
HAL Id: hal-03685799
https://hal.science/hal-03685799v1

Submitted on 2 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Access Control Models for Conversational User
Interfaces

Elena Planas, Salvador Martínez, Marco Brambilla, Jordi Cabot

To cite this version:
Elena Planas, Salvador Martínez, Marco Brambilla, Jordi Cabot. Towards Access Control Mod-
els for Conversational User Interfaces. EMMSAD 2022, Jun 2022, Leuven, Belgium. pp.310-317,
�10.1007/978-3-031-07475-2_21�. �hal-03685799�

https://hal.science/hal-03685799v1
https://hal.archives-ouvertes.fr

Towards Access Control Models for
Conversational User Interfaces?

Elena Planas1, Salvador Martínez2, Marco Brambilla3, and Jordi Cabot1,4

1 Universitat Oberta de Catalunya, Spain eplanash@uoc.edu,
2 IMT Atlantique, France salvador.martinez@imt-atlantique.fr,

3 Politecnico di Milano, Italy marco.brambilla@polimi.it,
4 ICREA, Spain jordi.cabot@icrea.cat

Abstract. Conversational User Interfaces (CUIs), such as chatbots, are
becoming a common component of many software systems and they are
evolving in many directions (including advanced features, often powered
by AI-based components). However, less attention has been paid to their
security aspects, such as access-control, which may pose a clear risk.
In this paper, we apply Model-Driven techniques to define more secure
CUIs. In particular, we propose a framework to integrate an Access-
Control protocol into the CUI specification and implementation through
a set of policy rules described using a Domain-Specific Language (DSL)
integrated with the core CUI language.

1 Introduction

Nowadays, user interfaces that allow fluid and natural communication between
humans and machines are gaining popularity [11]. Many of these interfaces, com-
monly referred as Conversational User Interfaces (CUIs), are becoming complex
software artifacts themselves, for instance, through AI-enhanced software compo-
nents that enable the adoption of Natural Language Processing (NLP) features.

CUIs are being increasingly adopted in various domains such as e-commerce,
customer service, eHealth or to support internal enterprise processes, among
others. Many of these scenarios are susceptible to arise security risks of both the
user and the system. For instance, we may need to add security when we need:

– To disable potential queries depending on the user (e.g. a bot for a Hu-
man Resource Intranet must be careful not to disclose private data, such as
salaries, unless the request comes from an authorized person).

– To execute different behaviours depending on the user. For instance, a CUI
embedded into an e-learning system will provide different answers depending
on the user who queries the marks (teacher or student).

– To provide different information precision for the same query depending on
the user privileges. For instance, a weather or financial CUI may provide a
more detailed answer to paying users.

? This work has been partially funded by the Spanish government (LOCOSS project
- PID2020-114615RB-I00 and BODI project - PDC2021-121404-I00).

2 E. Planas et al.

Several works [7, 12, 16] emphasize the importance of considering security,
and especially access-control as highlighted in the above scenarios, in the CUI
definition though no concrete solution is proposed.

In this line, this work proposes to enrich CUI definitions with access-control
primitives to enable the definition of more secure CUIs. Our solution is based
on the use of model-driven techniques to raise the abstraction level at which
the CUIs (and the access-control extensions) are defined. This facilitates the
generation of such secure CUIs on top of different development platforms. In
particular, we extend our generic CUI language [15] with new access-control
modeling primitives adapted to the CUI domain and show how this extended
models can be enforced as part of a policy evaluation component. As an example,
we discuss such implementation on top of the Xatkit open source framework [6].

The rest of the paper is structured as follows: Section 2 provides the back-
ground about CUIs and access-control; Section 3 describes the framework we
propose to provide model-based access-control for CUIs; Section 4 summarizes
the related work; and finally Section 5 concludes.

2 Background

Conversational User Interfaces (CUIs) aim to emulate a conversation with
a real human. The most relevant examples of CUIs are the chatbots and voicebots.
A bot wraps a CUI as a key component but complements it with a behavior
specification that defines how the bot should react to a given user request. The
conversation capabilities of a bot are usually designed as a set of intents, where
each intent represents a possible user’s goal. The bot awaits for its CUI front-
end to match the user’s input text (called utterance) with one of the intents the
bot implements. The matching phase may rely on external Intent Recognition
Providers (e.g. DialogFlow, Amazon Lex, Watson Assistant). When there is a
match, the bot back-end executes the required behaviour, optionally calling ex-
ternal services; and finally, the bot produces a response that it is returned to the
user. For non-trivial bots, the behaviour is modeled using a kind of state-machine
expressing the valid interaction flows between the users and the bot.

