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The main aim of the paper is to derive the basic governing equations for anisotropic thermoelastic medium with mass diffusion and triple porosity. Additionally, the fundamental solutions of system of equations in cases of steady, pseudo-, quasi-static oscillations and equilibrium are also constructed.

Introduction

Diffusion is the transfer of mass of a substance from the high concentration regions to low concentration regions. Nowacki [START_REF] Nowacki | Dynamical problems of thermodiffusion in solids-I[END_REF][START_REF] Nowacki | Dynamical problems of thermodiffusion in solids-II[END_REF][START_REF] Nowacki | Dynamical problems of thermodiffusion in solids-III[END_REF][START_REF] Nowacki | Dynamical problems of thermodiffusion in solids[END_REF] developed the theory of thermoelasticity with mass diffusion based upon classical Fourier's and Fick's laws. Sherief et al. [START_REF] Sherief | The theory of generalized thermoelastic diffusion[END_REF] established generalized theory of thermoelasticity with mass diffusion by modifying Fourier's and Fick's laws.

The first model for single porosity deformable solid was given by Biot [START_REF] Biot | General theory of three-dimensional consolidation[END_REF]. Aifantis and co-workers [START_REF] Wilson | On the theory of consolidation with double porosity-I[END_REF][START_REF] Khaled | On the theory of consolidation with double porosity-III[END_REF][START_REF] Beskos | On the theory of consolidation with double porosity-II[END_REF] developed the theory for deformable materials with double porosity. A double porosity elastic material has macro pores in the body but in addition there is a micro porosity which arises because of fissures or cracks in the solid skeleton. Khalili and Selvadurai [START_REF] Khalili | A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity[END_REF][START_REF] Khalili | On the constitutive modelling of thermohydro-mechanical coupling in elastic media with double porosity[END_REF] and Gelet et al. [START_REF] Gelet | A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity[END_REF] established the basic governing homogeneous equations in the linear theory of thermoelasticity for solids with double porosity. A lots of work has been done in this field. All the theories developed by the above mentioned authors were based upon Darcy's law. Without using this law, Iesan and Quintanilla [START_REF] Iesan | On a theory of thermoelastic materials with a double porosity structure[END_REF] derived a non-linear theory of thermoelastic solids with double porosity structure. In the similar manner, Kansal [START_REF] Kansal | Generalized theory of thermoelastic diffusion with double porosity[END_REF] developed a linear generalized theory of thermoelastic diffusion with double porosity. Svanadze [START_REF] Svanadze | Boundary value problems of steady vibrations in the theory of thermoelasticity for materials with a double porosity structure[END_REF] developed the classical potential method in the linear theory of thermoelasticity for materials with a double porosity structure based ---E-mail address: tarun1 kansal@yahoo.co.in on the mechanics of materials with voids. Marin et al. [START_REF] Marin | A generalization of the Saint-Venant's principle for an elastic body with dipolar structure[END_REF] approached transient elastic processes and the steady state in a cylinder consisting of linear elastic body with dipolar structure which is only subjected to some boundary restrictions at a plane end. Emin et al. [START_REF] Amin | Some uniqueness results for thermoelastic materials with double porosity structure[END_REF] obtained new uniqueness results for the anisotropic thermoelastic bodies with double porosity structure based on the Betti reciprocity relation that involve some thermoelastic processes. In triple porosity elastic material, the body possesses three levels of pore structures. The first is the largest visible porosity known as macro porosity, the second represents an intermediate case which is known as meso porosity, and the final scenario is referred to as a micro porosity. Svanadze [START_REF] Svanadze | Fundamental solutions in the theory of elasticity for triple porosity materials[END_REF] and Straughan [START_REF] Straughan | Uniqueness and stability in triple porosity thermoelasticity[END_REF] presented the governing equations in the theories of elasticity and thermoelasticity with triple porosity respectively.

Svanadze [START_REF] Svanadze | External boundary value problems in the quasi static theory of elasticity for triple porosity materials[END_REF][START_REF] Svanadze | Boundary Value problems in the theory of thermoelasticity for triple porosity materials[END_REF][START_REF] Svanadze | External boundary value problems in the quasi static theory of triple porosity thermoelasticity[END_REF][START_REF] Svanadze | Potential method in the theory of elasticity for triple porosity materials[END_REF][START_REF] Svanadze | Potential method in the linear theory of triple porosity thermoelasticity[END_REF][START_REF] Svanadze | On the linear equilibrium theory of elasticity for materials with triple voids[END_REF] studied various boundary value problems on elastic solids and thermoelastic solids with triple porosity. The need for theories for multiple porosity elasticity and the associated mathematical, physical and numerical analysis which accompanies such theories is undoubtedly driven by the myriad of applications which exist and which are coming to light continuously. The first application area is in mathematical biology and the associated field of health. Replacement of damaged long bones in human beings is a major problem for a surgeon since the porosity of the bone can vary from 14% in the outer layer bone to 42% in the inner layer. Indeed to adequately model a long bone one may require a multi-porosity theory which is applicable to a graded porosity material. Another very important area of application for multiple porosity elasticity is in geophysics. For example, a careful description of landslides may well require employment of double porosity theory. Straughan [START_REF] Straughan | Mathematical Aspects of Multi-Porosity Continua[END_REF] discussed various applications of multiple porosity in his book.

The fundamental solutions play an important role in solving various boundary value problems. The reason is that an integral representation of solution of a boundary value problem by fundamental solution is often more easily solved by numerical methods rather than a differential equation with specified boundary and initial conditions. For investigating boundary value problems of the theories of elasticity and thermoelasticity by potential method, it is necessary to construct fundamental solutions of corresponding systems of partial differential equations and to establish their basic properties.Various authors [START_REF] Svanadze | Fundamental solution in the theory of consolidation with double porosity[END_REF][START_REF] Svanadze | Fundamental solutions in the full coupled linear theory of elasticity for solid with double porosity[END_REF][START_REF] Svanadze | Fundamental Solution in the linear theory of consolidation for elastic solids with double porosity[END_REF][START_REF] Scarpetta | Fundamental solutions in the theory of thermoelasticity for solids with double porosity[END_REF][START_REF] Kumar | Some considerations of fundamental solution in micropolar thermoelastic materials with double porosity[END_REF][START_REF] Kansal | Fundamental solution in the theory of thermoelastic diffusion materials with double porosity[END_REF][START_REF] Svanadze | Fundamental solutions in the linear theory of thermoelasticity for solids with triple porosity[END_REF] constructed the fundamental solutions by means of elementary functions in the different theories of elasticity and thermoelasticity with double porosity.

In this paper, the constitutive relations and field equations for anisotropic generalized thermoelastic diffusion with triple porosity are derived in section 2. After reducing the anisotropic system of equations into isotropic system of equations, the fundamental solution in case of steady oscillations is constructed in terms of elementary functions in sections 3 and 4. In section 5, the fundamental solutions in cases of pseudo-, quasi-static oscillations and equilibrium are constructed. Finally, some basic properties of fundamental matrix are also established in section 6.

