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Abstract: A numerical parameter estimation method, based on input-output integro-differential poly-
nomials in a bounded-error framework is investigated in this paper. More precisely, the measurement
noise and parameters belong to connected sets (in the proposed work, intervals). First, this method,
based on the Rosenfeld–Groebner elimination algorithm, is presented. The latter provides differential
equations containing derivatives, sometimes of high order. In order to improve the numerical results,
a pretreatment of the differential relations is done and consists in integration. The new relations
contain, essentially, integrals depending only on the outputs. In comparison with the initial relations,
they are less sensitive to measurement noise. Finally, the impact of the size of the measurement noise
domain on the estimated intervals is studied.

Keywords: parameter estimation; integro-differential equations; interval analysis

1. Introduction

This paper proposes a parameter estimation procedure, based on integro-differential
(ID) relations in the set-membership framework. These relations are based on differential
relations obtained, owing to the Rosenfeld–Groebner algorithm implemented in the package
DifferentialAlgebra of Maple (see [1], for more details). The main numerical difficulty in
using differential relations provided by elimination algorithms, comes from the presence of
derivatives, sometimes of high order, which must be estimated from noisy measurements.
Several methods have been used in the literature to obtain new relations less sensitive to
the noise (see [2–5]).

In this paper, the main idea is the use of iterative integrals leading to ID relations,
sometimes with no derivative. These are used in a bounded-error framework, in order
to estimate the model unknown parameters. A bounded-error framework means that all
uncertainties (measurement noise, parameters) are considered unknown but belonging
to bounded connected sets, and, in the proposed work, intervals. Notice that the least
squares method, adapted to the set-membership framework, could be used. However, with
intervals, it requires the inversion of interval matrices, and an interval matrix is invertible if
all punctual matrices in this interval matrix are invertible, which is a very hard constraint.

The dynamic systems considered in this work are given by the following form:{
ẋ(t, θ) = f (x(t, θ), θ) + u(t)g(x(t, θ), θ),
y(t, θ) = h(x(t, θ), θ).

(1)

x(t, θ) ∈ Rn represents the state variables, y(t, θ) ∈ Rm represents the model outputs, and
u(t) ∈ Rl represents the input variables. u can be considered equal to 0, in the case of
uncontrolled systems. The set of model parameters to be estimated are given by θ ∈ Up
(Up is an open subset in Rs). The functions f (., θ), g(., θ) and h(., θ) are real, rational and
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analytic, for every θ ∈ Up on M (a connected open subset of Rn, such that x(t, θ) ∈ M
for every θ ∈ Up and every t ∈ [0, T]). In the following work, we let x0 = (x0,i)i=1,...,n,
the vector of initial conditions for x(t, θ); note that some components can depend on the
parameters to be estimated.

Moreover, suppose that θ ∈ Up ⊆ [Up], where [Up] is the smallest connected box
belonging to Up. A box is an interval vector (a vector with intervals components) and may,
equivalently, be seen as a Cartesian product of intervals. In this framework, a real interval
[u] = [u, u] is a closed and connected subset of R, where u (respectively, u) represents the
lower (respectively the upper) bound of [u]. Similarly, an interval matrix [A] is a matrix
with interval components (see [6], for more details on interval analysis).

Considering the order eliminating, first, the unobserved state variables, then the
model outputs and the model parameters, the Rosenfeld–Groebner algorithm applied
on system (1) provides input-output polynomials (IO polynomials). Then, using iterative
integrals, integro-differential input-output polynomials (ID-IO) can be obtained and used to
propose a parameter estimation procedure less sensitive to noise, compared to the initial IO
polynomials [7]. Indeed, contrary to the latter, ID-IO polynomials may contain derivatives
of lower order.

