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Abstract. Transformer models have been showing ground-breaking re-
sults in the domain of natural language processing. More recently, they
started to gain interest in many others fields as in computer vision. Tra-
ditional Transformer models typically require a significant amount of
training data to achieve satisfactory results. However, in the domain of
handwritten text recognition, annotated data acquisition remains costly
resulting in small datasets compared to those commonly used to train
a Transformer-based model. Hence, training Transformer models able to
transcribe handwritten text from images remains challenging. We pro-
pose a light encoder-decoder Transformer-based architecture for hand-
writing text recognition, containing a small number of parameters com-
pared to traditional Transformer architectures. We trained our architec-
ture using a hybrid loss, combining the well-known connectionist tem-
poral classification with the cross-entropy. Experiments are conducted
on the well-known IAM dataset with and without the use of additional
synthetic data. We show that our network reaches state-of-the-art results
in both cases, compared with other larger Transformer-based models.

Keywords: Light Network · Hybrid Loss · Transformer · Handwritten
Text Recognition · Neural Networks

1 Introduction

Handwritten Text Recognition (HTR) refers to the process of automatically
recognizing the text written inside an image of a text-line, a paragraph or even
whole pages, after a first step of document layout analysis. This task is valuable
nowadays for a growing number of people as it enables the text to be available
in a digitized format and resist in time. There is still a tremendous amount
of document collections waiting to be processed, and HTR models have shown
acceptable error rates on specific documents [16]. This is mostly thanks to the
recent advances and growing interest in deep learning approaches. However, HTR
remains challenging for a variety of reasons. The variability of writing styles,
degraded documents, the need for data matching documents and the lack of
annotated records limit the abilities of current deep learning approaches.

https://doi.org/10.1007/978-3-031-06555-2_19
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Popular network architectures are based on both convolutional layers and
long short-term memory layers, trained using the Connectionist Temporal Clas-
sification (CTC) loss function [8]. These layers result in an optical model, typ-
ically followed by a language model which aims to correct recognition errors.
Fully Convolutional Networks have been investigated recently with the goal to
significantly reduce training time by removing recurrent layers. Lately, few works
based on Transformers [17] have been proposed for HTR [10,14,18]. Based on
multi-head attention layers, a Transformer network proves to be an efficient al-
ternative to recurrent layers. It enables a sequential analysis of the sequence
thanks to positional encoding and efficient parallelism. Transformer-based mod-
els offer a great potential, but those architectures generally require a tremendous
amount of annotated training data to be robust. This limits the efficiency of such
networks in HTR tasks where annotated data are expensive.

In this paper, we propose a light encoder-decoder Transformer-based archi-
tecture for handwriting recognition. The network presented in this work is signif-
icantly smaller than traditional Transformer networks, which makes it lighter in
the number of weights and easier to train on small datasets. Our architecture is
trained using a hybrid loss combining both the CTC loss and the Cross-Entropy
(CE) loss, which seems crucial.

The article is organized as follows. After reviewing related works in Section 2,
our network architecture is presented with details in Section 3. Afterward, we
present results obtained on the popular IAM dataset. As opposed to traditional
Transformer approaches, we show that our approach reaches state-of-art results
without any additional data nor transfer learning. Nevertheless, it is capable to
outperform the other types of network architectures by using synthetic data.

2 Related Works

2.1 Standard approaches for HTR

Popular network architectures used for Handwriting Text Recognition combine
both convolutional layers and recurrent layers. A number of convolutional layers
are stacked at the beginning of the network to extract local features from text-
line images. Then, recurrent layers, and more specifically Bi-directional Long
Short-Term Memory (BLSTM) layers are stacked to process the features sequen-
tially and output character probabilities based on contextual dependencies. Such
an architecture is frequently called a Convolutional Recurrent Neural Networks
(CRNN) [3,13,15,16]. Models are generally trained using the well-known Con-
nectionist Temporal Classification (CTC) loss [7]. It enables to deal with label
sequences of shortest length than predicted sequences, without any knowledge
about character segmentation.