Basic Equations

Based upon Iesan and Quintanilla [START_REF] Iesan | On a theory of thermoelastic materials with a double porosity structure[END_REF], the law of conservation of energy for an arbitrary material volume V bounded by a surface B at time t can be written as

∫ V ρ[ ui üi + κ 1 ν1 ν1 + κ 2 ν2 ν2 + κ 3 ν3 ν3 + U ]dV = ∫ V ρ[F i ui + Λ α να ]dV + ∫ B [f i ui + Ω (α) β ϖ β να -q i ϖ i ]dB, ( 1 
)
where U is the internal energy per unit mass, ρ is the density, q i are the components of heat flux vector q, F i are the components of the external force per unit mass, u i are the components of displacement vector u, f i are the components of surface traction vector f occurring on the surface B, ν α are the volume fraction fields corresponding to macro-, meso-, micro-pores respectively, κ α are the coefficients of equilibrated inertia, Λ α are extrinsic equilibrated body forces per unit mass associated to macro-, meso-, micro-pores respectively, Ω The components f i are connected to stress vectors by the relation

f i = σ ji ϖ j , (2) 
where σ ji (= σ ij ) are the components of stress tensor.

Using equation (2) in equation ( 1) and applying divergence theorem, we acquire

∫ V ρ[ ui üi + κ 1 ν1 ν1 + κ 2 ν2 ν2 + κ 3 ν3 ν3 + U ]dV = ∫ V ρ[F i ui + Λ α να ]dV + ∫ V [σ ji,j ui + σ ji ui,j + Ω (α) β,β να + Ω (α) β να,β -q i,i ]dV. (3) 
Since equation ( 3) is valid for every part of the body, therefore local form of conservation of energy is obtained as

ρ[ ui üi + κ 1 ν1 ν1 + κ 2 ν2 ν2 + κ 3 ν3 ν3 + U ] = ρ[F i ui + Λ α να ]+ σ ji,j ui + σ ji ui,j + Ω (α) β,β να + Ω (α) β να,β -q i,i . (4) 
Let us consider a second motion which differs from the given motion only by a constant superposed rigid body translational velocity. We assume that κ α , U, Λ α , ρ,

Ω (α)
β , q i , F i , σ ji do not vary by such superposed rigid body velocity. Equation ( 4) is also true when ui is replaced by ui + ℘ i , where ℘ i are arbitrary constants, all other terms being unchanged. Therefore, from equation( 4), we have

ρ[( ui + ℘ i )ü i + κ 1 ν1 ν1 + κ 2 ν2 ν2 + κ 3 ν3 ν3 + U ] = ρ[F i ( ui + ℘ i ) + Λ α να ]+ σ ji,j ( ui + ℘ i ) + σ ji ui,j + Ω (α) β,β να + Ω (α) β να,β -q i,i . ( 5 
)
Subtracting equation (4) from equation (5), we get

℘ i [σ ji,j + ρF i -ρü i ] = 0. ( 6 
)
Since the quantities in the square brackets are independent of ℘ i , therefore from equation ( 6), we obtain

σ ji,j + ρF i = ρ üi . (7) 
Equation ( 4) with the assistance of equation ( 7) yields a simplified form of conservation of energy

ρ U = σ ji ui,j + Ω (α) β να,β -q i,i -Υ α να , (8) 
where Υ α , α = 1, 2, 3 satisfy the relations Ω (1)

β,β + Υ 1 + ρΛ 1 = ρκ 1 ν1 , Ω (2) 
β,β + Υ 2 + ρΛ 2 = ρκ 2 ν2 , Ω (3) 
β,β + Υ 3 + ρΛ 3 = ρκ 3 ν3 . ( 9 
)
Following Nowacki [START_REF] Nowacki | The theory of asymmetric elasticity[END_REF], the balance of entropy can be composed as

∫ V ρ ṠdV + ∫ B ( q i T ) ϖ i dB - ∫ B ( P η i T ) ϖ i dB = ∫ V [ - q i T 2 T ,i - P ,i T η i + P T 2 η i T ,i ] dV.
(10) where S, P , are entropy and chemical potential per unit mass respectively, η i are the components of mass diffusion flux vector η, T is absolute temperature.

The equation [START_REF] Khalili | A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity[END_REF] can be written in the local form

ρ Ṡ + ( q i T ) ,i - ( P η i T ) ,i = - q i T 2 T ,i - P ,i T η i + P T 2 η i T ,i . ( 11 
)
The right hand side of equation ( 11) is the entropy source

ℜ = - q i T 2 T ,i - P ,i T η i + P T 2 η i T ,i ≥ 0.
On the basis of above relation, equation [START_REF] Khalili | On the constitutive modelling of thermohydro-mechanical coupling in elastic media with double porosity[END_REF] can be represented in the form of an inequality called Clausius-Duhem inequality

ρ Ṡ + q i,i T - q i T 2 T ,i - P T η i,i - P ,i T η i + P T 2 η i T ,i ≥ 0. ( 12 
)
The equation of conservation of mass is

η j,j = -Ċ, ( 13 
)
where C is the concentration of the diffusion material in the elastic body.

Equation ( 12) with the help of equations ( 8) and ( 13) becomes

ρT Ṡ -ρ U + σ ij ėij + Ω (α) β να,β -Υ α να - q i T T ,i + P Ċ -P ,i η i + P T η i T ,i ≥ 0. ( 14 
)
where e ij = 1 2 (u i,j + u j,i ) are the components of strain tensor.

Helmholtz free energy function Γ is stated as

Γ = U -T S. ( 15 
)
Applying equation [START_REF] Svanadze | Boundary value problems of steady vibrations in the theory of thermoelasticity for materials with a double porosity structure[END_REF] in the equation ( 14), we get

-ρ[ Γ + Ṫ S] + σ ij ėij + Ω (α) β να,β -Υ α να - q i T T ,i + P Ċ -P ,i η i + P T η i T ,i ≥ 0. ( 16 
)
The function Γ can be expressed in terms of independent variables e ij , ν α , ν α,β ,T, T ,i , C

and C ,i . Therefore, we have

Γ = ∂Γ ∂e ij ėij + ∂Γ ∂ν α να + ∂Γ ∂ν α,β να,β + ∂Γ ∂T Ṫ + ∂Γ ∂T ,i Ṫ,i + ∂Γ ∂C Ċ + ∂Γ ∂C ,i Ċ,i . ( 17 
)
Equation ( 16) with the help of equation ( 17) becomes

[ σ ij -ρ ∂Γ ∂e ij ] ėij + [ Ω (α) β -ρ ∂Γ ∂ν α,β ] να,β - [ Υ α + ρ ∂Γ ∂ν α ] να -ρ [ S + ∂Γ ∂T ] Ṫ + [ P -ρ ∂Γ ∂C ] Ċ -ρ ∂Γ ∂T ,i Ṫ,i -ρ ∂Γ ∂C ,i Ċ,i - q i T T ,i -P ,i η i + P T η i T ,i ≥ 0. ( 18 
)
The inequality should be convinced for all rates ėij , να , να,β , Ṫ , Ṫ,i , Ċ and Ċ,i .