To illustrate the method, the Hindmarsh–Rose (HR) model, resulting from a simplifica-
tion and a generalization of the Hodgkin–Huxley model, is considered (see [8,9]). The HR
model was developed to better understand neuron activity, from a simpler model that can
be studied mathematically (for example [10–12]). Its particularity is to reproduce different
dynamics of neurons. For example, it presents a bifurcation with respect to its slow-fast
parameter [13]. In order to recover the behaviors of a neuron from the HR model, several
parameter-estimation procedures were proposed in the literature. In [14], nonlinear opti-
mization is used and exploits the particular structure of the relevant cost function. In [12],
the authors propose two approaches. The first one deals with a synchronization-based
parameter estimation and a least squares problem, subject to constraints. The second one is
based on adaptive observers as in [15]. This method aims to find a dynamical system, so
that it synchronizes with the measured voltages from a real neuron. However, none of the
cited papers considered the noise on the data and the impact of the size of the measurement
noise domain on the estimated intervals. The first work evoking this question can be found
in paper [5]. It deals with a method based on ID relations, to estimate, first, the HR model
parameters, then the probability that the results permit to reproduce the correct behavior
of the model output near an equilibrium point. The probability is calculated from the
evaluation, M times, of the model and a classical floating-point method, to create stochasti-
cally disturbed measurements. To complete this study, the bounded-error framework is
considered in the proposed paper. In contrast to [5], this article does not use a probabilistic
interpretation of measurement noise. Instead, the system outputs are assumed to be dis-
turbed by bounded uncertainty, with unknown probability distributions in their interior.
To handle this task, the concept of interval arithmetic is used. It is employed to analyze
the accuracy of the parameter identification algorithm, relying on the same integration
relations as in [5]. The results of the proposed new approach are interval bounds for all
parameters to be identified, in which the true parameters are located with 100% certainty, if
the measurement noise is assumed to be bounded. This kind of result is impossible to be
obtained, with the algorithm published in [5]. Moreover, these results allow for detecting
the structural changes of the system dynamics with certainty, by checking whether the pa-
rameter values corresponding to the bifurcation point are included or not in the estimated
parameter ranges.

This paper is organized as follows. In Section 2, the parameter estimation procedure
based on the ID-IO polynomials in the bounded-error framework is explained, and Section 3
presents both the HR Model and the numerical results. Section 4 concludes the paper.
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2. Parameter Estimation Method
2.1. Differential Algebra

Parameter estimation is done through relations linking the inputs, outputs and pa-
rameters of the system (1). These relations are obtained using the Rosenfeld–Groebner
algorithm, implemented in the package DifferentialAlgebra of Maple [1]. This algorithm
provides relations, called IO polynomials, from an elimination order, consisting of eliminat-
ing unobservable variables. The IO polynomials have the following form, for i from 1 to
m:

Pi(y, u, θ) = mi
0(y, u) +

qi

∑
l=1

γi
l(θ)ml,i(y, u) = 0 (2)

where (γi
l)1≤l≤qi

are rational in θ, γi
u 6= γi

v (u 6= v) and (ml,i)1≤l≤qi
are differential polyno-

mials, with respect to y and u. mi
0 6= 0 and i from 1 to m. According to [16], the number of

the relations is the number of observations. Afterwards, only one output is considered, and
the index i is omitted to lighten the notations.

2.2. Estimation Procedure

A numerical method, deduced from (2), was proposed to estimate the unknown
constant parameters in [17] and is first recalled.

In the numerical applications, the measurement y is supposed to be described by
y(t) = y(t, θ∗) + η(t), where the measurement noise η(t) is supposed to belong to [η(t)],
and θ∗ represents the ”true” parameter vector value. Denote {yk = y(tk), k = 1, . . . , N},
the set of measurements at (tk)1≤k≤N and uk = u(tk) the associated inputs.

The parameter vector θ belongs to Θ, where Θ is an interval vector. Consider Γk(Θ),
the associated expression of γk(θ) defined in the polynomial (2), where θ is substituted by
Θ. Then, the following system, whose interval vector Θ is unknown, can be deduced:

∀j = 1, . . . , N, 0 ∈ m0(yj, uj) +
q

∑
l=1

Γl(Θ)ml(yj, uj). (3)

Notice that (3) is linear, with respect to Γ1(Θ), . . . , Γq(Θ). Solving the previous system
comes back to solving 0 ∈ [A][x]− [b] or [A][x] = [b], where [A]j = ([ml(yj, uj)])l=1,...,q is
the jth line of the interval matrix [A], and [b]j = [−m0(yj, uj)] is the jth line of the interval
vector [b].

