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In this paper, we analyze an eigenvalue problem for a quasi-linear elliptic operators involving Dirichlet boundary condition in an open smooth bounded set of R N . We investigate a bifurcation results (from trivial solution and from infinity) of an eigenvalue problem involving the (p, 2)-Laplace operator, from the Fučik spectrum of the Laplacian.

Introduction

Assume Ω ⊂ R N (N ≥ 2) is an open bounded domain with smooth boundary ∂Ω. A classical result in the theory of eigenvalue problems guarantees that the problem

-∆u = λu in Ω, u = 0 on ∂Ω (1.1)
possesses a nondecreasing sequence of eigenvalues 0 < λ 1 < λ 2 ≤ . . . and a sequence of corresponding eigenfunctions which define a Hilbert basis in L 2 (Ω), (see [START_REF] Henrot | Extremum Problems for Eigenvalues of Elliptic Operators[END_REF]). Moreover, it is known that the first eigenvalue of problem (1.1) is characterized in the variational point of view by,

λ 1 := inf u∈W 1,2 0 (Ω)\{0} Ω |∇u| 2 dx Ω u 2 dx
.

In [START_REF] Zongo | Nonlinear eigenvalue problems and bifurcation for quasilinear elliptic operators[END_REF], the authors investigated the asymptotic behavior of the spectrum and the existence of multiple solutions of the following nonlinear eigenvalue problem

   -∆ p u -∆u = λu on Ω, u = 0 on ∂Ω, (1.2) 
where -∆ p u = -div(|∇u| p-2 ∇u) denotes the p-Laplace operator. In [START_REF] Zongo | Nonlinear eigenvalue problems and bifurcation for quasilinear elliptic operators[END_REF] it was shown that for p > 2 there exist eigenvalue branches emanating from (λ k , 0), and for 1 < p < 2 emanating from (λ k , ∞). A nonlinear generalization of the spectrum of problem (1.1) is the Fučik spectrum, given by the values (λ + , λ -) ∈ R + × R + for which the problem -∆u = λ + u +λ -u -with Dirichlet boundary condition has nontrivial solution. The values λ + and λ -which are such that -∆u = λ + u +λ -u -has nontrivial solution u ∈ W 1,2 0 (Ω) will be called half-eigenvalues, while the corresponding solutions u will be called half-eigenfunctions. The Fučik spectrum was introduced by S. Fučik [START_REF] Fučik | Solvability of boundary value problems with homogeneous ordinary differential operators[END_REF] and N. Dancer [START_REF] Dancer | On the Dirichlet problem for weakly nonlinear elliptic partial differential equation[END_REF] in the 70's, mainly motivated by the works of A. Ambrosetti and G. Prodi [START_REF] Ambrosetti | A primer in Nonlinear Analisys[END_REF] in connection with what is known in the literature as "asymmetric problems".

In this paper we consider the following nonlinear eigenvalue problem

   -∆ p u -∆u = λ + u + -λ -u -on Ω, u = 0 on ∂Ω. (1.
3)

The operator -∆ p -∆ appears in quantum field theory (see, [START_REF] Benci | Solitons in several space dimensions: Derrick's problem and infinitely many solutions[END_REF]), where it arises in the mathematical description of propagation phenomena of solitary waves. The main purpose of this paper is to study the asymptotic behavior of the spectrum of problem (1.3) for all p > 2 and 1 < p < 2. We intend to study problem (1.3) as a bifurcation in the Fučik eigenvalues from trivial solution if p > 2 and a bifurcation from infinity if 1 < p < 2.

In [START_REF] Ruf | Nonlinear eigenvalues and bifuraction[END_REF], the author has proved that the equation

Au -γu -= λu + N(λ, u) (1.4)
has global bifurcation branches emanating from the points (λ 1 k , 0) and (λ 2 k , 0) in R × L 2 (Ω) for any k ≥ 1. In equation (1.4), the operator A : D(A) ⊂ L 2 (Ω) → L 2 (Ω) is an unbounded self-adjoint operator with compact resolvent and with eigenvalues λ 1 ≤ λ 2 ≤ . . . , repeated according to their multiplicity, and