Hence the coefficients of above variables must vanish, that is,

σ ij = ρ ∂Γ ∂e ij , (19) 
Ω (α) β = ρ ∂Γ ∂ν α,β , (20) 
Υ α = -ρ ∂Γ ∂ν α , ( 21 
) S = - ∂Γ ∂T , ( 22 
)
P = ρ ∂Γ ∂C , ( 23 
)
∂Γ ∂T ,i = ∂Γ ∂C ,i = 0, (24) 
-

q i T T ,i -P ,i η i + P T η i T ,i ≥ 0. ( 25 
)
Let us introduce the notations

ϕ α = ν α -(ν α ) 0 , θ = T -T 0 , α = 1, 2, 3 (26) 
where T 0 is the reference temperature of the body chosen such that

| θ T 0 | ≪ 1, (ν α ) 0
are the volume fraction fields in reference configuration.

In the linear theory, the independent variables are e ij , ϕ α , ϕ α,β , θ and C. It is assumed that the undeformed body is free from stresses and has zero intrinsic equilibrated body forces and entropy. If the body has a centre of symmetry, then we have

2ρΓ = c ijkl e ij e kl + 2ϑ (α) ij e ij ϕ α -2a ij e ij θ -2b ij e ij C + Υ (αα) ij ϕ α,i ϕ α,j + 2Υ (12) ij ϕ 1,i ϕ 2,j +2Υ (13) ij ϕ 1,i ϕ 3,j +2Υ (23) ij ϕ 2,i ϕ 3,j +λ αβ ϕ α ϕ β -2ℓ α ϕ α θ-2ε α ϕ α C- ρC e θ 2 T 0 -2aθC+bC 2 . ( 27 
) where c ijkl = c klij = c jikl , ϑ (α) ij = ϑ (α) ji , a ij = a ji , b ij = b ji , Υ (αα) ij = Υ (αα) ji , λ αβ = λ βα .
Using above equation in the equations ( 19)-( 23), the following constitutive equations are obtained:

σ ij = c ijkl e kl + ϑ (α) ij ϕ α -a ij θ -b ij C, (28) 
Ω (α) β = Υ (αγ) βp ϕ γ,p , (29) 
Υ α = -ϑ (α) jk e jk -λ αβ ϕ β + ℓ α θ + ε α C, ( 30 
)
ρS = a ij e ij + ℓ α ϕ α + ρC e θ T 0 + aC, ( 31 
)
P = -b ij e ij -ε α ϕ α -aθ + bC. ( 32 
)
Equations ( 7) and ( 9) with the aid of equations ( 28)-( 30) become

c ijkl e kl,j + ϑ (α) ij ϕ α,j -a ij θ ,j -b ij C ,j + ρF i = ρü i , (33) -ϑ (1 
)

ij e ij + Υ (1α) ij ϕ α,ij -λ 1α ϕ α + ℓ 1 θ + ε 1 C + ρΛ 1 = ρκ 1 φ1 , -ϑ (2) ij e ij + Υ (2α) ij ϕ α,ij -λ 2α ϕ α + ℓ 2 θ + ε 2 C + ρΛ 2 = ρκ 2 φ2 , -ϑ (3) ij e ij + Υ (3α) ij ϕ α,ij -λ 3α ϕ α + ℓ 3 θ + ε 3 C + ρΛ 3 = ρκ 3 φ3 . ( 34 
)
The linearized form of equation ( 11) is

ρT 0 Ṡ = -q i,i . ( 35 
)
Using equation [START_REF] Kumar | Some considerations of fundamental solution in micropolar thermoelastic materials with double porosity[END_REF] in equation ( 35), we get

T 0 [ a ij ėij + ℓ α φα + a Ċ] + ρC e θ = -q i,i . ( 36 
)
Generalized Fourier's law of heat conduction equation is

q i + τ 0 qi = -K ij θ ,j , (37) 
where K ij are coefficients of thermal conductivity tensor, τ 0 is the thermal relaxation time which will ensure that the heat conduction equation will predict finite speeds of heat propagation.

Equation (37) with the help of equation ( 36) becomes

( ∂ ∂t + τ 0 ∂ 2 ∂t 2 )[ T 0 (a ij e ij + ℓ α ϕ α + aC) + ρC e θ ] = K ij θ ,ij . ( 38 
)
Similar to equation (37), generalized Fick's law of mass diffusion is

η i + τ 0 ηi = -D ij P ,j , (39) 
where D ij are coefficients of diffusion tensor, τ 0 is the diffusion relaxation time which ensures that the equation satisfied by the concentration will also predict finite speeds of propagation of matter from one medium to the other.

Using equations ( 13) and [START_REF] Kansal | Fundamental solution in the theory of thermoelastic diffusion materials with double porosity[END_REF] in equation ( 39), we get

-D ij [b kl e kl,ij + ε α ϕ α,ij + aθ ,ij -bC ,ij ] = Ċ + τ 0 C. ( 40 
)
If we take

c ijkl = λδ ij δ kl + µδ ik δ jl + µδ il δ jk , a ij = ϑ 1 δ ij , b ij = ϑ 2 δ ij , ϑ (α) ij = ℜ α δ ij , Υ (αγ) ij = A αγ δ ij , K ij = Kδ ij , D ij = Dδ ij ,
where δ ij is Kronecker's delta, in the equations ( 33), ( 34), ( 38) and (40), the governing equations for homogeneous isotropic generalized thermoelastic diffusion with triple porosity in absence of body forces are obtained as

µ∆u + (λ + µ)∇ div u + ℜ α ∇ϕ α -ϑ 1 ∇θ -ϑ 2 ∇C = ρü, ( 41 
)
-ℜ 1 div u + A 1α ∆ϕ α -λ 1α ϕ α + ℓ 1 θ + ε 1 C = ρκ 1 φ1 , -ℜ 2 div u + A 2α ∆ϕ α -λ 2α ϕ α + ℓ 2 θ + ε 2 C = ρκ 2 φ2 , -ℜ 3 div u + A 3α ∆ϕ α -λ 3α ϕ α + ℓ 3 θ + ε 3 C = ρκ 3 φ3 , ( 42 
)
( ∂ ∂t + τ 0 ∂ 2 ∂t 2 )[ T 0 (ϑ 1 div u + ℓ α ϕ α + aC) + ρC e θ ] = K∆θ, ( 43 
)
D∆[ϑ 2 div u + ε α ϕ α + aθ -bC] + ( ∂ ∂t + τ 0 ∂ 2 ∂t 2 ) C = 0, (44) 
where ∆, ∇ are respectively, Laplacian and Del operators.

