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FIBONACCI-LIKE SEQUENCES FOR VARIANTS OF THE TOWER OF
HANOI, AND CORRESPONDING GRAPHS AND GRAY CODES

BENOIT RITTAUD

ABSTRACT. We modify the rules of the classical Tower of Hanoi puzzle in a quite natural way
to get the Fibonacci sequence involved in the optimal algorithm of resolution, and show some
nice properties of such a variant. In particular, we deduce from this Tower of Hanoi-Fibonacci
a Gray-like code on the set of binary words without the factor 11, which has some properties
intersting for itself and from which an iterative algorithm for the Tower of Hanoi-Fibonacci
is obtained. Such an algorithm involves the Fibonacci substitution. Eventually, we briefly
extend the study to some natural generalizations.

The Tower of Hanoi is a puzzle invented by Edouard Lucas [7, 8] in which a set of n disks
of different radius from 1 to n are put on a peg A in decreasing order, thus materializing a
triangular tower. Two other pegs, B and C, are empty. The aim of the game is to move all
the disks on the peg C (or, in a roughly equivalent version, on either B and (), following
the two rules: (1) the disks are moved one at a time, taking a disk on the top of a peg and
putting it on the top of another peg, and (2) a disk cannot be put over a smaller disk. This
is what we will call the classical Tower of Hanoi puzzle. A set-theoretic description of it is
the following. We write either dj or k for the disk of radius k, and Ay = {1,...,k} for the
set of the k smallest disks (with Ay = @ for £ < 1). Any state of the puzzle corresponds
to an ordered 3-partition of A,, written as (A, B,C) and referred as a state of the puzzle
(also referred as regular state in the litterature, when it is necessary to emphasize on the
fact that disks on each peg has to be set up with decreasing size, an assumption that is
weakened in some studies). A move from such a state to another one, say (A’, B',C’), is
allowed if, and only if, the two ordered partitions are equal up to some d € A, such that
d € {min(A), min(B), min(C)} N {min(A’), min(B’), min(C")}.

A lot of variants of the puzzle has been proposed since Lucas’ orginal one. We report the
reader to the highly valuable book [5] for a general synthesis on the subject.

Lucas already understood that the Tower of Hanoi was deeply linked to numeration systems.
Indeed, he wrote in 1893 [9, p. 58] that

Increasing the number of pegs and slightly modifying the rule of the game would
easily provide representations of all numeration systems. [En augmentant le
nombre de tiges et en modifiant légérement les régles du jeu, on obtiendrait
facilement des représentations de tous les systémes de numération.]

The optimal algorithm to solve the puzzle with n disks requires 2™ — 1 moves (hence passes
through 2" states), and the total number of admissible states is 3™. (There exists a “worst”
algorithm that solves the puzzle passing through all these 3" state exactly once). Hence, it is
not a surprise that there are natural links between the Tower of hanoi and binary and ternary
numeration systems. At Lucas’ time, only integral numeration systems were known. Since
the “worst” solution (i.e. the solution that pass through all possible states) requires 3" — 1
moves, it is sensible to ask for more pegs to represent other numeration systems. But now that
non-integer numeration systems are known, we can give to Lucas’ sentence a new meaning,
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keeping the three initial pegs and modifying the rules of the game, to get a Tower of Hanoi
version of some nonconventional ways to write integers.

A first possibility consists in restricting the moves allowed between pegs. For example,
we can forbid any direct move from A to C and from C to A. It is well-known that this
constraint leads to the “worst” algorithm mentioned beforehand, that visits every possible
state of the puzzle among the 3™ ones. Each of the possible variants of this kind is linked to
some numeration system (as well as to some Gray code) defined by a linear recurring sequence
(see [11]).

The initial question that gave rise to the present article was the converse: find natural
alternative rules for the Tower of Hanoi such that the minimal number of moves required to
solve the puzzle with n disks corresponds to a sequence fixed a priori. One of these sequences
for which an answer can be found is the Fibonacci sequence, and we will shw that the answer
described here extends to some other linear recurring sequences as well.

Apart from the sequence of minimal moves, other links between the Tower of Hanoi and
the Fibonacci sequence can be made. In particular, it is shown in [4] that, for the classical
puzzle with n disks, the number of key states (i.e. for which the minimal number of moves to
reach (&, @, A,,) is exactly twice the minimal number of moves to reach (A, @, @)) is equal to
F,,_1. The same article mentions the following other result, due to Merryfield and published
in [2]: for any n, the set of distincts Ay (resp. By, Ck) attained during the optimal algorithm
of resolution of the standard puzzle is of cardinality F, 1o (resp. Fyni1, Fpi2).

