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ABSTRACT

A model of the HIV dynamic in a heterosexual population of fixed size is considered in this paper.

We represent the dynamic by a multidimensional SIR model. We formulate the stochastic diffusion

approximation process to describe the dynamic of HIV by using strong approximation theorems for

density-dependent Markov chains. Our aim is to estimate the parameters of this model; to reach this

goal, we use Bayesian inference with Markov chain Monte Carlo (MCMC) simulations. We prove that

the posterior distributions of the parameters are shifted Generalized Inverse Gaussian (GIG). The

obtained results are well illustrated by simulations and real application of Morocco’s case.
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1. Introduction

In the last years, there has been an increasing research interest for performing inference methods of

the spread of infectious diseases among populations applying mathematical models (deterministic and

stochastic). Stochastic inference for epidemic models is generally complicated by the fact that, first,

missing data or unobserved several model variables, and second, the high dependence in data that
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are often available at discrete time points, while the underlying true process is continuous in time.

Historically, deterministic models have received more attention, but our focus, in this paper, is on

stochastic models. We believe that both deterministic and stochastic models have an important role

to play; which model to use in a specific situation depends on the type of question asked, the type

and complexity of the epidemic model, and whether or not there are data from which to infer model

parameters (see, [1] and references therein). Therefore, Stochastic models are preferred in the cases

of small populations and to describe the beginning of epidemics. In fact, stochastic models usually

start with a small number of infectious individuals. This implies that the initial fraction of infectives

tend to 0 as the population size N → ∞. In the deterministic setting we however have to assume

a fixed and strictly positive fraction of initially infectives (if we start with a fraction 0 of infectives

nothing happens in the deterministic model). This implicitly implies that the deterministic model

starts to approximate the stochastic counterpart only when the number of infectives in the stochastic

model has grown up to a fraction strictly positive. The earlier part of the stochastic model cannot be

approximated by this deterministic model, and as we have seen it might in fact never reach this level

(if there is only a minor outbreak).

However, discretely observed models are discrete-time Markov processes, hence, their likelihood de-

pends on the transition probability densities of the diffusion. However, these densities are unavailable

in simple closed form (see, [2]). In the case of continuously observed data, parameter estimates can

be obtained for complete data (see, [3] ), and in the case of incomplete data, estimates have also been

developed using some novel methods (see, [4] and references therein). However, for the considered

model, the inter-observation times are large; hence, direct estimation is not favored. To overcome this

difficulty, we will adopt the Bayesian inference approach (see, [5]).

Recently, the Bayesian inference of the SIR model has been treated by several authors using MCMC

methods (see, [6, 7] and references therein). Since the data are only available at discrete times, we

impute a finite number of auxiliary latent data points between two consecutive real observations. This

method has been treated by several authors (see, [5, 8, 7, 9] ).

In the epidemic modeling literature, it is often the case that prior parameters for positive quan-

tities such as rate parameters are assigned the same vague prior distributions. This choice of prior

distributions is convenient in terms of Bayesian inference due to conjugacy (see [10]). Furthermore,

the flexibility of the Gamma distribution means that it is frequently used in practice as a prior

distribution for rate parameters in epidemic models (see e.g. [11, 12, 13]). By the same reasons, in

this work, we choose a family of independent gamma distributions as prior densities of the model

parameters, which leads to a family of posterior Generalized Inverse Gaussian (GIG) distributions.
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This paper is concerned with performing Bayesian statistical inference for parameters of stochastic

epidemic model of the HIV dynamic in a heterosexual population. We consider the same model of

transmission of HIV in a closed population with fixed size N as in a previous paper by AbouBakre and

ElMaroufy [14], where they used a minimum contrast function to estimate directly the parameters of

interest. However, here we use the Bayesian approach to estimate these parameters. A multidimen-

sional Susceptible-Infected-Recovered (SIR), as presented in fig. 1, is considered with a five states, in

which each individual can find himself at a given time in one of the five mutually exclusive health

states named SF (SM ) susceptible female (male), IF (IM ) infected female (male) and R the AIDS

cases.

The rest of paper is organized as follows. Sections two and three describe the model and its

corresponding diffusion approximations. In the fourth section, we develop Bayesian inferences for non-

linear diffusion modeling the HIV dynamics . The fifth section illustrates the numerical simulations

of the model with real and simulated data . The last section is a concluding one. Some proofs and

essential tools and details are left in the appendix.

2. Model description

We consider a closed and mixed heterosexual population of size N , in which the infection can be made

only by heterosexual contact. Let, SF (t), IF (t), SM (t), IM (t) and Z(t) denote the sizes of susceptible

females, infected females, susceptible males, infected males, and AIDS cases at time t respectively.

The rate λF (λM ) of infection of a susceptible female (male) is λF = βIM (t) (λM = βIF (t)), λF and

λM are called the forces of infection. We assume that all individuals, including AIDS people, leave

the random mixing sexually active population at a rate µ (due to natural death or for reasons other

than dying). An individual at stage AIDS dies from the disease at a rate δ. The individuals that leave

the system are replaced by an inflow of susceptible, at a proportion α =
1

2
for females and males

(α (1 − α) reflects proportion of females (males) in the population. It is a demographic factor that

does not depend on epidemic dynamics. The value α = 1/2 is based on the database of Moroccan

High commission of planning (HCP)). Thus, the inflow rates for susceptible females and males are

BF = BM =
1

2
(µN + δZ) respectively. The infected individuals develop AIDS at a rate γ.

The situation as described in fig. 1, can be viewed as a multidimensional SIR model. Since, we have

considered a closed population that is, SF (t) + IF (t) +SM (t) + IM (t) +Z(t) is constant and equal to

N for all t. The dynamic of epidemic is then, completely determined by the continuous time process

Y(t) = (SF (t), IF (t), SM (t), IM (t)), which is supposed to be a continuous time Markov process with
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discrete space DN =
{

(a, b, c, d) ∈ N4; a+b+c+d ≤N
}

.

