1to k do
3: node_list +~ SAMPLENODE(p ™)
4: end for
/* Update embedding vectors =*/
5: for each x in node_list do
60 Ay Ay —nVa, ,Fum
72 By < Bu,y —nVe, ,Fum
/* Update individual kernel weights =*/
8: if number of kernels > 1 then

acK)

9: c<—c—nV.Fu
10: end if
11: end for

5 EXPERIMENTS

This section presents the experimental set-up details, the
datasets, and the baseline methods used in the evaluation.
The performance of the proposed single and multiple kernel
models is examined for node classification and link predic-
tion tasks on various real-world datasets. The experiments
have been performed on a computer with 16Gb RAM.

5.1

We consider nine baseline models to compare the per-
formance of our approach. (i) DEEPWALK [3] performs
uniform random walks to generate the contexts of nodes;
then, the SKIP-GRAM model [10] is used to learn node
embeddings. (ii) NODE2VEC [4] combines SKIP-GRAM with
biased random walks, using two extra parameters that
control the walk in order to simulate a BFS or DFS ex-
ploration. In the experiments, we set those parameters to

Baseline Methods

TABLE 1
Statistics of networks |V|: number of nodes, |£|: number of edges, |K|:
number of labels and |Cc|: number of connected components.

V| I€] IK| |Cc| Avg. Degree

CiteSeer 3,312 4,660 6 438 2.81
Cora 2,708 5,278 7 78 3.90
DBLP 27,199 66,832 4 2,115 491
PPI 3,890 38,739 50 35 19.92
AstroPh 17,903 19,7031 - 1 22.01
HepTh 8,638 24,827 - 1 5.74
Facebook 4,039 88,234 - 1 43.69
Gnutella 8,104 26,008 - 1 6.42

1.0. In our approach we sample context nodes using this
biased random walk strategy. (iii) LINE [64] learns nodes
embeddings relying on first- and second-order proximity
information of nodes. (iv) HOPE [7] is a matrix factoriza-
tion approach aiming at capturing similarity patterns based
on a higher-order node similarity measure. In the experi-
ments, we consider the Katz index, since it demonstrates
the best performance among other proximity indices. (v)
NETMF [26] targets to factorize the matrix approximated
by pointwise mutual information of center and context
pairs. The experiments have been conducted for large win-
dow sizes (y = 10) due to its good performance. (vi)
VERSE [33] learns the embedding vectors by optimizing
similarities among nodes. As suggested by the authors,
we set @ = 0.85 for the value of the hyper-parameter in
the experiments. (vii) PRONE [34] learns the representa-
tions by relying on an efficient sparse matrix factorization
and the extracted embeddings are improved with spectral
propagation operations. (viii)) GEMSEC [65] leverages the
community structure of real-world graphs, learning node
embeddings and the cluster assignments simultaneously.
We have used the best performing number of cluster value
from the set {5, 10, 15,25, 50, 75,100}. (ix) Lastly, M-NMF
[66] extracts node embeddings under a modularity-based
community detection framework based on non-negative
matrix factorization. We have observed that the algorithm
poses good performance by setting its parameters o = 0.1
and 3 = 5. We performed parameter tuning for the num-
ber of communities using values from the following set:
{5,15,20, 25,50, 75, 100}.

Those baseline methods are compared against instances
of KERNELNE and MKERNELNE using different kernel
functions (GAUSS and SCH).

5.2 Datasets

In our experiments, we use eight networks of different
types. To be consistent, we consider all network as undi-
rected in all experiments, and the detailed statistics of the
datasets are provided in Table 1. (i) CiteSeer [67] is a
citation network obtained from the CiteSeer library. Each
node of the graph corresponds to a paper, while the edges
indicate reference relationships among papers. The node
labels represent the subjects of the paper. (ii) Cora [68] is
another citation network constructed from the publications
in the machine learning area; the documents are classified
into seven categories. (iii) DBLP [69] is a co-authorship

7

graph, where an edge exists between nodes if two authors
have co-authored at least one paper. The labels represent
the research areas. (iv) PPI (Homo Sapiens) [4] is a protein-
protein interaction network for Homo Sapiens, in which
biological states are used as node labels. (v) AstroPh [70] is
a collaboration network constructed from papers submitted
to the ArXiv repository for the Astro Physics subject area,
from January 1993 to April 2003. (vi) HepTh [70] network
is constructed in a similar way from the papers submitted
to ArXiv for the High Energy Physics - Theory category. (vii)
Facebook [71] is a social network extracted from a survey
conducted via a Facebook application. (viii) Gnutella [72] is
the peer-to-peer file-sharing network constructed from the
snapshot collected in August 2002 in which nodes and edges
correspond to hosts and connections among them.

5.3 Parameter Settings

For random walk-based approaches, we set the window
size (y) to 10, the number of walks (V) to 80, and the
walk length (L) to 10. We use the embedding size of
d = 128 for each method. The instances of KERNELNE
and MKERNELNE are fed with random walks generated
by NODE2VEC. For the training process, we adopt the
negative sampling strategy [10] as described in Subsection
4.1. The negative samples are generated proportionally to
its frequency raised to the power of 0.75. For our methods
and the baseline models needing to generate negative node
instances, we consistently sample 5 negative nodes for a
fair comparison. In our experiments, the initial learning rate
of stochastic gradient descent is set to 0.025; then it is de-
creased linearly according to the number of processed nodes
until the minimum value, 10~%. For the kernel parameters,
the value of o has been chosen as 2.0 for the single kernel
version of the model (KERNELNE). For MKERNELNE, we
considered three kernels and their parameters are set to
1.0,2.0,3.0 and 1.0,1.5,2.0 for MKERNELNE-GAUSS and
MKERNELNE-SCH, respectively. As an exception for the
PPI network, we employed 0.5,1.0,1.5 for MKERNELNE-
GAUSS since it shows better performance due to the net-
work’s structure. The regularization parameters are always
setto A =10"2and 8 = 0.1.

5.4 Node Classification

Experimental setup. In the node classification task, we
have access to the labels of a certain fraction of nodes in
the network (training set), and our goal is to predict the
labels of the remaining nodes (test set). After learning the
representation vectors for each node, we split them into
varying sizes of training and test sets, ranging from 1% up to
90%. The experiments are carried out by applying an one-
vs-rest logistic regression classifier with Ly regularization
[73]. We report the average performance of 50 runs for each
representation learning method.

