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Fault detection using Upper Bound Interval Kalman Filter for
unmaned aerial vehicle

Carine Jauberthie1 and Soheib Fergani1 and Emelyne Saulnier1

Abstract— This paper deals with dynamics estimation and
fault detection of unmaned aerial vehicles (uav) using the Upper
Bound Interval Kalman Filter (UBIKF). An upper bound for
all positive semi-definite matrices included in an interval matrix
is calculated. This upper bound is used to generate envelopes
for the variables to be estimated which are the dynamics of the
UAV. It allows to provide a guaranteed estimation envelope for
the considered dynamics.
Then, the fault detection scheme is used based on a χ2 test. The
faults concern sensors and actuators. Simulations on a discrete
uncertain UAV model highlight the efficiency of the proposed
filter for both UAV dynamics estimation and fault detection.

I. INTRODUCTION

Using Upper Bound Interval Kalman Filter instead of
classical Kalman Filter is mainly motivated by the idea that
stochastic and set-membership estimation approaches have
specific advantages: they complement each other more than
they compete. In fact, the experimental conditions about
noise and disturbances, in a stochastic estimation framework,
are usually properly modeled through appropriate probability
distributions. Yet, other sources of uncertainty are not well-
suited to stochastic modeling, as for example the parameter
uncertainties that generally arise from system design toler-
ances and from process ageing. These uncertainties are often
better represented with bounded uncertainties, as intervals.
Thus this modeling is described through the set-membership
framework.

Combining bounded and stochastic uncertainties opens
hence new perspectives for modeling complex systems more
accurately.

Thus, motivated by above-mentioned reasons, the filtering
issue for discrete time linear models considering bounded
uncertainties on parameters and gaussian noise on measure-
ments is studied in this paper. In [1], the classical Kalman
filter [2] has been extended to this type of uncertain systems.
This proposed solution is not guaranteed, i.e. the solution
set may not include all the classical Kalman filter solutions
consistent with the bounded uncertainties represented in
the system. In [3], an improved interval Kalman filter has
been proposed solving the interval matrix inversion problem
with the set inversion algorithm SIVIA (Set Inversion Via
Interval Analysis) and constraint satisfaction problems [4].
However, an high computational time is required by the
proposed algorithm if the considered system is affected by
large uncertainties [5].
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Thus the Minimum Upper Bound of Variance Interval
Kalman Filter (UBIKF) has been presented in [6] with two
main goals: minimizing an upper bound for the estimation
error covariance and enclosing the set of possible solutions
of the filtering problem for interval linear systems. Since the
gain matrix handled by UBIKF is punctual, this approach
encloses all the estimates consistent with the parameter
uncertainties in a much less conservative manner than the
iIKF. This filter is used in the following work.

In the proposed work, the fault detection strategy consists
in combining the UBIKF filter with the well-known χ2 test.
The χ2 test is a very useful statistical test providing infor-
mation about on the significance of any observed differences
(with the predicted behaviour) and also detailed information
on which categories account for any differences found. Since
the χ2 square is a significance test, coupling it with an
accurate estimation strategy can provide satisfying results.
Here, the study case deals with data that are estimated as in-
tervals with no predefined distribution. This choice was also
motivated by two main factors: the first is the computation
time and the easiness of implementation for both UBIKF
filter and the χ2 test. The second is the compliance of this
test with the mixed uncertainties handled by the proposed
algorithm. Here, we focus on the efficiency of the filter
estimation performances and though the robustness against
disturbances is to be developed in on going works.

Interesting cases of study for the proposed strategy are
Unmanned Aerial Vehicles (UAVs). Indeed, in the last
decade, both industrial and academic communities have been
interested by the UAV systems, for civilian and military ap-
plications. Due to their high manoeuvrability and flexibility
in indoor and outdoor application, a special focus has been
given to multirotor UAVs. Therefore, one of the most chal-
lenging topics for their autonomous navigation is the vehicle
attitude estimation. Also, since most of the localization and
control strategies are based on these dynamics estimation,
fault detection and isolation on these information is crucial to
anticipate system dysfunctions and prevent missions failure.
In this work, authors propose an efficient fault detection and
estimation strategy based on the Minimum Upper Bound
of Variance Interval Kalman Filter. The main objective is
estimate UAVs dynamics while supervising its behaviour to
detect the eventual actuators and sensors faults.