For a small time interval [t, t+ ∆t] only one of the following events occurs; Birth of a susceptible

female (male), infection of a susceptible female (male), natural death of a susceptible female (male)

and recovery or natural death of an infected female (male). Explicitly the process Y jumps from state

k = (SF , IF , SM , IM ) at time t to state k + l at time t + ∆t with infinitesimal probability qk,k+l∆t

according to the following scheme:

k qk,k+l∆t k + l

(SF , IF , SM , IM ) −→ (SF + 1, IF , SM , IM )

(SF , IF , SM , IM ) −→ (SF , IF , SM + 1, IM )

(SF , IF , SM , IM ) −→ (SF − 1, IF + 1, SM , IM )

(SF , IF , SM , IM ) −→ (SF , IF , SM − 1, IM + 1)

(SF , IF , SM , IM ) −→ (SF − 1, IF , SM , IM )

(SF , IF , SM , IM ) −→ (SF , IF , SM − 1, IM )

(SF , IF , SM , IM ) −→ (SF , IF − 1, SM , IM )

(SF , IF , SM , IM ) −→ (SF , IF , SM , IM − 1),

where the rates qk−l,k, are given by

qk,k+l =





1

2
.N

(
µ+ δ

Z

N

)
, if l = l1 = (1, 0, 0, 0);

βSF
IM
N
, if l = l2 = (−1, 1, 0, 0);

µSF , if l = l3 = (−1, 0, 0, 0);

(µ+ γ)IF , if l = l4 = (0,−1, 0, 0)

βSM
IF
N
, if l = l5 = (0, 0,−1, 1);

µSM , if l = l6 = (0, 0,−1, 0);

(µ+ δ)IM , if l = l7 = (0, 0, 0,−1);

1

2
.N

(
µ+ δ

Z

N

)
if l = l8 = (0, 0, 1, 0).

(1)

3. Diffusion approximation

In this section, we will formulate the diffusion approximation of the process Y(t) =

(SF (t), IF (t), SM (t), IM (t)), describing the evolution of the epidemic. The original model in closed

population with transition densities given in (1), which is a random Markov epidemic model, it can be
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formulated precisely as a Poisson process driven by stochastic differential equation (see for example

[1, 15, 16]). Since we consider a multidimensional SIR with demography in closed population, this

gives the following equation for the Markov process Y

Y (t) = Y0 +

8∑

j=1

hjPj

(∫ t

0
βj (s, Ys) ds

)
, (2)

where the Pjs are mutually independent standard Poisson processes, and βj(t, Yt) is the rate of jumps

in the direction hj at time t. Explicitly, the equation of evolution in various components of Y reads,

SF (t) =SF (0) + l1P1

(
1

2
(

∫ t

0
Nµ+ δZ(s)ds)

)
− l2P2

(
N−1β

∫ t

0
SF (s)IMds

)
− l3P3

(
µ

∫ t

0
SF (s)ds

)

IF (t) =IF (0) + l2P2

(
N−1β

∫ t

0
SF (s)IMds

)
− l4P4

(
(µ+ γ)

∫ t

0
IF (s)ds

)

SM (t) =SM (0)− l5P5

(
N−1β

∫ t

0
IF (s)SM (s)ds

)
− l6P6

(
µ

∫ t

0
SM (s)ds

)
+ l8P8

(
1

2
(

∫ t

0
Nµ+ δZ(s)ds)

)

IM (t) =IM (0) + l5P5

(
N−1β

∫ t

0
IF (s)SM (s)ds

)
− l7P7

(
(µ+ δ)

∫ t

0
SM (s)ds

)
.

(3)

In this system, the various Poisson processes P1, P2, P3, P4, P5, P6, P7 and P8 are mutually indepen-

dent and standard with mean rate 1 and lj for j = 1, ..., 8 are defined in (1).

Now, we assume that the rate of infection at time t is proportional to the fraction of the total

population that is infectious male of (female)
IM (t)

N
(IF (t)/N) . Let consider the scaled process

X(t) = N−1Y(t) = (x1(t), x2(t), y1(t), y2(t)), the equation for the proportions in diverse components

leads to the following formulations,

x1(t) =x1(0) +N−1l1P1

(
1

2
N(

∫ t

0
µ+ δz(s)ds)

)
−N−1l2P2

(
Nβ

∫ t

0
x1(s)y2(s)ds

)

−N−1l3P3

(
Nµ

∫ t

0
x1(s)ds

)

x2(t) =x2(0) +N−1l2P2

(
Nβ

∫ t

0
x1(s)y2(s)ds

)
−N−1l4P4

(
N(µ+ γ)

∫ t

0
x2(s)ds

)

y1(t) =y1(0)−N−1l5P5

(
Nβ

∫ t

0
x2(s)y1(s)ds

)
−N−1l6P6

(
Nµ

∫ t

0
y1(s)ds

)

+N−1l8P8

(
1

2
N(

∫ t

0
µ+ δz(s)ds)

)

y2(t) =y2(0) +N−1l5P5

(
Nβ

∫ t

0
x2(s)y1(s)ds

)
−N−1l7P7

(
N(µ+ δ)

∫ t

0
y2(s)ds

)
.

(4)

To get a diffusion approximation we will need the following well known Theorem (see for example,

[1, Prop2.2.5])
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Proposition 1. Let {P (t), t ≥ 0} be a λ Poisson process. Then,

P (t)

t
−→ λ a.s, as t −→∞ (5)

Therefore, we have as a consequence of (5), if λ = 1 then

P (Nt)

N
−→ t a.s, as N −→∞. (6)

And also the classical Central limit theorem (see, [1, Lemma2.3.4]) implies, that

lim
N−→∞

P
(
P (Nt)−Nt√

N
≤ x

)
=

∫ x

−∞

1√
2Π

e−y
2/2dy = P(B(t) ≤ x),

where, B(.) is a standard Brownian motion. By this result, we have
P (Nt)−Nt√

N
=⇒ B(t) with the

convergence is in law. Since, X(t) = (x1(t), x2(t), y1(t), y2(t)) is a normalized version of the process

Y , hence, we have ||X(t)|| < 1. Then, the integrals

∫ t

0
β(s,Xs)ds in (4) converge. Therefore,

Pj

(
N

∫ t

0
βj(s,Xs)ds

)
=⇒
√
NBj

(∫ t

0
βj(s,Xs)ds

)
+N

∫ t

0
βj(s,Xs)ds. (7)

Now, using (7) into (4), this yields to the following diffusion approximation,

x1(t) =x1(0) + l1
1

2
(µt+ δ

∫ t

0
z(s)ds)− l2β

∫ t

0
x1(s)y2(s)ds− l3µ

∫ t

0
x1(s)ds

+ l1N−
1

2B1

(
1

2
(µt+ δ

∫ t

0
z(s)ds)

)
− l2N− 1

2B2

(
β

∫ t

0
x1(s)y2(s)ds

)
−N− 1

2 l3B3

(
µ

∫ t

0
x1(s)ds

)

x2(t) =x2(0)− (µ+ γ)l2
∫ t

0
x2(s)ds+ βl4

∫ t

0
x1(s)y2(s)ds+ l2N−

1

2B2

(
β

∫ t

0
x1(s)y2(s)ds

)