Encoder-decoder based architectures have also been investigated for HTR.
They typically rely on an attention mechanism and a decoder based on LSTM to
sequentially predict the characters [2,6,12]. Michael et al. [12] propose to use a
hybrid loss combining both a CTC loss applied to the encoder and a cross-entropy
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loss for the decoder. Such models can obtain low error rates on common datasets.
However, they suffer from the lack of computation parallelization inherently due
to recurrent layers, which impacts both training and inference time.

Recently, Fully Convolutional Networks (FCN) have been proposed for HTR.
They refer to deep architectures composed of many convolutional layers and no
recurrent layer. They often include the most recent innovations in deep learning,
like gating mechanism or residual connections to obtain state of the art re-
sults [5,4,9,19]. These architectures benefit from the computational parallelism
offered by convolutional layers, and hence can be trained faster than traditional
architectures based on recurrent layers. However, they may require tremendous
work to be optimized well and require data augmentation to attain state-of-the-
art results. By removing recurrent layers, Fully Convolutional Networks might
struggle to learn long-range contextual dependencies, which can be useful in
HTR.

CRNN architectures dominate in the field of HTR, thanks to their ability
to learn local and long-range features. However, they highly suffer from the
notable training time of recurrent layers. The last few years, Fully Convolutional
Networks obtained state-of-the-art results but they might experience difficulties
related to long-range contextual dependencies.

2.2 Transformer-Based Architectures

In natural language processing, multi-head attention have been proposed by
Vaswani et al. [17] inside the so-called Transformer model. They propose an
effective alternative to recurrent layers, capable of handling broad context in a
constant amount of operation while enabling efficient parallelism. Transformer
models also started to gain interest in the field of HTR. Kang et al. [10] propose
an end-to-end Transformer that aims for both recognizing handwritten text and
modeling the language. They obtain very low error rates by implementing a big
network architecture that requires synthetic data to be trained efficiently. Singh
et al. [14] propose a Transformer-based architecture to address the problem of
full-page handwriting recognition. They obtain promising results on full-page
recognition thanks to the use of synthetic data again. Wick et al. [18] use a bi-
directional Transformer architecture coupled with a voting mechanism and show
that their architecture outperforms a standard Transformer-based architecture.

Transformer-based layers propose an efficient trade-off between CRNN and
Fully Convolutional Networks. Multi-head attention layers offer indeed both par-
allelism and the ability to learn long-range contextual dependencies. However,
to perform well, a Transformer-based architecture, methods from the state of
the art rely on synthetic data. Such additional data require to be designed as a
complement to the training data which might remain a challenging task.

3 Our Light Encoder-Decoder Transformer-Based Model

Most Transformer-based architectures are based on large and deep models using
many parameters and requiring a large amount of training data to perform well.
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Fig. 1. Our encoder-decoder Transformer-based architecture. Our architecture is com-
posed of an encoder combining convolutional layers and Transformer layers (Sec-
tion 3.2), and of a Transformer-based decoder (Section 3.3).

Handwritten datasets typically contains too few examples for a Transformer-
based model to perform well [10]. Synthetic data seem to be an efficient solution
but designing valuable synthetic data might prove to be a complex task. While
it takes efforts to design synthetic data, they may result in deteriorated perfor-
mance, especially for difficult datasets like historical documents.

In this work, by contrast, we aim for a Transformer-based architecture capa-
ble of obtaining state-of-the-art results without the need of additional data,
while still benefiting from the usage of synthetic data. We propose a light
encoder-decoder Transformer-based architecture that can be trained efficiently
on datasets of limited size, without the need for additional data1. This section
provides details about our network architecture.

