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Abstract

Given a 3-uniform hypergraph H having a set V of vertices, and a
set of hyperedges T ⊂ P(V ), whose elements have cardinality three
each, a null labelling is an assignment of ±1 to the hyperedges such
that each vertex belongs to the same number of hyperedges labelled
+1 and −1. A sufficient condition for the existence of a null labelling
of H (proved in [6]) is a Hamiltonian cycle in its 2-intersection graph.
The notion of 2-intersection graph generalizes that of intersection graph
of an (hyper)graph and extends its effectiveness. The present study
first shows that this sufficient condition for the existence of a null
labelling in H can not be weakened by requiring only the connect-
edness of the 2-intersection graph. Then some interesting properties
related to their clique configurations are proved. Finally, the main
result is proved, the NP-completeness of this characterization and,
as a consequence, of the construction of the related 3-hypergraphs.
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1 Introduction

The degree sequence of a graph or hypergraph provides useful information
about its geometrical and topological properties. When a graph or hypergraph
has been constructed for a given degree sequence, we say that it has been
reconstructed. A longstanding problem concerns the use of degree sequences for
the reconstruction of the related graphs or hypergraphs. In 1960, in a milestone
paper, Erdös and Gallai [7] characterized the degree sequences of simple graphs
and set the basis for the successive definition of fast reconstruction algorithms.

These results can not be easily generalized to hypergraphs, even in the
simplest form of the k-uniform ones, with k > 2. In recent years, many different
reconstruction strategies have been considered, most of them relying on a
general result of Dewdney in [4], concerning relevant sub-classes of k-uniform
hypergraphs (see [1, 3, 9, 10]).

Recently, Deza et al. proved the NP -completeness of the reconstruction
problem of 3-uniform hypergraphs from their degree sequences. So, the study
of the classes of hypergraphs whose reconstruction can be performed in poly-
nomial time becomes more relevant, as does the characteristics of the solutions
related to a single degree sequence.

As an example, in [15], the authors defined a general operator to move
among all the 3-hypergraphs sharing the same degree sequence and they intro-
duced the notion of null-labelling obtained as the symmetric difference of the
edges of any two 3-hypergraphs. In [8], this notion, restricted to 3-hypergraphs,
is studied through their intersection graph and a sufficient condition for its
existence was provided.

Finally, in [6], it was shown that as the number of edges of the related 3-
hypergraph increases, the usefulness of the intersection graph decreases, and
the stronger notion of 2-intersection graph was introduced. In particular, the
presence of an Hamiltonian cycle in the 2-intersection graph guarantees the
existence of, and allows one to compute, the null labelling of the related 3-
hypergraph.

Our study relies on these results and aims to deepen the knowledge of the
structural properties of 2-intersection graphs in order to enhance their use for
the null labelling problem. We are concerned with the question of when, given
a graph G, it is possible to find a 3-hypergraph H such that I2(H) ∼= G.
If it is possible, we say that G is reconstructible or equivalently, it has the
2-intersection property. In the final section of the paper we prove that the
reconstruction problem is NP -complete.
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2 Definitions and preliminary results

Let us recall some basic definitions for graph and hypergraphs, borrowing
the notation from [2]. A graph G is defined as a pair G = (V,E) such that
V = {v1, . . . , vn} is the set of vertices and E is a subset of pairs of vertices
called edges. The notion of graph admits a natural generalization to hyper-
graph by removing the constraint on the cardinality of the edges: H = (V,E)
is a hypergraph with V = {v1, . . . , vn} the set of vertices and E a collection
of subsets of vertices called hyperedges, or briefly edges, when no misunder-
standing may arise. We also choose to abbreviate the vertex notation vi with
its only index i, when possible.

In the sequel, we will consider only graphs and hypergraphs that are sim-
ple, i.e., they do not allow singleton (hyper)edges or (hyper)edges that are
contained in or equal to other edges. The degree of a vertex v ∈ V is the num-
ber of (hyper)edges containing v. The degree sequence d = (d1, d2, . . . , dn) of a
(hyper)graph is the list of its vertex degrees usually arranged in non-increasing
order. We focus on a remarkable class of hypergraphs, i.e., k-uniform hyper-
graphs or simply k-hypergraphs, whose hyperedges have fixed cardinality k.
In particular we are going to consider 3-hypergraphs.

Given a (hyper)graph, we can assign a +1 or −1 label to each (hyper)edge,
resulting in positive and negative degrees of the vertices.

An assignment of ±1 to the (hyper)edges of a (hyper)graph is a null
labelling if, for each vertex v, the sum d(v) of the labels of its incident edges
equals 0. A (hyper)graph that admits a null labelling is said to be a null
(hyper)graph.

The study of null (hyper)graphs is strictly related to their reconstruction
from the degree sequences. Let H1 = (V,E1) and H2 = (V,E2) be two hyper-
graphs with the same vertex set V , and same degree sequence (d1, d2, . . . , dn).
Assign +1 to the triples of H1 and −1 to the triples of H2, and construct
H1⊕H2 = (V, (E1∪E2)\(E1∩E2)). It is a hypergraph with a null labelling. This
raises the question of whether there is a characterization of null (hyper)graphs.
Concerning graphs, the following lemma characterizes those with null labelling.