− l4N− 1

2B4

(
(µ+ γ)

∫ t

0
x2(s)ds

)

y1(t) =y1(0)− βl5
∫ t

0
x2(s)y1(s)ds+

1

2
l8(µt+ δ

∫ t

0
z(s)ds)− µl6

∫ t

0
y1(s)ds

− l5N− 1

2B5

(
β

∫ t

0
x2(s)y1(s)ds

)
− l6N− 1

2B6

(
µ

∫ t

0
y1(s)ds

)
+ l8N−

1

2B8

(
1

2
(

∫ t

0
µ+ δz(s)ds)

)

y2(t) =y2(0) + βl5
∫ t

0
x2(s)y1(s)ds− (µ+ δ)l7

∫ t

0
y1(s)ds

+ l5N−
1

2B5

(
β

∫ t

0
x2(s)y1(s)ds

)
− l7N− 1

2B7

(
(µ+ δ)

∫ t

0
y2(s)ds

)
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where, B1, B2, B3, B4, B5, B6, B7 and B8 are independent standard Brownian motions. However the

two processes Bj

(∫ t

0
βj(s,Xs)ds

)
and

∫ t

0

√
βj(s,Xs)dBj(s) for j = 1, . . . , 8, are two centered Gaus-

sian processes which have the same covariance functions. Hence, they have the same distribution.

Therefore, using this argument, the diffusion approximation process can be now written as

X(t) = N−1Y(t) = X0 +N−
1

2 l1
∫ t

0

√
1

2
(µ+ δz(s)dB1(s) +N−

1

2 l2
∫ t

0

√
βx1(s)y2(s)dB2(s)

+N−
1

2 l3
∫ t

0

√
µx1(s)dB3 +N−

1

2 l4
∫ t

0

√
(µ+ γ)x2(s)dB4(s)

+N−
1

2 l5
∫ t

0

√
βx2(s)y1(s)dB5(s) +N−

1

2 l6
∫ t

0

√
µy1(s)dB6(s)

+N−
1

2 l7
∫ t

0

√
(µ+ δ)y2(s)dB7(s) +N−

1

2 l8
∫ t

0

√
1

2
(µ+ δz(s)dB8(s)

+ l1
∫ t

0

1

2
(µ+ δz(s))− µx1(s)− βy2(s)x1(s)ds− l4

∫ t

0
−(µ+ γ)y1(s) + βy2(s)x1(s)ds

+ l8
∫ t

0

1

2
(µ+ δz(s))− µx2(s)− βy1(s)x2(s)ds− l7

∫ t

0
−(µ+ γ)y2(s) + βy1(s)x2(s)ds.

The obtained diffusion approximation agrees with that proved by Britton and Pardoux (see,[1, Section

2.4]) for Markovian SEIR.

The above stochastic integral equation is equivalent to the following non-linear multidimensional

Itô stochastic differential equation:

dXt = ξ(Xt, θ)dt+ L(Xt, θ)dB(t), X0 = x0, (8)

where, B is a 8−dimensional standard Brownian motion and ξ is the vector field associated to the

non-linear deterministic equation Ẋ(t) = ξ(X(t));

ξ(x) =




1

2
(µ+ δz)− µx1 − βy2x1

−(µ+ γ)y1 + βy2x1

1

2
(µ+ δz)− µx2 − βy1x2

−(µ+ γ)y2 + βy1x2




(9)

and L a diffusion coefficient given by
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L(x) =
1√
N




√
1

2
(µ+δz) −

√
βy2x1 −√µx1 0 0 0 0 0

0
√
βy2x1 0 −

√
(µ+ γ)y1 0 0 0 0

0 0 0 0 −
√
βy1x2 −√µx2 0

√
1

2
(µ+ δz)

0 0 0 0
√
βy1x2 0

√
(µ+ γ)y2 0




. (10)

thus, we have

LLt(x) =Σ(x) =
1

N




1

2
(µ+δz) + µx1 + βy2x1 −βy2x1 0 0

−βy2x1 (µ+ γ)y1 + βy2x1 0 0

0 0
1

2
(µ+ δz) + µx2 + βy1x2 −βy1x2

0 0 −βy1x2 (µ+ γ)y2 + βy1x2



. (11)

Finally, the diffusion process associated to the HIV spread in this case, is given by the non-linear

multidimensional Itô stochastic differential equation:

dXt = ξ(Xt, θ)dt+ Σ
1

2 (Xt, θ)dW (t), (12)

where W is a 4−dimensional standard Brownian motion, ξ is given by (9) and Σ defined by (11). The

drift function of eq. (12) is set to be identical with the deterministic behaviour of X and the diffusion

coefficient is chosen such that it appropriately represents the fluctuations of the trajectories around

the deterministic course ẋ(t) = ξ(x(t)). For the non linear drift coefficient, the identification of the

deterministic course with the stochastic expectation in eq. (12) might result in a wrong diffusion

coefficient (see, [17]).

For fixed x0, let consider, for t ∈ R+ and x ∈ R∗+ P(X(t) = x) = p(t, x) be the probability density

of finding X in state x = (x1(t), x2(t), y1(t), y2(t)) at given time t ≥ 0. So the linear diffusion equation

known as the Fokker-Plank equation of the forward Kolmogorov equation is verified by p(., .) is of

the form (see [18, 19]).

∂p(t, x)

∂t
= − ∂

∂x
(ξ(Xt)p(t, x)) +

1

2

∂2

∂x2
(Σ(t, x)p(t, x)) (13)

with the initial value: p(0, x) = δx0x with x0 = (sM (0), iM (0), sF (0), iF (0)) and δ here is the Kronecker

delta.

However the goal of this paper is to illustrate an efficient method to estimate θ = (β, γ, δ), because

the quantity R0 =
β

δ + γ
expressed in terms of model parameters is the basic reproduction number
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(see, [14]), which is the most important quantity to consider when analyzing any epidemic model for

an infectious disease. In particular, R0 determines whether an epidemic can occur at all; it is used to

measure the transmission potential of disease and interpret the threshold behavior of the epidemic

(see for example [20]).

4. Bayesian inference

Let consider the inference for the Itô diffusion process of type (12). We assume that the process

Xt = (x1(t), x2(t), y1(t), y2(t)) will be observed at a finite integer of times. The purpose is to inference

for the (unknown) parameter vector θ on the basis of partial and discrete observations on X(t).