The present paper is organized as follows. In Section 1, we recall the relevant properties
of the classical Tower of Hanoi we wish to generalize. Section 2 is devoted to the main
variant we are interested in. In this variant is defined Fibonacci moves. We prove that the
variant defined by these kind of moves, the Tower of Hanoi-Fibonacci, is optimally solved in a
number of moves essentially given by the Fibonacci sequence (Section 2.2). Then, we provide
a link with the classical Zeckendorf-Fibonacci numeration system (Section 2.2) and deduce
from it an iterative algorithm for the Tower of Hanoi-Fibonacci. We then study a Gray-
like code associated to this numeration system (Section 2.3), then investigate the general
properties of the graph associated to the puzzle (Section 2.4). Eventually, in Section 3 are
briefly investigated some generalizations and questions, in two directions. The first one is when
the definition of Fibonacci moves is modified so as to get an optimal algorithm that requires
a number of moves given by a linear recurring sequence of the form m,, = m,_, +m,—_; + 1.
The second one considers complementary restrictions on moves between pegs, that gives rise
to a Tribonacci-like sequence.

1. THE CcLASSICAL TOWER OF HANOI

In the following, a subset {dg,,...,dy, } of A, with ky < --- < k; is simply written ky - - - k;.

It is known since Lucas that the Tower of Hanoi has a solution for any n > 0, and that
there is a unique solution with minimal number m,, of moves. Such a solution can be described
recursively by the following decomposition, valid for any n > 1, from which we easily deduce
that m,, = 2m,_1 + 1, hence m,, = 2" — 1 (since my =0) .

(A, @,2) 5 (0, Ap_1,2) — (B, An_1,n) =5 (2,8, A).

Since the number of states during the optimal resolution of the puzzle is 1 + m,, = 2", it is
natural to consider the binary expansion of length exactly n to code the successive states from
0 to 2™ — 1. Tt is easily proved by induction that the index k& (between 1 to n) of the leftmost
changing digit from the binary expansion of ¢ to the binary expansion of ¢ + 1 corresponds to
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FIBONACCI-LIKE SEQUENCES FOR VARIANTS OF THE TOWER OF HANOI

(123,9,9)

(2,123,2)  (2,23,1) (2,3,1) (12,3,2) (12,2,3) (2,1,3) (2,1,23) (@,2,123)

FIGURE 1. The graph Hs of the classical Tower of Hanoi with 3 disks.

the disk which is moved when going from the state i to the state i + 1. As a consequence, we
have that, for any 1 < k < n, the number of times the disk dj, is moved is 2"~%.

Also, consider the alternative codage of the states of the puzzle with n disks by elements of
{0,1}™ given by the following rules: the initial state (A,, @, @) is labelled 0", and when we
go from partition (A, B,C) to (A’, B',C") by moving the disk d = di, the label of the state
(A, B',C") is defined as the label of (A, B,C) in which the k-th digit has been switched (that
is: this digit becomes a 0 if it was a 1 and a 1 if it was a 0). Then, an induction shows that the
sequence of codages of the successive states thus obtained coincides with the reflected binary
Gray code, that is: the list G,, of all binary words with exactly n letters defined recursively
by Go = {0} and G,, = 0G,,—1 + 1G,,—1 (where, for a sequence £ = {z1,..., 2} of words and
d a letter, dC = {dx1,...,dz,} and, with £ = {y1,...,y¢}, the notation £ + £’ stands for
{z1,...,2k,y1,...y¢}). The fundamental property of such a list G, is that any two consecutive
elements of the list differ by exactly one digit.

For a given state, when only the partition is known but not the order of its elements, we
write the partition as X UY U Z. An expression like X UY UZ — RUS UT means a
move (or a sequence of moves) in which the position of the element R (resp. S, T') of the final
partition is the same as the position of the element X (resp. Y, Z) in the initial partition. It
was observed in [6] that the graph #H,, = (V,,, E,,) of the classical Tower of Hanoi has a fractal
structure similar to the Sierpinski triangle, H,, being made of three copies of H,_; for any
n > 1, any two of these copies being linked by a single edge corresponding to a move of the
foorm nUA, 1 U — FUA,_1 Un (see Figure 1).

Eventually, the optimal solution of the puzzle can be described by the following algorithm:
move d; (always in the way A - B — C' — A if n is odd, and in the way A - C — B — A
if n is even), then, while there is a disk dj # d; that can be moved, move that disk then then
move again dj.
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FIGURE 2. The 3-Fibonacci move from (35, As4,6) to (5, A14,236).

2. THE TOWER OF HANOI-FIBONACCI

2.1. Definition and optimal algorithm.

Definition 2.1. Let X and Y be two different pegs such that, for some k € A, we have
X =kX and Y = Ax_1Y. Write Z for the third peg. We define a k-Fibonacci move as a
move that consists in putting simultaneously both k — 1 and k onto Z, i.e.:

EXUA, Y UZ — XUA_Y U(k—1)kZ.