γ ∈ R + satisfies 0 < γ < min{λ k - λ k-1 , λ k+1 -λ k } (k ≥ 2) and N(λ, u) = o(∥u∥)
for u near zero uniformly on bounded λ intervals. The points λ 1 k and λ 2 k are called split eigenvalues of the operator Aγ(•) -and their existence was proved by B. Ruf in [START_REF] Ruf | On nonlinear elliptic problems with jumping nonlinearities[END_REF]. Our work is inspired by the work of [START_REF] Ruf | Nonlinear eigenvalues and bifuraction[END_REF]. In the present article, the point (λ 1 k , 0) will be a bifurcation point for positive solutions and the point (λ 2 k , 0) will be a bifurcation point for negative solutions of problem (1.3). A similar structure as (1.4) was proved in [START_REF] Esteban | Nonlinear eigenvalues and bifurcation problems for Pucci's operators[END_REF] concerning bifurcation problems for Pucci's operators. More precisely in [START_REF] Esteban | Nonlinear eigenvalues and bifurcation problems for Pucci's operators[END_REF], the authors studied the following problem as a bifurcation problem from the trivial solution

   -M + λ,Λ (D 2 )u = µu + f (u) on Ω, u = 0 on ∂Ω, ( 1.5) 
(respectively M - λ,Λ ) where Ω is a bounded regular domain, and M ± λ,Λ are the extremal Pucci's operators with parameters 0 < λ ≤ Λ. It is shown that bifurcation occurs form the "half-eigenvalues" µ + k and µ - k .

Our main results are:

let γ ∈ R + that satisfies 0 < γ < min{λ k -λ k-1 , λ k+1 -λ k }, k ≥ 2
• For p > 2, we obtain bifurcation branches emanating from the points (λ 1 k , 0) and

(λ 2 k , 0) in R × L 2 (Ω) for the operator -∆ p -∆ -γ(•) -, where λ 1 k and λ 2 k are the split eigenvalues of -∆ -γ(•) -,
• For 1 < p < 2, we obtain bifurcation branches emanating from the points (λ

1 k , ∞) and (λ 2 k , ∞) in R × L 2 (Ω) for the operator -∆ p -∆ -γ(•) -.
This article is organized as follows. In section 2, we present the Fučik spectrum of problem (1.3) and in section 3 we show that are solutions branches of problem (1.3) that bifurcate from the Fučik eigenvalues of problem (2.2). In section 3.3, we discuss bifurcation from infinity of problem (1.3). For a further discussion on this topic, we refer the interested reader to the work of [START_REF] Esteban | Nonlinear eigenvalues and bifurcation problems for Pucci's operators[END_REF] and the references therein.

We recall that if 1 < p < q, then L q (Ω) ⊂ L p (Ω) and as a consequence, one has W 

S (λ + ,λ -) of pairs (λ + , λ -) ∈ R 2 such that the problem    -∆u = λ + u + -λ -u -on Ω, u = 0 on ∂Ω (2.2)
has a nontrivial solution. Then, the Fučik spectrum of -∆ p -∆ on Ω with Dirichlet boundary conditions is defined as the set

Σ (λ + ,λ -) of pairs (λ + , λ -) ∈ R 2 such that the problem    -∆ p u -∆u = λ + u + -λ -u -on Ω, u = 0 on ∂Ω (2.3) has a nontrivial solution for p ∈ (1, ∞)\{2}. Clearly Σ (λ + ,λ -) generalizes the notion of the spectrum of problem (2.1), since Σ consists of all values λ ∈ R such that problem (2.3) for λ + = λ -= λ has a nontrivial solution.
Here we write u ± = max{±u, 0} in Ω, where u + and u -denote respectively the positive and the negative part of u. We also recall that u = u +u -.

Spectrum of problem (2.3)

Definition 2.1. We say that u ∈ W

1,p 0 (Ω) (if p > 2 ) or u ∈ W 1,2 0 (Ω) (if 1 < p < 2 ) with u ̸ ≡ 0, λ ± ∈ R, is a weak solution of (2.3) if and only if Ω |∇u| p-2 ∇u • ∇φ dx + Ω ∇u • ∇φ dx = λ + Ω u + φ dx -λ - Ω u -φ dx (2.4) for all φ ∈ W 1,p 0 (Ω) (if p > 2 ), φ ∈ W 1,2 0 (Ω) (if 1 < p < 2 ).
The function u is called an half-eigenfunction associated with the pair (λ + , λ -) ∈ R 2 .