Lemma 1 A graph G has a null labelling if and only if every connected component
is an Eulerian graph with an even number of edges.

On the other hand, for k-hypergraphs with k ≥ 3, it is shown in [8] that the
problem of finding a null labelling even for the simplest case of 3-hypergraphs
is NP-hard.

An obvious necessary condition for a (hyper)graph to have a null labelling
is that each vertex must have even degree, i.e., it is an even (hyper)graph.

So, the characterization of subclasses of 3-hypergraphs having a null
labelling acquires relevance. In [8], an exhaustive computation of the simplest
cases supported the following
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Conjecture 1. All connected even 3-hypergraphs on n vertices with more
than 1

2

(
n
3

)
edges have a null labelling.

Note that
(
n
3

)
is the maximum number of edges a (simple) 3-hypergraph

on n vertices admits.
A valuable tool to inspect the characteristics of hypergraphs in general and,

in our framework of 3-hypergraphs, is their intersection graph. The intersection
graph of a 3-hypergraph H is denoted I(H), its vertices are the hyperedges of
H and two hyperedges are adjacent, i.e., they are joined by an edge, if their
intersection is non-empty. This is an extension of the idea of a line graph to
3-hypergraphs. In [8], the following result has been proved

Theorem 1 Let H be a connected, even 3-hypergraph, in which every vertex has
degree two. Then H has a null labelling if and only if I(H) is bipartite.

However, the intersection graphs dramatically collapse into complete
graphs when the number of edges of the related 3-hypergraph increases, so
in [6] the notion of 2-intersection graph was introduced. The 2-intersection
graph of a 3-hypergraph H is denoted I2(H) = (V2H , E2H). Its vertices
V2H = {ve1 , . . . , vem} represents the hyperedges E = {e1, . . . , em} of H. Two
vertices vei , vej ∈ V2H are adjacent, i.e., {vei , vej} ∈ E2H , if the related hyper-
edges ei and ej share two vertices in H (see Example 1 and the related Fig. 1).
In the sequel, we label the edge {vei , vej} ∈ E2H with the indices of the vertices
that are shared by ei and ej , if needed.

The idea of the 2-intersection graph is related to Steiner triple systems, in
which any two triplets can intersect in at most one vertex. In the diagrams
following, a 3-hypergraph is represented by its Levi graph, that is, a bipartite
graph of vertices versus hyperedges, in which each hyperedge is represented by
a vertex shaded grey, and of degree three.

Example 1. Consider the 3-hypergraph H = (V,E), with V = (v1, . . . , v5)
and E = {{v1, v3, v5}, {v2, v3, v5}, {v2, v3, v4}, {v3, v4, v5}} as depicted in
Fig. 1, top (a) (vertex vi is indicated by its index i). The related I2(H) is
in Fig. 1, bottom (a). It has |E |= 4 vertices, labelled by the corresponding
triplets of the hyperedges of H, and five edges, labelled by the pair of vertices
they contain. Furthermore, the common label {3, 5} is assigned to the gray
triangle clique.

The following property is straightforward:

Property 1. The edges of a 3-hypergraph H sharing the same pair of vertices
determine a clique in the 2-intersection graph I2(H).

In the sequel, we extend the common label of the edges of a clique of a
2-intersection graph to label the clique itself.
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Since each edge of H has three pairs of vertices to share, the following holds

Property 2. Given a 3-hypergraph H, each vertex of I2(H) belongs to at
most three maximal cliques.

Our main focus is to study the properties of the 2−intersection graph and
its connection with the null labelling problem. Moreover, we prove that, given
a graph G, deciding if G is the 2-intersection graph of some 3-hypergraph is
an NP-complete problem. Therefore, we consider the following questions.

Question 1: is there a subclass of null 3-hypergraphs whose null labelling
relies on properties of the 2-intersection graphs (recall from [8] that the
problem is NP-complete in its general form)?

Question 2: given a graph G, is it possible to decide in polynomial time
whether there exists a 3-hypergraph H such that G ∼= I2(H)?

The next section presents a brief review of [6], i.e. Question 1, while
Section 4 will answer Question 2 by providing a proof of its NP-completeness.

3 A subclass of 3-hypergraphs having null
labelling

Recall that in [6] the authors proved the following theorem.

Theorem 2 Let H be a 3-hypergraph. If the 2-intersection graph I2(H) is
Hamiltonian, then H admits a null labelling.

The proof is based on an iterative algorithm that, moving along the ver-
tices of the 2-intersection graph, reduces step by step the signed degree of the
vertices, considered by absolute value. The presence of an Hamiltonian cycle
guarantees that all the vertices can be reached by the algorithm.

Define the n-intersection graph of a k-hypergraph H as the graph G in
which the vertices are the hyperedges of H and two vertices form an edge
if their hyperedges share at least n vertices, and denote it by In(H). The
following obvious generalization of Theorem 2 holds.

Corollary 1 Let H be a k-hypergraph. If Ik−1(H) is Hamiltonian, then H admits
a null labelling.