However, some derivatives of high order can be involved in the linear system in
using elimination algorithms, since the IO polynomials are deduced from the model
equations in using addition and multiplication by any polynomials in x, u, y and θ as well
as differentiation in time. Integrating these relations will permit not only to decrease the
derivative order but also to attenuate the structured noise, whose amplitude is unknown
(see [18], for more details).

Afterwards, we present an improvement of the method proposed in [17], which is
based on the integrated relations obtained from (2).

Let f , a real-valued function, and Iν( f ), ν ≥ 0, the integrated function, such that

Iν( f ) =
∫ t

t−τ

∫ τ1

τ1−τ
. . .
∫ τν

τν−1−τ
f (τν)dτν . . . dτ1.

Using the linearity of the integral, a new relation is obtained from P and can be
rewritten:

Iν(P) = Iν(m̃0(y, u)) +
q

∑
l=1

γ̃l(θ)Iν(m̃l(y, u)).

Iν(P) is called the ID-IO polynomial. The approximated value of Iν(P), by a numerical
procedure at the measurement points tk (k = 1, . . . , N), will be denoted Ik

ν(P).
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In the same way, as previously, evaluating the expression Iν(P) at each tk leads to the
linear systems.

0 ∈ [Ã][x̃]− [b̃] and [Ã][x̃] = [b̃] (4)

where the jth line of [Ã] and [b̃] are, respectively, given by [Ã]j = [I j
ν(m̃l(y, u))]l=1,...,q and

[b̃j] = [−I j
ν(m̃0(y, u))].

In the numerical applications, System (4) will be solved using the algorithm SIVIA, as
presented in the following section.

2.3. Interval Set Inversion

This section recalls the algorithm SIVIA (Set Inverter Via Interval Analysis), well
known in the interval-analysis community. This algorithm, proposed in [19], leads to
characterize the solution set of a system of nonlinear real constraints, by enclosing it
between internal and external unions of interval boxes (pavings).

Consider the problem of determining a solution set S for the unknown quantities u,
belonging to an a priori search set U, defined by:

S = {u ∈ U| f (u) ∈ [y]} = f−1([y]) ∩U, (5)

where [y] is a priori known, and f is a nonlinear function, not necessarily invertible in the
classical sense. (5) involves computing the reciprocal image of f and is known as a set
inversion problem, which can be solved using the algorithm. SIVIA is a recursive algorithm,
which explores all the search space without losing any solution. This algorithm makes it
possible to derive a guaranteed enclosure of the solution set S, as follows:

S ⊆ S ⊆ S. (6)

The inner enclosure S is composed of the boxes that have been proven feasible. To
prove that a box [u] is feasible, it is sufficient to prove that f ([u]) ⊆ [y]. Reversely, if it can
be proven that f ([u]) ∩ [y] = ∅, then the box [u] is unfeasible. Otherwise, no conclusion
can be reached, and the box [u] is said to be undetermined. The latter is, then, bisected
and tested, again, until its size reaches a user-specified precision threshold ε > 0. Such a
termination criterion ensures that SIVIA terminates after a finite number of iterations.

Thus, the algorithm SIVIA allows to obtain these two subpavings, with a required
precision ε, based on an inclusion test. The relation between the two subpavings can be
characterized as:

∆S = S\S, (7)

where ∆S is called the inclusion test uncertainty, in which no decision can be made during
the test. The properties of solutions are:

• if S = ∅ the problem (5) has no solution;
• if S 6= ∅, there exists at least one verified solution for (5).