Remark 2.2. For λ + ≤ λ 1 and λ -≤ λ 1 , equation ( 2.3) has only zero solution.

Invertibility property

Lemma 2.3. Let p > 2. Then operator -∆ p -∆ -γ(•) -is a global homeomorphism between W
1,p 0 (Ω) and its dual space for a fixed γ ≥ 0.

For the proof of this lemma, we need the following lemma (see [START_REF] Lindqvist | Inequalities for Vectors[END_REF] for a proof).

Lemma 2.4. Let p > 2. Then there exist two positive constants c 1 , c 2 such that, for all x 1 , x 2 ∈ R n , we have :

(a) (x 2 -x 1 ) • (|x 2 | p-2 x 2 -|x 1 | p-2 x 1 ) ≥ c 1 |x 2 -x 1 | p (b) |x 2 | p-2 x 2 -|x 1 | p-2 x 1 ≤ c 2 (|x 2 | + |x 1 |) p-2 |x 2 -x 1 | Proof of Lemma 2.3. Define the quasi-linear operator M : W 1,p 0 (Ω) → W -1,p ′ (Ω) (with 1/p + 1/p ′ = 1) by ⟨Mu, v⟩ = Ω ∇u • ∇v dx + Ω |∇u| p-2 ∇u • ∇v dx -γ Ω u -vdx for all u, v ∈ W 1,p 0 (Ω).
To show that -∆ p -∆γ(•) -is a homeomorphism, it is enough to show that M is a continuous strongly monotone operator, (see [9, Corollary 2.5.10]). For p > 2, for all u, v ∈ W 1,p 0 (Ω), by (a), we get

⟨Mu -Mv, u -v⟩ = Ω |∇(u -v)| 2 dx + Ω |∇u| p-2 ∇u -|∇v| p-2 ∇v • ∇(u -v) dx -γ Ω (u --v -)(u -v)dx ≥ Ω |∇(u -v)| 2 dx + c 1 Ω |∇(u -v)| p dx -γ Ω (u --v -)(u -v)dx ≥ Ω |∇(u -v)| 2 dx + c 1 Ω |∇(u -v)| p dx ≥ c 1 ∥u -v∥ p 1,p .
Thus M is a strongly monotone operator. We claim that M is a continuous operator from W 1,p 0 (Ω) to W -1,p ′ (Ω). Indeed, assume that u n → u in W 1,p 0 (Ω). We have to show that ∥Mu n -Mu∥ W -1,p ′ (Ω) → 0 as n → ∞. Using (b), Hölder's inequality and the Sobolev embedding theorem, one has

|⟨Mu n -Mu, v⟩| ≤ Ω |∇u n | p-2 ∇u n -|∇u| p-2 ∇u |∇v|dx + Ω |∇(u n -u)||∇v|dx + Ω γ|u - n -u -||v|dx ≤ c 2 Ω (|∇u n | + |∇u|) p-2 |∇(u n -u)||∇v|dx + Ω |∇(u n -u)||∇v|dx + Ω γ|u n -u||v|dx ≤ c 2 Ω (|∇u n | + |∇u|) p dx (p-2)/p Ω |∇(u n -u)| p dx 1/p Ω |∇v| p dx 1/p + c 3 ∥u n -u∥ 1,2 ∥v∥ 1,2 ≤ c 4 (∥u n ∥ 1,p + ∥u∥ 1,p ) p-2 ∥u n -u∥ 1,p ∥v∥ 1,p + c 5 ∥u n -u∥ 1,p ∥v∥ 1,p .
Thus ∥Mu n -Mu∥ W -1,p ′ (Ω) → 0, as n → +∞, and hence M is a homeomorphism.

Bifurcation results

Here we show bifurcation results from trivial solutions and from infinity of problem (2.1) for p > 2 and 1 < p < 2 respectively.