Experimental results. Tables 2 to 5 report the Micro-F; and
Macro-F; scores of the classification task. With boldface
and underline we indicate the best and second-best per-
forming model, respectively. As can be observed the single
and multiple kernel versions of the proposed methodology
outperform the baseline models, showing different charac-
teristics depending on the graph dataset. While the Gaussian

TABLE 2
Node classification task for varying training sizes on Citeseer. For each method, the rows show the Micro-F;, and Macro-F; scores, respectively.

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 30% 40% 50% 60% 70% 80% 90%

DEEPWaLk 0367 0421 0445 0462 0475 0488 049 0502 0508 0517 0550 0569 0580 0587 0593 059% 0597 0597

0313 0374 0402 0419 0434 0446 0455 0461 0467 0476 0506 0524 0534 0540 0544 0547 0547 0546

Nopgavee 0404 0451 0475 0491 0504 0514 0523 0529 0537 0543 0571 0583 0591 0595 0.600 0600 0601 0.603

0342 0397 0424 0443 0456 0466 0476 0483 0489 0497 0525 0535 0542 0546 0549 0549 0549 0.550

LINE 0253 0300 0332 0353 0369 0384 0395 0407 0412 0418 0459 0476 0487 0494 0500 0505 0507 0512

0.183 0243 0280 0303 0321 0334 0346 0357 0363 0367 0407 0423 0434 0440 0445 0448 0450 0.454

popg 0198 0197 0201 0204 0205 0207 0211 0208 0212 0216 0235 025 0265 0276 0288 0299 0304 0316

] 0.064 0.060 0.061 0065 0065 0.066 0070 0068 0072 0075 0099 0121 0.136 0.150 0.164 0178 0.186 0.202

B VERSE 0434 0476 0489 0512 0517 0532 0538 0536 0551 0554 0576 0590 0594 0607 0614 0615 0616 0.620

& 0377 0423 0446 0462 0466 0484 0490 0492 0505 0507 0526 0545 0545 0558 0563 0564 0565 0.567

= PRONE 0244 0287 0344 0351 0376 0394 0417 0434 0444 0452 0514 0530 0547 0554 0563 0562 0554 0.558

0172 0225 0275 0294 0313 0336 0358 0381 0383 0395 0454 0470 0488 0498 0502 0502 0497 0.502

NerMp 0328 0401 0445 0473 0492 0507 0517 0525 0533 0538 0567 0579 058 0590 0592 0594 0599 0.601

0264 0346 0392 0421 0440 0454 0466 0474 0481 0487 0516 0528 0535 0538 0540 0542 0547 0.548

GEMSEC 0337 0384 0415 0439 0449 0459 0475 0479 0484 0491 0517 0532 0538 0545 0551 0552 0556 0558

0288 0339 0376 0400 0412 0422 0435 0439 0445 0451 0476 0488 0494 0497 0501 0499 0502 0.501

M.-NME 0222 0264 0295 0317 0338 0340 0364 0370 0376 0382 0423 0439 0448 0449 0455 0456 0461 0457

0.109 0.161 0205 0229 0255 0261 0285 0293 0301 0306 0353 0370 038 0381 038 0390 0394 0.390

2] Gauss 0422 0465 0490 0504 0518 0528 0535 0543 0551 0555 0588 0600 0607 0611 0616 0616 0619 0.620

2 0367 0415 0440 0456 0471 0479 0488 0496 0504 0508 0540 0.551 0.558 0562 0564 0566 0567 0.566

z sey 0441 0497 0517 0531 0539 0544 0551 0555 0558 0561 0580 0591 0597 0.602 0608 0610 0614 0.609

5 0.365 0428 0451 0465 0476 0480 0488 0492 0496 0498 0518 0531 0537 0542 0547 0549 0551 0.546

B Gauss 0431 0493 0514 0530 0539 0547 0552 0559 0563 0566 0.590 0.600 0609 0613 0615 0619 0620 0.620

3 0362 0434 0455 0473 0482 0491 0497 0504 0508 0511 0537 0546 0555 0559 0562 0566 0.567 0.565

z gcy 0443 0500 0525 0538 0547 0553 0558 0563 0567 0570 0588 0597 0603 0609 0612 0614 0616 0615

S 0.368 0433 0458 0475 0483 0490 0495 0500 0505 0508 0527 0537 0544 0550 0553 0557 0557 0.556
=

TABLE 3
Node classification task for varying training sizes on Cora. For each method, the rows show the Micro-F; and Macro-F} scores, respectively.

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 30% 40% 50% 60% 70% 80% 90%

DEEPWaALk 0522 0617 0660 0688 0703 0715 0724 0732 0742 0747 0782 0799 0808 0815 0821 0825 0827 0832

0442 0569 0.628 0664 0682 0.698 0709 0717 0727 0735 0771 0788 0798 0806 0811 0815 0816 0.821

Nopgavee 0570 0659 0695 0720 0734 0743 0752 0759 0765 0770 0800 0816 0824 0831 0835 0839 0842 0845

0489 0612 0662 0694 0714 0724 0735 0743 0751 0755 0788 0.804 0813 0820 0824 0828 0.830 0.832

LINE 0351 0416 0463 0498 0521 0546 0566 0581 0598 0609 0673 0701 0719 0728 0735 0741 0743 0747

0223 0306 0373 0425 0457 0492 0519 0543 0565 0578 0659 0691 0710 0720 0727 0733 0736 0.738

Hopg 0278 0284 0297 0301 0302 0301 0302 0302 0302 0302 0303 0302 0302 0302 0303 0304 0303 0306

] 0.070 0.067 0.067 0.066 0.067 0.067 0066 0.066 0.066 0066 0067 0067 0.067 0.067 0067 0068 0.070 0.074

5 VERSE 0605 0680 0708 0727 0737 0753 0761 0763 0766 0774 0798 0813 0818 0.828 0829 0827 0837 0.829

& 0527 0628 0675 0704 0717 0737 0746 0752 0754 0764 0788 0.804 0.809 0822 0821 0818 0.833 0.819