3.1 Summary of the architecture

We propose an end-to-end trainable Transformer-based architecture for HTR.
Our network architecture is illustrated in Fig. 1. Our Transformer-based ar-
chitecture remains low in the number of parameters, with 6.9M parameters,
compared with traditional Transformer networks that might use up to 100M
parameters. The architecture follows the principle of encoder-decoder models as
it is composed of two key parts: an encoder and a decoder.

The encoder takes as input text-line images and aims to extract and process
visual features. Our encoder is principally based on convolutional layers and
Transformer encoder layers (Fig. 2). More details about the encoder are disclosed
in Section 3.2.

The decoder subsequently uses the output of the encoder to sequentially
predict the character sequence written inside the image (character by character).

1 By additional data, we mean data from another dataset than the one which is studied
and synthetic data. We nevertheless use data augmentation techniques to improve
our models.
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In addition, it also has access to the sequence of previously predicted characters.
Thus the decoder might act as a language model at character level together
with optical features from the input image. Section 3.3 provides more specific
explanations about the decoder.

We train our models with a hybrid loss combining both the Connectionist
Temporal Classification (CTC) loss [7] and the Cross-Entropy (CE) loss. This is
discussed further in Section 3.4.

3.2 Network Encoder

The encoder is inspired by traditional CRNN and by Transformer layers [17]. We
propose replacing the recurrent layers from the CRNN architecture by Trans-
former encoder layers. These layers refer to the encoder block of the Transformer
architecture [17]. They are based on multi-head attention followed by a position-
wise feed forward layer. Transformer encoder layers have the advantage of being
more parallelizable than recurrent layers on GPU while being able to handle
long-range contextual dependencies in a constant number of operations. Our
convolutional Transformer encoder is illustrated in Fig. 2.

The first part of the encoder is composed of 5 convolutional blocks used to
extract visual features from the image. Except the last one, each convolutional
block is composed of a 2D convolutional layer with a kernel of size 3×3, a stride of
1 and no padding. The last convolutional block uses a kernel size of 4×2 to better
match the shape of a character [3,13]. The number of filters in the convolutional
layers are respectively equal to 8, 16, 32, 64 and 128. Each convolution layer
is then followed by a LeakyReLU activation function. Following the activation
function, we apply a layer normalization to ease the network training capabilities
and increase the regularization capacities of the network. A 2×2 max pooling is
used inside the first three convolutional blocks to decrease the size of intermediate
feature maps. It also focuses the training process on the most impacting features
and reduces the number of network parameters. Lastly, a dropout is applied with
a probability of 0.2 at the end of each block.

Following the last convolutional block, a collapse layer is used to flatten
the vertical dimension of the feature maps, therefore enabling us to easily work
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Fig. 2. Our Convolutional Transformer Encoder. This encoder is composed of a first
stack of convolutional layers followed by Transformer Encoder layers.
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with Transformer layers. It is composed of a convolution layer with a kernel
size of width 1 and height similar to the height of the input feature maps.
We subsequently apply a LeakyReLU activation function followed by a layer
normalization.

Following that layer, we use a dense layer to increase the hidden size from 128
to 256. Before the Transformer encoder layers, sinusoidal positional encoding [17]
is added to the output of the dense layer. We then use 4 stacked Transformer
encoder layers. Each Transformer layer uses a hidden dimension of 256 and is
composed of self-attention layers based on multi-head attention with 4 heads.
They are then followed by a position-wise feed-forward layer with an intermediate
feature size of 1024. Residual connections are used between each sub-layer. A
dropout with a probability of 0.2 is applied to each sub-layer output.

The encoder of our architecture remains light in its number thanks to a small
convolutional backbone, while additionally using a few numbers of parameters
inside of Transformer layers. Compared to other Transformer-based architectures
that use heavier convolutional neural networks like ResNets [10,14], our architec-
ture only uses 5 convolutional layers. It results in a total of only 237k parameters
for the convolutional backbone, which is lower than most of the convolutional
backbone used in other Transformer-based architectures [10,14]. In addition, we
maintain the number of intermediate neurons small inside Transformer layers,
with a hidden size of 256. Heavier Transformer-based architectures might use up
to 1,024 neurons inside Transformer layers.