Preliminary results toward the bifurcation results

Let p > 2, then for u ∈ W 1,p 0 (Ω), we have

-∆ p u -∆u = λ + u + -λ -u -⇔ -∆ p u -∆u -(λ + -λ -)u -= λ + u.
We fix γ = λ +λ -> 0 and we consider λ := λ + as a parameter of the equation

   -∆ p u -∆u -γu -= λu on Ω, u = 0 on ∂Ω. (3.1)
Using Lemma 2.3, we write equation (3.1) in the following form:

u = λ(-∆) -1 u + (-∆ p -∆ -γ(•) -) -1 -(-∆) -1 (λu), (3.2) 
where we consider

(-∆ p -∆ -γ(•) -) -1 : L 2 (Ω) ⊂ W -1,p ′ (Ω) → W 1,p 0 (Ω) ⊂⊂ L 2 (Ω), and (-∆) -1 : L 2 (Ω) ⊂ W -1,2 (Ω) → W 1,2 0 (Ω) ⊂⊂ L 2 (Ω).
So, for p > 2 the mapping

(-∆ p -∆ -γ(•) -) -1 -(-∆) -1 : L 2 (Ω) ⊂ W -1,p ′ (Ω) → W 1,p 0 (Ω) ⊂⊂ L 2 (Ω)
is a compact mapping thanks to the Rellich-Kondrachov theorem. For simplicity, we write equation (3.2) as follows

u = λAu + T λ (u), (3.3) 
with Au = (-∆) -1 and

T λ (u) = (-∆ p -∆ -γ(•) -) -1 -(-∆) -1 (λu).
The L 2 (Ω) space with norm ∥ • ∥ 2 admits the orthogonal decomposition

L 2 (Ω) = [e k ] ⊕ [e k ] ⊥ , (3.4) 
where e k is the normalized k-th eigenfunction associated to a simple eigenvalue λ k of the Dirichlet Laplace operator (see [START_REF] Ruf | On nonlinear elliptic problems with jumping nonlinearities[END_REF]), and [e k ] denotes the eigenspace of λ k . In view of (3.4), we set

H k = [e k ] ⊥ and E k = [e k ] for simplicity. An element of u ∈ L 2 (Ω) in (3.4) will be seen as u = αe k + v, with α ∈ R and v ∈ H k .
The following result was obtained by B. Ruf in [START_REF] Ruf | On nonlinear elliptic problems with jumping nonlinearities[END_REF].

If γ ≥ 0 satisfies 0 < γ < min{λ k -λ k-1 , λ k+1 -λ k }, (3.5) 
then the following nonlinear eigenvalue problem

-∆u -γu -= λu, has a unique split eigenvalue (λ 1 k , λ 2 k ) ∈ [λ k , λ k+1 ] × [λ k , λ k+1 ] of -∆ -γ(•) -and uniquely determined eigenfunctions v 1 k , v 2 k in L 2 (Ω) such that -∆v i k -γ(v i k ) -= λ i k v i k , i = 1, 2.
For γ = 0 the k-th split eigenvalue reduces to the eigenvalue λ k and v 1 k , v 2 k to the eigenfunctions e k , -e k respectively.

Consider

   -∆uγu -= λu on Ω, u = 0 on ∂Ω, with γ > 0.

(3.6)

We say that u ∈ W 1,2 0 (Ω) with u ̸ ≡ 0 is a weak solution of (3.6) if and only if

Ω ∇u • ∇v dx -γ Ω u -v dx = λ Ω uv dx, (3.7) 
for all v ∈ W 1,2 0 (Ω).

since λ n → λ 1 k and u n → 0 as n → ∞. This implies that ū = v 1 k (or possibly ū = v 2 k if λ 1 k = λ 2 k ). Thus we get 2η ≤ |(e k , ū)| ≤ η since |(e k , u n ) 2 | ≤ η∥u n ∥ 2 .
This is a contradiction. Hence there exists ρ 0 as above and for 0 <

ρ < ρ 0 , if (λ, u) ∈ Σ γ \{(λ 1 k , 0)} ∩ B ρ , then u = αe k + v with |α| > η∥u∥ 2 . We have ∥v∥ 2 ≤ |α| + ∥u∥ 2 ≤ |α| + |α|/η and |λ -λ 1 k | < ρ → 0. So, for α near zero, we have |λ -λ 1 k | = o(1) and v = o(α).
Remark 3.3. The ρ 0 in Lemma 3.2 can be chosen indepently of γ ∈ [0, γ], where γ satisfies (3.5) if we set