This paper is organized as follows. The problem formu-
lation is described in Section II. In Section III, the fault
detection scheme, based on UBIKF, is described. Then a
numerical example has been used to highlight the potential
of the proposed approach in Section IV. Some conclusions



are presented in Section V.

II. PROBLEM FORMULATION

Interval analysis was developed by [7] and is useful to deal
with bounded uncertainties. Most of the notions of interval
analysis can be found in [4]. In this framework, an interval
[x] is a closed and connected subset of R:

[x] = {x ∈ R | x ≤ x ≤ x} , (1)

where x and x are respectively the lower and upper bound.
The center of [x] is defined by mid([x]) = (x+x)/2 and its
radius is rad([x]) = (x− x)/2. The set of all intervals in R
is noted as IR.

An interval vector (or matrix) is a vector (or matrix)
whose elements are considered as intervals. In this paper, an
interval vector and an interval matrix are denoted as [x] and
[M ]. The set of n−dimensional interval vectors (or m × n
interval matrices) is denoted as IRn (or IRm×n). Given
[M ] ∈ IRm×n, the two functions mid([M]) and rad([M])
provide two m× n real matrices containing the centers and
radius of elements of [M ].

In the proposed work, the following class of uncertain
linear discrete-time stochastic systems is considered:{

xk+1 = Akxk +Bkuk +wk,

yk = Ckxk + vk,
(2)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the
input vector, yk ∈ Rny is the measurement vector and
wk, vk are white Gaussian noise sequences with zero mean
and covariance matrices Q and R. The initial state x0 is
also Gaussian with mean µ0 and covariance matrix P0. In
addition, x0, {w1, ...,wk} and {v1, ...,vk} are assumed to
be mutually independent.
The structure of the classical Kalman filter for system (2) is
represented as follows ( [2]):

x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1), (3)

where x̂k|k is the posterior state estimate, x̂k|k−1 =
Akx̂k−1|k−1 is the prediction of state a priori and Kk

is the gain matrix that minimizes the mean square error
E[(x̂k|k−xk)(x̂k|k−xk)

T ]. We consider the case where the ma-
trices Ak, Bk, Ck and the covariance matrices Q, R are
assumed bounded and are represented by interval matrices,
denoted [Ak], [Bk], [Ck], [Q] and [R], containing all possible
values of each parameter. Since it is impossible to solve
directly the Kalman filtering problem due to parameter
uncertainties, our goal is to obtain an upper bound P+

k|k such
that:

E
[
(x̂k|k − xk)(x̂k|k − xk)

T
]
� P+

k|k, (4)

for the set of all models with parameters bounded by the
above interval matrices. The envelope enclosing the set of
state estimates corresponding to the gain K is then computed.
This idea is similar to [3] in which the envelopes of the
optimal gains and the state estimates given by the Kalman
filtering procedure are determined by using interval analysis.
In contrast, the proposed algorithm determines a gain matrix

K which minimizes the trace of the upper bound on the
error covariance instead of finding a set of gain in [3].
Since the gain matrix in the UBIKF is punctual, it allows
to reduce the conservatism and the computational time of
interval operations.

In the following, the UBIKF is combined with a χ2-
statistics test for fault detection of an unmaned aerial vehicle.

III. FAULT DETECTION SCHEME

As the conventional Kalman filter, the UBIKF can be de-
signed in two steps: prediction and correction. A description
of this filter is given in [6] and the main algorithm is recalled
below:

A. UBIKF algorithm
The algorithm steps are summarized below:

Algorithm 1 UBIKF Algorithm

Input:
[
x̂0|0

]
, P+

0|0, [A], [B], [C], [Q], [R], yk, uk, Ak, Qk,
Rk, k = 1, 2, . . .