A Fibonacci move is a k-Fibonacci move for some k. The Tower of Hanoi-Fibonacci is the
Tower of Hanoi puzzle in which only Fibonacci moves are allowed. (Note that this definition
will be slightly modified in Section 2.4.)

Note that the 1-Fibonacci move is the one in which only one disk is moved (the disk dy).
Hence, this move is the only one common to the Tower of Hanoi-Fibonacci and the classical
Tower of Hanoi.

Theorem 2.2. The Tower of Hanoi-Fibonacci with n disks admits a solution for any n > 0.
There is only one optimal algorithm for it, that needs exactly F, 1o —1 Fibonacci moves (hence
passes through F,1o different states).

As an example, here is the optimal solution in the case n = 5.

(As, @, @) —> (2345, @,1) —> (345,12, @) —> (45,1,23) —>
(45, 2,123) —> (5,34, 12) —> (15,34,2) —> (5,1234, @) —»
(2,123,45) — (@, 23,145) — (12,3,45) — (1, @, 2345) — (2, @, As)

Proof. The proof is very similar to the classical case. First, the cases n = 0 and n = 1 both
admit trivial solutions, with mg =0= F, — 1 and m; = 1 = F3 — 1, where m,, stands for the
minimal number of moves to solve the puzzle with n disks. Now, put n > 2 and assume that the
puzzle with n —1 and n — 2 disks are both solvable, with m,,_s = F,, —1 and m,_1 = F,+1 — 1.
Consider the puzzle with n disks. To be moved, the disk of radius n needs to be alone on its
peg, and needs the tower A,,_1 to be on another peg. To mimimize the number of moves, we
can ask d, to be moved only once, hence any solution of the puzzle needs to reach the state
(n,Ap—1,9). We thus get a recursive description of the optimal solution of the puzzle with n
disks:
Mn—1 1 Mnp—2
(An,2,0) — (n,Ap_1,9) — (T, Ap_2,(n—1)n) — (&,2,A,).

Hence, we have that m, = m,_1 + 1 + my,_o, so, by the induction hypothesis, m, =

(Fps1 — 1)+ 14 (F, —1) = F42 — 1, as required. O
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FIBONACCI-LIKE SEQUENCES FOR VARIANTS OF THE TOWER OF HANOI

2.2. Link with the Zeckendorf-Fibonacci numeration system. The classical link be-
tween binary numeration system and the standard Tower of Hanoi extends to the Zeckendorf
(or Zeckendorf-Fibonacci) numeration system and the Tower of Hanoi-Fibonacci. This link
will provide us an iterative algorithm for the optimal solution of the latter puzzle.

Recall that, as proved in [12], for any fixed n > 2 and any integer 0 < k < Fj,y; there exists a
unique finite sequence (u;)2<i<n € {0,1}"71 such that u;u; 11 = 0 for any i and k = Z u; F;.

2<i<n
Such a sequence is the Zeckendorf-Fibonacci expansion of k. We will also write [uy, - - - u2]p
for it, and Z((ui)2<i<n) for the corresponding k. By convention, we may define Z(0) as the
empty sequence. When we need the length of a Zeckendorf-Fibonacci expansion to be of a
certain kind (as in the following theorem), we allow ourselves to append leading Os to it, hence
considering [Ouy, - - - ug|F as equivalent to [u, - - - ua]p.

In the following, a ZF-sequence (or ZF-word) will denote any binary sequence (or binary
word) satisfying the property that it does not contains two successive 1 anywhere in its terms.
Two ZF-words like uy, - - - ug and Ou,, - - - ug will be regarded as equivalents. Under this equiv-
alence relation, the Zeckendorf-Fibonacci expansion of k is unique. Moreover, this expansion
defines a bijection from N* onto the set of (non-empty) ZF-sequences.

The Zeckendorf-Fibonacci expansion of £ > 0 can be obtained by the application of the
following algorithm:

e r:=k u;:=0foralli>2 n:=max(j >2 : F; <k)
e while r > 0:
i:=max(j : F; <r)
U; = 1
r.=r—F;
o return((u;)2<i<n)-
Theorem 2.3. Let n > 0 be some integer, let 0 < k < Fyyo, and let k — 1 = [upy1- - up
and k = [Upq1---v2)p. Let j be the biggest index such that uj # v;. The k-th move of the
Tower of Hanoi-Fibonacci with n disks is a (j — 1)-Fibonacci move.

Proof. This is a simple induction making use of the recursive description of the algorithm
(A, D,0) — (N, Ap—1,9) — (T, Ap—2,(n—1)n) — (3,9, A,).