In the upcoming sections, the chemical potential has been used as a state variable rather than concentration. In isotropic medium, equation [START_REF] Kansal | Fundamental solution in the theory of thermoelastic diffusion materials with double porosity[END_REF] becomes

P = -ϑ 2 div u -ε β ϕ β -aθ + bC. ( 45 
)
The equations ( 41)-(44) with the aid of equation ( 45) can be rewritten as

µ∆u + (λ ′ + µ)∇ div u + σ α ∇ϕ α -ζ 1 ∇θ -ζ 2 ∇P = ρü, ( 46 
)
-σ 1 div u + A 1α ∆ϕ α -L 1α ϕ α + ξ 1 θ + v 1 P = ρκ 1 φ1 , -σ 2 div u + A 2α ∆ϕ α -L 2α ϕ α + ξ 2 θ + v 2 P = ρκ 2 φ2 , -σ 3 div u + A 3α ∆ϕ α -L 3α ϕ α + ξ 3 θ + v 3 P = ρκ 3 φ3 , ( 47 
) - ( ∂ ∂t + τ 0 ∂ 2 ∂t 2 ) T 0 [ ζ 1 div u + ξ α ϕ α + ηθ + ςP ] + K∆θ = 0, (48) 
-

( ∂ ∂t + τ 0 ∂ 2 ∂t 2 )[ ζ 2 div u + v α ϕ α + ςθ + ϖP ] + D∆P = 0, (49) 
where

ϖ = b -1 , ζ 2 = ϖϑ 2 , ζ 1 = ϑ 1 + a ζ 2 , σ α = ℜ α -ε α ζ 2 , λ ′ = λ -ζ 2 ϑ 2 , ς = aϖ, v α = ε α ϖ, L βα = λ βα -ε β v α , ξ α = ℓ α + ςε α , η = ρC e T 0 + aς.

Steady Oscillations

Let x = (x 1 , x 2 , x 3 ) be the point of the Euclidean three-dimensional space E 3 ,

|x| = (x 2 1 + x 2 2 + x 2 3 ) 1 2 , D x = ( ∂ ∂x 1 , ∂ ∂x 2 , ∂ ∂x 3 ).
The displacement vector, volume fraction fields, temperature change and chemical potential functions are assumed as:

[ u(x, t), ϕ α (x, t), θ(x, t), P (x, t)

] = Re [ (u * , ϕ * α , θ * , P * )e -ιωt ] , ( 50 
)
where ω is oscillation frequency.

Using equation (50) in equations ( 46)-(49) and omitting asterisk (*) for simplicity, the system of equations of steady oscillations are obtained as

µ∆u + [(λ ′ + µ)∇ div + ρω 2 ]u + σ α ∇ϕ α -ζ 1 ∇θ -ζ 2 ∇P = 0, -σ 1 div u + A 1α ∆ϕ α -M 1α ϕ α + ξ 1 θ + v 1 P = 0, -σ 2 div u + A 2α ∆ϕ α -M 2α ϕ α + ξ 2 θ + v 2 P = 0, -σ 3 div u + A 3α ∆ϕ α -M 3α ϕ α + ξ 3 θ + v 3 P = 0, τ 1 T 0 [ζ 1 div u + ξ α ϕ α ] + [K∆ + τ 1 ηT 0 ]θ + τ 1 ςT 0 P = 0, τ 1 [ζ 2 div u + v α ϕ α + ςθ] + [D∆ + τ 1 ϖ]P = 0, (51) 
where

M βα = L βα -ρω 2 κ β ϕ β δ βα , τ 1 = ιω(1 -ιωτ 0 ), τ 1 = ιω(1 -ιωτ 0 ).
If we replace ω by -ιτ , where τ is a complex number and Re(τ ) > 0 in the equations (51), we obtain the system of equations of pseudo-oscillations as:

µ∆u + [(λ ′ + µ)∇ div -ρτ 2 ]u + σ α ∇ϕ α -ζ 1 ∇θ -ζ 2 ∇P = 0, -σ 1 div u + A 1α ∆ϕ α -M1α ϕ α + ξ 1 θ + v 1 P = 0, -σ 2 div u + A 2α ∆ϕ α -M2α ϕ α + ξ 2 θ + v 2 P = 0, -σ 3 div u + A 3α ∆ϕ α -M3α ϕ α + ξ 3 θ + v 3 P = 0, τ1 T 0 [ζ 1 div u + ξ α ϕ α ] + [K∆ + τ1 ηT 0 ]θ + τ1 ςT 0 P = 0, τ 1 [ζ 2 div u + v α ϕ α + ςθ] + [D∆ + τ 1 ϖ]P = 0, (52) 
where

Mβα = L βα + ρτ 2 κ β ϕ β δ βα , τ1 = τ (1 -τ τ 0 ), τ 1 = τ (1 -τ τ 0 ).
If we put ρ = 0 i.e. neglecting inertial effect in the equations (51), we obtain the system of equations of quasi-static oscillations as:

[µ∆ + (λ ′ + µ)∇ div]u + σ α ∇ϕ α -ζ 1 ∇θ -ζ 2 ∇P = 0, -σ 1 div u + A 1α ∆ϕ α -L 1α ϕ α + ξ 1 θ + v 1 P = 0, -σ 2 div u + A 2α ∆ϕ α -L 2α ϕ α + ξ 2 θ + v 2 P = 0, -σ 3 div u + A 3α ∆ϕ α -L 3α ϕ α + ξ 3 θ + v 3 P = 0, τ 1 T 0 [ζ 1 div u + ξ α ϕ α ] + [K∆ + τ 1 ηT 0 ]θ + τ 1 ςT 0 P = 0, τ 1 [ζ 2 div u + v α ϕ α + ςθ] + [D∆ + τ 1 ϖ]P = 0, (53) 
If we put ω = 0 in the equations (51), we obtain the system of equations in equilibrium theory of thermoelastic diffusion with triple porosity as:

[µ∆ + (λ ′ + µ)∇ div]u + σ α ∇ϕ α -ζ 1 ∇θ -ζ 2 ∇P = 0, -σ 1 div u + A 1α ∆ϕ α -L 1α ϕ α + ξ 1 θ + v 1 P = 0, -σ 2 div u + A 2α ∆ϕ α -L 2α ϕ α + ξ 2 θ + v 2 P = 0, -σ 3 div u + A 3α ∆ϕ α -L 3α ϕ α + ξ 3 θ + v 3 P = 0, K∆θ = 0, D∆P = 0. ( 54 
)
We introduce the second order matrix differential operators with constant coefficients

F (i) (D x ) = ( F (i) gh (D x ) ) 8×8 ,
where

F (1) αβ (D x ) = [µ∆+ρω 2 ]δ αβ +(λ ′ +µ) ∂ 2 ∂x α ∂x β , F (1) 
α;β+3 (D x ) = -F (1) α+3;β (D x ) = σ α ∂ ∂x β , F (1) α7 (D x ) = -ζ 1 ∂ ∂x α , F (1) α8 (D x ) = -ζ 2 ∂ ∂x α , F (1) β+3;α+3 (D x ) = A βα ∆ -M βα , F (1) α+3;7 (D x ) = ξ α , F (1) α+3;8 (D x ) = v α , F (1) 
7α

(D x ) = τ 1 ζ 1 T 0 ∂ ∂x α , F (1) 7 
;α+3 (D x ) = τ 1 ξ α T 0 , F (1) 
77

(D x ) = K∆ + τ 1 ηT 0 , F (1) 78 (D x ) = τ 1 ςT 0 , F (1) 8α (D x ) = τ 1 ζ 2 ∂ ∂x α , F (1) 8 
;α+3 (D x ) = τ 1 v α , F (1) 
87

(D x ) = τ 1 ς, F (1) 
88 (D x ) = D∆ + τ 1 ϖ α, β = 1, 2, 3. Here i = 1, 2, 3, 4 corresponds to static, pseudo-, quasi-static oscillations and equilibrium theory of thermoelastic diffusion with triple porosity respectively. The matrices F (i) (D x ), i = 2, 3, 4 can be obtained from matrix F (1) , where