η := 1 2 inf γ∈[0, γ] {|(e k , v 1 k (γ)) 2 |, |(e k , v 2 k (γ)) 2 |}.
We employ a Lyapunov-Schmidt method, that is, we write equation (3.3) as equivalent system in R × H k and R × E k . We denote by P k and Q k the orthogonal projections onto H k and E k respectively, that is

P k (αe k + v) = v and Q k (αe k + v) = αe k . We write equation (3.3) in R × H k and R × E k as    v = λAv + P k (T λ (αe k + v)), αe k = λαAe k + Q k (T λ (αe k + v)). (3.8) This is equivalent to v = λAv + P k (T λ (αe k + v)) (3.9) 
and

α = αλ λ k + (Q k (T λ (αe k + v)), e k ) 2 .
(3.10)

We set now,

R γ (α, λ, v) = αλ λ k + (Q k (T λ (αe k + v)), e k ) 2 -α + λ, S γ (α, λ, v) = (λ -λ 1 k )Av + P k ( Tλ (αe k + v)) (3.11)
We then define

ψ γ (α, λ, v) := (λ -R γ (α, λ, v), v -S γ (α, λ, v)).
Then the solutions of equation (3.3) are the zeros of ψ γ and conversely. The trivial solutions of (3.3) correspond to the solutions (0, λ, 0), λ ∈ R of equations (3.10) and (3.11). Since ψ γ is continuous and compact with respect to (λ, v) for fixed α > 0 , for fixed α it has the appropriate form for the use of the theory of Leray-Schauder degree.

Bifurcation from trivial solutions

Here, we prove our bifurcation result. Proof.

Let σ(-∆ -γ(•) -) := {λ ∈ R : ∃u ̸ = 0 in L 2 (Ω) : -∆u -γ(u) -= λu}.
Let U γ = {(λ, v) ∈ R × H k /|λ -λ 1 k (γ)| < ε 1 , ϱ 1 > ∥v∥},
where γ ∈ [0, γ] with γ arbitrary but fixed and satisfying 0 < γ < λ k+1λ k . By Lemma 3.2 all the nontrivial solutions (α, λ, v) of equations (3.9) and (3.10) near (0, λ 1 k , 0) satisfy (λ, v) ∈ U γ if |α| < α 1 provided that α 1 , ε 1 , ϱ 1 are sufficiently small and γ ∈ [0, γ]. Therefore

ψ γ (α, λ, v) ̸ = 0 on ∂U γ for 0 < α < α 1 and γ ∈ [0, γ]. Consequently the Leray-Schauder degree deg(ψ γ (α, λ, v), U γ , (0, 0)) is well defined for 0 < |α| < α 1 . Since λ 1 k is contin- uously dependent on γ (see [5, Lemma 2.4], [0, γ] {γ} × U γ is a bounded open sets in [0, γ] × R × H k .
By the homotopy invariance of the Leray-Schauder degree, one has

deg(ψ γ (α, λ, v), U γ , (0, 0)) = c ± , for 0 < |α| < α 1 .
To evaluate c ± , we consider the family of operators Θ τ defined as

Θ τ (α, λ, v) := λ -( α λ k + 1)λ - τ λ k (Q k (T λ (αe k + v)), e k ) 2 + α, v -τS γ (α, λ, v) for τ ∈ [0, 1].
As above, we can assume that Θ τ (α, λ, v) ̸ = 0 on ∂U γ for τ ∈ [0, 1] and α ∈ (-α 1 , α 1 ). Using again the homotopy invariance of the degree implies that

deg(Θ τ (α, λ, v), U γ , (0, 0)) = c ± , for 0 < |α| < α 1 and τ ∈ [0, 1]. (3.12) 
Therefore to evaluate c ± , it suffices to take τ = 0, and