3.3 Transformer Decoder

Our encoder-decoder Transformer-based model then processes the output from
the encoder along with the sequence of previously predicted characters (or the
target sequence shifted right when training with teacher forcing). An illustration
of the decoder is shown in Fig. 1.

Our Transformer-based decoder uses both the output from the encoder part
for mutual (or encoder-decoder) attention and the sequence of predicted charac-
ters. Sinusoidal positional encoding [17] is added to the output of the encoder.
Despite the fact that our encoder already includes a positional encoding inside,
we nevertheless find it beneficial to add a second positional encoding to the out-
put of the encoder. Similarly to including an additional loss in the middle of a
dense network, we believe that re-adding the information of the position in the
middle of the architecture might help our architecture to converge. In a similar
way, we apply positional encoding to the sequence of predicted characters, after
applying a character-level embedding and before feeding it to the decoder part.

The Decoder is composed of a stack of 4 Transformer decoder layers [17].
Each layer takes as input the output from the previous layer or the embedded
character sequence for the first layer. It is composed of a self-attention layer,
using multi-head attention. Following the first sub-layer, a multi-headed encoder-
decoder attention is applied. It uses the sequence coming from the encoder and
apply weighted attention based on the encoder output and the output from the
previous decoder sub-layer. Each attention sub-layer uses a hidden size of 256
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and 4 heads. Lastly, we apply a position-wise feed forward layer composed of two
dense layers with an intermediate feature size of 1,024. As used in the encoder,
a residual connection is applied to each sub-layer and dropout of probability 0.2
is used.

3.4 Hybrid Loss

To train the entire model, we use a hybrid loss combining both the Connectionist
Temporal Classification (CTC) loss function [7] and a Cross-Entropy (CE) loss
function. Such a hybrid loss has been introduced fist in the domain of HTR by
Michael et al. [12] to train an encoder-decoder model. In this work, both losses
are linearly combined as follow:

L = λ · LCTC + (1− λ) · LCE (1)

where λ balances between the CTC loss and CE loss. For a given input obser-
vation x = (x1, ..., xT ) of length T with label y = (y1, ..., yL) of length L, we
have:

LCTC = −ln
( ∑
π∈B−1(y)

p(π|x)
)

and LCE = −
L∑
i=1

yi · log(ŷdeci ) (2)

with ŷdeci the probability to predict yi in output of the decoder and π ∈ B−1(y)
a path from the encoder output that produces the label sequence y by applying
the function B that maps the output sequence2 of length T ′ to a sequence of
length L with T ′ > L. Note that the CTC loss requires the probability of each
character per frame in input with an additional blank label that refers to predict
no character. The function B removes all repeated labels in the path and then
removes blank labels (see [7] for more details).

Thus, the CE loss is applied using the output from the decoder, whereas the
CTC is used with the output of the encoder. The decoder is therefore only trained
using gradients coming from the CE loss, while the network encoder is trained
using gradients coming from both the CTC and CE losses after backpropagation
through the decoder.

Both losses require the probabilities for each class which are the characters
and the CTC Blank label for the CTC loss and the characters and an end-
of-sequence token for CE loss. Therefore, we apply a dense layer followed by
a softmax at the end of the encoder and the decoder. Unlike the architecture
proposed by Michael et al. [12], the character probabilities in output of the
encoder are unused in input of the decoder. As illustrated in Fig. 1, the character
probabilities are only used for the CTC loss and the output of the last hidden
layer of the encoder is given in input of the decoder.

2 Note that T ′ is equal to T if no reduction of the input sequence length is applied
inside the network.
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4 Experiments and results

Handwritten datasets are generally too small to get traditional Transformer-
based architectures that perform well. As stated before, additional data are
generally used to improve the performance of such architectures. By contrast,
we aimed for a relatively light Transformer-based architecture to perform well
both with and without additional data.