Theorem 2 is a step towards proving Conjecture 1. However, an easy check
reveals that not all the 3-hypergraphs with more than half the possible edges
and with a null labelling, have a Hamiltonian cycle in I2(H). On the other
hand, after generating several 3-hypergraphs on 6, 7 and 8 vertices, we noticed
that the connectedness of the graph I2(H) seems to be related to the presence
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of a null labelling in H. This property could extend the results in Theorem 2.
Unfortunately, successive computations show that I2(H) being connected is
not sufficient to provide a null labelling of H as shown by the following

Example 2. Consider the following even 3-hypergraph

H = {159, 269, 147, 369, 459, 146, 368, 157, 156, 189, 279, 246, 379, 239}.

It is easy to check that H does not have a null labelling although its
2-intersection graph I2(H) is connected.

Remark 1. Connectedness of the 2-intersection graph does not characterize
the set of 3-hypergraphs meeting the lower bound in Conjecture 1 as shown
by the following example.

Example 3. The hypergraph H defined as

E = {134, 245, 247, 125, 567, 167, 146, 157, 357, 135, 347, 467, 127, 236, 257, 457, 156, 345}

has 7 vertices and 18 hyperedges. It satisfies Conjecture 1 as shown by the
following null labelling

[1, 1, 1, 1, 1,−1,−1, 1, 1,−1,−1,−1,−1,−1]

However it has a disconnected I2(H).

Next, we show an extension of Theorem 2. The idea comes from the fol-
lowing observation: consider an even graph G with n connected components
such that each component has an even number of edges. We can find a null
labelling of G by considering, for each component, an Eulerian cycle, assign-
ing alternatively ±1 to its edges. Note that, if we have an intersection graph
I(G) with n components, each having an Hamiltonian cycle, in the same fash-
ion, we can alternately assign ±1 to the vertices of each Hamiltonian cycle to
obtain a null labelling. This same property holds for 3-hypergraphs.

Theorem 3 Let H be a 3-hypergraph whose 2-intersection graph G = I2(H) has n
connected components G1, . . . , Gn. If each connected component Gi, with 1 ≤ i ≤ n,
is Hamiltonian, and the sub-3−hypergraph Hi ⊂ H such that Gi = I2(Hi) is even,
then H admits a null labelling.

Proof Since each Gi is Hamiltonian and comes from an even sub-3-hypergraph Hi,
we can apply Theorem 2 to it, obtaining a null labelling of Hi. The null labelling of
H is obtained by the union of the null labellings of these sub-hypergraphs. �

Note that H may be also a connected 3−hypergraph, but the requirement of
the previous theorem asks that its 2−intersection graph has to be disconnected.
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Furthermore, each of its components comes from an even sub−3−hypergraph
of H.

4 The 2-Intersection-Graph Problem

In this section we provide some structural properties of 2-intersection graphs
that are related to 3-hypergraphs, with the aim of characterizing them and
determining the computational complexity of this problem.

Recall that a graph G has the 2-intersection property if it is the 2-
intersection graph of a 3-hypergraph H.

So, we approach the problem of the existence of a 3-hypergraph H whose
2-intersection graph is G, i.e., G ∼= I2(H), by first observing that Property 1
does not characterize the cliques of I2(H). In fact, there may appear triangles
(K3 cliques) whose edges do not share a common label. In order to distinguish
them from the triangles whose edges have a common label, we indicate the
first and the second types as T -triangles and K-triangles, respectively.

More precisely, the vertices {v1, v2, v3} of a T -triangle have the general
form v1 = {x, y, z}, v2 = {x, y, t}, and v3 = {x, z, t} — only four vertices of H
are used; while those of a K triangle (with common label {x, y}) have the form
v1 = {x, y, z}, v2 = {x, y, t}, and v3 = {x, y, r} — five vertices of H are used.

Figure 1, (a), shows a configuration of a 2-intersection graph where a T -
triangle and a K-triangle live together and share an edge. The T -triangle is
shaded gray.

t1t2.pdf

Fig. 1 (a) example of a T and a K sharing 2 vertices. (b) example of S.

With the previous definitions, a first obvious necessary condition for a
graph to be reconstructible is described in the following lemma.

Lemma 2 If G is reconstructible, then every vertex of G must belong to at most
three maximal cliques, such that the vertices of each of them have in common the
same couple of labels. Furthermore, these maximal cliques can be joined by at most
two non-adjacent T -triangles as shown in Fig. 2.

Proof A clique in I2(H) can derive from a shared pair or it can be a triangle (in
which two pairs are used). In all cases, since a vertex of I2(H) has only three pairs,
it cannot belong to more than three cliques. However, note that the configuration in
which a point is shared by four triangles is reconstructible (see Fig. 2).
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{1,2,3}

{1,2,4}

{2,4,5}

{2,5,6}

{1,5,6}

{1,2,5}

K

T K

T

{1,5,7}

K

Fig. 2 Reconstruction of the configuration in which a point belongs to 4 triangles.