The property is true for n = 0 and n = 1. Assume it is true for n — 2 and n — 1 for some
n > 2. The moves from (A,,d, ) to (n,A,_1,d) are moves from 1 to m,_1 = F,4+1 — 1, so
their Zeckendorf-Fibonacci exansion of length n are all of the form [Ouy, - - - us]p. Hence, by
induction hypothesis on the puzzle with n — 1 disks, the property is true for all these moves.

Now, the Fibonacci move (n,A,_1,9) — (&,A,_2,(n — 1)n) is the F,,11-th one, of
Zeckendorf-Fibonacci expansion of length n equal to [10---0]p. The biggest moving disk
in this move is the n-th one, and the biggest index j as defined in the theorem is equal to
n + 1, so the theorem is also valid for this move.

The remaining F;, moves are the ones with Zeckendorf-Fibonacci expansion of length n of
the form [10u,—1 - - - ug|p, where [u,_1 - - - ug|F is the Zeckendorf-Fibonacci expansion of length
n — 2 of k — F,,41. Hence, we can apply to it the induction hypothesis made on the puzzle
with n — 2 disks, and we are done. O

Theorem 2.4. Let 0 < k < n be two integers. For the Hanoi-Fibonacci puzzle with n disks,
the number of k-Fibonacci moves in the optimal algorithm is equal to Fyy1_j.

Proof. We procede by induction on n and (decreasing) induction on k. For k = n, the number
we are looking for is equal to 1, which corresponds indeed to Fj, 41— = F; = 1. For k=n—1,
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it is easy to check that there is also exactly one k-Fibonacci move, a number equal to Fj, 11§ =
F5. Now, for k < n — 1, by induction hypothesis, the part (A, d, ) — (n,A,_1,2) of the
algorithm involves a number of k-Fibonacci moves equal to F,,_1)41_ = Fj—k, and the part
(@, An—2,(n —1)n) — (2,9, A,) involves Fi,,_2);1_; = Fy,——1 moves, hence a total equal
to Fro—x + Fr—k—1 = Fyp1-1 moves. O

Theorem 2.3 provides a complete iterative algorithm for the Tower of Hanoi-Fibonacci,
with the only issue that, for 1-Fibonacci moves (i.e. a move of the single disk d;), one has to
determine on which peg the disk d; has to move. Here is an answer to this question. Let us
say that d; is moving to the right (resp. to the left) whenever it moves from A to B, from B
to C or from C to A (resp. from A to C, from B to A or from C to B). Thus, by Theorem
2.4, we can code the sequence of 1-Fibonacci moves for the puzzle with n disks as a word
pn € {1,737 where | denotes a move to the left and  a move to the right. We then have the
following result:

Theorem 2.5. In the optimal algorithm for the Tower of Hanoi-Fiboonacci:

o if n € 2N*, then the k-th letter of u, is a r iff Z(k) has an even number of 1s;
e if n & 2N*, then the k-th letter of u, is a r iff Z(k) has an odd number of 1s.

Proof. We proceeds by induction on n > 2. Write the decomposition of the optimal solution
of the puzzle, with the corresponding number of 1-Fibonacci moves (given by Theorem 2.4
with k£ = 1).

anlfl Fn7271
s —

(A, 2, 2) (N, Ap_1,2) —5 (@, Ap_s, (n — 1)n) (2,9, An).

Assume for example n € 2N* (the other case would be similar). Consider the k-th letter of
tn corresponding to a 1-Fibonacci move among the F,,_1 — 1 first ones. By the induction
hypothesis, the fact that n — 1 is odd and the fact that the 1-Fibonacci moves corresponding
to (A,,9,9) — (n,A,_1,9) are the same as the one for (A,,2,8) — (n,d,A,_1) but
with exchanging the rs and the Is, we have that the considered k-th letter is a r iff Z(k) has
an even number of 1s. For a value of k corresponding to a 1-Fibonacci move among the last
F,,_o — 1 Fibonacci moves, the reasoning is the same, with the additional consideration that
the Zeckendorf expansion of k is now of the form [10u,_3 - - ug]p. O

Let us also mention the following qualitative results, that show in particular that the number
of 1-Fibonacci moves to the left and to the right are as balanced as possible.

Corollary 2.6. We have po = &, p1 = 1 and, for any n = 2, pn = (p—1pin—2)* =
Mn—2bn—3n—3n—4a, where pu* stands for the word in which each | has been replaced by a r
and each r by a l. Moreover, denoting by |u|q the number of letter d € {r,l} in the word p,
we have

|13nlr = |p3nli, l3nt1lt — lpsnatlr =1 and  |p3ny2lr — [H3nt2li = 1.

Proof. The first part is proved by an induction on n and the following decomposition of the
optimal solution of the puzzle (for n > 2), in which the words on the arrows stand for the
sequences of moves of d; during 1-Fibonacci moves:

* *
oy —1

(An, 2, 2) "= (0, A1, @) — (D, An_s, (n — 1)n) 25 (2,2, Ay).