= prONE 0337 0380 0440 0475 0513 0529 0574 0604 0624 0628 0729 0754 0785 0794 0804 0803 0810 0816

0202 0223 0319 0363 0434 0446 0520 0559 0579 0589 0712 0743 0776 0784 0793 0793 0.801 0.809

NerME 0934 0636 0693 0716 0735 0748 0757 0767 0770 0773 0807 0821 0.828 (0.834 0839 0841 0.839 0.844

0461 0591 0.667 0694 0717 0731 0741 0751 0757 0760 0797 0.811 0.819 0.824 0830 0832 0831 0.835

GEMSEC 0397 0470 0497 0530 0551 0568 0578 0587 05% 0.601 0643 0674 0698 0714 0728 0735 0741 0744

0317 0406 0439 0477 0504 0527 0535 0546 0556 0562 0611 0646 0.672 0689 0704 0713 0719 0722

M.NMEF 0419 0507 0549 0580 0604 0622 0633 0642 0652 0656 0700 0717 0725 0732 0736 0736 0744 0742

0354 0459 0507 0550 0575 0598 0.609 0622 0632 0638 0687 0706 0716 0722 0728 0728 0735 0734

B Gauss 06286 069 0721 0739 0748 0759 0766 0772 0775 0780 0.806 0820 0829 0837 0843 0846 0849 0.851

= 0566 0.664 0.696 0721 0730 0743 0752 0758 0762 0767 0794 0809 0.818 0826 0.832 0.836 0.838 0.840

z soy 0619 0695 0722 0736 0745 0750 0755 0759 0763 0765 0783 0790 079 0.800 0803 0806 0807 0.812

S 0521 0631 0671 0697 0712 0721 0728 0734 0743 0745 0771 0780 0786 0790 0.792 0795 0.795 0.799

B Gauss 0631 0701 0731 0748 0757 0764 0770 0775 0778 0781 0801 0812 0819 0823 0827 0.828 0.833 0833

2 0562 0.656 0.696 0.723 0.736 0.746 0.755 0.761 0765 0.769 0791 0.801 0.808 0.813 0817 0818 0.822 0.820

z goy 0623 0699 0728 0742 0751 0757 0762 0767 0770 0772 0788 0797 0803 0806 0812 0812 0817 0818

& 0527 0637 068 0708 0723 0733 0741 0749 0753 0756 0777 0787 0793 0796 0.801 0802 0.805 0.804
=

kernel comes into prominence on the Citeseer and Dblp
networks, the Schoenberg kernel shows good performance
for the PPI network. We further observe that leveraging
multiple kernels with MKERNELNE often has superior
performance compared to the single kernel, especially for
smaller training ratios, which corroborates the effectiveness
of the data-driven multiple kernel approach. In only a few
cases, NODE2VEC shows comparable performances. The
reason stems from the structure of the network and the
used random walk sequences. Since the distribution of the
node labels does not always follow the network structure,
we observe such occasional cases due to the complexity of

the datasets concerning the node classification task.

5.5 Link Prediction

For the link prediction task, we remove half of the network’s
edges while retaining its connectivity, and we learn node
embedding on the residual network. For networks consist-
ing of disconnected components, we consider the giant com-
ponent among them as our initial graph. The removed edges
constitute the positive samples for the testing set; the same
number of node pairs that do not exist in the original graph
is sampled at random to form the negative samples. Then,
the entries of the feature vector corresponding to each node

TABLE 4
Node classification task for varying training sizes on Dbip. For each method, the rows show the Micro-F; and Macro-F; scores, respectively.

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 30% 40% 50% 60% 70% 80% 90%

DEEPWaLk 0518 0550 0573 0588 0597 0603 0607 0611 0614 0616 0627 0630 0632 0633 0634 0635 0635 0636

0464 0496 0515 0527 0535 0540 0543 0547 0550 0551 0560 0563 0564 0565 0566 0566 0567 0.567

Nopgavee 0957 0575 0590 0599 0606 0612 0615 0618 0.621 0623 0633 0.636 0638 0639 0640 0641 0641 0.641

0497 0517 0531 0541 0546 0551 0554 0557 0559 0561 0568 0571 0573 0574 0574 0575 0574 0574

LINE 0525 0553 0567 0576 0581 0585 0588 0590 0593 0594 0603 0606 0.608 0610 0610 0611 0611 0.611

0430 0469 0488 0498 0505 0510 0514 0517 0520 0522 0532 0536 0538 0540 0540 0541 0541 0.541

popg 0377 0379 0379 0379 0379 0379 0379 0379 0379 0379 0379 0380 0381 0383 0385 0387 0388 0391

] 0.137 0137 0137 0.137 0137 0.137 0137 0137 0.137 0138 0.139 0140 0.143 0.146 0.149 0.152 0.156 0.160

B VERSE 0550 0566 0585 0.593 0599 0605 0610 0613 0615 0617 0629 0629 0632 0.635 0633 0632 0634 0.636

& 0.492 0508 0528 0534 0539 0545 0552 0551 0554 0555 0565 0566 0568 0571 0567 0566 0570 0571

= PrONE 0475 0525 0550 0564 0574 0581 0589 0593 059% 0600 0615 0624 0626 0628 0629 0632 0632 0.634

0363 0436 0457 0478 0493 0498 0510 0517 0520 0520 0543 0553 0554 0557 0559 0562 0563 0.564

NerMp 0564 0577 0586 0589 0593 059 0599 0601 0604 0605 0613 0617 0619 0620 0620 0623 0623 0.623

0463 0490 0503 0506 0510 0513 0517 0518 0521 0522 0528 0530 0532 0531 0531 0533 0533 0533

GEMSEC 0511 0538 0555 0566 0575 0583 0588 0591 0593 0597 0607 0611 0613 0614 0615 0615 0616 0615

0453 0477 0492 0501 0508 0513 0518 0519 0521 0523 0531 0534 0534 0535 0535 0537 0537 0536

M-NME 0473 0501 0518 0527 0533 0540 0542 0545 0548 0551 0563 0568 0571 0574 0574 0577 0577 0579

0302 0345 0369 0383 0392 0400 0406 0410 0414 0418 0436 0443 0447 0450 0451 0454 0455 0455