A further alternative to the parameter identification proposed above consists of using
interval methods, with a subsequent subdivision of parameter domains, in order to reliably
identify the implausible parameter subintervals. This method, however, is much more
computationally demanding and may, significantly, be affected by the wrapping effect of
interval analysis, if specific properties, such as cooperativity, are not satisfied by [20] or [21].

3. Hindmarsh–Rose Model

The model of Hindmarsh–Rose (HR) results from a simplification and a generalization
of the Hodgkin–Huxley model [8,9]. From this slow-fast model, rich dynamics of a neuron
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can be reproduced, such as spiking, bursting and chaotic behaviors. The HR model [9]
reads as follows ( θ = (a, b, d, ε)T):

ẋ1(t, θ) = x2(t, θ) + ax1(t, θ)2 − x1(t, θ)3 − x3(t, θ) + u(t),
ẋ2(t, θ) = 1− dx1(t, θ)2 − x2(t, θ),
ẋ3(t, θ) = ε(b(x1(t, θ)− cx1)− x3(t, θ))

(8)

where

• x1 describes the membrane potential;
• x2 is the recovery variable, associated with the fast current, due to the passage of the

Na+ or K+ ions;
• x3 is the adaptation current, associated with the slow current, due to the passage of

the Ca+ ions.

The variable supposed to be observed is the membrane potential, and we denote
y = x1. u corresponds to the applied current (in amperes), and, afterwards, it is supposed
constant. u generates the opening or closing of ion channels at one point in the membrane,
which produces a local change in the membrane potential. Notice that the experimental
data can be obtained in vivo, by using the current stimulus to generate a potential difference
(see [22,23], for more details). Parameters a, b and d are, experimentally, determined from
measurements of membrane potentials, while cx1 is the x1-coordinate of the leftmost
equilibrium of the two-dimensional system, given by the first two equations of (8), when
u(t) = 0 and x3(t, θ) = 0, thus, θ = [a, b, d, ε]T . Finally, parameter ε represents the ratio of
time scales between fast and slow fluxes, across the membrane of a neuron, and controls
the speed of variation of the slow variable x3.

It has been proven in [5] that the proposed model is globally identifiable (in a stochastic
framework), thus, the identifiability property and, consequently, uniqueness of the parame-
ters is maintained in a set-membership framework [24]. Relying on global identifiability,
we know that this interval can be as small as possible (due to the threshold chosen in the
bisection algorithm: SIVIA).

This model permits to obtain different dynamics, with respect to the parameter values.
For example, for a = 3, b = 4, d = 5, u(t) = 3.25A, the authors of [13] prove that the
parameter ε presents a Hopf bifurcation. When a Hopf bifurcation occurs, a local periodic
solution near an equilibrium point appears or disappears, with the change of one parameter
value. The time series of system (8), for the two parameter values ε = 0.12 and ε = 0.13, are
represented in Figure 1. The chosen case is the second one, which is ε = 0.20.

Figure 1. Time series of system (8), when (left) ε = 0.12 < εc and (right) ε = 0.13 > εc.

3.1. ID-IO Polynomial

The package DifferentialAlgebra of Maple is used, in order to obtain the IO polynomial
of the HR model. u is supposed to be an input of the system. To eliminate the variables
x1, x2 and x3 as well as to acquire relations between y, u and θ, the elimination order [θ] ≺
[y, u] ≺ [x1, x2, x3] is chosen. The Rosenfeld–Groebner algorithm provides a polynomial
with a derivative of order 3, with 24 expressions. To obtain a simpler polynomial, let
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w1(t) = e−t, v1(t) = e−t
∫ t

0
x2

1(s, θ)esds. In integrating the second Equation of (8), one gets

x2(t, θ) = (x2(0, θ)− 1)w1(t) + 1− dv1(t). The following system is, now, considered:
ẋ1(t, θ) = x2(t, θ) + ax2

1(t, θ)− x3
1(t, θ)− x3(t, θ) + u(t),

x2(t, θ) = (x2(0, θ)− 1)w1(t) + 1− dv1(t),
ẋ3(t, θ) = ε(b(x1(t, θ)− cx1)− x3(t, θ)),
ẇ1(t) = −w1(t),
v̇1(t) = −v1(t) + x2

1(t).