Output:
[
x̂k|k

]
, P+

k|k
1: for k = 1, 2, . . . do
2: Prediction step:[

x̂k|k−1
]
= [A]

[
x̂k−1|k−1

]
+ [B]uk,

Pk|k−1 = AkP
+
k−1|k−1A

T
k +Qk,

P+
k|k−1 � Pk|k−1

3: Correction step

R+
k � Rk

Kk = (n0 + 1)P+
k|k−1C

T
mS
−1
k ,

Sk = (n0 + 1)mid ([C])P+
k|k−1mid ([C])

T

+ 2

ny∑
i=1

nx∑
j=1

C(i,j)
r P+

k|k−1

(
C(i,j)

r

)T
+

1

2

ny∑
i=1

nx∑
j=1

ny∑
m=1

nx∑
l=1

S
(m,l)
(i,j)

+R+
k .

P+
k|k = (n0 + 1) (I −Kkmid ([C]))P

+
k|k−1.[

x̂k|k
]
= (I −Kk [Ck])

[
x̂k|k−1

]
+Kkyk.

4: end for

B. Fault detection scheme
In this section, consider the following system:{

xk+1 = Akxk +Bkuk +wk + fak ,

yk = Ckxk + vk + f ck
(5)

where fak ∈ Rnfa and f ck ∈ Rny are actuators and sensors
faults vectors.

The difference between measurement and model output
is defined by:

[rk] = yk − [C]
[
x̂k|k−1

]
, (6)



and it contains all values of innovation rk defined by rk =
yk − Ckx̂k|k−1 whose the covariance matrix is given by:

[S] = [C]Pk|k−1 [C]
T
+ [R] , (7)

with
[
x̂k|k−1

]
and Pk|k−1, the predicted state and the co-

variance matrix of the prediction error respectively.
The interval [βk] defined by [βk] = [rk]

T S−1k [rk]
contains all possible values of βk, ∀rk ∈ [rk] where βk is

a statistical function detecting a change in the mean of the
innovation sequence:

βk =

k∑
i=k−W+1

rTi S
−1
i ri, (8)

In the literature, using the χ2-statistics test for fault
detection is a kind of Innovation approach mentioned in [8].
In [9] or [10], this method is applied for fault detection
problems in which the βk statistic is used where W is a
window size (W ≤ k). The authors argue that this statistic
is χ2 -distributed with Wny degrees of freedom. A rule for
the fault detection test was established: (H0) βk ≤ δ, no
error occurred; (H1) βk > δ, an error occurred, where δ is
the threshold determined by P(χ2(Wny) > δ) = α with α
a chosen significance level.

Algorithm 2 Fault detection algorithm
Initialization: [x̂0|0], P0|0, [A], [B], [C], [D], [Q], [R], W ,

uk, yk, α, k = 1, 2, ..., N .
for k = 1, 2, 3, ...N do

Implementation:
Use Algo.1 to get : [x̂k|k], P

+
k|k, [x̂k|k−1], Pk|k−1.

[rk] = yk − [C][x̂k|k−1]
[Sk] = [C]Pk|k−1[C]

T + [R]
Uk = sup{abs([rk]T [rk])}
Calculate βk
Find δ s.t.: P(χ2(Wny) > δ = α
Detection signal : πk = I(Uk > δ)

end for
where I(x) equal 1 if x holds true and null otherwise.

IV. APPLICATION TO UAV

The drone studied in this work is the Parrot ARDRONE
2 which attracted a lot of attention and many works (see for
example [11] or [12]).

The ARDRONE 2, depicted in Fig. 1 is an underactuated
system. Indeed, it has 6 degrees of freedom (see Fig. 1),
3 translations ( w.r.t axes (x,y,z)) and 3 rotations ( w.r.t
(φ, θ, ψ)). The different movements are obtained by varying
the speeds of each one of the 4 motors ( [13] [14]).

A. Estimation of the UAV dynamics

In this work, the commonly used 12-DOF (degree of
freedom) linearized model of the UAV is considered (some
details can be found in [15]). The state vector X is defined
as follows:

Fig. 1. UAV Parrot ARDRONE 2

X = (x, y, z, vx, vy, vz, φ, θ, ψ, p, q, r) where x, y, z
represent the relative positions of the UAV center in the
world frame; vx, vy, vz correspond to the translation speed
of the drone in the world frame; φ, θ, ψ correspond to
rotation angles of the UAV in the world frame, and p, q, r
are the angular velocities in the body frame.
Then, the inputs of the system are:
u = (u1, u2, u3, u4) where :
u1 = F1 + F2 + F3 + F4,
u2 = (−F1 + F2 + F3 − F4)l,
u3 = (−F1− F2 + F3 + F4)l

′,
u4 = F1 − F2 + F3 − F4

where l and l
′

are the distance between the center of gravity
of the quadrotor and the rotors axis. Fi are the vertical
forces generated by the rotors.
Thus the system can be described by Equation 2.
In the following, the attitude dynamics of the UAV are under
interest. The drone is hovering at a considered altitude, and
then its dynamics are excited by varying the input u4 (the
force differential at each time instant k to study, mainly, the
roll and pitch behaviours).