2] Gauss 0958 0575 0587 0595 0601 0606 0610 0613 0615 0617 0627 0630 0632 0633 0634 0635 0636 0.636

2 0498 0517 0528 0536 0542 0545 0548 0551 0552 0554 0562 0564 0566 0566 0567 0567 0568 0.569

z scy 0599 0609 0613 0617 0620 0621 0623 0624 0625 0627 0632 0635 0636 0637 0638 0638 0638 0.640

5 0512 0531 0539 0546 0549 0552 0554 0556 0557 0559 0565 0568 0569 0570 0571 0571 0571 0572

B Gauss 0603 0614 0620 0624 0627 0630 0631 0633 0635 0636 0.643 0646 0647 0.648 0649 0650 0.649 0.650

3 0528 0.547 0.554 0.560 0.564 0566 0568 0.570 0.572 0.573 0.579 0.582 0582 0.583 0.584 0.584 0.584 0.584

z soy 0607 0615 0619 0.621 0624 0625 0627 0628 0630 0631 0637 0639 0641 0.641 0642 0643 0643 0.643

S 0517 0538 0546 0551 0555 055/ 0560 0561 0563 0564 0570 0572 0574 0574 0575 0576 0576 0576
=

TABLE 5
Node classification task for varying training sizes on PPI. For each method, the rows show the Micro-F; and Macro-F; scores, respectively.

1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 30% 40% 50% 60% 70% 80% 90%

DEEPWALk 0093 0110 0122 0131 0137 0143 0147 0151 0155 0156 0176 0188 0197 0206 0212 0218 0223 0226

0.056 0.076 0.090 0.099 0.107 0.113 0118 0123 0126 0129 0151 0.164 0173 0.181 0.8 0190 0.193 0.192

Nopgavge 0097 0I5 0128 0136 0143 0148 0154 0157 0161 0164 0185 0196 0205 0211 0216 0221 0224 022

0.058 0.078 0.092 0.101 0.108 0116 0122 0.125 0.129 0.132 0.155 0167 0175 0.180 0.185 0.188 0.189 0.190

LNE 0091 0109 0123 0133 0142 0149 0156 0162 0166 0170 0197 0210 0219 0226 0231 0235 0238 0242

0.046 0.063 0.075 0084 0093 0099 0106 0111 0116 0120 0.148 0.164 0.174 0181 0187 0191 0.193 0.192

Hopg 0067 0.068 0.069 0069 0069 0069 0069 0070 0069 0069 0069 0071 0073 0077 0081 0.086 0089 0.093

] 0.019 0019 0019 0019 0019 0019 0019 0019 0019 0018 0019 0020 0.022 0025 0027 0030 0.032 0033

5 VERSE 0089 0110 0126 0132 0139 0150 0153 0156 0162 0158 0185 0195 0212 0216 0224 0228 0234 0246

& 0.052 0.072 0.090 0.99 0.107 0116 0.120 0.124 0131 0129 0.157 0.165 0.183 0.185 0.193 0.191 0.200 0.200

= proNE 0085 009 0116 0129 0145 0.46 0155 0163 0170 0174 0207 0226 0237 0242 0248 0256 0258 0257

0.039 0052 0.065 0079 0091 009 0102 0111 0117 0123 0155 0.180 0.190 0.196 0205 0216 0.214 0.206

NermpE 0073 0084 0091 0097 0104 0112 0116 0120 0124 0129 0155 070 0180 0187 0192 0195 0198 0.199

0.031 0.043 0.052 0.059 0066 0.073 0078 0083 008 0091 0116 0.129 0.137 0.143 0.147 0150 0.152 0.150

GEMSEC 0074 0078 0081 0082 0082 0085 0087 0087 0087 0089 0101 0112 0122 0131 0138 0143 0150 0151

0.050 0.059 0.062 0.063 0064 0.067 0069 0070 0071 0073 0087 0098 0.106 0.113 0120 0122 0.127 0.125

M.NME 0085 0097 0103 0112 0115 0119 0122 0123 0126 028 0137 0143 0.48 0153 0155 0162 0165 0168

0.057 0071 0.080 0.089 0.093 0.097 0102 0103 0104 0108 0.119 0.125 0131 0135 0136 0141 0142 0.141

B Gauss 0087 0102 0112 0121 0128 0134 0138 0142 0145 0148 0167 0180 0186 0192 019 0200 0202 0.203

= 0.038 0.051 0.060 0.067 0073 0.078 0083 0.08 0.089 0092 0112 0125 0132 0.138 0.142 0.146 0.148 0.147

z goy 0103 0126 0142 0154 0led 0172 0179 0185 0190 0195 0220 0232 0239 0244 0248 0250 0254 0.256

S 0.050 0.069 0.081 0.091 0.100 0.107 0.114 0119 0124 0128 0.156 0.171 0.181 0.187 0.193 0196 0200 0.198

B Gavss 0104 0128 0144 0156 0.65 0174 0181 0186 0191 0195 0220 0231 0238 0242 0246 0249 0251 (0254

2 0.053 0071 0.8 009 0104 0.109 0117 0122 0126 0131 0158 0.172 0.81 0.187 0192 0195 0198 0.197

z gcy 0105 0128 0145 0156 0167 0173 0.80 018 0191 0194 0219 0230 0236 0241 0245 0247 0249 0251

& 0.053 0071 0.085 0.094 0.104 0.110 0.I15 0122 0126 0130 0155 0.169 0.177 0.184 0.188 0192 0.193 0.193
=

pair (u, v) in the test set are computed based on the element-
wise operation [A (,, i) — A (4,1 |2, for each coordinate axis i of
the embedding vectors A(u,:) and A(v,:)- In the experiments,
we use logistic regression with Ly regularization.

Experimental results. Table 6 shows the Area Under Curve
(AUCQ) scores for the link prediction task. As we can observe,
both the KERNELNE and MKERNELNE models perform
well across different datasets compared to the other baseline
models. Comparing now at the AUC score of KERNELNE
and MKERNELNE, we observe that both models show quite
similar behavior. In the case of the single kernel model KER-

NELNE, the Schoenberg kernel (SCH) performs significantly
better than the Gaussian one. On the contrary, in the MK-
ERNELNE model both kernels achieve similar performance.
These results are consistent to the behavior observed in the
node classification task.