Θ 0 (α, λ, v) = λ -( α λ k + 1)λ + α, v .
The only zero that Θ 0 possesses is v = 0, λ = λ k . We note that Θ 0 (α, λ, v) is an isomorphism on R × H k , and hence

c ± = ind(Θ 0 (α, λ, v), (λ k , 0)) = ±1.
We observe that

ind(Θ 0 (α, λ, v), (λ k , 0)) = deg( Θ0 (α, λ, v), U γ , (0, 0)) = deg(Θ 0 (α, λ, v), U γ , (-α, 0)), (3.13) where Θ0 (α, λ, v) = λ -( α λ k + 1)λ + α, v , which is the homogeneous (in α) linear oper- ator corresponding to Θ 0 (α, λ, v). For α ̸ = 0, Θ0 (α, λ, v) is an isomorphism and then deg( Θ0 (α, λ, v), U γ , (-α, 0)) = ind( Θ0 (α, λ, v), (-α, 0)) = ind( Θ0 (α, λ, v), (0, 0)). (3.14) Since λ -γ( α λ k + 1)λ + α, v
has no characteristic values γ in (0, 1) for α < 0 and one characteristic value in the interval (0, 1) for α > 0, the theorem on change on index and relation (3.12) and (3.14) imply that c ± = ±1. On the other hand, by Lemma 3.2 we have that

(-∆ p -∆)(αe k + v) -γ(αe k + v) -= λ(αe k + v), v ∈ H k
has no solution for -α 1 < α < 0 and |λλ 1 k ( γ)| < ρ 0 . Since this equation is equivalent to equation (3.9), we infer to deg(ψ γ(α, λ, v), U γ, (0, 0)) = 0, forα < α < 0.

With this jump in the degree, we obtain the existence of the solution branch C λ 1 k . The branch C λ 2 k is obtained similarly.

Bifurcation from infinity

Here, we prove a bifurcation from infinity result. As in [START_REF] Zongo | Nonlinear eigenvalue problems and bifurcation for quasilinear elliptic operators[END_REF], we introduce the following change of variable: for u ∈ W 1,2 0 (Ω), u ̸ = 0, we set v = u/∥u∥

2-1 2 p 1,2 for all 1 < p < 2. We have ∥v∥ 1,2 = 1 ∥u∥ 1-1 2 p 1,2 and |∇v| p-2 ∇v = 1 ∥u∥ (2-1 2 p)(p-1) 1,2 |∇u| p-2 ∇u.
Introducing this change of variable in (2.4), we find that, ∥u∥

(2-1 2 p)(p-2) 1,2 Ω |∇v| p-2 ∇v • ∇φ dx + Ω ∇v • ∇φ dx = λ + Ω v + φ dx -λ - Ω v -φ dx
(3.15) for every φ ∈ W 1,2 0 (Ω). But, on the other hand, we have ∥v∥ p-4

1,2 = 1 ∥u∥ (1-1 2 p)(p-4) 1,2 = 1 ∥u∥ (2-1 2 p)(p-2) 1,2 .
Consequently it follows that equation (3.15) is equivalent to

∥v∥ 4-p 1,2 Ω |∇v| p-2 ∇v • ∇φ dx + Ω ∇v • ∇φ dx = λ + Ω v + φ dx -λ - Ω v -φ dx, (3.16) 
for every φ ∈ W 1,2 0 (Ω). This leads to the following nonlinear eigenvalue problem (1 < p < 2)

-∥v∥

4-p 1,2 ∆ p v -∆v = λ + v + -λ -v -in Ω, v = 0 on ∂Ω.
(3.17) Remark 3.5. With this transformation, we have that the pair (λ 1 k , ∞) or (λ 2 k , ∞) is a bifurcation point for the problem (1.3) if and only if the pair (λ 1 k , 0) or (λ 2 k , 0) is a bifurcation point for the problem (3.17).

For v ∈ W 1,2 0 (Ω), we have -∥v∥

4-p 1,2 ∆ p v -∆v = λ + v + -λ -v -⇔ -∥v∥ 4-p 1,2 ∆ p v -∆v -(λ + -λ -)v -= λ + v.
We fix γ = λ +λ -> 0 and we consider λ := λ + as a parameter of the equation

   -∥v∥ 4-p 1,2 ∆ p v -∆v -γv -= λv on Ω, v = 0 on ∂Ω. (3.18)
Let us consider a small ball B r := { w ∈ W 1,2 0 (Ω) : ∥w∥ 1,2 < r }, and consider the operator

A := -∥ • ∥ 4-p 1,2 ∆ p -∆ -γ(•) -: W 1,2 0 (Ω) → W -1,2 (Ω).
Proposition 3.6. Let 1 < p < 2. There exists r > 0 such that the mapping A : B r ⊂ W 1,2 0 (Ω) → W -1,2 (Ω) is invertible, with a continuous inverse.

