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Supplementary Methods 

Aggregating datasets 

For data from Outhwaite et al. (2019), we focused on occupancy estimates labelled at Great-

Britain level, which can in fact correspond to two different spatial coverages (United Kingdom or 

Great-Britain). Since for this dataset occupancy estimates are modelled, not observed, we excluded 

occupancy estimates that converged poorly in their analyses (Rhat<1.2): this yielded 138,095 

occupancy estimates for 3,496 species, from 1970 to 2015, which correspond to 57% of the 

arthropod occupancy estimates at Great-Britain level from the original dataset. 

For data from Crossley et al. (2020) 

(https://datadryad.org/stash/dataset/doi:10.5061/dryad.cc2fqz645) we used the file 

“External_Database_S1_PerSpecies_Abundance_LTER_annotated.csv.” After data filtering, we 

obtained 78,187 annual abundance estimates from 1943 to 2019 with a taxonomic resolution 

varying from species to order levels. This corresponds to 94% of the abundance estimates from the 

original dataset. 

For data from van Klink et al. (2020) we used the file “aax9931-Van-Klink-SM-CORRECTED-

Data-S1.txt.” Some data from American LTER sites and from BIOTIME could be duplicated with 

time series from Crossley et al. (2020) and from BIOTIME respectively, but because van Klink et 

al. aggregated data at taxonomic order (Fig. S1), we considered them as different. We also removed 

biomass data to keep abundance data only. We restricted our analysis to time series from North 

America and Europe as other locations were poorly represented. After data filtering, we obtained 

26,785 annual abundance estimates from 1932 to 2018 with a taxonomic resolution at order level. 

This corresponds to 43% of the abundance estimates from the original dataset. 

For BIOTIME data we extracted all data, and we kept only time series regarding arthropods 

from terrestrial and freshwater habitats, from North America and Europe. We removed LTER data 

to avoid duplicated time series with Crossley et al. (2020). We inferred zeros on a given plot for a 

given species for a given year when the plot has data for at data from the same taxonomic order 

than the focal species for the given year. Then we removed time series with only zero abundance 

values. After data filtering, we obtained 79,250 annual abundance estimates from 1898 to 2016 

with a taxonomic resolution varying from species to order levels. 

 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.cc2fqz645


 

 

3 

 

Assessing monotony of abundance variation over time 

We estimated non-monotony of temporal abundance variations using a Generalized Additive 

Model (GAM) for each original time series, using the mgcv R package (Wood 2017). These GAMs 

have a Poisson error structure (with a log link function) for abundance data from van Klink et al. 

(2020), Crossley et al. (2020) and BIOTIME, or a gaussian error structure for logit transformed 

occupancy estimates from Outhwaite et al. (2019). We used a smooth (spline) effect of the year. 

For time series sampled at different periods, we added a spline effect of the period penalized by a 

ridge penalty, to model it as a random effect. To avoid non-identifiable models, the dimension of 

the basis used to represent the year smooth term is constrained to be smaller than to the number of 

years (duration) of the time series, minus one if it is sampled over different sampling periods, with 

a maximum basis value of 10.  

Then extracting the polynomial effect of the year on abundance, we assessed the non-monotony 

of this polynomial effect as the number of local maximums and minimums (i.e. turning points) 

observed. 

Comparing abundance trends among species 

A common problem when comparing abundance trends over many species is that estimated 

trends are not easily comparable among species, especially between rare and common species, since 

abundance trends depend on initial abundance. Indeed, two species, a rare and an abundant one, 

with an abundance shifting in a year from 10 to 15 individuals and from 10,000 to 15,000 

individuals respectively, are both growing with a rate of 50% per year. However, measuring these 

abundance variations on the number of individuals will give a gain of 5 individuals for the first one 

against a gain of 5,000 individuals for the second species. Demographic effects measured on rough 

measure of abundance (number of individuals, occupancy probability, etc.) depend on the level of 

abundance, hiding the decline of rare species (Fig. S2 & S3). Note that standardizing abundances 

of each species by subtracting the mean and dividing by standard deviation does not solve this 

problem in a proper way, since it does not allow to estimate growth rate but can instead create 

artefacts by increasing the importance of stable species with low inter-annual variation in their 

abundance, relatively to species declining/increasing but with high inter-annual variations in 

abundance (Fig. S4).   