Unfortunately, the exact solution of the Fokker-Plank equation eq. (13) is not available for our model.

To overcome the impediment, we use Gaussian approximation of transition density for small times

established by [21, §4.7.3 ] for the process defined by eq. (13).

Thereby, since the diffusion matrix Σ is positive definite so that the inverse of Σ exists and det(Σ) 6=
0, then, the expression of transition probability density for small times τ can be written as:

p(t+τ, x|t, x′)=
(
2
√
πτ
)−4

[det(Σ(t, x))]
− 1

2 exp



−

1

4τ

4∑

k,j=1

[
Σ−1

kj(t, x
′
)
][
xk−x

′
k−ξk(t, x

′
)
][
xj−x

′
j−ξj(t, x

′
)
]


, (14)

where the transition density is defined as the conditional probability of a random variable X at

time t+ τ has sharp x under the condition that at time t it has the sharp value x
′
. Here, xk (x

′

k) for

k = 1, ..., 4 are the kth component of x (x
′
) and Σ−1

kj is the (k, j) component of the inverse of matrix

Σ with ξ and Σ are defined in (9)and (11).

In practice, it is necessary to work with a discrete version of (12), given by the Euler approximation

(also called Euler-Maruyama approximation), is obtained by setting X(0) = x0 and then successively

X(t+ ∆t) = X(t) + ξ(X(t), θ)∆t+ Σ
1

2 (X(t), θ)∆B(t), (15)

where ∆B(t) ∼ N (0,∆tI) with I is the identity matrix.

In order to perform inference on the parameter θ, we try to approximate the true transition density

pθ of the diffusion process by Gaussian distribution. This is eligible only if inter-observation times

of the observed data are small. Since such a requirement is not fulfilled in our case (observation of

HIV), we augment the data using the approach developed by Eraker in [5], by imputing intermediate

points between each pair of observations. This method is well used to refine the observation density

9



in Bayesian inference (see for example [8, 7, 9]). The number m of sub-intervals between every two

consecutive observations crucially influences the estimation results. A small number of intermediate

time points degrades the accuracy of the Euler approximation (15) to the true posterior density and

may hence cause a discretization bias. Large numbers of auxiliary time points, on the other hand, are

computationally costly. Hence, the number m of subintervals should be chosen both sufficiently large

and sustainably small. In general, they will be identified empirically.

From now on, Xobs denotes the observed data, and Ximp denotes the imputed (missing)

data. Furthermore, to inference θ, a MCMC approach is employed to construct a Markov

chain {θ(i), Ximp}i=1,...,L of length L whose elements are samples form joint posterior density

π(θ,Ximp|Xobs) of parameter θ and imputed data Ximp conditioning on Xobs (observations). The

Markov chain {θ(i)}i=1,...,L is regarded as a draw from the marginal density π(θ|Xobs). In the sequel,

p(.) is the prior density and π(.|.) denotes the unnormalized posterior density.

4.1. Path update

We aim to approximate the posterior density

π(θ|Xt1 , . . . , XtM ) ∝ π(Xt1 , . . . , XtM |θ)p(θ).

of parameter θ, based on observations {Xt1 , ..., XtM} of the diffusion process (Xt, t ≥ 0). Since the

diffusion process possesses the Markov property, the likelihood of θ factorises as

π(Xt1 , . . . , XtM |θ) = π(Xt1 |θ)
M∏

i=2

π(Xti |Xti−1
, θ). (16)

As motivated above, we impute between each pair of observations m − 1 latent data points, thus,

the time interval is divided into m sub-intervals which are not necessarily equidistant. To ensure that

discretization bias is arbitrary small we put ∆t =
ti − ti−1

m
and N = mM for a chosen positive integer

m. Therefore [0, T ] is divided into N + 1 points t0 = 0 < t1 < . . . < tm < tm+1 < . . . < tN = T , then

the diffusion process is in state xtk at time tk which is only known on times tj when j is an integer

multiple of m and all other points Xtk , k 6= j are treated as missing data.

10



Let denote by X̂ the 4 × (N + 1) matrix obtained by stacking all elements of augmented data

(observed and missing), that is

X̂ =




x̂1t0 x̂1t1 . . . x̂1tm x̂1tm+1 . . . x̂1tN

x̂2t0 x̂2t1 . . . x̂2tm x̂2tm+1 . . . x̂2tN

ŷ1t0 ŷ1t1 . . . ŷ1tm ŷ1tm+1 . . . ŷ1tN

ŷ2t0 ŷ2t1 . . . ŷ2tm ŷ2tm+1 . . . ŷ2tN



.

Let X̂i denotes the ith column of X̂ ( if i is a multiple of m, X̂i is an observed data).

Conditioning on the first observation, the joint posterior density is given by:

π(X̂, θ) ∝
N∏

i=1

π(X̂i|θ)p(θ), (17)

where

π(X̂i|θ) = |Σ−1
i−1|

1

2 exp

{
−1

2

[
X̂i−X̂i−1−ξ(X̂i−1, θ)∆t

]t (
Σ−1
i−1∆t

) [
X̂i−X̂i−1−ξ(X̂i−1, θ)∆t

]}
(18)

The objective is to obtain a sequence of Monte Carlo samples {θ(i)}Li=1. Which is a sample from the

marginal posterior density, since {θ(i)}Li=1 is implicitly a sample from the marginal posterior π(θ|X̂obs).

Because the number of unobservable (missing data and parameter) is large, it is not possible to obtain

independent samples of these quantities directly from (17); for this reason we use Gibbs sampler with

a block strategy instead of single site to overcome the poor mixing due to high correlation amongst

the latent data (see, [22]). The block strategies are based on updating a block of elements, a subset

of the imputed data, at each iteration instead of updating the whole path. Applying these methods

the convergence results are often achieved.

In the following, we propose that the latent data are updated in blocks of size m. For this, let

consider times tj and tj+ , where j is an integer multiple of m and j+ = j + m, the corresponding

observation X̂j and X̂j+ which treated as fixed (observed points), the full conditional density for the

latent path in (tj , tj+) is

π(X̂j+1, . . . , X̂j+−1|X̂j , X̂j+ , θ) ∝
j+−1∏

i=j

π(X̂i+1|X̂i, θ). (19)
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The first step in Gibbs sampler involves to appropriately perform the path update. Direct sampling

from the posterior distribution of the latent data given the observed data and parameters is not

possible in our case. Hence we use a Metropolis-Hastings (M-H) algorithm (see, [23]) for the general

implementation of this step.