The second part is a simple induction on n. O
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FIBONACCI-LIKE SEQUENCES FOR VARIANTS OF THE TOWER OF HANOI

2.3. Gray-like code. To complete notations set up for lists in Section 1, for any list £ of
elements of {0,1}", write £’ for the list made of all elements of £ in which the leftmost letter
is removed. Then, set Ny = @, N7 := {1} and N, := 10N/ _;| + 10N,_o (here writing each

word always with a 1 as leftmost digit). Eventually, let G := Z/\f, :={91,92,...}. Such a
>0

construction may be seen as a mirroring process analogous to the classical one for binary Gray

codes, as shown in Table 1.

( 91 —
g2 =
g3 =
g4 =
gs =
g6 =
g7 =
gs =
g9 =

gi10
Y gi1 =
gi2 =
g13 =
g14 =
gi5 =
gie =
gi7 =
gis =
g19 =
g20 =

o O OO

DO OO O OO

Ns

DO OO OO OO O oo

Ne

=== 00000000 oo

OO OO OO MFHEFREFEFOOOOOO
SO R PR OO0 OOo O kOO
R OO OO, OO~ OOO O

O T S = Gy SOy H
OO OO OO oo

Vs

TABLE 1. The Gray-like code of the Tower of Fibonacci-Hanoi with n = 6 disks.

Recall that the Hamming distance between w and w' € {0,1}", written h(w,w’), is the
number of their differents digits, that is: for w = wy---w, and W' = wj---w),, we have
h(w,w") = card(1 < i < n : w; # w,). When w and w’ do not have the same number of
letters, we append as many 0 as necessary to the shortest one to make it of the same length
as the other.

Theorem 2.7. The application g, — Z(n) is a bijection from the set of all non-empty ZF-
words (assuming the equivalence between wu, - - -ug and Ouy, - - - uz) onto N*. Moreover, for any
n > 1 we have
| 2 ifn+1=Fy for somek > 3;
hgn, gn+1) = { 1 otherwise.

Proof. By induction, assume that N7 _; U N,_o contains all ZF-words of {0,1}"~2 exactly
once, N _, (resp. N,_2) containing those with a 0 (resp. a 1) as leftmost digit. Hence, by
definition of N,,, N, contains all ZF-words in {0,1}" with 10 as leftmost digits, each exactly
once. As a consequence, by the induction hypothesis, N, U N,,_1 contains all ZF-words of
{0,1}" ! exactly once, with N7 (resp. N,_1) containing those with a 0 (resp. a 1) as leftmost
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digit. Hence, G is in bijection with the set of all ZF-words (but the empty one). The theory
of Zeckendorf-Fibonacci recalled in Section 2.2 thus gives us that g, — Z(n) is a bijection
onto N*.

Now for the property of Hamming distances. By induction, assume the property satisfied
for G,_1 and that the Hamming distance among two successive elements of N}, is always equal
to 1. We have G,, = 0G,—1 +N,, = 0G,—1 + 10N, _; +10N,,_2. Hence, by induction hypothesis,
the Hamming distance of any pair of successive elements of G, is equal to 1, apart, possibly,
for the pairs (0gr,,,~1,9F,,,) (made by the last element of G,,_ and the following one in G,)

and (gF, 1 +F,_1~1>9F,s1+F,_,) (made by the last element of G, + 10N, _; and the following
one in Gy,).

To prove that the induction hypothesis is valid also for n, it only remains to prove that
the Hamming distance of the first of these pairs is equal to 2 and the one of the second
pair is equal to 1. For the first one, by definition of A, the two different digits of Ogr,,,—1
and gr,,, are the two leftmost ones, that is: writing Ogp,,, 1 in the form 010u,_3---u1, we
have gr,., = 100u,_3---u;. Hence their Hamming distance is indeed equal to 2. For the
second pair, by construction we have (writing w’ for the word w from which the leftmost digit
has been removed) gp, ., +F,_,—1 = 109y ., _p | = 109y and gp,,,+F,_, = 10gp,-1. As
already noticed, gr, = 0100up—4---u1 and gg,—10010Up—q - - - uq1, SO 10g%n = 1000%y—4 - - - uq
and 10gr, -1 = 1010uy,—4 - - - u1, hence their Hamming distance is equal to 1. O

Strictly speaking, a Gray code has the property that two consecutive elements are always
of Hamming distance equal to 1, hence our list G is only a Gray-like code. One may wonder if
we could recover a real Gray code that lists all the ZF-words. In itself, such a question is too
large, and a natural restriction on it is to ask for such a Gray code to be length-increasing,
that is: the list (gn)n>1 should order the words in such a way that the leftmost 1 of g, is of
increasing index with n. It is quite easy to check that such a natural condition cannot be
satisfied, since for w the last ZF-word of length n — 1 and w’ the first one of length n we
necessarily have h(w,w’) > 2. This remark leads to the following result:

Theorem 2.8. Let (up)n>0 be a length-increasing sequence made of all non-null ZF-words
(each of them appearing exactly once). For any n > 0, we have h(un, unt1) = h(gn, Gnt1)-

In this sense, our Gray-like code G is as close as possible to a true Gray code length-increasing
and containing all the ZF-words.