The reason is simple: the edges of the T triangles shared with the K triangles
count as a unique pair containing the central point. Therefore, it shares exactly three
pairs, as desired. Note that the configuration is reconstructible even if the K triangles
are replaced by any clique of order at least four. �

We encounter a similar situation when dealing with K4 cliques: Figure 1,
(b), shows a clique that may be present in a 2-intersection graph and whose
edges do not share a common label. This clique is composed of four intersecting
T -triangles. It arises from four vertices of H for which all possible triples occur
as hyperedges. So, maintaining the notation introduced for triangles, we denote
such a square by S, and we differentiate it from the K-square, i.e., the 4-clique
whose edges all have a common label.

Property 3. Let C1 and C2 be two cliques of I2(H). If |C1 ∩ C2 |≥ 3 then
C1 = C2.

Proof Let C = {v1, v2, v3} ⊆ C1 ∩ C2. We proceed by contradiction assuming that
there exist two non adjacent vertices x ∈ C1 and y ∈ C2 such that C′1 = C ∪ x and
C′2 = C ∪ y are two different cliques. The following two cases arise (see cases (a) and
(b) in Fig. 1).

C is a T -triangle: we suppose w.l.g. v1 = {1, 2, 3}, v2 = {1, 2, 4}, and v3 = {1, 3, 4}.
Since C′1 is a clique, then x = {2, 3, 4} is the only possibility for x. The same reasoning
holds for y, so it follows x = y, against the hypothesis.

C is a K-triangle: we suppose w.l.g. v1 = {1, 2, 3}, v2 = {1, 2, 4}, and v3 = {1, 2, 5}.
Both x and y have to contain the pair {1, 2}, shared by all the elements of C, so
there exists an edge joining them, against the hypothesis.

�

In the proof of Property 3, we note that if C is a K-triangle, then only two
of its elements are enough to determine the common pair {1, 2}, so that:

Corollary 2 Let C1 and C2 be two cliques of I2(H) not containing any T -triangle.
If | C1 ∩ C2 |≥ 2 then C1 = C2.
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Corollary 3 Let C1 and C2 be two (maximal) cliques of I2(H). If |C1 ∩ C2 |= 2,
then either C1 or C2, but not both, are T -triangles.

We emphasize that, if both C1 and C2 are T -triangles such that |C1∩C2 |=
2, then they are not maximal, i.e., they form an S-square as in Fig. 1, (b).

The following example shows that S is the biggest clique that does not
admit a common pair in all of its edges.

Example 4. Consider a clique K5 of a 2-intersection graph. It is not possible
to label its vertices without a common pair. In fact, let us start by labelling
a vertex with {1, 2, 3} (see Fig. 3) and one of its neighbours with {1, 2, 4}.
Suppose that we label a third vertex with a pair different from {1, 2}, say
{1, 3, 4}. Then we have only one label possible for the fourth vertex, namely
{2, 3, 4}. We observe that there does not exist any label for the fifth vertex,
since all possible pairs have been already used. So a labelling of the vertices of
K5 without a common pair is not possible.

{1,2,3}

{1,2,4}

{1,3,4}

{2,3,4}

?

Fig. 3 The labelling of the clique K5 used in Example 4.

The same argument can be used to prove that any clique of order greater
than four has the edges labelled with the same pair of indices. Many other
conditions can help to restrict the cases when G is a 2-intersection graph.

Theorem 4 Let G be a graph containing two distinct cliques of order n and m and
intersecting in 2 ≤ i ≤ min(m,n)− 1 vertices. Moreover, assume that the condition
of Lemma 2 holds. Then the following statements hold:

(i) if n = 3 and m ≥ 3, then G is reconstructible;

(ii) let n = 4 and m ≥ 4, then G is reconstructible if and only if i = 2;

(iii) if n > 4 and m > 5, then G is not reconstructible.

Proof (i): by hypothesis, i = 2, so the two cliques must intersect in two vertices.
From Property 3 and the corollaries, a clique Km, with m ≥ 3 shares a com-
mon edge, say with label {x, y}, with a T -triangle. We proceed in labelling the
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three vertices of T by {x, y, z1}, {x, y, z2}, {x, z1, z2}. Finally, we assign the labels
{x, y, z3}, {x, y, z4}, . . . , {x, y, zm} to the remaining vertices of Km. The labels turn
out to be the hyperedges of a 3-hypergraph H on {x, y, z1, . . . , zn} vertices such that
I2(H) = G, as desired.

(ii): from Property 3 and corollaries, if i = 2, then the edge shared by the two
cliques must intersect a triangle T . Let T be contained in the first clique whose
configuration turns out to be S. The other clique is forced to have a common label of
the edges, since it can not contain a second T -triangle. So, a labelling similar to that
defined in (i) is allowed, providing a 3-hypergraph whose 2-intersection graph is G.

Finally, the case i = 3 causes the collapse of the two cliques into one single clique.

(iii): consider two cliques of order greater than four. Property 3 states that if
they share two or more vertices, then they are the same clique, so G is not a 2-
intersection graph. �

The above result can be naturally extended to graphs having more than
two cliques, by inspecting the intersections between pairs of them. A labelling
of the edges and the determination of a 3-hypergraph compatible with them
can be performed.