In this section, we demonstrate that, compared to other Transformer-based
architectures, our light Transformer architecture reaches state-of-the-art results
without requiring any additional data. To prove the efficiency of our network,
we conduct experiments on the well-known IAM dataset (1) without using ad-
ditional data; (2) using synthetic data as often done in other works.

We start by introducing experimental settings as well as the process used
to generate synthetic data. We investigate the impact on performance of the
main components from our network. Later, we compare the results obtained
with a larger version of our light architecture and show that a big architecture
is unrequired for a task of HTR. We then show the interest of using a hybrid
loss that include a CTC loss at the end of the encoder part. We conclude the
section by comparing the performance of our architecture with the ones of other
methods from state of the art.

4.1 Handwritten Text-line Data

IAM The IAM offline handwriting database [11] is probably the most popular
dataset in the domain. It is composed of text-line images of modern English
handwriting, produced by several writers that have been asked to write a specific
text. It has been extensively used in the literature.

To conduct our ablation study and compare our network with state of the art
methods, we use the aachen split. While this is not the original split, the aachen
split, is commonly used in the field to compare results. This split provides 6,482
text-line images in training, 976 for validation and 2,915 images to evaluate the
performance of the model.

Synthetic Data To further investigate our model, we use generated synthetic
data in addition to the training dataset. Recent Transformer architectures in the
fielduse synthetic data, and report significant gains by using such data [10,14].

We use textual data extracted from a collection of English Wikipedia articles.
We then generate text-line images by using handwritten fonts3. Generated text-
line images could be more realistic thanks to the recent advances on generative
models [1]. However, this approach would also require training data, while we
aim at performing well with limited amount of real training data. We generate
various handwritings by setting different stroke widths and slant angles. Lastly,
to simulate real handwritten variations, we apply some image transformations
close to a usual data augmentation pipeline. We apply elastic distortions, vary

3 The fonts are available on https://fonts.google.com and https://www.dafont.com.

https://fonts.google.com
https://www.dafont.com
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Fig. 3. Examples of generated English synthetic data, trying to match the IAM dataset.

the perspective of the image and add some noise to the generated image. Some
examples of generated synthetic data are displayed in Fig. 3.

Synthetic text-line images are generated on the fly and are combined with the
training dataset. In our experiments using synthetic data, we use 10,000 synthetic
text-line images for each training epoch in addition to every real example from
the IAM training dataset.

4.2 Experimental Settings

In this section, we describe the experimental settings we use for each of the
proposed experiments, unless specified otherwise.

We train our model using teacher forcing with a probability of 1 by feeding
the target sequence shifted right to the decoder. We employ masking inside the
layers of self-attention in the decoder, therefore ensuring that each prediction
of a character only depends on the sequence of characters before it. It follows
the identical principle used by Vaswani et al. [17]. In addition to the usual gain
in convergence speed, teacher forcing also allows our model to be trained in
a parallel fashion, using a single decoder pass. Hence, teacher forcing helps in
reducing training times. At test time, characters are predicted step by step,
by applying one decoder pass for each character to be produced. The sequence
of characters that have been previously predicted is provided in input of the
decoder to predict the following character. We decode until an end-of-sequence
token is predicted or up to 128 characters. Meanwhile, at training time, we use
the length of the target sequence to reduce training times.

We use a custom learning rate policy as proposed by Vaswani et al. [17] with a
first linear ramp for a warm-up phase of 4,000 steps. We then decay the learning
rate following an invert square root function. When training with a hybrid loss,
we use a value of λ = 0.5 to train our models as the two losses are of equivalent
orders of magnitude.