This dependency of abundance trends to initial abundance can be overcome by expressing 

population trends in terms of growth rates, a multiplicative factor which correspond to the growth 
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of the population. In a time-discrete system, a growth rate > 1 is associated with increasing 

abundance over time, a growth rate equals to 1 corresponds to a constant abundance over time, 

while a growth rate < 1 is associated with decreasing abundance over time. Such measure allows 

to compare trends among species, regardless their initial abundance, but is cannot be estimated 

directly using classic linear models. Indeed, the demography of a population with growth rate r, as 

shown in Fig. S6, can be expressed by the following geometric progression: 

𝐴𝑡 = 𝐴𝑡=0 × 𝑟𝑡 

where 𝐴𝑡 is the abundance at time t, 𝐴𝑡=0 is the initial abundance (intercept), while r is the growth 

rate. The problem is that this product cannot be estimated using classic linear models which, by 

definition, estimate linear functions (𝑦 = 𝑏 + 𝑎𝑥). Here, we transformed occupancy estimates 

using a logit function and abundance counts using a log function to linearize geometric changes, 

then allowing to estimate growth rates using linear models. If we study the logarithm of the 

abundance instead of the abundance, then the function describing the population demography 

becomes linear: 

log(𝐴𝑡) = log(𝐴𝑡=0 × 𝑟𝑡) 

log(𝐴𝑡) = log(𝐴𝑡=0) + log(𝑟𝑡) 

log(𝐴𝑡) = log(𝐴𝑡=0) + 𝑡 × log(𝑟) 

If we set 𝑎 = log(𝑟) and 𝑏 = log(𝐴𝑡=0), we have: 

log(𝐴𝑡) = 𝑏 + 𝑎𝑡 

Thus, by regressing linearly log(abundance) against time we can estimate the logarithm of the 

growth rate, which is a measure of abundance trend independent of the initial abundance (i.e. the 

rarity) of species (Figure S6). Since log(1) = 0, then the sign and the value of the estimated slope 

indicate the direction and the magnitude of the abundance trend, respectively. However, since 

log(0) is not defined and since we have zero abundance values, we need to use a model structure 

which allows zero abundances. Usually, studies use log(𝐴𝑡 + 𝜀) instead of log(𝐴𝑡), choosing 𝜀 =

1 arbitrarily (Crossley et al. 2020; van Klink et al. 2020), while the value of 𝜀 will strongly affect 

the result by breaking the linearization of the geometric progression (Fig. S2). 
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Here, to avoid this arbitrary transformation, we used a Generalized linear model (GLM) with a 

Poisson error structure, using a log link function, which allows to estimate log(𝐴𝑡) = 𝑏 + 𝑎𝑡 by 

considering zero abundance data. 

Regarding the occupancy probabilities, the same logic applies but we have to account for the 

fact that the proportion of grid cells occupied by the species is bounded between 0 and 1. So the 

population dynamic can be view as a logistic regression with a carrying capacity (K) of 1: 

𝑑𝑃

𝑑𝑡
= 𝑟∗𝑃 (1 −

𝑃

𝐾
) 

Where r* is the growth rate of a time-continuous system (0 = stable, negative = decline, positive = 

increase). Thus, we have: 

𝑃𝑡 =
𝐾𝑃0𝑒

𝑟∗𝑡

𝐾 + 𝑃0(𝑒
𝑟∗𝑡 − 1)

=
𝐾

1 +
𝐾 − 𝑃0
𝑃0

𝑒−𝑟
∗𝑡

 

If we set K = 1, we have: 

𝑃𝑡 =
1

1 +
1 − 𝑃0
𝑃0

𝑒−𝑟
∗𝑡

 

If we logit transform 𝑃𝑡, we get: 

log (
𝑃𝑡

1 − 𝑃𝑡
) = log(𝑃𝑡) − log(1 − 𝑃𝑡) = − log (

𝐾 − 𝑃0
𝑃0

) + 𝑟∗𝑡 

Switching from r* to r,  so from continuous to discrete time we get: 

log (
𝑃𝑡

1 − 𝑃𝑡
) = − log (

𝐾 − 𝑃0
𝑃0

) + 𝑡 × log(𝑟) 

Where r is the growth rate of a discrete time system (1 = stable, below 1 = decline, above 1 = 

increase). If we set 𝑎 = log(𝑟) and 𝑏 = − log (
𝐾−𝑃0

𝑃0
), we have: 

log (
𝑃𝑡

1 − 𝑃𝑡
) = 𝑏 + 𝑎𝑡 
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Thus, by regressing linearly logit(occupancy probability) against time we can estimate, as 

previously, the logarithm of the growth rate, which is a measure of abundance trend independent 

of the initial abundance (i.e. the rarity) of species (Figure S3).  

So, here we used a GLM with a binomial error structure, using a logit link function, which 

allows to estimate logit(𝑃𝑡) = 𝑏 + 𝑎𝑡. 
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Fig. S1: Taxonomic distribution of time series. (a) Number of species across taxonomic groups 

and (b) source datasets, as a function of their taxonomic resolution. 
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Fig. S2: Representation of a geometric decline over time. (a) Abundance, measured as number of 

individuals, against time, for two species declining with a rate of 20% per year (growth rate = 0.8). 