Access-control [18] is a mechanism aimed at assuring that the resources
within a given software system are available only to authorized parties, thus
granting Confidentiality and Integrity properties on resources. Basically, access-
control consists of assigning subjects (e.g., system users) the permission to
perform actions (e.g., read, write, connect) on resources (e.g., files, services).
Access-control policies are a pervasive mechanism in current information sys-
tems, and may be specified according to many different models and languages,
such as Mandatory Access-Control (MAC) [2], Discretionary Access-Control
(DAC) [2], Attribute-Based Access-Control [9], and Role-based Access-Control
(RBAC) [17]. In this work we focus on RBAC, where permissions are not directly
assigned to users (which would be time-consuming and error-prone in large sys-
tems with many users), but granted to roles. Then, users are assigned to one
or more roles, thus acquiring the respective permissions. To ease the adminis-

Towards Access Control Models for Conversational User Interfaces 3

tration of RBAC security policies, roles may be organized in hierarchies where
permissions are inherited and possibly added to the more specific roles.

3 Access-control framework for CUIs

Fig. 1 summarizes our framework to integrate access-control on CUIs, consisting
of: (1) a design time component (RBAC Policy rules in the figure) to enable
the specification of the bot authorization policy (see Sec. 3.1); and (2) a runtime
component (PEP and PDP in the figure) in charge of evaluating and enforcing
that policy upon the resource’s access from users (see Sec. 3.2).

Fig. 1. Framework overview.

3.1 Policy specification

The authorization policy is expressed via a policy language. To this end, in this
paper we propose to extend a generic CUI language [15] with new modeling
primitives adding access-control semantics to CUIs. As any DSL, this extended
access-control-CUI DSL is defined through two main components [10]: (i) an
abstract syntax (metamodel) which specifies the language concepts and their
relationships, and (ii) a concrete syntax which provides a specific (textual or
graphical) representation to specify models conforming to the abstract syntax.

Fig. 2 depicts our proposal for the language metamodel, combining all the
RBAC basic concepts with CUIs specific elements. In the following, we detail its
main concepts.

CUI metamodel. The CUI-specific metamodel part (coloured in grey in Fig.
2) is a simplified version from the metamodel previously defined by the authors
in [15] and describes the set of concepts used for modeling the intent definitions
of a bot and its execution logic. The main elements of this metamodel are:

Intents. The metaclass Intent represents the possible user’s goals when in-
teracting with the CUI. Intents, which are a specific type of Event (as bot

4 E. Planas et al.

Fig. 2. Access-control CUIs metamodel.

interactions can also be triggered by external events), can optionally have Pa-
rameters which allow defining specific characteristics of the Intent. On the other
hand, intents can be triggered using several devices.

States. Following the state-machine formalism, this metaclass models a par-
ticular behavioral state in which the bot stays until a new intent triggers a
transition to another state.

Transitions. The metaclass Transition represents the potential bot changes
from one state to another. We distinguish two types of Transitions: Automatic-
Transitions (triggered automatically) and GuardedTransitions (triggered when
a specific guard holds). A GuardedTransition may be triggered by one or more
Events and include a Constraint to be satisfied for the transition to occur. This
allows a fine-grained control over the firing of the Transition.

Towards Access Control Models for Conversational User Interfaces 5

RBAC metamodel. The RBAC metamodel part is an extended version of the
RBAC standard mentioned in Section 2 to adapt it to CUIs. This is done through
the definition of a set of permissions which specify which roles are allowed to
perform a specific action (a match to an intent or a transition navigation to a
state) on a resource (intent, transition, or state). Its main elements are:

Resources. The metaclass Resource represents the objects that can be ac-
cessed within the CUI and that we may want to protect. In the context of CUIs,
resources are basically of three types: Intents, Transitions, and States. Protect-
ing intents will allow hiding part of the CUI’s intents to specific roles. This may
be necessary, for instance, to prevent specific users from accessing some intents.
On the other hand, protecting transitions and states will allow, once an intent
has been matched, to execute different behaviors depending on the role who trig-
gered the intent. This may be useful, for instance, to provide different answers
for an intent depending on the role of the user.

Subjects. The metaclass Subject represents the active entities which interact
with the CUI. Following a RBAC approach, we define two kinds of subjects:
Users and Roles, where users get roles assigned and role inheritance is supported.

Actions. The metaclass Action represents the access to the resources that
may be performed by the subjects of the CUI. In this context, we consider
the possible actions performed by subjects are Matchings (to an intent) and
TransitionNavigations (to a state of the state machine). The latter enables a
more fine-grained control to the potential user interaction when needed.

Permissions. The metaclass Permission represents the right to perform a
given action (a match or a transition navigation) on a given resource (an intent,
transition or state) granted to a specific role (corresponding to a CUI user).