Remark 4.1: It is worth noticing that in this work, the
study has been focusing on the roll dynamics (considering
that the pitch behaviour is the quit the same on the y-axis).
Also, the yaw dynamic estimation is not considered, and
usually measured using an OptiTrack capture system.

In Fig 2, the UBIKF filter is used to estimate the UAV
states using only four output signals (z, vx, v̇y, v̇z). The
objective is to efficiency bound the estimated states in the
guaranteed intervals.

One can notice that the UBIK filter provides tight esti-
mated intervals that includes the vehicle dynamics which can
be very useful for its behaviour monitoring (especially for
UAV pitch and roll dynamics) as in Fig.3:

Also, in Fig.4 the trace of the upper bound of the covari-
ance matrix is represented.

Thus after few time steps, the trace of this upper bound
is constant.

B. Fault detection

1) Sensor fault detection: To test the efficiency of the
UBIK filter for estimating the faulty dynamics, the following
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scenario is proposed. First, a bias for k ∈ [30, 70] has been
added on the roll dynamics sensor to simulate a sensor fault.
For this sake, we add for k ∈ [30, 70] a constant on one of the
components of the output vector of the system (namely for
the roll dynamics output). Fig.5 shows the performance of the

proposed filter for the UAV faulty roll dynamics estimation.
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Fig. 5. Faulty roll dynamics estimation

Notice that the estimated intervals are larger (which
normal in the faulty case) but the UBIKF filter still manages
to provide satisfactory results.

For the fault detection, the χ2 test is performed with a
confidence index 1 − α = 0.99. The curves obtained are
displayed using a sliding window W = 4 time steps, the
detection threshold is represented by a red dashed line and
the curve in blue corresponds to the values of inf ([βk]).

Fig. 6. Detection test of χ2 law for a sensor fault

The detection threshold is crossed between 30 and 70,
which corresponds to the added fault. The χ2 test detects
the bias introduced by the faulty sensor.

2) Actuator fault detection: Inspired by [16], the matrices
that allow to provide a configuration where one of the
4 rotors of the UAV would fail are used (actuator fault
scenario). The inputs of the UAV are scheduled using these
matrices to simulate the actuator fault.
The considered scenario is the following: The drone is
hovering at a considered altitude, and then the attitude
dynamics are excited. Also, by simulating a fault on the first
rotor (u1) at k = 31. It can be easily noticed that the curves
representing the states are affected by this input deterioration.
Indeed, one can observe a jump to k ≈ 32 on each of the
states.
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Fig. 7. State estimation in faulty situation

A comparaison between Fig. 7 and Fig. 2 shows the
degradation of the roll dynamics of the UAV (compared to
the healthy state).
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Fig. 8. UAV roll dynamics with an actuator fault
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Using the χ2 test, it can be seen in Fig. 9 that at k ≈ 32
the curve crosses the detection threshold. Thus, the test

detects the fault correctly.

V. CONCLUSION

An approach to fault detection applied to a UAV model is
proposed in this paper. It combines UBIKF and a classical χ2

test. The proposed filter allows to obtained tight guaranteed
estimation intervals of the considered dynamics while the χ2-
test allows to detect some abnormal behaviours. Simulation
results highlight the efficiency of the proposed fault detection
scheme. Beside being efficient, it is easily implemented
and can be very useful in real time implementation. Also,
the robustness analysis of the filtering considering external
disturbances and comparison with the well-known classical
estimation approaches represent challenging issues that are
been considered by authors in their ongoing works.
Furthermore, this study can inspire performance fault tolerant
control strategy by taking advantage of the provided guaran-
teed interval estimations to handle the systems disfunctions
(see Fig.10).
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Fig. 10. Fault tolerant control strategy
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