Zooming on a part on the bottom of the y-axis, we can see that both species decline with the same 

rate, but since one is rare and the other is common, variations in number of individuals are much 

larger for the common species. (b,c,d) represents the same dynamics as in a, but applying the 

transformation log(x+ε) to the abundance, with three values of ε. 
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Fig. S3: Representation of a geometric decline over time. (a) Occupancy probability, measured 

as the proportion of grid cell occupied by a species on a given area, against time, for two species 

declining at a growth rate of 0.8, as in figure S2. Zooming on a part on the bottom of the y-axis, 

we can see that both species decline with the same rate, but since one is rare and the other is 

common, variations in number of individuals is much larger for the common species. (b) represents 

the same dynamics as in a, but when applying the transformation logit(x) to the occupancy 

probability. On the logit scale we can see that declines are linear and identical (same slopes) 

between both species, and can easily be estimated with a linear model. 
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Fig. S4: Simulated data showing how standardization can affect abundance trends. (a) 

abundance values over time and associated abundance trends, for one strongly declining species, 

with high inter-annual variation in abundance (green), and for another species slightly declining, 

with low inter-annual variation in abundance (purple). (b) shows the same data as in (a) but after 

standardization of abundance values within each time series (minus mean and then divided by 

standard deviation). In (b) abundance trends are calculated on standardized data, giving similar 

trends among species while in fact the green species is declining more than the purple one. Because 

purple species exhibit low inter-annual variability in abundance, the absolute value of its trend is 

artefactually increased by the standardization.  
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Fig. S5: Truncated time series with only one non-zero yearly estimate of abundance produce 

extreme value of abundance trends. Density distribution of the absolute value of abundance 

trends, log(growth rate), as function of the number of non-zero yearly estimate of abundance 

contained in the truncated time series (1 vs >1). To preserve readability the x-axis is square-root 

transformed.  
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Fig. S6: Same figure as in the main text (Figure 3b), but for each source dataset. Proportion of 

abundance trends from truncated time series with different directions (positive vs. negative), as a 

function of the number of turning points in the corresponding original time series. Boxplots 

represent minimum and maximum values (bottom and top of vertical lines), first and third quartiles 

(Q1 and Q3, bottom and top of boxes) and median (thick horizontal lines); colours indicate sample 

size (number of original time series). Points with values outside of the range [Q1-1.5(Q3-Q1), 

Q3+1.5(Q3-Q1)] are considered as outliers and represented as full circles. 
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Fig. S7:  Estimated growth rate when a decline of 15%/year is simulated. This is the same plot 

than in the left panel of Figure 4d, but without the outliers to improve readability of average biases. 

The dashed horizontal line shows the value of the logarithm of the true (simulated) growth rate. 
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Fig. S8: Random effects of taxonomic order on abundance trends. The dots show the mean of the 

posterior distribution while the error bars show the confidence interval at 95% (quantile 2.5% and 

97.5%). 
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Fig. S9: Estimated abundance trends of truncated time series as a function of average 

abundance. Abundance trends (log growth rate) as a function of the average abundance of the 

original time series (measured on the original abundance scale), per source dataset and habitat.  
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Table S1: Description of the 4 datasets used. 

Dataset’s 

name 

Kind of abundance 

estimate 

Original 

spatial scope 

Spatial scope 

used here 

Taxonomical 

resolution of 

time-series 

Original 

temporal 

coverage 

Temporal 

coverage 

used here 

Outhwaite et 

al. 2019 

Annual occupancy 

estimate (i.e. the 

proportion of 1km2 

grid cells in a 

region occupied by 

a species, a proxy 

for abundance) 

Great-Britain 

or United-

Kingdom or 

region (Wales, 

England, 

Scotland, 

Northern 

Ireland) levels 

Time-series at 

Great-Britain 

level 

Species level 1970-2015 1970-2015 

Crossley et al. 

2019 

Local annual 

abundance count 

Local time 

series spread 

across the 

USA 

Local time 

series spread 

across the 

USA 

Species level 

mostly (cf. 

Figure S1) 

1943-2019 1970-2019 

van Klink et al. 

2020 

Local annual 

abundance count, 

aggregated from 

literature 

Local time 

series spread 

across the 

world 

Local time 

series spread 

across North 

America and 

Europe 

Order level 1925-2018 1970-2018 

BIOTIME 

database 

Local annual 

abundance count 

Local time 

series spread 

across the 

world 

Local time 

series spread 

across North 

America and 

Europe 

Species level 1874-2018 1970-2018 
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Table S2: Number of original time series across datasets, continents and habitats, at the end of the 

filtering process. 

Dataset Continent aquatic terrestrial 

BIOTIME Europe 142 3877 

BIOTIME North America 26 562 

Crossley North America 587 5161 

Outhwaite Europe 265 3081 

van Klink Europe 0 101 

van Klink North America 70 258 

 