5.6 Parameter Sensitivity

In this subsection, we examine how the performance of the
proposed models is affected by the choice of parameters.

The effect of dimension size. The dimension size d is a crit-
ical parameter for node representation learning approaches

10

TABLE 6
Area Under Curve (AUC) scores for the link prediction task.

Baselines KERNELNE MKERNELNE
1]
~ 23] U
< N &
= N m & & & cL/)U S o %)
E 5 ¢ 5 £ 2 F § 2 ¢ 5 : s
Q z 3 T £ 5z o = O & O &
Citeseer 0.828 0.827 0.725 0517 0719 0.754 0.818 0.713 0.634 0.807 0.882 0.850 0.863
Cora 0779 0781 0.693 0548 0.667 0.737 0.767 0.716 0.616 0.765 0.818 0.792 0.807
DBLP 0944 0944 0930 0591 0931 0917 0.889 0.843 0587 0949 0957 0.958 0.957
PPI 0860 0861 0.731 0827 0.784 0570 0748 0.771 0806 0.749 0.796 0.803 0.784
AstroPh 0961 0.961 0961 0.703 0965 0930 0.825 0.697 0.676 0915 0970 0.978 0.969
HepTh 089 0.896 0827 0.623 0862 0.840 0844 0708 0.633 0.897 0915 0914 0914
Facebook 0.984 0983 0954 0.836 0982 0.981 0975 0.696 0.690 0984 0.988 0.989 0.989
Gnutella 0.679 0.694 0.623 0.723 0.592 0415 0.646 0501 0.709 0.594 0.667 0.647 0.663
KERNELNE-GAUSS KERNELNE-SCH KERNELNE-GAUSS KERNELNE-SCH
0.654 e 0.644 ¥ v -
067 ¢ F——t—% 0.6
" i ¥ 2 x. + v @
& 0.601 0.60 : T & 05 °
g 0551 / e 057 / 2 04 03
050t 0B 025 050 10 20 40 80 02 025 050 10 20 40 80
32 64 96 128 160 192 224 32 64 96 128 160 192 224 -) :) . : -) :) : :
MKERNELNE-GAUSS MKERNELNE-SCH —— Training ratio: 10% —— Training ratio: 50% —=— Training ratio: 90%
1 0.654 ¥
0.65 s
g] T Fig. 3. Influence of kernel parameters on the CiteSeer network.
‘-ii 0604 ’ — 0.604 M
£ o A . : .
s S —] B score increases for o values ranging from 0.25 to 0.50, while
% 0551 the performance almost stabilizes in the range of 4.0 to 8.0.
2 64 9% 128 160 192 224 2 64 9 128 160 192 224

Dimension Size, d

—*— Training ratio: 10% —— Training ratio: 50% —+— Training ratio: 90%

Fig. 2. Influence of the dimension size d on the CiteSeer network.

since the desired properties of networks are aimed to be
preserved in a lower-dimensional space. Figure 2 depicts
the Micro-F} score of the proposed models for varying
embedding dimension sizes, ranging from d = 32 up to
d = 224 over the Citeseer network. As it can be seen, all
the different node embedding instances, both single and
multiple kernel ones, have the same tendency with respect
to d; the performance increases proportionally to the size
of the embedding vectors. Focusing on 10% training ratio,
we observe that the performance gain almost stabilizes for
embedding sizes greater than 96.

The effect of kernel parameters. We have further studied
the behavior of the kernel parameter o of the Gaussian and
Schoenberg kernel respectively (as described in Sec. 4.1).
Figure 3 shows how the Micro F node classification score
is affected with respect to o for various training ratios on
the Citeseer network. For the Gaussian kernel, we observe
that the performance is almost stable for o values varying
from 0.25 up to 2.0, showing a sudden decrease after 4.0.
For the case of the Schoenberg kernel, we observe an almost
opposite behavior. Recall that, parameter o has different
impact on these kernels (Sec. 4.1). In particular, the Micro-F

5.7 Running Time Comparison

For running time comparison of the different models, we
considered all the networks employed in the experiments.
Additionally, we have generated an Erdds-Renyi G, , graph
model [74], by setting the number of nodes n = 10° and the
edge probability p = 10~%. Table 7 reports the running time
(in seconds) for both the baseline and the proposed models.

For this particular experiment, we have run all the
models on a machine of 64GB memory with a single thread
when it is possible. The symbol ”-” signifies that either the
corresponding method cannot run due to excessive memory
requirements or that it requires more than one day to com-
plete. As we can observe, both the proposed models have
comparable running time—utilizing multiple kernels with
MKERNELNE improves performance on downstream tasks
without heavily affecting efficiency. Besides, KERNELNE
runs faster than LINE in most cases, while MKERNELNE
with two kernels shows also a comparable performance. It
is also important to note that although matrix factorization-
based models such as M-NMF are well-performing in some
tasks, they are not very efficient because of the excessive
memory demands (please see Sec. 2 for more details). On
the contrary, our kernelized matrix factorization models are
more efficient and scalable by leveraging negative sampling.
The single kernel variant also runs faster than the random
walk method DEEPWALK.

In addition to the running time comparison of the pro-
posed approach against the baseline models, we further

11

TABLE 7
Comparison of running time (in seconds) on an Erdds-Renyi random graph and the real-world networks used in the experiments. The symbol “-”
denotes that the corresponding method is unable to run due to excessive memory requirements or it takes more than one day to complete.