However, there are several classes of graphs that can be immediately
detected as 2-intersection graphs due to their geometric properties. For
them, some simple edge labellings lead to the determination of a related
3-hypergraph. One class is the cycle graphs, i.e. a sequence of consecutive
2-cliques.

First, we observe that a cycle of length k admits a labelling involving k
integer indices at most. In fact, we start by labelling a randomly chosen vertex
v1 with {1, 2, 3}, then we visit the remaining vertices v2, . . . , vk of the cycle
according to a chosen direction and we label the ith one, where 1 < i < k− 1,
with {i, i + 1, i + 2}, so that {i, i + 1} is the pair shared by vi−1 and vi, i.e.,
the label of the edge joining them. Finally, vertices vk−1 and vk are labelled
with {1, k, k + 1} and {1, 2, k}, respectively. An example is shown in Fig. 4.

Note that the labelling of the first k− 1 vertices of the cycle defined above
can be used to label a path of length k − 1 involving k integer indices.

{1,2,3} {2,3,4}

{3,4,5}

{4,5,6}{1,5,6}

{1,2,6}

Fig. 4 The labelling of a cycle of length 6.
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5 Deciding if a graph has the 2-intersection
property is NP -hard

In this section it is shown that it is NP -complete to determine whether an
arbitrary graph G is the 2-intersection graph of a 3-hypergraph. We refer to
this problem as then 2INT problem. We reduce from the following variant of
the 3-SAT problem (L02 in [11])

MAX-3-SAT:

Instance: a set U of variables and a set C of clauses over U such that each
clause c ∈ C has | c |= 3 literals, where a literal corresponding to a variable
x is either x or x. Each variable, as represented by a literal, appears at most
three times in the clauses. Furthermore, no three occurrences of a variable are
the same literal.
Question: Is there a satisfying truth assignment for C?

First of all, note that this problem is NP−complete.

Lemma 3 MAX-3-SAT is NP-complete.

Proof We reduce 3-SAT to MAX-3-SAT. Consider an instance of 3-SAT, in which
a variable x appears k times, either as x or x. Replace the first instance with x1,
the second with x2 and so on up to xk (possibly the complements). Then add
(x1 ∨ x2) ∧ (x2 ∨ x3) . . . (xk ∨ x1). This ensures that either all xi are true, or all are
false. Note that each xi has two literals occurring in this expression, and one more
literal occurring in the clauses of 3-SAT, giving three occurrences in total. Doing
the same for the others literals we obtain an instance of 3-SAT, but in which each
variable appears at most three times, and no three occurrences of a variable are the
same literal. �

Given an instance C of MAX-3-SAT, we construct a graph GC so that
there is a solution of the MAX-3-SAT instance if and only if GC is a 2-
intersection graph. This will imply that 2INT is NP-complete. We remark that
each solution of C will be achieved by one of the possible labellings of GC that
determines a 3-hypergraph H such that G = I2(H).

To achieve the objective, we need to define some graph configurations that
have the 2-intersection property and that are useful to model variables and
clauses of 3-SAT. Each vertex of a 2-intersection graph G corresponds to a
hyperedge of its related hypergraph H. So each vertex v of G contains three
vertices of H. In order to avoid confusion with the use of the word vertex,
we will use the term indices for the vertices of H contained in a vertex of
G. When a hypergraph H is constructed from a 2-intersection graph G, by
assigning indices to the vertices of G, we say that a label is assigned to v, eg.,
we assign {1, 2, 4} as the label of a vertex of G. In the following properties, we
consider subgraphs of G determined by triangles, and show that when G is a
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2-intersection graph, the labels of G have to satisfy certain requirements, i.e.,
local properties of G extend to properties of H.

Property 4. If two triangles intersecting in one vertex have the 2-intersection
property, and there are no edges joining the triangles, then they are not both
T -triangles.

Proof Observe that the three vertices of a T -triangle use just four different indices
from H. If the two triangles are T -triangles, then the common vertex has to share
four different pairs of indices with the four vertices with which it is adjacent, and
this is not possible if there are no edges joining the triangles (see Fig. 5). �

We will call two triangles sharing one vertex, with no edges between them,
a ribbon configuration. Figure 5 shows the labels of two one-vertex intersecting
triangles when at least one of them is a K-triangle.

{1,2,3}

{1,2,4}

{1,2,5}

{1,5,6}

{1,5,7}

(a) (b)

{1,2,3}

{1,2,4}

{2,3,4}

T

{3,4,5}

{3,4,6}

K3 K3 K3

Fig. 5 Two possible labels of a ribbon configuration. In each of them at most one triangle
is a T -triangle.

Property 5. Let T1 and T2 be two triangular cliques. Suppose there are just
two edges joining a vertex of T1 to a vertex of T2, and that these edges have
no common endpoints. Then the obtained configuration has the 2-intersection
property. Furthermore, T1 and T2 cannot both be T -triangles. It is possible for
T1 and T2 to be both K-triangles.