At each iteration, as a first step in path update, we choose a block of size m that is, a time interval
[
tj , tj+

]
in whose the path interior is to be updated. Having decided about the block update strategy,

we denote by X? a simulated path, which is a candidate to update X̂. We simulate each column of

the block X?
(tj ,tj+ ) =

{
X?
tj , . . . , X

?
tj+

}
with proposal density

q(X?
k+1|X?

k , θ) = N (X?
k + µ(X?

k , θ)∆tk,Σ(X?
k , θ)∆tk) , (20)

for k = tj+1, . . . , tj+−2, with X?
tj = X̂tj and X?

tj+
= X̂tj+ .

We accept the new candidate of the path X?
(tj ,tj+ ) with probability

α(X?
(tj ,tj+ ), X̂(tj ,tj+ )) = 1 ∧

π
(
X?
tj+
|X?

tj+−1
, θ
)

π
(
X̂tj+ |X̂tj+−1

, θ
) . (21)

4.2. Posterior distribution of model parameters

The last step in Gibbs sampler is the update of parameter θ = (β, δ, γ) conditioning on its current

state and the augmented data. Due to the form of the likelihood function derived in eq. (16), a family

of independent gamma distributions is seen as a natural set of conjugate priors in the context of

epidemic model, where the parameters are positive (see, [24]). This choice of prior distributions is

convenient in terms of Bayesian inference due to conjugacy (see, [10]). Furthermore, the flexibility of

the gamma distribution means that it is frequently used in practice as a prior distribution for rate

parameters in epidemic models (see, [12]). When this type of priors is considered, the application of

Bayes formula leads to a shifted Generalized Inverse Gaussian GIG as posterior distribution. In the

following proposition, we prove this claim, for which the proof is left to Appendix appendix A.

Proposition 2. If β, δ and γ follow independent gamma distributions: π(β) ∝ Γ(mβ, λβ), π(δ) ∝

12



Γ(mδ, λδ) and π(γ) ∝ Γ(mγ , λγ), then

π(β − Cβ|X̂, δ, γ) ∝ βmβ−N−1 exp

{
−1

2

[
Mβ

β
+M

′

ββ

]}
;

π(δ − Cδ|X̂, β, γ) ∝ δmδ−N−1 exp

{
−1

2

[
Mδ

δ
+M

′

δδ

]}
;

π(γ − Cγ |X̂, δ, β) ∝ γmγ−N−1 exp

{
−1

2

[
Mγ

γ
+M

′

γγ

]}
,

(22)

(23)

(24)

where the constants Ck,Mk and M
′

k for k ∈ {β, δ, γ} are calculated from data and they are given in

Appendix A.

5. Implementation and simulation

To implement the described estimation procedures given here, we adopt the following algorithm,

which summarises our strategy simulation.

5.1. Algorithm

i- Initialize all unknown: θ = (β, δ, γ) and the path X̂i using linear interpolation between observed

values of Xi.

ii- At iteration h

a- Choose j multiple of m, set j+ = j +m, that is a time interval
[
tj , tj+

]
in whose the path

interior is to be updated.

b- Set X?
tj = X̂tj and X?

tj+
= X̂tj+ . Simulate each column of the block X?

(tj ,tj+ ) =
{
X?
tj , . . . , X

?
tj+

}
with proposal density given in (20)

c- Accept X?
(tj ,tj+ ) with probability (21)

iii- Update βh according to (22)

iv- Update δh according to(23)

v- Update γh according to (24)

vi- Increase the value of h and return to step ii-

5.2. Simulation

The MCMC scheme is applied to the diffusion stochastic epidemic model with known parameters. The

observations {Xk, k = 1, . . . , n} comes from the simulation of the original Markov chain (Xt, t ≥ 0),

13



which defined by its transitions rates given by (1). The exact Gillespie algorithm established by [25],

is adapted to our situation with true values of the model parameters β, δ and γ as given in the Table

1 (see Appendix B for details). To illustrate our methodology, the MCMC sampler is run for 20000

iterations of our algorithm, with m = 1, m = 2 and m = 5 (number of missing data). Note that the

algorithm is coded in Matlab and executed on a laptop i5. Figure 2 gives the plots of the MCMC

chains. Looking at Table 1 and Figure 3 which summarizes respectively the posterior mean with

variance and the simulated posterior densities. We see that the estimates are close to the true values

as the number of latent data increases; therefore, for greater values of m there is a less improvement,

but it leads to a heavy computational cost. The histograms in Figure 3 reveal that the convergence

of the algorithm towards a Gaussian distribution as limit. In real application (see Table 2), it should

be better to choose m as large as possible, to keep the balance between the computational cost and

goodness of fit. A suitable value of m should be considered, as suggested by Eraker [5] by starting

with small m and to subsequently increase this number after convergence of the Markov chain has

been achieved. This procedure is pursued until further increases of m have negligible impact on the

estimation results.

5.3. Real application: Morocco’s case

We consider the case of Morocco. The database considered here, is the constructed data of HIV/AIDS

in dynamic Morocco, which contains susceptible and infected males and females and AIDS cases,

given in our recent work (see [14]). This database is obtained by combining statistics and data from

Moroccan High Commission of Planing HCP [26], Ministry of Public Health with the support of

UNAIDS [27, 28], the database of Wold bank [29] and the SPECTRUM software [30].

The results presented in Table 2, give an estimation parameters. The estimated basic reproductive

number R̂0 is bigger than one, which means that the number of secondary cases which an infected

person would produce in a completely susceptible Moroccan population is more than two,in other

words, the epidemic will keep growing in Morocco.

Figure 4 and Figure 5 give the exact proportions of observed number the infected males and

females in the active sexually Moroccan population from 1985 to 2014, and the projection of these

subpopulation from 2015 up to 2020 using the estimated value of parameters given in Table 2.

As illustrated in Figure4 and Figure5, for example, the exact proportion of the observed number

of infected females in Morocco during the years 2015 and 2016 are 4.757 × 10−4 and 4.833 × 10−4

respectively, well the predicted values corresponding to these proportions are respectively 4.703×10−4
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and 4.842×10−4. Since the predicted results are coherent with the real results in the case of Morocco

database, hence, the model and the approach presented in this paper can be useful and adapted to

study and clarify the dynamic transmissions of HIV or similar epidemic in a heterosexual population.