We first remark that for γ > 0, -γ(u -v -, uv) 2 ≥ 0. Indeed, we have

(u --v -, u -v) 2 = Ω (u --v -)(u -v)dx = Ω (u --v -)(u + -v + )dx - Ω |u --v -| 2 dx = 1 4 (|u| -|v|) 2 -∥u -v∥ 2 2 -∥u --v -∥ 2 2 ≤ 0,
using the definition of u ± and v ± .

Proof of Proposition 3.6. In order to prove that the operator A is invertible with a continuous inverse, it is enough to prove that A is continuous strongly monotone operator. We show that there exists δ > 0 such that

⟨A(u) -A(v), u -v⟩ ≥ δ∥u -v∥ 2 1,2 , for u, v ∈ B r (0) ⊂ W 1,2 0 (Ω)
with r > 0 sufficiently small. Indeed, using that -∆ p is strongly monotone on W 1,p 0 (Ω) on the one hand and the Hölder inequality on the other hand, we have and thus the claim, for r > 0 small enough. Hence, the operator A is strongly monotone on B r and it is continuous, and hence the claim follows.

⟨A(u) -A(v), u -v⟩ = ∥∇u -∇v∥ 2 2 + ∥u∥ 4-p 1,2 (-∆ p u) -∥v∥ 4-p 1,2 (-∆ p v), u -v 2 -γ(u --v -, u -v) 2 = ∥u -v∥ 2 1,2 + ∥u∥ 4-p 1,2 (-∆ p u) -(-∆ p v), u -v 2 + ∥u∥ 4-p 1,2 -∥v∥ 4-p 1,2 -∆ p v, u -v 2 -γ(u --v -, u -v) 2 ≥ ∥u -v∥ 2 1,2 -∥u∥ 4-p 1,2 -∥v∥ 4-p 1,2 ∥∇v∥ p-1 p ∥∇(u -v)∥ p ≥ ∥u -v∥ 2 1,2 -∥u∥
Using Proposition 3.6, we write equation (3.18) as the following form:

v = λ(-∆) -1 v + (-∥ • ∥ 4-p 1,2 ∆ p -∆ -γ(•) -) -1 -(-∆) -1 (λv), (3.20) 
where we consider

(-∥ • ∥ 4-p 1,2 ∆ p -∆ -γ(•) -) -1 : L 2 (Ω) → W 1,2 0 (Ω) ⊂⊂ L 2 (Ω),
and (-∆) -1 : L 2 (Ω) ⊂ W -1,2 (Ω) → W 1,2 0 (Ω) ⊂⊂ L 2 (Ω). So, for 1 < p < 2 the mapping

(-∥ • ∥ 4-p 1,2 ∆ p -∆ -γ(•) -) -1 -(-∆) -1 : L 2 (Ω) ⊂ W -1,2 (Ω) → W 1,2 0 (Ω) ⊂⊂ L 2 (Ω)
is a compact mapping thanks to the Rellich-Kondrachov theorem.

For γ > 0 fixed, let P γ denote the closure of the set of nontrivial solutions of problem (3.18). The following lemma localizes the possible solutions of equation (3.18).

Lemma 3.7.

There exists ρ 0 > 0 such that for all 0 < ρ < ρ 0 : 

P γ \{(λ 1 k , 0)} ∩ B ρ ⊂ K + ρ,η K + ρ,η K + ρ,η (γ).

Theorem 3 . 4 . 1 k.

 341 There exists a solution branchC λ 1 k in Σ γ such that (λ 1 k , 0) ∈ C λ Then C λ 1 k either (a) meets infinity in R × L 2 (Ω), or (b) meets (µ, 0), where µ ∈ σ(-∆γ(•) -)\{λ 1 k , λ 2 k }.The analogous statement holds for C λ 2 k .This bifurcation result is explained by Figure1below.