2]
¥ 8 o g 3
< > <3 =l
N [<] & & =} zZ
o o <3 <] jod] ! =
o) z 3 T N & =z o = X =
Citeseer 136 42 2,020 26 294 5 34 2,012 530 93 186
Cora 139 40 2,069 27 256 5 22 2,064 392 87 170
Dblp 1,761 335 2,717 216 5,582 15 324 113,432 35988 1,079 1,942
PPI 316 248 3,332 45 558 4 14 4,320 871 133 256
AstroPh 1,274 318 3,152 147 3,855 13 135 46,768 16,875 555 1,055
HepTh 804 128 3,866 77 1,264 5 84 15,838 3,776 346 625
Facebook 217 75 2,411 32 525 4 10 3,353 924 114 226
Gnutella 890 127 3,850 82 1,130 5 69 11,907 3,523 330 575
Erdés-Renyi 9,525 1,684 3,449 1,163 25,341 54 1,089 - - 3,845 6,486

)
S 400
9]
b5
£ 300+
v
£
o 2001
g
£ 1001
~
O_ T T T T T T
8 9 10 11 12 13
Number of nodes (log scale)
—<— KERNELNE . MKERNELNE

Fig. 4. Running time of KERNELNE and MKERNELNE models on Erdds-
Renyi random graphs of different sizes.

examine the running time of KERNELNE and MKERNELNE
(using three base kernels) over Erdos-Rényi graphs of vary-
ing sizes, ranging from 2° to 2'3 nodes. In the generation
of random graphs, we set the edge probabilities so that the
expected node degree of graphs is 10. Figure 4 shows the
running time of the proposed models. Since the Gaussian
and Schoenberg kernels have similar performance, we re-
port the running time for the Gaussian kernel only. As we
observe, considering multiple kernels does not significantly
affect the scalability properties of the MKERNELNE model.

5.8 Visualization and Clustering of Embedding Vectors

Modularity is a measure designed to assess the quality of
the clustering structure of a graph [74]. High modularity
implies good clustering structure—the network consists of
substructures in which nodes densely connected with each
other. Here, we perform a simple visualization and cluster-
ing experiment to examine the ability of the different node
embedding models to capture the underlying community
structure, preserving network’s modularity in the embed-
ding space. Note that, to keep the settings of the experiment
simple, we leverage the raw embedding vectors visualizing
them in the two-dimensional space (instead of performing
visualization with t-SNE [75] or similar algorithms).

We perform experiments on the Dolphins [76] toy net-
work, which contains 62 nodes and 159 edges. We use

the LOUVAIN algorithm [77] to detect the communities in
the network. Each of these detected five communities is
represented with a different color in Figure 5a. We also
use the proposed and the baseline models to learn node
embeddings in two-dimensional space.

As we can observe in Fig. 5, different instances of MK-
ERNELNE learn embeddings in which nodes of the different
communities are better distributed in the two-dimensional
space. Besides, to further support this observation, we run
the k-MEANS clustering algorithm [73] on the embedding
vectors, computing the corresponding normalized mutual in-
formation (NMI) scores [78], assuming as ground-truth com-
munities the ones computed by the LOUVAIN algorithm in
the graph space. While the NMI scores for NODE2VEC and
NETMF are 0.532 and 0.572 respectively, KERNELNE-SCH
achieves 0.511 while for KERNELNE-GAUSS we have 0.607.
The NMI scores significantly increase for proposed multi-
ple kernel models MKERNELNE-SCH and MKERNELNE-
GAUSS, which are 0.684 and 0.740 respectively.

6 CONCLUSION

In this paper, we have studied the problem of learning node
embeddings with kernel functions. We have first introduced
KERNELNE, a model that aims at interpreting random-walk
based node proximity under a weighted matrix factorization
framework, allowing to utilize kernel functions. To further
boost performance, we have introduced MKERNELNE, ex-
tending the proposed methodology to the multiple kernel
learning framework. Besides, we have discussed how pa-
rameters of both models can be optimized via negative
sampling in an efficient manner. Extensive experimental
evaluation showed that the proposed kernelized models
substantially outperform baseline NRL methods in node
classification and link prediction tasks.

The proposed kernelized matrix factorization opens fur-
ther research directions in network representation learning
that we aim to explore in future work. To incorporate
the sparsity property prominent in real-world networks,
a probabilistic interpretation [79] of the proposed matrix
factorization mode would be suitable. Besides, it would be
interesting to examine how the proposed models could be
extended in the case of dynamic networks.

a) Ground Truth Labels

b) NODE2VEC

e) NETMF

12

¢) KERNELNE-SCH d) KERNELNE-GAUSS

4

W

w o

f) MKERNELNE-SCH g) MKERNELNE-GAUSS

Fig. 5. The visualization of embeddings learned in 2D space for Dolphins. The colors indicate community labels computed by the LOUVAIN algorithm.

Acknowledgements. Supported in part by ANR (French
National Research Agency) under the JCJC project GraphlA
(ANR-20-CE23-0009-01).

REFERENCES

(1]

(2]
(3]
(4]
(5]

6]

(7]
(8]

(9]

[10]

[11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning
on graphs: Methods and applications,” IEEE Data Eng. Bull.,
vol. 40, no. 3, pp. 52-74, 2017.

D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation
learning: A survey,” IEEE Trans. on Big Data, vol. 6, pp. 3-28, 2020.
B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning
of social representations,” in KDD, 2014, pp. 701-710.

A. Grover and]. Leskovec, “Node2Vec: Scalable feature learning
for networks,” in KDD, 2016, pp. 855-864.

M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral
techniques for embedding and clustering,” in NIPS, 2001, pp. 585
591.

S. Cao, W. Lu, and Q. Xu, “GraRep: Learning graph representa-
tions with global structural information,” in CIKM, 2015, pp. 891-
900.

M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transi-
tivity preserving graph embedding,” in KDD, 2016, pp. 1105-1114.
D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis, “Adap-
tive diffusions for scalable learning over graphs,” IEEE Trans. on
Signal Processing, vol. 67, no. 5, pp. 1307-1321, 2019.

S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction
by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323-
2326, 2000.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111-3119.

D. Nguyen and F. D. Malliaros, “BiasedWalk: Biased sampling for
representation learning on graphs,” in IEEE Big Data, 2018, pp.
4045-4053.

A. Celikkanat and E D. Malliaros, “TNE: A latent model for
representation learning on networks,” in NeurIPS Relational Rep-
resentation Learning Workshop, 2018.

A. Celikkanat and F. D. Malliaros, “Exponential family graph
embeddings,” in AAAL. AAAI Press, 2020, pp. 3357-3364.

S. Chanpuriya and C. Musco, “InfiniteWalk: Deep network em-
beddings as laplacian embeddings with a nonlinearity,” in KDD,
2020, p. 1325-1333.