6. Conclusion

This paper is concerned with Bayesian estimation of HIV/AIDS dynamic parameters in a closed het-

erosexual population. A stochastic diffusion approximation is adopted. We are essentially concerned

with the Bayesian analysis of non-linear, discretely observed stochastic diffusion. The MCMC meth-

ods has been used to infer the estimation of the parameters. We have proposed Gamma distribution as

prior, which is an adequate choice for the rate parameters in epidemic models (see [10]) as mentioned

in the introduction. Accordingly, the results presented for both simulation and real data are efficient.

The inference, established here, can be likely applicable to some other compartmental models. This

work represents an alternative method to overcome discretely observed process considered in the work

by AbouBakre and ElMaroufy [14]. Further research will be devoted to study the dynamic of HIV in

heterosexual population with random environment and general mechanism as in [2].
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Figure 1. The model scheme. The dashed arrows indicate infection made via sexual contact only.

m = 1

true value of β β̂ true value of δ δ̂ true value of γ γ̂ R0 R̂0

mean 0.5 0.5537 0.5 0.4996 0.5 0.4976 0.5 0.5552
variance 0.1290 0.0846 0.0188

mean 1 1.0006 0.5 0.4753 0.5 0.4983 1 1.0277

variance 0.2541 0.1150 0.0051

mean 2 1.8343 0.5 0.5199 0.5 0.4934 2 1.8102

variance 0.3385 0.1054 0.0046

m = 2

true value of β β̂ true value of δ δ̂ true value of γ γ̂ R0 R̂0

mean 0.5 0.5040 0.5 0.5252 0.5 0.5070 0.5 0.4883

variance 0.0903 0.0885 0.0188

mean 1 1.0378 0.5 0.5620 0.5 0.4997 1 0.9774

variance 0.2311 0.0833 0.0042

mean 2 2.1406 0.5 0.5177 0.5 0.5101 2 2.0827

variance 0.2999 0.0598 0.0009

m = 5

true value of β β̂ true value of δ δ̂ true value of γ γ̂ R0 R̂0

mean 0.5 0.5008 0.5 0.5154 0.5 0.5004 0.5 0.4930

variance 0.0282 0.0896 0.0568

mean 1 0.9990 0.5 0.5295 0.5 0.5016 1 0.9689

variance 0.2450 0.1273 0.0051

mean 2 2.0392 0.5 0.5001 0.5 0.5047 2 2.0293

variance 0.3517 0.1001 0.0047
Table 1. Posterior mean and variance for β, δ, γ and R0 for m = 1, m = 2 and m = 5.

m β̂ δ̂ γ̂ R̂0

1 mean 0, 9619 0, 2186 0, 2288 2, 1502

variance 0, 0790 0, 0002 0, 0048

2 mean 0, 9781 0, 2145 0, 2187 2, 2578
variance 0, 0355 0, 0003 0, 0032

5 mean 0, 9795 0, 2145 0, 2166 2, 2722
variance 0, 0352 0, 0003 0, 0031

10 mean 0, 9798 0, 2145 0, 2154 2, 2791

variance 0, 0355 0, 0003 0, 0032

Table 2. Posteriors mean and variance for β̂, δ̂, γ̂ and R̂0 in cases of m = 1, m = 2, m = 5 and m = 10 , for data of Morocco,
with 20000 iterations.
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β̂ δ̂ γ̂

Figure 2. Trace plots of the MCMC chains for the parameters after 20000 iterations. The red lines show the true values of the
parameters β = {0.5, 1, 2}, which correspond to R0 < 1, R0 = 1, R0 > 1 and δ = γ = 0.5.

β̂ δ̂ γ̂

Figure 3. Posterior densities for the parameters of the model (after 20000 iterations), in three cases: R0 < 1(first row), R0 =
1(second row) and R0 > 1(third row).
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Figure 4. Plots of 10 trajectories of females infected proportion from 1985 to 2020. The black stars design the true observed
data of females from 1985 up to 2014. The green diamonds design real data for 2015 and 2016. Well the blue squares gives the

mean predicted value of the proportion of infected females. (For interpretation of the references to colour of these illustrations,

the reader is referred to the electronic version of this paper.)

Figure 5. Plots of 10 trajectories of males infected proportion from 1985 to 2020. The black stars design the true observed data
of males from 1985 up to 2014. The green diamonds design real data for 2015 and 2016. Well the blue squares gives the mean

predicted value of the proportion of infected males. (For interpretation of the references to colour of these illustrations, the reader

is referred to the electronic version of this paper.)
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Appendix A. Posterior densities of parameters

The joint posterior density, conditioning on the first observation, is given by:

π(X̂, θ) ∝
N∏

i=1

π(X̂i|θ)p(θ), (A1)

where

π(X̂i|θ) = |Σ−1
i−1|

1

2 exp

{
−1

2

[
X̂i−X̂i−1−ξ(X̂i−1, θ)∆t

]t (
Σ−1
i−1∆t

) [
X̂i−X̂i−1−ξ(X̂i−1, θ)∆t

]}
. (A2)

Let denote Ti = X̂i+1−X̂i − ξ(X̂i, θ)∆t, then,

Ti = (T1i, T2i, T3i, T4i)
t

=




βx1iy2i +
x1i+1

− x1i

∆t
+ µx1i − α(µ+ δzi)

−βx1iy2i +
x2i+1

− x2i

∆t
+ (µ+ γ) y1i

βx2iy1i +
y1i+1

− y1i

∆t
+ µx2i − (1− α)(µ+ δzi)

−βx2iy1i +
y2i+1

− y2i

∆t
+ (µ+ γ) y2i




∆t

=β




x1iy2i

−x1iy2i

x2iy1i

−x2iy1i




∆t+




A(1)i

A(2)i

A(3)i

A(4)i




∆t.