As it is done in [10, Theorem 5] for another Gray-like code linked to Fibonacci combinatorics
given in [3], it is possible to “de-mirror” the construction of G, in the following way:
Theorem 2.9. Let Ny = &, N7 = {1}, Ny = {10} and N3 = {100,101}. For any n > 4,
all the following is well-defined and correct by induction. First, N,,_1 has cardinality F,_1.
Set Np—1 = {wo,...,wp, ,—1}. For any 0 < m < F,_1, there exists a unique ¢ = q,(m) €
{—2,-1,0,1,2} of smallest absolute value such that wp4q ends with a 1. Eventually, for any
0<m< F,_1, set

{w;0} if gn(m) =0,
Vm = ¢ {wi0, wil} if gn(m) € {-1,2},
{wil, w0} if go(m) € {-2,1}.
We then have N,, = Z V.

0<m<Fy

Practically speaking, the previous result can be enforced in the following way: to get N,
from N, _1, write each element of the list AV,,_1, each element being written twice in a row iff
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FIBONACCI-LIKE SEQUENCES FOR VARIANTS OF THE TOWER OF HANOI

it ends with a 0. Then, concatenate (on the right) to each element of this new list either a 0
or a 1 so as to get a word that differs from the previous one by exactly one digit (or, for the
first of the list, exactly two digits from the last word of A,,_1).

For the proof, even if the Gray code in [3] does not exactly match the one considered in the
present article, the two situations are close enough to allow us to invoke here the proof given
in [10] for Theorem 2.9 since, as can be easily checked, the sequence of last digits (starting at
Us) are exactly opposite (i.e. with 1s and Os exchanged) in both definitions. Following [10]
also leads to the following description that makes use of the Fibonacci substitution to describe
the way digits are to be added to the elements of N,,_1 to get N,,. (Hence we do not provide
the details here either, see [10, Corollary 1].)

Corollary 2.10. Let o be the Fibonacci substitution on the alphabet {c, 5}, defined by o(a) =
af and o(B) = a, and let (op)nen := 0 () be its fized point. Let (7,,)nen+ be the word on
the alphabet {0,1} defined by 1 = 1 and, for anyn > 2, 7, = 1 iff 0|, /2)—1 = B. To get Ny11
from Ny ={9F,,1»---,9F, -1} in Theorem 2.9 (with n > 2), we can proceed by the following
algorithm:
o [Initialization: L := &
o fori from Fpy1 to Frio—1:
if gi ends with a 1 then £ := L+ {g;}
else L:= L+ {gi} + {9}
o write L =:{gr, ;- 9Fuis—1}
e fori from Fpyo to Fig—1:
in L, replace g; by g;7;
o return(L).

2.4. The Hanoi-Fibonacci graph. In the present section, our aim is to investigate how to
represent the Tower of Hanoi-Fibonacci by a graph F,, = (V,, E,), in which V,, as the 3"
possible states of the puzzle, and E,, as the set of edges (e, €’) such that the move from e to
¢’ is a Fibonacci move. Note that, contarily to the graph of the classical Tower of Hanoi, this
graph is oriented since Fibonacci moves are not reversible (apart for 1-Fibonacci moves).

Theorem 2.11. For any n = 2, the un-oriented graph that corresponds to F, s non-planar.

Proof. Since F,, C F,41 for any n, it is sufficient to prove that F> is non-planar.

Let us merge the vertices (&, 1,2) and (&, 2, 1) in a single vertex a, then the vertices (1, &, 2)
and (2,9,1) to get another single vertex b, and eventually the vertices (1,2, 2) and (2,1, @)
to get a third vertex c¢. The graph thus obtained can be split into two subsets of vertices,
V ={a,b,c} and V' = {(12,2,9),(2,12,9), (&,,12)}. The set of edges of this new graph
is the set of all possible edges between V and V', hence it is isomorphic to the complete
bipartite graph K33. Hence, K33 is a minor of F3, so, by Wagner’s theorem, F> is not
planar. O

Theorem 2.12. For any n > 0, F, is strongly connected. In other words, any possible state
of the puzzle can be attained from any other under the rule of the Tower of Hanoi-Fibonacci.