Input images are resized to a fixed height of 128 pixels while keeping the
aspect ratio. Following that, we apply data augmentation as usually done in the
field to virtually increase the number of training examples. We then randomly
apply elastic transform, random erosion or dilatation, random perspective and
random padding both on the left and right size of the image. Images are then
standardized and we add a gaussian noise. Each transformation is applied with
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a probability of 0.2. Images are then padded according to the largest image in
each batch, and a similar process is applied to the target sequence.

To compare results with others, we measure our models performance with
both Character Error Rate (CER) and Word Error Rate (WER). It is computed
using the Levenshtein distance (also called edit distance), by measuring the
number of inserted, replaced and deleted characters (respectively words) between
the predicted text and the ground-truth. That distance is then normalized by
the length of the ground-truth.

4.3 Ablation Study of the Main Components of our Network

In this section, we investigate the impact on error rates of the main components
of our architecture (the impact of the hybrid loss will be discussed later). We
compare the following networks; each trained and evaluated on the IAM dataset
with and without synthetic data:

– Light Transformer corresponds to our proposed architecture as detailed
in Section 3.

– CTNN is our network encoder, trained and performing as a standalone. It
is trained with CTC loss.

– CRNN is a common and popular network (it refers to a baseline archi-
tecture) composed of convolutional and recurrent layers. It uses the same
convolutional layers than our Light Transformer (presented in Section 3.2)
followed by a stack of four BLSTMs layers with a hidden size of 256. It is
similar to CTNN, but uses recurrent layers instead of Transformer layers
and is also trained using CTC loss.

– CRNN + Decoder combines both the CRNN and our network decoder.
Compared to Light Transformer, we replaced transformer layers in the en-
coder by recurrent layers.

Results are available in Table 1. First, we discuss results without synthetic
data. Our Light Transformer architecture is able to obtain better results than
a baseline CRNN architecture on the IAM dataset. Compared to this baseline,
our architecture is able to obtain a CER 22% better relatively without using
any additional data, but with more parameters. When we remove the decoder

Table 1. Comparison between the results obtained by our Transformer-based archi-
tecture and a CRNN architecture on the test set of the IAM dataset (aachen split),
with and without synthetic data added.

Architecture # params.
IAM IAM + Synth. Data

CER (%) WER (%) CER (%) WER (%)

CRNN (Baseline) 1.7M 6.14 23.26 5.66 21.62
CRNN + Decoder 5.5M 6.92 21.16 5.36 18.01
CTNN (Encoder) 3.2M 5.93 22.82 6.15 24.02
Light Transformer 6.9M 5.70 18.86 4.76 16.31
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from our Light Transformer, we observe that the resulting architecture (CTNN)
performs worse. However, it is nevertheless able to obtain a better CER and
WER than the baseline architecture. Besides, using a decoder in addition to a
CRNN architecture seems to bring worse CER, even if the WER is improved.
We believe that when using a Transformer-based decoder, the context from an
architecture based on recurrent layers might not be good enough. Lastly, when
we compare recurrent layers and Transformer layers in the encoder (CRNN +
Decoder versus Light Transformer and CRNN versus CTNN), we observe a gain
in the network performance.

Using synthetic data with our Light Transformer architecture, we observe
a major improvement of the CER and WER. This gain seems to be far more
beneficial for the decoder part, while it might even be unbeneficial for the encoder
part performing as a standalone. On the one hand, synthetic data may not fit the
real data well and this may affect more specifically the encoder part for which
the images are given in input. On the other hand, the decoder trained to predict
one character at a time might be able to act as a language model, benefiting
from the amount of synthetic training data to learn the language. In addition,
we also observe that the WER highly benefits from the usage of a decoder with,
and without synthetic data.

As expected regarding a Transformer architecture, synthetic data bring a
major improvement for our proposed architecture. Nevertheless, our architec-
ture is able to perform well without any additional data, and we highlight the
relevance of the different parts of our network.