We calculate the product inside the exponential operator, then

Tk(θ)
tΣ−1

i−1Tk(θ) =(T1i)
2Σ−1

11i−1
+ 2T1iT2iΣ

−1
12i−1

+ (T2i)
2Σ−1

22i−1

+(T3i)
2Σ−1

33i−1
+ 2T3iT4iΣ

−1
34i−1

+ (T4i)
2Σ−1

44i−1
,

where

Σ−1
i =




(µ+ γ)y1i + βy2ix1i

∆2
1i

βy2ix1i
∆2

1i

0 0

βy2ix1i
∆2

1i

(1− α)(µ+ δzi) + µx2i + βy1ix2i
∆2

1i

0 0

0 0
(µ+ γ)y2i + βy2ix1i

∆2
2i

βy2ix2i

∆2
2i

0 0
βy2ix2i

∆2
2i

α(µ+ δzi) + µx2i + βy2ix2i

∆2
2i




,
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where ∆1i = βC1i + C2i with C1i = x1y2 ((µ+ γ)y1 + (α(µ+ δz) + µx1)), C2i = (µ +

γ)y1 (α(µ+ δz) + µx1), and ∆2i = βC1
′

i + C2
′

i with C1
′

i = x2y1 ((µ+ γ)y2 + (α(µ+ δz) + µx2));

C2
′

i = (µ+ γ)y2 (α(µ+ δz) + µx2) . Therefore, the expression becomes

Tk(θ)tΣ−1
i−1Tk(θ) =(T1i)

2

(
(µ+ γ)y1i + βy2ix1i

∆2
1k

)
+ 2T1iT2i

(
βy2ix1i

∆2
1k

)
+ (T2i)

2

(
(1− α)(µ+ δzi) + µx2i + βy1ix2i

∆2
1k

)

(T3i)
2

(
(µ+ γ)y2i + βy2ix1i

∆2
1k

)
+ 2T3iT4i

(
βy2ix2i

∆2
1k

)
+ (T4i)

2

(
α(µ+ δzi) + µx2i + βy2ix2i

∆2
1k

)

(A3)

Then, after calculus, (A3) becomes

Tk(θ)
tΣ−1

i−1Tk(θ) =
1

βC1i + C2i

(
K0i +K1iβ +K2iβ

2
)

+
1

βC1
′
i + C2

′
i

(
K0

′

i +K1
′

iβ +K2
′

iβ
2
)

(A4)

with

K0i = (µ+ γ) y1iA(1)2
i∆t+ (α(µ+ δZi) + µx1i)A(2)2

i∆t,

K1i = 2(µ+ γ)y1ix1iy2iA(1)i − 2x1iy2i (α(µ+ δzi) + µx1i)A(2)i + (A(1)i +A(2)i)
2 ∆t,

K2i =
(
(µ+ γ) y1i(x1iy2i)

2 +
(
α(µ+ δzi) + µx1i(x1iy2i)

2
))

∆t,

where the constants K0
′

i, K1
′

i and K2
′

i are obtained from the above constants by exchanging x1i, y1i

by x2i, y2i and α by 1− α, and exchanging A(1)i,A(2)i respectively by A(3)i and A(4)i respectively.

If C1i = 0 (C1
′

i=0) that correspond to the case where we have no female (male) infected, in this

situation the study is reduced to a simple SIR model see for example [7].

Let the following assumption hold true from now on: “the numbers of infected people female and

male are not equal to zero” which means that y1i 6= 0 and y2i 6= 0 for all i.

In this case, if p(β) ∝ βmβ−1 exp(−λββ), then we have

π(β|Ŷi,δ, γ) ∝ βmβ−1 exp(−λββ)

N∏

i=1

(
C1iC

′

i1

)− 1

2

(β + Cβ)−1

× exp

{
−1

2

[
1

β + Cβ

(
K0i

C1i
+
K1i

C1i
β +

K2i

C1i
β2

)
+

1

β + Cβ

(
K0

′
i

C
′
i1

+
K1

′
i

C
′
i1

β +
K2

′
i

C
′
i1

β2

)]}
,

where Cβ = min
1≤i≤N

{
C2i

C1i
,
C2
′
i

C1
′
i

}
. Let use the same notation for the new constants Kij =

Kij

C1i
and
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Ki
′

j =
Ki
′
j

C1
′
i

, then we have the following result

π(β|Ŷi, δ, γ) ∝ h(β)mβ−N−1 exp

{
−1

2

[
Mβ

h(β)
+M

′

βh(β)

]}
, (A5)

where h(β) = β+Cβ , Mβ =

N∑

i=0

(
K0i +K2iC

2
β −K1iCβ

)
+

N∑

i=0

(
K0

′

i +K2
′

iC
2
β −K1

′

iCβ

)
and M

′

β =

2λβ +

N∑

i=1

K2i +K2
′

i.

Since Cβ is a positive constant which not depends on β, however, using a transfer theorem, (A5)

becomes

π(β − Cβ|Ŷi, δ, γ) ∝ βmβ−N−1 exp

{
−1

2

[
Mβ

β
+M

′

ββ

]}
. (A6)

Hence, the posterior distribution of β−C is proportional to a Generalized inverse Gaussian distribu-

tion (GIG).

Using the similar technique of decomposition on (A4), we construct the posterior distribution of

the parameter δ and we have:

Ti(θ) = δ




−αzi
0

−(1− α)zi

0




∆t+




x1i+1
− x1i

∆t
+ µx1i − αµ

y1i+1
− y1i

∆t
+ (µ+ γ) y1i

x2i+1
− x2i

∆t
+ µx2i − µ(1− α)

y2i+1
− y2i

∆t
+ (µ+ γ) y2i




∆t = δ




−αzi
0

−(1− α)zi

0




∆t+




F (1)i

F (2)i

F (3)i

F (4)i




∆t,

if p(δ) ∝ δm−1 exp(−λδ), then, by a similar calculus, we have

π(δ − Cδ|Ŷi, γ, β) ∝ δmδ−N−1 exp

{
−1

2

[
Mδ

δ
+M

′

δδ

]}
,

where Mδ =

N∑

i=0

(
E0i + E2iC

2
δ − E1iCδ

)
+

N∑

i=0

(
E0
′

i + E2
′

iCδ
2 − E1

′

iCδ

)
,

Cδ = min
1≤i≤N

{
C2i

C1i
,
C2
′
i

C1
′
i

}
and M

′

δ = 2λδ +

N∑

i=1

E2i + E2
′

i with:
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Ei =C1iδ + C2i

=αzi ((µ+ γ)y1i + βx1iy2i) δ + (µ+ γ)y1i (αµ+ µx1i + βx1iy2i) + βx1iy2i (αµ+ µx1i) ,

E0i = ((µ+ γ)y1i + βx1iy2i)F (1)2
i + 2βx1iy2iF (1)iF (2)i + (αµ+ µx1i + βx1iy2i)F (2)2

i ,

E1i =αzi
(
F (2)2

i − 2(F (1)i ((µ+ γ)y1i + βx1iy2i) + F (2)iβx1iy2i)
)
,

E2i =α2z2
i ((µ+ γ)y1i + βx1iy2i) ,

where the constants with prime symbol (′) are obtained from the above constants by exchanging

x1i, y1i by x2i, y2i and α by 1−α respectively, and exchanging F (1)i, F (2)i respectively by F (3)i and

F (4)i.