Figure 1 :

 1 Figure 1: Bifurcation from trivial solutions.

If

  (λ, u) ∈ P γ \{(λ 1 k , 0)} ∩ B ρ , then u = αe k + v, where |α| > η∥u∥ 2 , and |λλ 1 k | = o(1), v = o(1) for α near zero. Moreover α > 0. The same statement hold for K - ρ,η K - ρ,η K - ρ,η (γ).

2 Fučik spectrum and nonlinear spectrum

  In what follows, we denote by ∥.∥ 1,p and ∥.∥ 2 the norms on W

	1,q 0 (Ω) ⊂ 0 (Ω) and L 2 (Ω) 0 (Ω). 1,p W 1,p
	defined respectively by								
	∥u∥ 1,p =	Ω	|∇u| p dx	1 p	and ∥u∥ 2 =	Ω	|u| 2 dx	1 2	.
	An eigenvalue λ ∈ R of the quasi-linear elliptic operator -∆ p -∆ on Ω is such that the
	following problem								
		  	-∆ p u -∆u = λu on Ω, u = 0 on ∂Ω				(2.1)
	has a nontrivial solution for p ∈ (1, ∞)\{2}. We denote by Σ the spectrum of problem

(2.1)

. The Fučik spectrum of -∆ on Ω with Dirichlet boundary conditions is defined as the set

  Now, we obtain by the Mean Value Theorem that there exists θ ∈[0, 1] such that (u + θ(vu), vu) 1,2 ≤ (4p)∥u + θ(vu)∥ ∥u + θ(vu)∥ 1,2 ∥u -v∥ 1,2 = (4p)∥u + θ(vu)∥ ∥u -v∥ 1,2 ≤ (4p) ((1θ)∥u∥ 1,2 + θ∥v∥ 1,2 ) 3-p ∥u -v∥ 1,2 ≤ (4p)r 3-p ∥u -v∥ 1,2 .Hence, continuing with the estimate of equation (3.19), we get⟨A(u) -A(v), u -v⟩ ≥ ∥u -v∥ 2 1,2 (1 -(4p)r 3-p Cr p-1 ) = ∥u -v∥ 2 1,2 (1 -C ′ r 2 ),

	∥u∥	4-p 1,2 -∥v∥	4-p 1,2	=	d dt	∥u + t(v -u)∥ 2 1,2	2-1 2 p	| t=θ (v -u)
				= (2 -	1 2	p) ∥u + θ(v -u)∥ 2 1,2 2 2-p 1-1 2 p
									1,2 3-p
									1,2
								4-p 1,2 -∥v∥	4-p 1,2 C∥v∥	p-1 1,2 ∥u -v∥ 1,2 .	(3.19)
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Remark 3.1. Suppose that u is an eigenfunction associated to λ in (3.7). Then αu is also an eigenfunction associated to λ for α > 0.

From this remark, we aim to show that problem (3.1) has bifurcation branches emanating from the points (λ 1 k , 0) and (λ

In what follows, we assume that (3.5) holds. Let η := 1 2 min{|(e

We see that both

are two disjoints convex cones. For γ > 0 fixed, let Σ γ denote the closure of the set of nontrivial solutions of problem (3.1). The following lemma localizes the possible solutions of equation (3.1). We refer to [START_REF] Rabinowitz | Some global results for nonlinear eigenvalue problems[END_REF]Lemma 1.24] for similar results.

Lemma 3.2.

There exists ρ 0 > 0 such that for all 0 < ρ < ρ 0 : 

Proof. Suppose by contradiction that there is no ρ 0 as in Lemma 3.2. Then there exist two sequences ρ n and (λ n ,

Using the fact that (-∆µ) -is compact, then for a subsequence, ūn → ū in L 2 (Ω) as n → ∞, and with the continuity of ∆ p we find that

The proof of this lemma is similar to the proof of Lemma 3.2 and it is left to the reader.

Theorem 3.8. There exists a solution branch S λ 1

The analogous statement holds for S λ 2 k .

One can adapt the proof of Theorem 3.4 to this theorem. Theorem 3.8 can be illustrate as in Figure 1, where the norm ∥u∥ 1,p in the y-axis has to be replaced by ∥u∥ 1,2 .