Proof Let x1 and y1 be the vertices of T1 adjacent to the vertices x2, and y2 of T2 by
the edges ex and ey, respectively. We first show that that T1 and T2 cannot be both
T -triangles. Suppose that T1 is a T -triangle whose vertices have labels x1 = {1, 2, 3},
y1 = {2, 3, 4}, and z1 = {1, 2, 4} (see Fig. 6). Since x2 is adjacent to only x1 in
T1, then the label of ex must be {1, 3}. With the same argument, the label of ey is
{3, 4}. Since x2 and y2 belong to T2, they have a common pair of labels, say {3, 5}.
So their labels must be x2 = {1, 3, 5} and y2 = {3, 4, 5}. If we assume T2 to be a
T -triangle, then z2 = {1, 4, 5}. This leads to a contradiction since z2 is not adjacent
to z1 = {1, 2, 4}. Therefore the only possible label is z2 = {3, 5, 6}, showing that T2
is a K-triangle.

To show that T1 and T2 can both be K-triangles, we set x2 = {1, 3, 5} and
y2 = {3, 4, 5} and z2 = {3, 5, 6} in T2 (see Fig. 6). We can then take x1 = {1, 2, 3},
y1 = {2, 3, 4} and z1 = {2, 3, 7} in T1. �
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x1 = {1, 2, 3} x2 = {1, 3, 5}

z1 = {1, 2, 4} y1 = {2, 3, 4} y2 = {3, 4, 5} z2 = {3, 5, 6}

T1 T2

Fig. 6 The configuration obtained by two triangles with joined by two edges. One possible
labelling is shown.

Representing the variables of U

Define a variable gadget, denoted Gx, to represent a variable x in U .
The gadget is a 2-intersection graph obtained by the union of different
configurations and its definition can be checked in Fig. 7.

The graph Gx consists of two gadgets G1
x and G2

x that grow around two
K5 cliques C1 and C2 that are connected by a ribbon configuration, say R.

The gadget G1
x includes the clique C1 whose vertices are in common with

five different K3 triangular cliques, counter-clockwise denoted by T 1
i , with

1 ≤ i ≤ 5, and starting from the triangle facing the ribbon that joins the two
gadgets. These triangles are then connected in pairs by their two remaining
free vertices, forming a 10-cycle, as shown in Fig. 7.

The triangles T 1
2 and T 1

5 will be associated with the two (at most) occur-
rences of the variable x, while T 2

3 will be associated with the single occurrence
of the variable x.

We show that the graph Gx has the 2-intersection property. Furthermore,
it allows very few possibilities when setting the triangles as K or T .

Fig. 7 The graph Gx. It is used to model the occurrences of the literals x and x in the
clauses of an instance of MAX-3-SAT. The two parts G1

x and G2
x are indicated together with

their connection through a ribbon configuration.
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Property 6. The variable gadget Gx is a 2-intersection graph.

In Fig. 8 and 9 we provide samples of labellings of Gx.

Corollary 4 A labelling of the vertices of the graph Gx only produces the following
possible types (K or T ) of the triangles T 1

2 , T 1
5 and T 2

3 :

i) if T 2
3 = T then T 1

2 = T 1
5 = K;

ii) if T 1
5 = T (resp. T 1

2 = T ) then T 2
3 = K.

Proof i) let us assume T 2
3 = T . Property 5 assures that triangle T 2

1 is a K-triangle.
So, by Corollary 3, the triangle adjacent to T 2

1 is a T -triangle, and the triangle
adjacent to T 1

1 is a K-triangle by Property 4. Continuing with the configurations, we
get T 1

1 = T , and, again by Property 5, we obtain that both T 1
2 and T 1

5 are K-triangles
as desired (see a possible labelling in Fig. 8).

ii) let us assume T 1
5 = T (resp. T 1

2 = T ). Property 5 assures that T 1
1 = K. So,

by Corollary 3, the triangle adjacent to T 1
1 is a T -triangle, and the triangle adjacent

to T 1
1 is a K-triangle by Property 4, and finally T 2

1 = T . Again Property 5 assures
that T 2

3 is a K-triangle as desired (see a possible labelling in Fig. 9). �

Fig. 8 One of the labellings of Gx related to case i) of Corollary 4. The starting triangle
T 2
3 = T is shaded. The type (T or K) of each triangle is also shown.

Remark 2. We point out that in case ii) of Corollary 4 no assumption involves
the type of T 1

2 , that can be either T or K, when T 1
5 = T and vice versa. Figure 9

shows an example of a labelling where T 2
1 = K. An easy check reveals that

exchanging the types K and T between T 3
1 and T 2

1 produces a new admissible
labelling.
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Fig. 9 One of the labellings of Gx related to case ii) of Corollary 4. The starting triangle
T 2
3 = T is shaded. The type (T or K) of each triangle is also shown

Representing the clauses of U

The clause gadget Gc, represents a single clause c ∈ C. It consists of a
central clique K6 whose vertices also belong to six different K3 cliques, called
boundary triangles, as shown in Fig. 10. The boundary triangles are then con-
nected in pairs via the two remaining free vertices, as shown in Fig. 12, forming
a 12-cycle. In order to have the 2-intersection property, the clause gadget
admits a maximum number of T -triangles among the six boundary ones, as
stated in the following property

T2
T1

T6

T5T4

T3

x1

x2

x3

x4

x5

x6

y6

z6

z6

y1y2

z2

z3

y3

y4

z4 z5

y5

Fig. 10 The clause gadget Gc with its triangles. By Property 5 no more that three T -
triangles are allowed in the boundary.
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Lemma 4 A clause gadget Gc is a 2-intersection graph if and only if the boundary
triangles do not contain either exactly three or exactly one T -triangles.