Proof. We proceed by induction on n. Assume JF, is strongly connected, and consider F, 1.
This latter graph contains exactly three copies of F,, that we denote by F7', FZ and F¢
depending on the peg on which is located d,; in each. By the induction hypothesis, each
of these three copies of F,, is strongly connected. Hence, to obtain the desired result it is
sufficient to prove that there exists an edge from some vertex of F-X to some vertex of F,! for
any different pegs X and Y. The Fibonacci move (n +1) UA, U@ — S UA,_1Un(n+1)
provides such an edge. O
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FIGURE 3. The graph F, of the Tower of Hanoi-Fibonacci with 2 disks. (Line
segments stand for edges going both ways.)

The previous drawing of F» seems quite difficult to extend in a natural way to larger values
of n, and a slight modification of Figure 1 seems more interesting for visualization purposes,
even if it needs some specific codage to makes the arrow diagram handy. Also, as announced
in Definition 2.1, it will be here easier to work with a slightly modified version of a Fibonacci
move, hereafter defined as

EXUN_ Y UZ — Ao X UY U (k—1)kZ.

In this new version, the tower A;_5 ends up on X instead of remaining on Y. This does not
fundamentally change what precedes, and it is easy to check that all the results obtained under
the initial Definition 2.1 of Fibonacci moves remain unchanged under the present variant. (In
particular, since the graph F3 remains the same for this variant, the new graph is still non-
planar.)

Now, with this variant of Fibonacci moves, we can make use of the classical graph of Figure
1 to represent the Hanoi-Fibonacci puzzle. We preserve in this graph the edges that represent
1-Fibonacci moves. The other edges are also preserved, but in a form that we will call here
pseudo-edges. More precisely: the graph G, of the classical puzzle is made of three copies of
Gn—1, together with three edges that make G, connected. In F,, we define these oriented edges
as n-pseudo-edges, represented as arrows labelled by 272 +1 (for n > 2). Let v be a vertex of
JF, which is the origin of a k-pseudo-edge e (hence with 1 < k < n). The k-Fibonacci move for
the vertex v ends up on the vertex v’ obtained by a jump of length 2572 4+ 1 in the direction
of the edge, i.e. v’ is the vertex of the graph at a distance 2¥~2 4- 1 from v (each edge or
pseudo-edge counting for 1) attained by following the path of length 2¢=2 4 1 defined by the
geometrical direction defined by e.

Theorem 2.13. Under the previous definition of F,, if the vertex v is the origin of a k-
pseudo-edge (k > 2), then the vertex v' is the state of the puzzle attained by the (only) possible
k-Fibonacci move from the state v.
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FIGURE 4. The graph F3 of the Tower of Hanoi-Fibonacci with 3 disks (under
the variant of the Fibonacci moves) with its pseudo-edges.

Proof. Assume the result until n — 1. The graph F,, contains three copies of F,_1, in each of
which the property is true by induction. Therefore, it remains only to prove that the property
is true also for the n-pseudo-edges of F,,. By symmetry, it is enough to consider the case
of the n-pseudo-edge of origin (n,A,_1,2). The n-Fibonacci move from this state leads to
(Ap—2,9,(n — 1)n). Also, under the classical rules of the Tower of Hanoi puzzle, going from
(n, Ap_1, @) to (Ap_2, @, (n—1)n) with the optimal algorithm requires exactly 2”2 +1 moves,
which are all on the same geometrical direction on H,,, so we are done. O

We deduce from this a combinatorial proof of the following equality.

Corollary 2.14. For any n > 0, we have
n—2
2" = Fpo + Z 2", 1 k.
k=0
Proof. With the notation of Section 1, we have 2™ — 1 = m,,. Also, by Theorem 2.4 and the
proof of Theorem 2.13, we have
n+1
My = Fot Y (2" +1) P
k=3

n+1 n+1
= Z Foyok + Z 2" P P a i
k=2 k=3
n—2
= Fuo—1+ Z 2", 1k
k=0
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O

Corollary 2.14 can be related to the classical fact that the sum of the n-th row of Pascal’s
triangle is 2" and the sum of its n-th diagonal is F,.

3. SOME GENERALIZATIONS AND QUESTIONS

3.1. Modifying the Fibonacci moves. Here, we briefly consider alternative ways of defining
the allowed moves, extending in a natural way the Fibonacci moves. We write AZ/ for the set
of disks di with ' <k < n (so Aﬁ/ =Al =A, for ’ <1 and Aﬁ/ = @ for n' > n).

Definition 3.1. Let p > 1 and q > 0 be two integers. Let X and Y be two different pegs of
some state such that, for some k € A,, we have X = AIZ*pHX’ and Y = Ap_,Y'. Write
Z for the third peg of the state. We define a (p,q)-move as a move that consists in putting
simultaneously all the disks of A’,z_pﬂ_q onto Z, i.e.:

AFTPRIX AL Y U Z — X UA,, Y UATPH g,

We will talk about the (p,q)-Tower of Hanoi for the Tower of Hanoi puzzle in which only
(p, q)-moves are allowed.