Constraints. The metaclass Constraint restricts the permission to execute
the corresponding action only when certain conditions hold. The metaclass Role-
BasedConstraint, which extends the original RBAC standard model combining
a concept from the ABAC model, represents specific context-based constraints
(such as geographic location or the used device) to restrict the permissions.

Concrete syntax. In order to complete the definition of our DSL, we could
provide a textual concrete syntax, a graphical one or a combination. We show
an example of a textual syntax in Section 3.3.

3.2 Policy evaluation and enforcement

Given an RBAC policy, our framework needs to combine a number of runtime
components to enforce it. The recommendation in the implementation of modern
policy frameworks is separating the infrastructure logic from the application
logic by using a reference monitor architecture [1]. This architecture consists
in two basic components: a Policy Enforcement Point (PEP) and a Policy
Decision Point (PDP). Every access action requested by an user is intercepted
by the PEP that, in turn, forwards it to the PDP to yield an access decision.

Our framework follows this architecture. As Fig. 1 shows, access requests to
the bot resources (intents, transitions and states) are intercepted. These requests

6 E. Planas et al.

are then forwarded to the PDP, which reads the policy rules to resolve the access.
The access decision yielded by the PDP is returned to the bot through the PEP.

3.3 Proof of concept

In order to show the feasibility of our approach, we discuss in this section a
prototype implementation of our framework on top of the Xatkit framework [6]
and illustrate it with a simple weather chatbot example5.

We have first added the textual concrete syntax extensions needed to model
the new CUI metaclasses as part of a Xatkit specification. Listing 1.1 shows a
snippet of the authorization policy specification which describes that the intent
Get Historical Weather can be only matched by registered users. To simplify
the definition of more complex CUIs we could provide default permission con-
figurations (i.e. enabling or disabling access unless explicitly stated otherwise)
and define GRANT ALL level permissions (i.e. authorization to match all avail-
able intents). Proper parsing of these textual syntactic sugar shortcuts would be
translated into equivalent metamodel instantiations.

1 Permiss ion p1 (
2 Role unreg i s t e r edUse r
3 Resource GetHis tor i ca lWeather Intent
4 Action matching
5) −> Deny
6 Permiss ion p2 (
7 Role r e g i s t e r edUs e r
8 Resource GetHis tor i ca lWeather Intent
9 Action matching

10) −> Allow

Listing 1.1. Policy example for a weather chatbot.

We have then implemented the policy evaluation and enforcement. There are
several possible strategies to this end, also depending on whether the chatbot
designer has internal access to the chatbot engine.

When modifying the execution logic of the chatbot engine is possible, we
could embed the security checks as part of the engine itself. These checks would
be added as standard elements of the chatbot execution logic and be implicitly
verified upon every single intent matching or transition navigation request. But
in most scenarios, chatbot designers will not have this option as most chatbot
platforms are not open source or are hidden behind an API offered to deploy the
bot and interact with the engine. In these cases, access-control must be explicitly
added to the individual chatbot logic. Authorization verification becomes now
explicit but, on the other hand, it can be easily added on top of many more
chatbot engines.

This is the strategy shown in Listing 1.2. In this example, we show how the
transition from an initial Awaiting input state to the Print historical weather
state will only be triggered when the user utterance matches the Get Historical
Weather intent above and the user is authorized to match such intent.
5 https://github.com/elenaplanas/xatkit-RBACBot

Towards Access Control Models for Conversational User Interfaces 7

1 await ingInput
2 . when(i n t e n t I s (GetHis tor i ca lWeather Intent)
3 . and (c −> po l i cyRu l e s . checkPermiss ion (user . getRole () . getName () ,
4 "matching" , " GetHis tor i ca lWeather Intent "))) . moveTo(pr in tH i s to r i ca lWeathe r)

Listing 1.2. Policy Enforcement Point (PEP) implementation.

Note that, even if access-control evaluation and enforcement is now explicit, it
could still be automatically added to the concerned transitions. Given a security
policy such as the one in Listing 1.1 and a plain chatbot definition, we could
automatically instrument all relevant transitions with the proper access-control
checks based on the policy definition.

4 Related Work

Several authors have expressed the need to secure chatbots, especially in critical
domains such as banking [12] or health [16]. In the same line, [7] even proposes
chatbot providers to attach an SLA to their chatbots, including security aspects.
Indeed, as pointed out in [4, 5, 8, 19], chatbots are concerned by (and should be
tested against) a number of security concerns. While these works highlight the
need to integrate security aspects, they do not propose concrete and actionable
solutions. Even for industrial tools (like DialogFlow, Amazon Lex or Watson
Assistant) access-control is focused on the management of the permissions to
collaborate in the bot definition. At most, you can also define who can execute
the bot, with no further fine-grained permission levels.