Fαβ (D x ) = µ∆δ αβ + (λ ′ + µ) ∂ 2 ∂x α ∂x β , Fβ+3;α+3 (D x ) = A βα ∆, F77 (D x ) = K∆, F88 (D x ) = D∆, Fα;β+3 (D x ) = Fβ+3;α (D x ) = 0 Fkl (D x ) = Flk (D x ) = F78 (D x ) = F87 (D x ) = 0 α, β = 1, 2, 3 l = 1, ..., 6 k = 7, 8
The system of equations ( 51)-( 54) can be represented as

F (i) (D x )U(x) = 0, i = 1, 2, 3, 4
where U = (u, ϕ α , θ, P ) is a eight-component vector function on E 3 . The matrix

F(D x ) is called the principal part of operator F (i) (D x ).
Definition 1: The operator

F (i) (D x ), i = 1, 2, 3, 4 is said to be elliptic if | F(m)| ̸ = 0, where m = (m 1 , m 2 , m 3 ). Since | F(m)| = µ 2 (λ ′ + 2µ)KDϱ|m| 16 , ϱ = |A βα | 3×3 , therefore operator F (i) (D x )
is an elliptic differential operator iff

µ(λ ′ + 2µ)KDϱ ̸ = 0. ( 55 
)
Definition 2: The fundamental solutions of the system of equations ( 51)-( 54)

(fundamental matrices of operators F (i) ) are the matrices

G (i) (x) = ( G (i) gh (x) ) 8×8
satisfying conditions

F (i) (D x )G (i) (x) = δ(x) I(x), i = 1, 2, 3, 4 (56) 
where δ(x) is the Dirac delta, I = (δ gh ) 8×8 is the unit matrix and x ∈ E 3 .

Construction of G (1) (x) in terms of Elementary Functions

Let us consider the system of non-homogeneous equations

µ∆u + [(λ ′ + µ)∇ div + ρω 2 ]u -σ α ∇ϕ α + τ 1 ζ 1 T 0 ∇θ + τ 1 ζ 2 ∇P = H, σ 1 div u + A 1α ∆ϕ α -M 1α ϕ α + τ 1 T 0 ξ 1 θ + τ 1 v 1 P = X 1 , σ 2 div u + A 2α ∆ϕ α -M 2α ϕ α + τ 1 T 0 ξ 2 θ + τ 1 v 2 P = X 2 , σ 3 div u + A 3α ∆ϕ α -M 3α ϕ α + τ 1 T 0 ξ 3 θ + τ 1 v 3 P = X 3 , -ζ 1 div u + ξ α ϕ α + [K∆ + τ 1 ηT 0 ]θ + τ 1 ςP = Y, -ζ 2 div u + v α ϕ α + τ 1 ςT 0 θ + [D∆ + τ 1 ϖ]P = Z, ( 57 
)
where H is a three-component vector function on E 3 ; X α , Y and Z are scalar functions on E 3 .

The system of equations (57) may also be written in the form

F (1) tr (D x )U(x) = Q(x), (58) 
where F (1) tr is the transpose of matrix F (1) , Q = (H, X α , Y, Z) and x ∈ E 3 .

Applying operator div to the equation (57) 1 , we obtain

[(λ ′ + 2µ)∆ + ρω 2 ] div u -σ α ∆ϕ α + τ 1 ζ 1 T 0 ∆θ + τ 1 ζ 2 ∆P = div H, (59) 
The equations (57) 2 -(57) 4 and (59) may be expressed in the form

N (1) (∆)S = Q, ( 60 
)
where S = (div u, ϕ α , θ, P ), Q = (φ 1 , ....., φ 6 ) = (div H, X α , Y, Z) and

N (1) (∆) = ( N (1) gh (∆) ) 6×6
, N

(1)

11 = (λ ′ + 2µ)∆ + ρω 2 , N (1) 
1;α+1 = -σ α ∆,

N (1) 15 = τ 1 ζ 1 T 0 ∆, N (1) 16 = τ 1 ζ 2 ∆, N (1) 
α+1;1 = σ α , N

(1)

β+1;α+1 = A βα ∆ -M βα , N (1) α+1;5 = τ 1 ξ α T 0 , N (1) α+1;6 = τ 1 v α , N (1) 51 = -ζ 1 , N (1) 
5;α+1 = ξ α , N

(1)

55 = K∆ + τ 1 ηT 0 , N (1) 56 = τ 1 ς, N (1) 61 = -ζ 2 , N (1) 6 
;α+1 = v α , N (1) 65 = τ 1 ςT 0 , N (1) 66 = D∆ + τ 1 ϖ α, β = 1, 2, 3 (61) 
The equations (57) 2 -(57) 4 and (59) may also be written as

Γ (1) (∆)S = Ψ, (62) 
where

Ψ = (Ψ 1 , ......, Ψ 6 ), Ψ p = 1 Ã 6 ∑ i=1 Ñ (1) ip φ i , Γ (1) (∆) = 1 Ã |N (1) (∆)|, Ã = (λ ′ + 2µ)KDϱ p = 1, ....., 6 (63) 
and Ñ (1) ip is the cofactor of the element N

(1)

ip of the matrix N (1) .

From equations ( 61) and (63), we see that

Γ (1) (∆) = 6 ∏ i=1 (∆ + λ 2 i )
where λ 2 i , i = 1, ...., 6 are the roots of the equation Γ (1) (-m) = 0(with respect to m).

Applying operator Γ (1) (∆) to the equation (57) 1 and using equation ( 63), we get

Γ (1) (∆)(∆ + λ 2 7 )u = Ψ ′ , λ 2 7 = ρω 2 µ ( 64 
)
where

Ψ ′ = 1 µ [ Γ (1) (∆)H -∇ [ (λ ′ + µ)Ψ 1 -σ α Ψ α+1 + τ 1 ζ 1 T 0 Ψ 5 + τ 1 ζ 2 Ψ 6 ]] . ( 65 
)
From equations ( 62) and (64), we obtain

Θ (1) (∆)U(x) = Ψ(x), ( 66 
)
where Ψ = (Ψ ′ , Ψ 2 , ......, Ψ 6 ) and

Θ (1) (∆) = ( Θ (1)
gh (∆)

) 8×8 , Θ (1) pp (∆) = Γ (1) (∆)(∆ + λ 2 7 ) = 7 ∏ i=1 (∆ + λ 2 i ), Θ (1) 
ll (∆) = Γ (1) (∆) = 6 ∏ i=1 (∆ + λ 2 i ), Θ (1) 
gh (∆) = 0, p = 1, 2, 3 g, h = 1, ....., 8 l = 4, ...., 8 g ̸ = h
The equations ( 63) and ( 65) can be rewritten in the form