4.4 Benefits of Using a Light Architecture

Traditional Transformer-based architecture are relatively heavier (up to 100M
parameters) than our network (6,9M of parameters) and they generally perform
poorly without additional data. To highlight the advantages of our light archi-
tecture, we propose a variant of it, resulting in a similar architecture with more
parameters. Our scaled variant of the light architecture is mostly based on the
same parameters described in Section 3. We use twice as many neurons inside
Transformer layers for both the encoder and the decoder. While our light archi-
tecture uses a hidden size of 256, our scaled version uses 512 neurons instead.
We also increase the number of attention heads to 8, therefore resulting in the
identical number of neurons per head as in our light architecture. Lastly, inter-
mediate feature size of position-wise feed-forward layers is also doubled, with
2,048 features instead of 1,024. It results in a scaled version of our architecture
using 28M parameters instead of 6.9M parameters. We refer to this scaled ver-
sion as Large Transformer. Table 2 shows the results obtained by both our light
and large Transformer architectures.

We obtain slightly better results with our Light Transformer architecture,
therefore indicating the heavy architecture might not prevail over our light ar-
chitecture. This might be explained by the fact that the number of parameters
is lower. Our light architecture might be easier to train on a scenario in which
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Table 2. Comparison of the results obtained by our light Transformer-based architec-
ture (Light Transformer) and a heavy version of it (Large Transformer) on the test set
of the IAM dataset (aachen split).

Architecture # params.
IAM IAM + Synth. Data

CER (%) WER (%) CER (%) WER (%)

Light Transformer 6.9M 5.70 18.86 4.76 16.31
Large Transformer 28M 5.79 19.67 4.87 17.67

we have a relatively low number of annotated training data for training tra-
ditional Transformer-based models. Even so, by adding synthetic data, we find
that our light Transformer-based architecture performs better than Large Trans-
former version. Hence, we believe a big Transformer architecture is unnecessary
to obtain good results on a specific type of documents.

In addition, a light architecture would require less resource to be trained
efficiently. The training cost could then be reduced both in training time and in
the number of training examples.

4.5 Interest of the Hybrid Loss

We evaluate how important it is to train our model with a hybrid loss composed
of both the Connectionist Temporal Classification (CTC) loss and a Cross-
Entropy (CE) loss. To do so, we compare the results obtained with our light
architecture trained with CE only (without the CTC loss at the end of the
encoder) and with a hybrid loss. Results are available in Table 3.

Using a hybrid loss seems to be crucial in our architecture, as our light
Transformer model trained with a hybrid loss is able to attain lower error rates
when compared to a training achieved with CE loss only. Despite the fact that our
Transformer architecture relies on residual connections (that help gradients to
flow), this may not be enough to efficiently train our architecture. Using a hybrid
loss improves this. This is especially accurate when the model is only trained
with the given original dataset, as the amount of data is too small for traditional
Transformer-based models. However, even by using additional synthetic data, we
find it beneficial to include a hybrid loss inside our training procedure.

Table 3. Comparison of the results obtained with our model trained with or without
a hybrid loss on the test set of the aachen split of the IAM dataset. We present results
with and without synthetic data.

Loss
Function(s)

IAM IAM + Synth. Data

CER (%) WER (%) CER (%) WER (%)

CE only 10.29 26.36 6.76 19.62
Hybrid (CTC + CE) 5.70 18.86 4.76 16.31



Light Transformer for Handwritten Text Recognition 13

No matter the amount of training data, we believe a hybrid loss is essential
four our light architecture to converge quickly and efficiently. Adding an inter-
mediate loss at the end of the encoder seems to assist the model in efficiently
training the first layers in a deep architecture. In addition, the CTC loss is ded-
icated to recognize characters from input sequence of longer length which seems
to be useful in our application. From our point of view, using a hybrid loss might
help training an encoder-decoder network and combining the CTC and CE losses
seems to be efficient for HTR.