B. Scholkopf, A. Smola, and K.-R. Miiller, “Kernel principal com-
ponent analysis,” in ICANN, 1997, pp. 583-588.

B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. ~Cambridge,
MA, USA: MIT Press, 2001.

I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: Spectral
clustering and normalized cuts,” in KDD, 2004, pp. 551-556.

X. Liu, C. Aggarwal, Y.-E. Li, X. Kong, X. Sun, and S. Sathe,
“Kernelized matrix factorization for collaborative filtering,” in
SDM, 2016, pp. 378-386.

[19]
[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

(33]

[34]

(35]

[36]

[37]

[38]

T. Hofmann, B. Scholkopf, and A. J. Smola, “Kernel methods in
machine learning,” Ann. Stat., vol. 36, no. 3, pp. 1171-1220, 2008.
M. Génen and E. Alpaydmn, “Multiple kernel learning algorithms,”
J. Mach. Learn. Res., vol. 12, no. null, p. 2211-2268, Jul. 2011.

S. Wang, Q. Huang, S. Jiang, and Q. Tian, “S3MKL: Scalable
semi-supervised multiple kernel learning for real-world image
applications,” IEEE Trans. on Multimedia, vol. 14, pp. 1259-1274,
2012.

N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on graph
kernels,” Appl. Netw. Sci., vol. 5, no. 1, p. 6, 2020.

J. I. T. and C. Jorge, “Principal component analysis: a review and
recent developments,” Phil. Trans. R. Soc., 2016.

J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A global geomet-
ric framework for nonlinear dimensionality reduction,” Science,
vol. 290, no. 5500, pp. 2319-2323, 2000.

X. Fu, K. Huang, N. D. Sidiropoulos, and W. Ma, “Nonnegative
matrix factorization for signal and data analytics: Identifiability,
algorithms, and applications,” IEEE Signal Processing Magazine,
vol. 36, no. 2, pp. 59-80, 2019.

J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and]. Tang, “Network
embedding as matrix factorization: Unifying DeepWalk, LINE,
PTE, and Node2Vec,” in WSDM, 2018, pp. 459-467.

J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and]. Tang,
“NetSMF: Large-scale network embedding as sparse matrix fac-
torization,” in WWW, 2019, pp. 1509-1520.

S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning
graph representations,” AAAI, vol. 30, no. 1, Feb. 2016.

D. Wang, P. Cui, and W. Zhu, “Structural deep network embed-
ding,” in SIGKDD, 2016, p. 1225-1234.

W. L. Hamilton, Graph Representation Learning.
Claypool Publishers, 2020.

A. Celikkanat and D. F. Malliaros, “Topic-aware latent models for
representation learning on networks,” Pattern Recognition Letters,
vol. 144, pp. 89-96, 2021.

S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, and A. A. Alemi, “Watch
your step: Learning node embeddings via graph attention,” in
NeurIPS, vol. 31, 2018.

A. Tsitsulin, D. Mottin, P. Karras, and E. Miiller, “Verse: Versatile
graph embeddings from similarity measures,” in WWW, 2018, pp.
539-548.

J. Zhang, Y. Dong, Y. Wang,]J. Tang, and M. Ding, “Prone: Fast
and scalable network representation learning,” in IJCAI, 2019, pp.
4278-4284.

D. Yang, P. Rosso, B. Li, and P. Cudre-Mauroux, “Nodesketch:
Highly-efficient graph embeddings via recursive sketching,” in
KDD, 2019, pp. 1162-1172.

Z. Zhang, P. Cui, H. Li, X. Wang, and W. Zhu, “Billion-scale
network embedding with iterative random projection,” in ICDM,
2018, pp. 787-796.

H. Chen, S. F. Sultan, Y. Tian, M. Chen, and S. Skiena, “Fast and
accurate network embeddings via very sparse random projection,”
in CIKM, 2019, pp. 399—408.

C. Alzate and J. A. K. Suykens, “Multiway spectral clustering with
out-of-sample extensions through weighted kernel pca,” IEEE
PAMI, vol. 32, no. 2, pp. 335-347, 2010.

Morgan and

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]
(53]
[54]

[55]

[56]

[57]
[58]
[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

Fei Zhu, P. Honeine, and M. Kallas, “Kernel nonnegative matrix
factorization without the pre-image problem,” in MLSP, 2014, pp.
1-6.

R.I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other
discrete input spaces,” in ICML, 2002, pp. 315-322.

S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt, “Graph Kernels,” | Mach Learn Res, vol. 11, pp. 1201
1242, 2010.

K. Melnyk, S. Klus, G. Montavon, and T. O. F. Conrad, “Graphkke:
graph kernel koopman embedding for human microbiome analy-
sis,” Applied Network Science, vol. 5, no. 1, p. 96, 2020.

Y. Tian, L. Zhao, X. Peng, and D. Metaxas, “Rethinking kernel
methods for node representation learning on graphs,” in NIPS,
2019, pp. 11686-11697.

Y. Shen, B. Baingana, and G. B. Giannakis, “Kernel-based struc-
tural equation models for topology identification of directed net-
works,” IEEE Trans. on Signal Processing, vol. 65, no. 10, pp. 2503
2516, 2017.

D. Romero, V. N. Ioannidis, and G. B. Giannakis, “Kernel-based
reconstruction of space-time functions on dynamic graphs,” IEEE
J. Sel. Top. Signal Process., vol. 11, no. 6, pp. 856-869, 2017.

D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based reconstruc-
tion of graph signals,” IEEE Trans. on Signal Processing, vol. 65,
no. 3, pp. 764-778, 2017.

G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting
the dots: Identifying network structure via graph signal process-
ing,” IEEE Signal Process Mag., vol. 36, no. 3, pp. 16-43, 2019.

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan, “Multiple kernel
learning, conic duality, and the smo algorithm,” in ICML, 2004,
p. 6.

T. Wang, L. Zhang, and W. Hu, “Bridging deep and multiple kernel
learning: A review,” Information Fusion, vol. 67, pp. 3 — 13, 2021.
A. Salim, S. Shiju, and S. Sumitra, “Design of multi-view graph
embedding using multiple kernel learning,” Engineering Applica-
tions of Artificial Intelligence, vol. 90, p. 103534, 2020.