Ψ ′ = [ 1 µ Γ (1) (∆)J + w (1) 11 (∆) ∇ div ] H + 6 ∑ i=2 w (1) i1 (∆)∇φ i , Ψ l = w (1) 1l (∆) div H + 6 ∑ i=2 w (1) i2 (∆)φ i , l = 2, ..., 6 (67) 
where J = (δ ij ) 3×3 is the unit matrix. In equation (67), the following notations have been used:

w (1) p1 (∆) = - 1 õ [ (λ ′ + µ) Ñ (1) p1 (∆) -σ α Ñ (1) p;α+1 (∆) + τ 1 ζ 1 T 0 Ñ (1) p5 (∆) + τ 1 ζ 2 Ñ (1) p6 (∆) ] , w (1) pl (∆) = Ñ (1) pl (∆) à p = 1, ...., 6 l = 2, ..., 6
From equations (67), we have

Ψ(x) = R (1) tr (D x )Q(x), (68) 
where R (1) 

(D x ) = ( R (1) gh (D x ) ) 8×8 , R (1) ij (D x ) = 1 µ Γ (1) (∆)δ ij + w (1)
11 (∆)

∂ 2 ∂x i ∂x j , R (1) i;p+2 (D x ) = w (1) 1p (∆) ∂ ∂x i , R (1) 
p+2;i (D x ) = w (1) p1 (∆) ∂ ∂x i , R (1) p+2;l+2 (D x ) = w (1) pl (∆) i, j = 1, 2, 3 p, l = 2, ..., 6 (69) 
From equations ( 58), ( 66) and (68), we obtain

Θ (1) U = R (1) tr F (1) tr U.
The above relation implies R (1) tr F (1) tr = Θ (1) .

Therefore, we obtain

F (1) (D x )R (1) (D x ) = Θ (1) (∆). (70) 
We assume that

λ 2 p ̸ = λ 2 l ̸ = 0 p, l = 1, ....., 7 p ̸ = l, õ ̸ = 0. Let Y (1) (x) = ( Y (1) ij (x) ) 8×8 , Y (1) pp (x) = 7 ∑ g=1 r (1) 1g ς g (x), Y (1) 
ll (x) = 6 ∑ g=1 r (1) 2g ς g (x), Y (1) ij (x) = 0 p = 1, 2, 3 l = 4, ..., 8 i, j = 1, ....., 8 i ̸ = j where ς g (x) = - e ιλg|x| 4π|x| , r (1) 1g 
= 7 ∏ i=1,i̸ =g (λ 2 i -λ 2 g ) -1 , r (1) 2h 
= 6 ∏ i=1,i̸ =h (λ 2 i -λ 2 h ) -1 g = 1, ....., 7 h = 1, ...., 6 (71) 
Lemma 1: The matrix Y (1) defined above is the fundamental matrix of operator Θ (1) (∆), i.e.

Θ (1) (∆)Y (1) 

(x) = δ(x) I(x) (72) 
Proof: To prove the lemma, it is sufficient to prove that

Γ (1) (∆)(∆ + λ 2 7 )Y (1) 11 
(x) = δ(x), Γ (1) (∆)Y (1) 44 (x) = δ(x). ( 73 
) Consider 7 ∑ i=1 r (1) 1i = ∑ 7 j=1 (-1) j+1 z j z 8 ,
where

z 1 = 7 ∏ i=3 (λ 2 2 -λ 2 i ) 7 ∏ j=4 (λ 2 3 -λ 2 j ) 7 ∏ l=5 (λ 2 4 -λ 2 l ) 7 ∏ p=6 (λ 2 5 -λ 2 p )(λ 2 6 -λ 2 7 )
,

z 2 = 7 ∏ i=3 (λ 2 1 -λ 2 i ) 7 ∏ j=4 (λ 2 3 -λ 2 j ) 7 ∏ l=5 (λ 2 4 -λ 2 l ) 7 ∏ p=6 (λ 2 5 -λ 2 p )(λ 2 6 -λ 2 7 ), z 3 = 7 ∏ i=2,i̸ =3 (λ 2 1 -λ 2 i ) 7 ∏ j=4 (λ 2 2 -λ 2 j ) 7 ∏ l=5 (λ 2 4 -λ 2 l ) 7 ∏ p=6 (λ 2 5 -λ 2 p )(λ 2 6 -λ 2 7 ), z 4 = 7 ∏ i=2,i̸ =4 (λ 2 1 -λ 2 i ) 7 ∏ j=3,j̸ =4 (λ 2 2 -λ 2 j ) 7 ∏ l=5 (λ 2 3 -λ 2 l ) 7 ∏ p=6 (λ 2 5 -λ 2 p )(λ 2 6 -λ 2 7 ), z 5 = 7 ∏ i=2,i̸ =5 (λ 2 1 -λ 2 i ) 7 ∏ j=3,j̸ =5 (λ 2 2 -λ 2 j ) 7 ∏ l=4,l̸ =5 (λ 2 3 -λ 2 l ) 7 ∏ p=6 (λ 2 4 -λ 2 p )(λ 2 6 -λ 2 7
),

z 6 = 7 ∏ i=2,i̸ =6 (λ 2 1 -λ 2 i ) 7 ∏ j=3,j̸ =6 (λ 2 2 -λ 2 j ) 7 ∏ l=4,l̸ =6 (λ 2 3 -λ 2 l ) 7 ∏ p=5,p̸ =6 (λ 2 4 -λ 2 p )(λ 2 5 -λ 2 7
),

z 7 = 6 ∏ i=2 (λ 2 1 -λ 2 i ) 6 ∏ j=3 (λ 2 2 -λ 2 j ) 6 ∏ l=4 (λ 2 3 -λ 2 l ) 6 ∏ p=5 (λ 2 4 -λ 2 p )(λ 2 5 -λ 2 6 ), z 8 = 7 ∏ i=2 (λ 2 1 -λ 2 i ) 7 ∏ j=3 (λ 2 2 -λ 2 j ) 7 ∏ l=4 (λ 2 3 -λ 2 l ) 7 ∏ p=5 (λ 2 4 -λ 2 p ) 7 ∏ k=6 (λ 2 5 -λ 2 k )(λ 2 6 -λ 2 7 ).
On simplifying the right hand side of above relation, we obtain

7 ∑ i=1 r (1) 1i = 0. (74) 
Similarly, we find that

7 ∑ i=2 r (1) 1i (λ 2 1 -λ 2 i ) = 0, 7 ∑ i=3 r (1) 1i [ 2 ∏ j=1 (λ 2 j -λ 2 i ) ] = 0, 7 ∑ i=4 r (1) 1i [ 3 ∏ j=1 (λ 2 j -λ 2 i ) ] = 0, 7 ∑ i=5 r (1) 1i [ 4 ∏ j=1 (λ 2 j -λ 2 i ) ] = 0, 7 ∑ i=6 r (1) 1i [ 5 ∏ j=1 (λ 2 j -λ 2 i ) ] = 0, 6 ∏ j=1 r (1) 17 (λ 2 j -λ 2 7 ) = 1. (75) 
Also,

(∆ + λ 2 p )ς g (x) = δ(x) + (λ 2 p -λ 2 g )ς g (x) p, g = 1, ..., 7. (76) 
Now consider