4.6 Comparison with the State of the Art

The performance of our architecture is compared with the main results from the
state of the art on the IAM dataset (Table 4). To allow a proper comparison, we
do not include methods that use an explicit Language Model to correct outputs
from the optical model. This is a general tendency, as most results from the state
of the art use neither language model nor lexicon. We only report the CER as
most of the works do not present WER results. However, we have shown WER
results obtained with our light Transformer in the previous tables.

Without using synthetic data, we obtain a CER on the IAM test set of 5.70%.
Compared to models based on FCN proposed by Yousef et al. [19] and Coquenet
et al. [5], our architecture obtains worse results without synthetic data, as other
transformer-based models. To the best of our knowledge, there are no published
results on FCN with synthetic data included to which we can compare fairly.
An FCN model might obtain better results than our approach when dealing
with limited real samples while benefiting from the addition of synthetic data.
However, we believe a transformer-based model will benefit more than an FCN
from the addition of synthetic data due to the fact that it includes a decoder,
capable of learning to model the language to some extent.

Compared to other Transformer-based networks, our architecture is able to
obtain state-of-the-art results. As opposed to the Transformer model proposed

Table 4. Results on the IAM dataset (aachen split). We compare our architecture to
methods based on CRNN [12], FCN [19,5] and Transformer [10,14,18].

Model # params.
IAM IAM + Synth. Data

CER (%) CER (%)

CRNN + LSTM [12] 5.24
FCN [19] 3.4M 4.9
VAN (line level) [5] 1.7M 4.95

Transformer [10] 100M 7.62 4.67
FPHR Transformer [14] 28M 6.5
Forward Transformer [18] 13M 6.03
Bidi. Transformer [18] 27M 5.67

Our Light Transformer 6.9M 5.70 4.76
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by Kang et al. [10], our light architecture performs well even without additional
data, while Singh et al. [14] do not present result without synthetic data. Still,
by including synthetic data to the training set, our model obtains even lower
error rates, reaching a CER of 4.76%. Our proposed architecture reaches results
close to the best performing architecture, while using 14 times less parameters.

In a general manner, our light architecture remains low in its number of
parameters. Our model only uses 6.9M parameters which is far lower than the
Transformer architectures from the state of the art [10,14,18]. Hence, we expect
our model to be trained much faster in comparison, while requiring less resource.

Wick et al. [18] propose a medium-sized Transformer (Forward Transformer)
which has 13M parameters. In their work, they propose to duplicate the archi-
tecture to perform both a forward and backward scan of the text-line image, and
reduce the error rates. The resulting bidirectional Transformer attains similar
CER to the one obtained by our architecture. Furthermore, our contribution
is compatible with their work by adding a backward Transformer which might
improve the results obtained by our network.

To conclude, compared to other Transformer-based networks, our light Trans-
former architecture reaches state of the art results, no matter the amount of
training data with significantly less parameters.

5 Conclusion and Future Works

We present a light encoder-decoder network based on Transformer-like archi-
tecture for handwritten text recognition. We highlight the relevance to use a
hybrid loss combining linearly the connectionist temporal classification loss and
the cross-entropy loss, which seems crucial for encoder-decoder architecture to
be trained efficiently. Compared to other Transformer-based models, our ar-
chitecture remains light in the number of parameters and does not require any
additional data to be trained efficiently. Our network architecture reaches results
at the level of state-of-the-art Transformer-based models, with a 5.70% CER on
the IAM test set. Using synthetic data, our architecture is able to attain a 4.76%
CER, close to the best performing network.

As future works, we would like to apply our architecture to historical docu-
ments in which the number of annotated data is even more critical. Using a light
architecture might be beneficial considering the moderate amount of training
data, while a Transformer-like architecture based on multi-head attention might
be useful for even more difficult writings compared to modern texts. Synthetic
data prove to be an efficient solution to the limited number of training data,
but the context of historical documents will require a thorough design of the
generation process of synthetic data.
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