(9)

System (8) completed with the initial conditions (x1(0, θ), x2(0, θ), x3(0, θ)) is equiv-
alent to System (9) completed with (x1(0, θ), x2(0, θ), x3(0, θ), 1, 0). Considering now the
elimination order [θ] < [y, w1, v1, u] ≺ [x1, x2, x3], we obtain (the time variable t is omit-
ted): P := ÿ + 3 y2 ẏ + (−ε y0 + ε + y0 − 1)w1 + (d ε− d) v1 + ε (y3 + ẏ) + (−a ε + d) y2 −
2 a y ẏ + b ε y− ε (b cy + 1 + u).

Since the estimation of derivatives from noisy measurements is an ill-posed problem,
some technicals were proposed to decrease the derivative orders of these polynomials.
The most natural one is the integration of this IO polynomial, and the use of integration
by parts.

The following relation, which does not contain any derivative, is, also, obtained:

I2(P) = y(t)− 2 y(t− τ) + y(t− 2τ) +
∫ t

t−τ
(y(τ1)

3 − y(τ1 − τ)3)dτ1

+(−ε y0 + ε + y0 − 1)
∫ t

t−τ

∫ τ1

τ1−τ
w1(τ2)dτ2dτ1 + (d ε− d)

∫ t

t−τ

∫ τ1

τ1−τ
v1(τ2)dτ2dτ1

−ε

(
−
∫ t

t−τ

∫ τ1

τ1−τ
y(τ2)

3dτ2dτ1 +
∫ t

t−τ
(y(τ1)− y(τ1 − τ))dτ1

)
+(−a ε + d)

∫ t

t−τ

∫ τ1

τ1−τ
y(τ2)

2dτ2dτ1 − a
∫ t

t−τ
(y(τ1)

2 − y(τ1 − τ)2)dτ1

+b ε
∫ t

t−τ

∫ τ1

τ1−τ
y(τ2)dτ2dτ1 − (I ε + b cy ε + ε)τ2.

Evaluating this ID-IO polynomial at each tk, k = 1, . . . , N gives the following lin-
ear system.

0 ∈ [Ã][x̃]− [b̃] (10)

where, if [Ãk] and [b̃k] represent the kth line (k from 1 to 7) of [Ã] and [b̃], respectively, then

[b]j = [yj − 2 yj−τ + yj−2τ + I j
1(y(.)

3 − y(.− τ)3)],

[A]j =
(
[I j

2(w1)], [I
j
2(v1)], [−I j

2(y
3)− I j

1(y(.)− y(.− τ))], [I j
2(y

2)] ,

[I j
1(y(.)

2 − y(.− τ)2)], [I j
2(y)], [τ

2]
)

.

In [5], the estimated parameters are obtained in solving the linear system Ãx̃ = b̃
with the QR factorization, whereas, we propose in this paper to estimate the enclosure of
the parameters in solving (10) with the SIVIA algorithm. The important differences, with
respect to the previous paper, are summarized in the two structure diagrams 2. In the left
diagram, the stochastic procedure is presented. M is the number of iterations, to calculate
the probability that the system reproduces the expected behavior of the model, given a
numerical procedure and a noise. The right diagram summarizes the method presented in
this paper, to estimate an enclosure of the parameters.

Let a parameter vector be given, for which the model solution is near an equilibrium
point, such that one of the parameters is a bifurcation parameter. In our case, ε is the
bifurcation parameter (see Section 3). The two works aim, also, to detect if the parameter
value obtained by an optimization procedure leads to the expected behavior of the model
output or not. The first method is based on the use of probabilistic tools. In contrast to
this, the proposed method, based on interval arithmetic, is used to analyze the accuracy
of the parameter identification algorithm. This new approach provides interval bounds,
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for all parameters to be identified, and in which the true parameters are located with 100%
certainty, since the measurement noise is assumed to be bound. Consequently, this method
allows for detecting, with certainty, the structural changes of the dynamics, by checking
whether the parameter values corresponding to the bifurcation point are included or not in
the estimated parameter ranges.