Γ (1) (∆)(∆ + λ 2 7 )Y (1) 11 (x) = 7 ∏ i=1 (∆ + λ 2 i ) 7 ∑ g=1 r (1) 1g ς g (x) = 7 ∏ i=2 (∆ + λ 2 i ) 7 ∑ g=1 r (1) 1g [ δ(x) + (λ 2 1 -λ 2 g )ς g (x) ] = 7 ∏ i=2 (∆ + λ 2 i ) [ δ(x) 7 ∑ g=1 r (1) 1g + 7 ∑ g=2 r (1) 1g (λ 2 1 -λ 2 g )ς g (x)
]

Using equations ( 74) and (75) in the above relation, we obtain

Γ (1) (∆)(∆ + λ 2 7 )Y (1) 11 (x) = 7 ∏ i=2 (∆ + λ 2 i ) [ 7 ∑ g=2 r (1) 1g (λ 2 1 -λ 2 g )ς g (x) ] = 7 ∏ i=3 (∆ + λ 2 i ) [ 7 ∑ g=2 r (1) 1g (λ 2 1 -λ 2 g ) [ δ(x) + (λ 2 2 -λ 2 g )ς g (x) ]] = 7 ∏ i=3 (∆ + λ 2 i ) [ 7 ∑ g=3 r (1) 1g [ 2 ∏ j=1 (λ 2 j -λ 2 g ) ] ς g (x) ] = 7 ∏ i=4 (∆ + λ 2 i ) [ 7 ∑ g=3 r (1) 1g [ 2 ∏ j=1 (λ 2 j -λ 2 g ) ][ δ(x) + (λ 2 3 -λ 2 g )ς g (x)
]]

= 7 ∏ i=4 (∆ + λ 2 i ) [ 7 ∑ g=4 r (1) 1g [ 3 ∏ j=1 (λ 2 j -λ 2 g ) ] ς g (x) ] = 7 ∏ i=5 (∆ + λ 2 i ) [ 7 ∑ g=4 r (1) 1g [ 3 ∏ j=1 (λ 2 j -λ 2 g ) ][ δ(x) + (λ 2 4 -λ 2 g )ς g (x)
]]

= 7 ∏ i=5 (∆ + λ 2 i ) [ 7 ∑ g=5 r (1) 1g [ 4 ∏ j=1 (λ 2 j -λ 2 g ) ] ς g (x) ] = 7 ∏ i=6 (∆ + λ 2 i ) [ 7 ∑ g=5 r (1) 1g [ 4 ∏ j=1 (λ 2 j -λ 2 g ) ][ δ(x) + (λ 2 5 -λ 2 g )ς g (x)
]]

= 7 ∏ i=6 (∆ + λ 2 i ) [ 7 ∑ g=6 r (1) 1g [ 5 ∏ j=1 (λ 2 j -λ 2 g ) ] ς g (x) ] = (∆ + λ 2 7 ) [ 7 ∑ g=6 r (1) 1g [ 5 ∏ j=1 (λ 2 j -λ 2 g ) ][ δ(x) + (λ 2 6 -λ 2 g )ς g (x)
]]

= (∆ + λ 2 7 )ς 7 (x) = δ(x).
The equation (73) 2 can be proved in the similar way.

We introduce the matrix G (1) (x) = R (1) 

(D x )Y (1) (x). ( 77 
)
From equations (70), ( 72) and (77), we obtain

F (1) (D x )G (1) (x) = F (1) (D x )R (1) (D x )Y (1) (x) = Θ (1) (∆)Y (1) (x) = δ(x) I(x)
Hence, G (1) (x) is a solution to equation (56) 1 .

Theorem 1: If the condition (55) is satisfied, then the matrix G (1) (x) defined by the equation ( 77) is the fundamental solution of the system of equations ( 51) and the matrix G (1) (x) is represented in the following form:

G (1) (x) = ( G (1) pk (x) ) 8×8 , G (1) 
gh (x) = R (1) gh (D x )Y (1) 11 (x), G (1) 
gl (x) = R (1) gl (D x )Y (1) 44 (x), Θ (4) pp (∆) = Γ (4) (∆)∆ = ∆ 4 3 ∏ i=1 (∆ + ω 2 i ), Θ (4) 
ll (∆) = Γ (4) (∆) = ∆ 3 3 ∏ i=1 (∆ + ω 2 i ), Θ (4) 
gh (∆) = 0,

p = 1, 2, 3 g, h = 1, ....., 8 l = 4, ..., 8 g ̸ = h (iv) w (4) p1 (∆) = - 1 õ [ (λ ′ + µ) Ñ (4) p1 (∆) -σ α Ñ (4) p;α+1 (∆) ] , w (4) pl (∆) = Ñ (4) pl (∆) à , w (4) p6 (∆) = Ñ (4) p6 (∆) à , w (4) 55 (∆) = Ñ (4) 55 (∆) à , w (4) 66 (∆) = Ñ (4) 66 (∆) à p = 1, 2, 3, 4 l = 2, 3, 4, 5
where Ñ (4) ij is the cofactor of the element N (4) ij of the matrix N (4) .

(v) R (4) 

(D x ) = ( R (4) gh (D x ) ) 8×8 , R (4) ij (D x ) = 1 µ Γ (4) (∆)δ ij + w (4) 11 (∆) ∂ 2 ∂x i ∂x j , R (4) 
i;p+2 (D x ) = w (4) 1p (∆) ∂ ∂x i , R (4) l+2;i (D x ) = w (4) l1 (∆) ∂ ∂x i , R (4) l+2;p+2 (D x ) = w (4) lp (∆), R (4) ki (D x ) = R (4) k;i+3 (D x ) = 0, R (4) 77 (D x ) = w (4) 55 (∆), R (4) 78 (D x ) = R (4) 87 (D x ) = 0, R (4) 88 (D x ) = w (4) 66 (∆) i, j = 1, 2, 3 p = 2, ..., 6 k = 7, 8 l = 2, 3, 4 (vi) Y (4) (x) = ( Y (4) ij (x) ) 8×8 , Y (4) pp (x) = r (4) 11 ς * 1 (x)+r (4) 12 ς * 2 (x)+ 3 ∑ g=1 r (4) 1;g+2 ςg (x), Y (4) kk (x) = r (4) 21 ς * 1 (x) + r (4) 22 ς * 2 (x) + 3 ∑ g=1 r (4) 2;g+2 ςg (x), Y (4) ij (x) = 0 p = 1, 2, 3 k = 4, ..., 8 i, j = 1, ....., 8 i ̸ = j G (1) g;l+2 (x) = ∂ ∂x g 6 ∑ j=1 x 1lj ς j (x), G (1) l+2;g (x) = ∂ ∂x g 6 ∑ j=1 x l1j ς j (x), G (1) l+2;k+2 (x) = 6 ∑ j=1 x lkj ς j (x) g, h = 1, 2, 3 l, k = 2, ...., 6
where

x l1j = - r (1) 2j Ãλ 2 j Ñ (1) l1 (-λ 2 j ), x lpj = r (1) 2j Ã Ñ (1) lp (-λ 2 j ), x 117 = 1 ρω 2 = 1 µλ 2 7 j, l = 1, .., 6 p = 2, ...., 6 (83) 
Proof: From equation (76),