Note that the (1,0) case is the classical puzzle, and that the (1,1) one is the Tower of
Hanoi-Fibonacci puzzle.

Theorem 3.2. The (p, q)-Tower of Hanoi puzzle with n disks admits a solution for anyn > 0.
There exists only one optimal algorithm for it, that needs exactly my, (p,q)-moves, where the
sequence (my)nez is defined by

_— 0 forn <0
" Mp—p+Mpy—pq+1 forn>0.

Proof. For n < p, the (p, q)-move (A,,,d, ) — (2,2, A,) is allowed, so we have m,, = 1 for
any n < p, which correspond to the formula stated in the theorem.
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For n > p, the optimal solution is provided by the sequence of critical states, each of which
needing, by induction, the number of moves written on its arrow:

Mn— _ 1 — — Mp—p—
(A, @,2) = (ATPHLUA, 0 @) — (D, Appg, AP TR (5 o1 A,
By summing the moves we get the expected formula. ([

There is no serious doubt that generalization of Zeckendorf-Fibonacci, Gray-like codes and
pseudo-edges of the graph H,, can be given for (p, ¢)-moves, but some additional technicalities
may be quite hard to overcome. For example, the case p = ¢ = 2 provides a sequence m,,
which is not strictly increasing (since man—1 = may), hence a convenient numeration system
derived from it is probably not as simple as the Zeckendorf one for the Fibonacci sequence of
the case p = ¢ = 1. The study of the corresponding graph may be a little bit tricky as well to
be extended to (p, g)-moves.

3.2. Restricting the moves between pegs. Possible variants on the classical puzzle con-
sist in allowing moves only between some pegs. For example, in the clockwise-cyclic variant
introduced in [1], additionally to the classical rules of Section 1, a disk can move only from A
to B, from B to C' or from C to A.

Any variant of this type can be defined by an oriented graph with set of vertices {A, B, C'},
an arrow XY standing for the fact that moves from the peg X to the peg Y are allowed. The
sensible variants of this kind (i.e. for which the puzzle is solvable for any n) are the ones for
which the corresponding graph is strongly connected [4, Theorem 8.4]. We will not consider
all possible cases here, but only mention briefly the linear variant, in which the allowed moves
are those from A to B, from B to A, from B to C and from C to B. It is well-known that, for
such a restriction, the optimal algorithm for the classical puzzle needs 3" — 1 moves, so, since
the number of distincts states is 3™, the linear puzzle also provides the “worst solution”, that
is: the longest solution that does not come back to any state already met.

Now, consider the linear variant for the Tower of Hanoi-Fibonacci, in which a k-Fibonacci
move is allowed iff it makes dj going from A to B, from B to A, from B to C or from C to
B. Write again m,, for the minimal number of moves to solve ths variant with n disks. The
optimal solution is then given by the following recursive description (for n > 3):

Mnp—1

(Ap, @,0) ™5 (0,0, A1) — (2, A" Ap_s) —

mnp—3 Mp—

(An_2 nvAn—?)) — (An—lanag) é (An—QagvAZ_l) —>2 (®7@7An)'

n—1’

Hence, the sequence (my,), is given by mg = 0, m; = 2, my = 5 and, for any n > 3,
My = Mp—1 + Mp—2 + mp_3 + 3 (a kind of a Tribonacci sequence).

As regards the other variants derived from the restriction of moves between pegs, there
is probably no specific difficulty to deal with them in the context of Fibonacci moves (or
(p, g)-moves), apart from the fact that some of these variants already involve linear recurring
sequences of order 6 in the classical Tower of Hanoi, so are possibly tiresome to describe in
our even more technical context.

More interesting would be to find a general way to derive the sequence of moves (or at least
of number of moves) from the conjunction of the two kinds of rules. For example, is it possible
to deduce the previous Tribonacci sequence directly from what we separately know from the
linear variant of the classical puzzle and from our study of the Tower of Hanoi-Fibonacci,
instead of the recursive description we presented?
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3.3. Further questions. We could also consider even more general rules for the moves. For
example, we could allow moves of the form kX'UA,_1Y'UZ — X'UA,—3(n—1)Y'U(n—2)nZ,
and so on. One may wonder if two different rules can lead to the same sequence, hence asking
for the links between these rules.

Eventually, a deeper work would be to obtain a theoretical way to find from a linear recurring
sequence some natural rules for the Tower of Hanoi for which the number of moves of the
optimal algorithm would be given by the sequence. This will probably involve a more precise
definition of a “natural rule”. (For example, we may ask whether we can always restricts
the study to markovian moves, i.e. moves for which their legality depends only on the initial
and final states.) In a sense, answering this question would truly complete Lucas’ original
assertion.
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