This limitation is shared by proposals focusing on chatbot definition lan-
guages, such as [6, 14, 15], which do not include modeling primitives to define
the access-control policies even if modeling of access-control policies is a subject
with a long tradition in the MDE community [3], with some notable examples like
SecureUML [13] which extends UML with an RBAC metamodel that serves as
inspiration for our own proposal. To sum up, we believe ours is the first approach
to integrate access-control as first-class citizen in a bot definition language.

5 Conclusions

In this paper we have proposed a new model-driven framework for enhancing the
security of CUIs by integrating and adapting the semantics of the Role Based
Access-Control (RBAC) protocol to Conversational User Interfaces (CUIs). In
particular, we have extended a generic CUI metamodel with RBAC primitives
that enable the definition of fine-grained access control policies for all key CUI
elements (such as intents, states and transitions). We also provided a preliminary
proof of concept to demonstrate the feasibility of our approach.

As further work we plan to enrich the framework with other access-control
models and improve the validation and tool support of the approach. Moreover,
we see this work is a first step towards the modeling of other security-related
aspects for CUIs, such as DDoS, privacy, encryption, and so on.

8 E. Planas et al.

References

1. Information technology - Open Systems Interconnection - Security frameworks for
open systems: Access control framework (ISO-10181-3/X.812) (1996)

2. 5200.28-STD, D.: Trusted Computer System Evaluation Criteria. Dod Computer
Security Center (1985)

3. Basin, D., Clavel, M., Egea, M.: A decade of model-driven security. In: Proc. of the
16th ACM symposium on Access control models and technologies. pp. 1–10 (2011)

4. Bozic, J., Wotawa, F.: Security testing for chatbots. In: Testing Software and Sys-
tems (2018)

5. Cabot, J., Burgueño, L., Clarisó, R., Daniel, G., Perianez-Pascual, J., Rodríguez-
Echeverría, R.: Testing challenges for nlp-intensive bots. In: 3rd IEEE/ACM Int.
Workshop on Bots in Software Engineering. IEEE (2021)

6. Daniel, G., Cabot, J., Deruelle, L., Derras, M.: Xatkit: A multimodal low-code
chatbot development framework. IEEE Access 8 (2020)

7. Gondaliya, K., Butakov, S., Zavarsky, P.: SLA as a mechanism to manage risks
related to chatbot services. In: 2020 IEEE 6th Int. Conference on Big Data Security
on Cloud (BigDataSecurity) (2020)

8. Hasal, M., Nowaková, J., Ahmed Saghair, K., Abdulla, H., Snášel, V., Ogiela, L.:
Chatbots: Security, privacy, data protection, and social aspects. Concurrency and
Computation: Practice and Experience 33(19) (2021)

9. Hu, V.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., Lang, A.J., Cogdell, M.M.,
Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K., et al.: Guide to attribute based
access control (abac) definition and considerations (draft). NIST special publica-
tion 800(162) (2013)

10. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Pearson Education (2008)

11. Klopfenstein, L.C., Delpriori, S., Malatini, S., Bogliolo, A.: The rise of bots: A
survey of conversational interfaces, patterns, and paradigms. In: Conference on
Designing Interactive Systems,. ACM (2017)

12. Lai, S.T., Leu, F.Y., Lin, J.W.: A banking chatbot security control procedure for
protecting user data security and privacy. In: Advances on Broadband and Wireless
Computing, Communication and Applications (2019)

13. Lodderstedt, T., Basin, D., Doser, J.: Secureuml: A uml-based modeling language
for model-driven security. In: International Conference on the Unified Modeling
Language. pp. 426–441. Springer (2002)

14. Pérez-Soler, S., Guerra, E., de Lara, J.: Model-driven chatbot development. In:
Conceptual Modeling (2020)

15. Planas, E., Daniel, G., Brambilla, M., Cabot, J.: Towards a model-driven approach
for multiexperience AI-based user interfaces. Soft. and Syst. Modeling 20(4) (2021)

16. Roca, S., Sancho, J., García, J., Álvaro Alesanco: Microservice chatbot architecture
for chronic patient support. Journal of Biomedical Informatics 102 (2020)

17. Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST Model for Role-Based Access Con-
trol: Towards a Unified Standard. In: RBAC’00. ACM (2000)

18. Sandhu, R.S., Samarati, P.: Access Control: Principle and Practice. Communica-
tions Magazine, IEEE 32(9) (1994)

19. Ye, W., Li, Q.: Chatbot security and privacy in the age of personal assistants. In:
2020 IEEE/ACM Symposium on Edge Computing (SEC) (2020)