∆ς j (x) = -λ 2 j ς j (x) j = 1, ...., 7 (84) 
Thus, we have

- 1 λ 2 j ( ∂ 2 ∂x g ∂x h -Rgh ) ς j (x) = δ gh ς j (x), x ̸ = 0 (85) Consider G (1) gh (x) = R (1) gh (D x )Y (1) 11 (x) = [ 1 µ Γ (1) (∆)δ gh + w (1) 11 (∆) ∂ 2 ∂x g ∂x h ] 7 ∑ j=1 r (1) 1j ς j (x) = 7 ∑ j=1 r (1) 1j {[ - 1 µλ 2 j Γ (1) (-λ 2 j ) + w (1) 11 (-λ 2 j ) ] ∂ 2 ∂x g ∂x h + 1 µλ 2 j Γ (1) (-λ 2 j ) Rgh } ς j (x) (86) From equation (82), we have w (1) 11 (-λ 2 j ) = - 1 Ãλ 2 j (-λ 2 j + λ 2 7 ) Ñ (1) 11 (-λ 2 j ) + 1 µλ 2 j Γ (1) (-λ 2 j ). ( 87 
)
Using equation (87) in equation ( 86), we get

G (1) gh (x) = 7 ∑ j=1 r (1) 1j {[ - 1 Ãλ 2 j (-λ 2 j +λ 2 7 ) Ñ (1) 11 (-λ 2 j ) ] ∂ 2 ∂x g ∂x h + 1 µλ 2 j Γ (1) (-λ 2 j ) Rgh } ς j (x) (88) Now, 
Γ (1) (-λ 2 j )r

(1)

1j = 0 j = 1, ..., 6 Γ (1) (-λ 2 j )r (1) 
1j = 1 j = 7 and

(-λ 2 j + λ 2 7 )r (1) 1j = r (1) 2j j = 1, ..., 6 (-λ 2 j + λ 2 7 )r (1) 
1j = 0 j = 7 (89) 
By virtue of equation ( 89), equation (88) becomes

G (1) gh (x) = ∂ 2 ∂x g ∂x h 6 ∑ j=1 [ - 1 Ãλ 2 j r (1) 2j Ñ (1) 11 (-λ 2 j ) ] ς j (x) + Rgh 1 µλ 2 7 ς 7 (x) = ∂ 2 ∂x g ∂x h 6 ∑ j=1 x 11j ς j (x) + Rgh x 117 ς 7 (x)
The remaining formulae of above theorem can be proved in the similar way. 

where A p , p = 1, ..., 4 are coefficients, independent of λ j and skipped due to lengthy calculations.

It is easier to prove the relations (90) using equation (71).

From equations (90) and ( 92), we get 

Consider

∂ ∂x i ( 1 |x| ) = - x i |x| 3 , ∂ 2 ∂x 2 i ( 1 |x| ) = [ 3x 2 i |x| 5 - 1 |x| 3 ] Hence, ∆ 1 |x| = 3 ∑ i=1 ∂ 2 ∂x 2 i ( 1 |x| 
) = 0.
Therefore,

( ∂ 2 ∂x p ∂x l -Rpl ) 1 |x| = δ pl ∆ 1 |x| = 0. (100) 

  β are the components of equilibrated stress vectors corresponding to ν α measured per unit area of surface B respectively, ϖ β are the components of outward unit normal vector ϖ to the surface B.

F

  (D x ) by taking ω = -ιτ, ρ = 0 and ω = 0 respectively. and
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1 )

 1 j +A 1 λ 8 j +A 2 λ 6 j +A 3 λ 4 j +A 4 λ 2 j pl (x) -W pl (x) = constant + O(|x|) p, l = 1, ...., 8(93)hold in the neighborhood of the origin.Proof: For p, l = 1, 2, 3, considerG (pl (x) -W pl (x) = ∂ 2 ∂x p ∂x l Ȳ11 (x) + Rpl Ȳ22 (x), ) = O(|x| 2 ), ∂ ∂x k Ȳhh (x) = O(|x|), ∂ 2 ∂x k ∂x i Ȳhh (x) = constant + O(|x|) k, i = 1, 2, 3 h = 3, 4

g = 1, ...., 8 h = 1, 2, 3 l = 4, ..., 8 5. Construction of Matrices G (i) (x) i = 2, 3, 4

Pseudo-Oscillations

We introduce the matrix G (2) (x) = R (2) 

where, the matrices R (2) (D x ) and Y (2) (x) can be obtained from matrices R (1) 

and Y (1) (x) respectively by taking ω = -ιτ and repeating the above procedure after equation (56).

Theorem 2: If the condition (55) is satisfied, then the matrix G (2) (x) defined by the equation ( 78) is the fundamental solution of the system of equations (52).

Quasi-Static Oscillations

In this case, the matrix N (3) (∆), operator Γ (3) (∆) and matrix operators Θ (3) (∆), R (3) (D x ), Y (3) (x) and G (3) (x) are obtained as

α+1;1 (∆),

where (iii)

where Ñ (3) ij is the cofactor of the element N

(3) ij of the matrix N (3) .

(v) R (3) 

On introducing the matrix

we obtain

Hence, G (3) (x) is a fundamental solution to equation (56) 3 .

Theorem 3: If the condition (55) is satisfied, then the matrix G (3) (x) defined by the equation ( 79) is the fundamental solution of the system of equations (53).

Equilibrium Theory

In this case, the matrix N (4) (∆), operator Γ (4) (∆) and matrix operators Θ (4) (∆), R (4) (D x ), Y (4) (x) and G (4) (x) are obtained as

where 

If we introduce the matrix

then, we obtain

Hence, G (4) (x) is a solution to equation (56) 4 .

Theorem 4: If the condition (55) is satisfied, then the matrix G (4) (x) defined by the equation ( 80) is the fundamental solution of the system of equations (54).

Basic Properties of G (1) (x)

Theorem 5: Each column of the matrix G (1) (x) is a solution of the system of equations (51) at every point x ∈ E 3 except the origin.

Theorem 6: If the condition (55) is satisfied, then the fundamental solution of the system F(D x )U(x) = 0 is the matrix

where Ãβα is the cofactor of the element A βα of the symmetric matrix A = (A βα ) 3×3 .

Lemma 2: If condition (55) is satisfied, then ∆w

Proof: Consider

Therefore, ∆w

Equation (94) with the aid of equations ( 91),( 96)-(100) becomes

Similarly other formulae of equation ( 93) can be proved.

Therefore, matrix W(x) is the singular part of the fundamental matrix G (1) (x) in the neighborhood of the origin.

Conclusions:

The linear theory of thermoelastic diffusion with triple porosity is derived without utilizing Darcy's law in the current paper. After reducing the governing equations in isotropic medium, the fundamental solution G (1) (x) of system of equations (51) in case of steady oscillations is obtained. Additionally, the fundamental solutions G (i) (x), i = 2, 3, 4 of system of equations ( 52)-(54) in the cases of pseudo-, quasi-static oscillations and equilibrium are also obtained. The fundamental solution G (1) (x) of system of equations (51) makes it possible to investigate three-dimensional boundary value problems of the theory of triple porosity thermoelastic diffusion elastic solids with potential method. Also by this method, it is possible to construct the fundamental solutions of the system of equations in the linear theory of isotropic thermoelastic materials with triple porosity.