Proof W.l.g. let T1, . . . , T6 be the boundary triangles (labelled counter-clockwise)
of a clause gadget. Without loss of generality, let Ti have vertices {xi, yi, zi}, such
that xi is in common with the central clique K6, while yi and zi connect Ti with
the neighbour triangles Ti−1 and Ti+1. Note that the indices i − 1 and i + 1 are
reduced to the range 1 . . . 6. We first show that there is no labelling when three (non
consecutive, according with Property 5) boundary triangles are T -triangles. Let T1,
T3 and T5 be T -triangles that alternate with three K-triangles T2, T4 and T6. We
show that such a configuration does not have the 2-intersection property, i.e., it does
not allow any labelling. Assume that the edges of the central clique K6 have the
common label {1, 2}. Therefore, label every vertex {x1, . . . , x6} of K6 with {1, 2, i},
with 3 ≤ i ≤ 8, respectively, and let x1 belong to a T -triangle.

W.l.g, its two remaining vertices have labels y1 = {1, 3, 9} and z1 = {2, 3, 9}.
Suppose T1 is connected by the edges (y1, y2) and (z1, z6) with the triangles T2 and
T6, respectively. So, the edge {y1, y2} has label {1, 9}, and the edge {z1, z6} has label
{2, 9} (check the labelling in Fig.11, left graph).

So, the labels y2 = {1, 8, 9} and z6 = {2, 4, 9} are determined. Since T2 is a K-
triangle, the label of z2 requires the introduction of a new index, i.e., z2 = {1, 8, 10}.
The same holds in T6, where the label y6 = {2, 4, 11} can be assumed.

Continuing labelling the boundary triangles, we observe that the edge {z2, z3} has
two possible labels remaining, i.e., either {1, 10} or {8, 10}. Since T3 is a T -triangle,
then z3 has either label {1, 7, 10} or {2, 7, 10}; the first one only being compatible
with one of the possible labels of the edge {z2, z3}. As a consequence, y3 = {2, 7, 10}.

Acting similarly on the T -triangle T5, we get y5 = {2, 5, 11} and z5 = {1, 5, 11}.
Finally, a problem occurs in the labelling of the K-triangle T4: the edges {z3, z4}

and {y4, y5} have labels {2, 10} and {1, 11}, respectively, preventing any connection
between the vertices y5 and z5.

A similar reasoning reveals that the presence of exactly one boundary T -triangle
does not allow a labelling of the clause gadget. The failure of a labelling in this case
is shown in Fig. 11, right (T1 is the T -triangle).

�

Finally, Fig. 12 shows the possible labellings when either two or no T -
triangles are present as boundary triangles.

The final NP-completeness reduction.

Let us consider the instance C = {c1, . . . , cn} of MAX-3-SAT involving the
variables in the set U = {x1, . . . xm}. Based on the gadgets already defined, we
construct a graph GC whose labels determine its 2-intersection property and
express the desired valuations of C. The reader can follow an example of the
construction of GC in the case C = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) in Fig. 13.

First, from Lemma 3, we can suppose that each variable must appear at
most three times: one in a form and two in the opposite form. For each variable
xi ∈ U , we define a variable gadget Gxi

, and associate the triangle T 2
3 with
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{1,8,10}

{1,8,9} {1,3,9}

{2,3,9}

{2,4,9}

{2,4,11}

{2,5,11}

{1,5,11}

{2,7,10}

{1,7,10}

{1,2,7}

{1,2,6}

{1,2,5}

{1,2,4}

{1,2,3}

{1,2,8}

?

{1,8,10}

{1,8,9} {1,3,9}

{2,3,9}

{2,4,9}

{2,4,10}

{2,5,10}

{2,5,11}

{1,7,11}

{1,7,10}

{1,2,7}

{1,2,6}

{1,2,5}

{1,2,4}

{1,2,3}

{1,2,8}

T1T2

T3

T4 T5

T6

T1T2

T3

T4 T5

T6

Fig. 11 An attempt to define a labelling of a clause gadget with three (on the left) or
one (on the right) boundary T -triangles. Both configurations prevent any labelling of the
K-triangle T4.