(a) (b)

Figure 2. These two diagrams summarize the differences between the procedure presented in [5] and
the one presented in this paper. (a) Diagram summarizing the stochastic procedure, presented in [5].
(b) Diagram summarizing the interval procedure, presented in this paper.

3.2. Parameter Estimation

In this section, enclosures of different integrals in the set-membership framework are
obtained, by the interval extension of the trapezoidal classic method.

For the simulations, the following values are taken: a∗ = 3, b∗ = 4, d∗ = 5,
u(t) = 3.25A, ε∗ = 0.20, (x1(0, θ), x2(0, θ), z(0, θ)) = (0.2; 0.7; 4). The time interval is
[0, 1000], with a step size h = 0.01s.

The integrals are evaluated, by using 29 points. In the output equation, [η(t)] is given
by three successive intervals: [0.00008, 0.00012], [0.0004, 0.0006] and [0.0005, 0.0015], then
System (10) is solved by using SIVIA’s algorithm (see Section 2.3). For each instance of
this value, the estimated intervals of ã, b̃, d̃, ε̃ and the widths of the estimated intervals are
given in Tables 1 and 2.

Table 1. Parameter values obtained with the method presented in Section 2.

[η(t)] ε̃ ã b̃ d̃

[0.00008, 0.00012] [0.1949, 0.2029] [2.9300, 3.0600] [3.9790, 4.1156] [4.9399, 5.0681]

[0.0004, 0.0006] [0.1934, 0.2035] [2.9398, 3.0633] [3.9089, 4.0225] [4.9407, 5.0654

[0.0005, 0.0015] [0.1905, 0.2024] [2.9563, 3.0643] [3.8557, 4.1684] [4.9409, 5.0670]

[−0.0001, 0.0001] [0.1369, 0.2026] [2.9909, 3.2119] [3.3170, 5.1301] [4.9709, 5.1399]

[−0.0001, 0.0001] [0.18, 0.2026] [2.9909, 3.2119] [3.6, .4] [4.9709, 5.1399]
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Table 2. Widths of estimated parameter intervals, obtained with the method presented in Section 2.

[η(t)] ε̃ ã b̃ d̃

[0.00008, 0.00012] 0.0089 0.1300 0.1366 0.1282

[0.0004, 0.0006] 0.0101 0.1235 0.1136 0.1247

[0.0005, 0.0015] 0.0119 0.1080 0.3127 0.1261

[−0.0001, 0.0001] 0.0657 0.2210 1.8131 0.1690

The impact of the width of the interval chosen for the measurement noise is analyzed
through the width of the estimated.

The intervals for initial values are given by ε ∈ [0.18, 0.22], a ∈ [2.7, 3.3], b ∈ [3.6, 4.4]
and d ∈ [4.5, 5.5].

All the intervals in Tables 1 and 2 contain the true values. Tables 1 and 2 highlight the
impact of the width of the measurement noise interval on the width of the estimated; the
larger the size of this interval is, the larger the size of the estimates.

4. Conclusions

In this paper, a new approach to estimate unknown parameters of the HR model is
considered in the set-membership framework, to detect, with certainty, a behavior change
in the dynamic of the system. Indeed, unlike probabilistic methods, which only give the
probability that the estimated parameter leads to the expected behavior, the method we
propose certifies whether the parameter values corresponding to the bifurcation parameter
are included or not in the estimated parameter ranges. It takes the benefit of the differen-
tial algebra-based method, integration and the SIVIA algorithm. Numerical simulations
highlight the interest of the proposed approach, in terms of estimated interval widths,
compared to the previous approaches that are based on IO polynomials. A sensitivity
analysis of estimates to the noisy data will be the subject of future works, as this could,
indeed, improve the estimation of the parameters, based on the works of [25].
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