R. Wang, X.-J. Wu, and J. Kittler, “Graph embedding multi-kernel
metric learning for image set classification with grassmannian
manifold-valued features,” IEEE Trans. on Multimedia, vol. 23, pp.
228-242, 2021.

S. An, J. Yun, and S. Choi, “Multiple kernel nonnegative matrix
factorization,” in ICASSP, 2011, pp. 1976-1979.

Y. Lin, T. Liu, and C. Fuh, “Multiple kernel learning for dimen-
sionality reduction,” IEEE PAMI, pp. 1147-1160, 2011.

N. Srebro and T. Jaakkola, “Weighted low-rank approximations,”
in ICML, 2003, pp. 720-727.

A. Epasto and B. Perozzi, “Is a single embedding enough? learning
node representations that capture multiple social contexts,” in
WWW, 2019, pp. 394-404.

G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and
S. Kim, “Dynamic network embeddings: From random walks to
temporal random walks,” in IEEE Big Data, 2018, pp. 1085-1092.
C. Lin, P. Ishwar, and W. Ding, “Node embedding for network
community discovery,” in ICASSP, 2017, pp. 4129-4133.

C. Eckart and G. Young, “The approximation of one matrix by
another of lower rank,” Psychometrika, vol. 1, pp. 211-218, 1936.

I. Steinwart, “On the influence of the kernel on the consistency of
support vector machines,” JMLR, vol. 2, pp. 67-93, 2002.

P. Honeine and C. Richard, “Preimage problem in kernel-based
machine learning,” IEEE Signal Process Mag., vol. 28, pp. 77-88,
2011.

C. A. Micchelli, Y. Xu, and H. Zhang, “Universal kernels,” J. Mach.
Learn. Res., vol. 7, pp. 2651-2667, Dec. 2006.

L. Bottou, “Stochastic gradient learning in neural networks,” in In
Proceedings of Neuro-Nimes. EC2, 1991.

A. Mnih and K. Kavukcuoglu, “Learning word embeddings effi-
ciently with noise-contrastive estimation,” in NIPS, 2013, pp. 2265
2273.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
Large-scale information network embedding,” in WWW, 2015, pp.
1067-1077.

B. Rozemberczki, R. Davies, R. Sarkar, and C. Sutton, “GEMSEC:
Graph embedding with self clustering,” in ASONAM, 2019, pp.
65-72.

X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in AAAI, 2017, pp. 203-209.

H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical
representation learning for networks,” in AAAI, 2018.

13

[68] P.Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad, “Collective classification in network data,” Al magazine, 2008.

[69] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena, “Don’t walk,
skip!: Online learning of multi-scale network embeddings,” in
ASONAM, 2017, pp. 258-265.

[70] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution:
Densification and shrinking diameters,” ACM Trans. Knowl. Discov.
Data, vol. 1, no. 1, 2007.

[71] J. Leskovec and J. J. Mcauley, “Learning to discover social circles
in ego networks,” in NIPS, 2012, pp. 539-547.

[72] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the gnutella
network,” IEEE Internet Computing, vol. 6, no. 1, pp. 50-57, 2002.

[73] E. Pedregosa et al., “Scikit-learn: Machine learning in Python,”
JMLR, vol. 12, pp. 2825-2830, 2011.

[74] M. Newman, Nefworks: An Introduction. ~— Oxford Scholarship
Online, 2010.

[75] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,”
JMLR, vol. 9, no. 86, pp. 2579-2605, 2008.

[76] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and
S. M. Dawson, “The bottlenose dolphin community of doubtful
sound features a large proportion of long-lasting associations,”
Behavioral Ecology and Sociobiology, vol. 54, no. 4, pp. 396—405, 2003.

[77] V.D.Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech., vol.
2008, no. 10, p. P10008, 2008.

[78] E. D. Malliaros and M. Vazirgiannis, “Clustering and community
detection in directed networks: A survey,” Physics Reports, 2013.

[79] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factoriza-
tion,” in NIPS, 2008, pp. 1257-1264.

Abdulkadir Celikkanat is currently a postdoc-

toral researcher at the Section for Cognitive

Systems of the Technical University of Den-

mark. He completed his Ph.D. at the Centre

for Visual Computing of CentraleSupélec, Paris-

o Saclay University, and he was also a member of

- the OPIS team at Inria Saclay. Before his Ph.D.

\ / studies, he received his Bachelor degree in

ANG A Mathematics and Master’s degree in Computer

Engineering from Bogazi¢i University. His re-

search mainly focuses on the analysis of graph-

structured data. In particular, he is interested in graph representation
learning and its applications for social and biological networks.

>
4

[

Yanning Shen is an assistant professor at Uni-
versity of California, Irvine. She received her
Ph.D. degree from the University of Minnesota
(UMN) in 2019. She was a finalist for the Best
Student Paper Award at the 2017 IEEE Interna-
tional Workshop on Computational Advances in
Multi-Sensor Adaptive Processing, and the 2017
Asilomar Conference on Signals, Systems, and
Computers. She was selected as a Rising Star
in EECS by Stanford University in 2017, and
received the Microsoft Academic Grant Award
for Al Research in 2021. Her research interests span the areas of
machine learning, network science, data science and signal processing.

Fragkiskos D. Malliaros is an assistant profes-
sor at Paris-Saclay University, CentraleSupélec
and associate researcher at Inria Saclay. He also
co-directs the Master Program in Data Sciences
and Business Analytics (CentraleSupélec and
ESSEC Business School). Right before that, he
was a postdoctoral researcher at UC San Diego
(2016-17) and at Ecole Polytechnique (2015-
16). He received his Ph.D. in Computer Science
from Ecole Polytechnique (2015) and his M.Sc.
degree from the University of Patras, Greece
(2011). He is the recipient of the 2012 Google European Doctoral Fel-
lowship in Graph Mining, the 2015 Thesis Prize by Ecole Polytechnique,
and best paper awards at TextGraphs-NAACL 2018 and ICWSM 2020
(honorable mention). In the past, he has been the co-chair of various
data science-related workshops, and has also presented twelve invited
tutorials at international conferences in the area of graph mining. His
research interests span the broad area of data science, with focus on
graph mining, machine learning, and network analysis.