{1,2,8}

{1,2,3}

{1,2,4}

{1,2,5}

{1,2,6}

{1,2,7}

{1,6,11}

{1,6,12} {1,5,12}

{1,5,13}

{1,3,14}

{1,3,9}{1,8,9}

{1,8,10}

{1,7,10}

{1,7,11} {1,4,13}

{1,4,14}

T

T

{1,2,8}

{1,2,3}

{1,2,4}

{1,2,5}

{1,2,6}

{1,2,7}

{1,7,10}

{2,7,10}

{2,6,10}

{2,6,11} {2,5,11}

{2,5,12}

{2,4,12}

{2,4,9}

{2,3,9}

{1,3,9}{1,8,9}

{1,8,10}

{1,2,8}

{1,2,3}

{1,2,4}

{1,2,5}

{1,2,6}

{1,2,7}

{1,7,10}

{1,7,12}

{1,6,12}

{2,6,12} {2,5,12}

{2,5,11}

{2,4,11}

{2,4,9}

{2,3,9}

{1,3,9}{1,8,9}

{1,8,10}
T

T

K K

K

KK

K

K

K

KK

K

K

K

K

Fig. 12 Reconstruction in the case of zero or two T -triangles. The bold triangles are the
boundary triangles.
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the single occurrences of a literal xi. The at-most-two remaining occurrences
of the opposite literal are associated with the triangles T 1

2 and T 1
5 .

For each clause cj ∈ C, we construct a clause gadget Gcj and label its
boundary triangles T1 . . . T6 as in Lemma 4.

Finally, we connect variable gadgets and clause gadgets together as follows:
for each clause cj , with 1 ≤ j ≤ n, we use a ribbon to the triangle T2i−1 of the
clause gadget Gc, to the corresponding triangle associated with the ith literal
of c in the Gx gadget of its variable, as in Fig. 13.

Now, we prove the main theorem of this section.

Theorem 5 Given an instance C of MAX-3-SAT, the graph GC has the 2-
intersection property if and only if the instance C has a solution.

Proof Let us assume that there exists a valuation for the MAX-3-SAT instance C.
Given a variable x ∈ U , for each literal with value true associated with x, we assign
the triangles associated with it to be T -triangles, and we assign the triangles associ-
ated with its negation to be K-triangles. Corollary 4 assures that the variable gadget
Gx has a labelling. Then, for each clause cj ∈ C, in its clause gadget Gcj , we assign
the triangles associated with the literals having valuation true to be K-triangles, but
T -triangles for the literals having valuation false. Since three or more T -triangles are
not allowed in Gcj by Lemma 4, then also the clause gadget has a labelling. The
labelling of the connecting ribbons is straightforward. The reader can benefit from
an example of such a construction in Fig. 13.

On the other hand, suppose GC has the 2-intersection property, i.e., there is a
labelling of GC that determines a 3-hypergraph H such that I2(H) = GC . For each
clause gadget Gcj , with cj ∈ C, there exists at least one triangle among T1, T3 and
T5, say T ′ of type K, by Lemma 4. Property 4 assures that T ′ having type K leads
to a T -triangle in the variable gadget Gx to which a literal, say l, is associated (note
that the opposite does not hold, as shown by the red triangle in Fig. 13). We assign
such a literal the truth value true. The opposite literal l is then associated with false.
Due to Corollary 4 the triangles (one or two) in Gx associated with l are of type K.

We emphasize the following situation: it may happen that there exists a Gx

labelling where all three triangles associated with the literals are of type K. In such a
case, the value assigned to the variable does not affect the truth value of the clauses
of C, so it can be arbitrarily assigned.

So, the valuation defined is a solution of the MAX-3-SAT instance C: each clause
gadget Gcj has at most one triangle among T1, T3 and T5 of type K, so at least
one literal in the clause has value true. Furthermore, in each variable gadget, if one
literal is set to true, i.e. at least one of the corresponding triangles is of type T , then
the the opposite literal has the logical value false. �

Corollary 5 The 2INT Problem is NP-complete.

The proof directly follows from Theorem 5, after checking that the con-
struction of the graph GC associated with the instance C can be performed in
polynomial time.
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Remark 3. In Fig.13, the two highlighted triangles in different colors indicate
the following situation:

• the red triangle in the ribbon connecting T1 of Gc1 to T 1
2 of Gx3

shows that
the T -triangle related to the value false in a clause may produce the truth
value true in the associated literal. This is not a contradiction: it simply means
that in the clause, here c1, there exists at least a second triangle of type K,
i.e. the clause is already satisfied by at least one different literal;
• the blue triangle T 5

1 in Gx2
is of type K which is different from the T -

triangle T 1
2 although they are associated with the same literal l. This means

that l may have a value false in a second clause in which it is possibly present.
As a consequence, a different literal having truth value true is present in that
clause. What is relevant in Gx2

is that the triangle associated with l, i.e. T 2
3 ,

has to be of type K, assuring that l has truth value false in all its occurrences.

Example 5. Consider the formula F = (x1 ∨ x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).
Figure 13 shows the construction of its corresponding gadget. The labelling
shown in the same figure corresponds to the valuation x1 = false, x3 = false.
The value of x2 doesn’t matter since, in any case, the assignment is a solution
for F .

Fig. 13 Example of the construction of the gadget for C = {c1, c2}, c1 = (x3, x1, x1),
c2 = (x1, x3, x2). One of the valuations obtained by the labelling of the corresponding GC

graph is x1 =false[Andrea: true], x2 =true and x3 =true. The valuation can be obtained by
the position of (at least one of) the T configurations in the triangles T 1

2 , T 1
5 and T 2

3 of the
variable gadget.
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