For the parameter γ, we use the same techniques, then, the component inside exponential operator

in function of the parameter γ can be written as:

Ti(θ) = γ




0

y1i

0

y2i




∆t+




x1i+1
− x1i

∆t
+ µx1i − α(µ+ δz)

y1i+1
− y1i

∆t
+ µy1i

x2i+1
− x2i

∆t
+ µx2i − (1− α)(µ+ δzi)

y2i+1
− y2i

∆t
+ µy2i




∆t = γ




0

y1i

0

y2i




∆t+




B(1)i

B(2)i

B(3)i

B(4)i




∆t.

So, if p(γ) ∝ γmγ−1 exp(−λγγ) then, using the same technique, we have after tedious calculus:

π(γ − Cγ |Ŷi, δ, β) ∝ γmγ−N−1 exp

{
−1

2

[
Mγ

γ
+M

′

γγ

]}
,

where Mγ =

N∑

i=0

(
D0i +D2iC

2
γ −D1iCγ

)
+

N∑

i=0

(
D0

′

i +D2
′

iCγ
2 −D1

′

iCγ

)
, Cγ = min

1≤i≤N

{
C2i

C1i
,
C2
′
i

C1
′
i

}

and M
′

γ = 2λγ +

N∑

i=1

D2i +D2
′

i with:

Di = C1iγ + C2i = µy1i (α(µ+ δzi) + µx1i + βx1iy2i) γ + (µy1i + βx1iy2i) (α(µ+ δzi) + µx1i) +

βx1iy2i, D0i = (µy1i + βx1iy2i)B(1)2
i + βx1iy2i(2B(1)2

i + B(1)iB(2)i), D1i = 2y1i(B(1)i + B(2)i) +

B(1)2
i , and D2i = y1i(µy1i + βx1iy2i). The remaining constants D0

′

i, D1
′

i, D2
′

i and D
′

i are obtained

from the above constants by exchanging x1i, y1i by x2i, y2i and α by 1−α respectively, and exchanging

B(1)i, B(2)i respectively by B(3)i and B(4)i.
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Appendix B. Gillespie’s algorithm

Gillespie’s algorithm as given in [25], is an exact simulation algorithm for continuous-time pure

Markov jump processes. In our case the implementation of the algorithm is based on two main

steps. The first is the draw of the waiting time τ until the occurrence of the next event, which is

exponentially distributed exp(λ) with rate λ =

11∑

k=1

λk. We have the rates λ1 = α(µN + δ(Z + 1)),

λ2 = (1−α)(µN + δ(Z + 1)) for birth of new susceptible, λ3 = β
IMSF

SM + IM
, λ4 = β

IFSM
SF + IF

infection

of a susceptible, λ5 = µSF , λ6 = µSF for death of a susceptible, λ7 = µIF , λ8 = µIF for death of

an infected, λ9 = γIM , λ10 = γIF recovery of an infected and λ11 = µZ death of a recovered. In the

second step, events are randomly selected according to the probabilities pk =
λk
λ

The algorithm is

implemented, until stopping criteria is fulfilled, as follows:

i- At t = 0, set initial population numbers (Sf (0), If (0), Sm(0), Im(0)) = (sf , if , sm, im).

ii- Choose τ from the exponential distribution exp(λ).

iii- Choose k = 1, ..., 11 according to the probabilities pk =
λk
λ

.

iv- Change the number of individuals to reflect the event k drawn in step iii-.

Update time t← t+ τ and go to step ii-.

Appendix C. Acceptance probability

The probability acceptance α(X?
(tj ,tj+ ), X̂(tj ,tj+ )) to accept a candidate path X?

(tj ,tj+ ) in favor of

X̂(tj ,tj+ ) (j is a multiple of m) is given by:

α(X?
(tj ,tj+ ), X̂(tj ,tj+ )) = 1 ∧

π
(
X?

(tj ,tj+ ), X̂−(tj ,tj+ )|X̂obs, θ
)
q
(
X̂(tj ,tj+ )|X?

(tj ,tj+ ), X̂−(tj ,tj+ ), X̂
obs, θ

)

π
(
X̂(tj ,tj+ ), X̂−(tj ,tj+ )|X̂obs, θ

)
q
(
X?

(tj ,tj+ )|X̂(tj ,tj+ ), X̂−(tj ,tj+ ), X̂obs, θ
) ,

(C1)

where X̂−(tj ,tj+ ) = X̂ \ X̂(tj ,tj+ ). Due to the Markov property, we obtain

π
(
X?

(tj ,tj+ ), X̂−(tj ,tj+ )|X̂obs, θ
)

π
(
X̂(tj ,tj+ ), X̂−(tj ,tj+ )|X̂obs, θ

) =

tj+−1∏

k=tj+1

π
(
X?
k+1|X?

k , θ
)

π
(
X̂k+1|X̂i, θ

)

=

tj+−1∏

k=tj+1

pθ
(
∆tk , X

?
k+1|X?

k

)

pθ

(
∆tk , X̂k+1|X̂i

) .
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The time step ∆tk in pθ are now supposed to be small enough such that an approximation by Euler

scheme is adopted, then pθ may be replaced by

π
(
X̂k+1|X̂i, θ

)
= N

(
X̂k+1|X̂i + µ(X̂i, θ)∆tk,Σ(X̂i, θ)∆tk

)
.

If the density of X̂k+1 is normal, X̂k+1 ∼ N
(
X̂k+1|X̂i + µ(X̂i, θ)∆tk,Σ(X̂i, θ)∆tk

)
for k =

j, . . . , j+ − 2 with X̂j = Xj , then the proposal density for X?
(tj ,tj+ ) becomes

q
(
X?

(tj ,tj+ )|X̂tj , X̂tj+ , θ
)

=

tj+−2∏

k=tj+1

q
(
X?
k+1|X?

k , θ
)

=

tj+−2∏

k=tj+1

π
(
X?
k+1|X?

k , θ
)

The acceptance probability for the proposal X?
(tj ,tj+ ) (C1) is reduced to the following expression

α(X?
(tj ,tj+ ), X̂(tj ,tj+ )) =1 ∧




tj+−1∏

k=tj+1

π
(
X?
k+1|X?

k , θ
)

π
(
X̂k+1|X̂k, θ

)






tj+−2∏

k=tj+1

π
(
X̂k+1|X̂K , θ

)

π
(
X?
k+1|X?

k , θ
)




=1 ∧
π
(
X?
tj+
|X?

tj+−1
, θ
)

π
(
X̂tj+ |X̂tj+−1

, θ
) .
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