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ABSTRACT Standard supervised classification methods make the assumption that the training data is
fully annotated thus requiring an a-priory labelling process which is both costly and time-consuming.
To relax this requirement, many different flavors of weakly supervised learning have been proposed.
Among weakly supervised learning strategies, Positive Unlabelled learning (PUL) is gaining attention
from the research community due to the wide spectrum of applications it can fit. However, the majority
of research studies related to PUL only consider binary classification tasks while real-world applications
commonly involve multiple categories. To deal with this limitation, Multi-Positive Unlabelled learning
(MPUL) has been recently introduced to learn from examples labelled with multiple positive labels and
a single unknown negative label. Up to today, only a limited number of research works were proposed
to cope with this more general setting.
In this paper, we propose a new MPUL framework based on deep learning strategies. Our framework,
named ProtoMPUL (Prototype based Multi-Positive and Unlabelled Learning), combines metric learning
and clustering strategies to model the set of positive classes as well as to characterize the unknown negative
one.
Experimental evaluations on real-world benchmarks considering recent MPUL competitors demonstrates
that the proposed framework achieves state-of-the-art performances, thus supporting the validity of the
proposed approach.

INDEX TERMS Multi-Positive Unlabelled learning, weakly supervised learning, tabular data, metric
learning, deep clustering

I. INTRODUCTION

Standard supervised classification methods make the as-
sumption that the training data is fully annotated with
the whole set of classes of interest, requiring an apriori
money- and time-consuming labelling process that can be
unaffordable and unrealistic in several real-world scenarios.
To relax this strict requirement several weakly supervised
learning settings [2] have been proposed. Among them, it
is worth mentioning active learning [3], semi-supervised
learning [4], multi-instance learning [5], learning with label
noise [6] and positive unlabelled learning (PUL) [7].

In recent years, Positive-Unlabelled learning received
growing attention from the research community. PUL objec-
tive is to learn a classifier considering an incomplete training

set where only a portion of the positive samples have
associated label information while no label is available for
samples belonging to the negative class [8]. In other terms,
under such a learning setting, the training set is composed
of two parts, a labelled one containing only positive samples
and an unlabelled one containing both positive and negative
samples. This learning setting is of particular importance in
many real-world applications [8].

As a practical example, let us consider an automatic
diagnosis scenario where a system aims to predict if a
patient has a particular disease. In this scenario, patients
diagnosed with the disease are labelled as positives, while
patients that were not diagnosed with the deseases are
unlabelled since not being diagnosed is different from not
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FIGURE 1. Visualization of the difference between supervised learning (SL)
approach and the MPUL approach. In the SL approach every example of the
training set has a label. In MPUL the training set is composed of both labelled
and unlabelled examples. More in detail, labelled examples are available only
for a portion of the positive classes.

having the disease [9]. The same problem occurs when a
company wants to create an archive of researchers’ home
pages, using web-crawling techniques. Once downloaded,
a web page should be classified to decide whether it is
a researcher’s home page or some other page. In such a
context, the concept of the positive sample is well defined
(the researcher’s home page) while the negative concept is
not well-established [7] because no real characterization of
what is not a home page is supplied.

In a medical context, we might want to recognize vascular
lesions starting from medical images [10]. In this particular
case, accurately labeling vascular lesions could take more
than one year and are then often left unlabelled, while
it is relatively easy to assign positive labels to healthy
individuals.

In all these scenarios, defining a method to exploit both
positive and unlabeled samples could save time, money,
human labor and the expert may focus his/her effort to
only define what is good, avoiding the ungrateful task of
recognizing what is not.

In the field of remote sensing, the problem is even more
relevant since to deal with tasks like land cover or natural
resources mapping from satellite images, samples can be
supplied for a particular category of interest (i.e. urban,
forest or wheat crop) while it could be seriously hard to
identify negative samples that can completely describe the
underlying landscape. In this scenario, PUL methods can
be effectively used while standard supervised approaches
simply cannot [11].

Although existing PUL frameworks are effective and
demonstrate promising performance in a plethora of diverse
applications, they share the limitation that only binary
classification tasks are considered while, in many real-world
scenarios multi-class classification problems are involved.
As an example, large-scale e-commerce platforms have the
objective to detect cyber security attacks, the malicious
attacks can be considered as positive samples while benign
transactions can be considered as negative ones. As there

are normally multiple kinds of cyber security attacks, the
positive samples can be categorized into multiple classes.
Similar problems occur for personalized email filters. Some
systems should allow some spam to pass through the system
in addition to non-spam emails, which are also organized
into several positive classes. In remote sensing classification
analysis, samples can be supplied for multiple categories
of interest without providing exhaustive coverage of the
different underlying land cover classes. In this case, positive
samples coming from many land cover classes are available
while the negative class is hard to pinpoint to a single label.

To deal with such scenarios, Multi-Positive Unlabelled
learning (MPUL) (see Fig. 1) was recently introduced [12].
In this learning setting, the available training data is com-
posed of a labelled set of data composed of samples
spanning over K − 1 positive classes of interest and an
unlabeled set of data that contains samples coming from K
classes (the K−1 positive classes plus an additional negative
one). The goal is to learn a multi-class classification model
capable to categorize an unseen test sample, at inference
time, in one of the K classes in which the classification
problem is defined. While many frameworks and solutions
were proposed for the binary setting, unfortunately, only
few works [12], [13] have tackled the more general problem
related to the multi-class scenario.

To cope with the under-explored Multi-Positive and Unla-
belled Learning (MPUL) scenario, in this paper we propose
a new deep learning-based framework especially tailored to
cope with propositional (or tabular) data. Our framework,
named ProtoMPUL (Prototype based Multi-Positive and
Unlabelled Learning approach), combines metric learning
and clustering strategies with the goal of model the set of
positive classes on which the label information is available
and, simultaneously, supplying also a characterization for
the unknown negative one. ProtoMPUL involves three
different stages: first, an autoencoder is trained to extract an
initial data embedding; second, a metric learning strategy
is adopted to stretch the manifold in which the data is
embedded considering the available (positive) label informa-
tion and; third, a deep clustering process is used to further
refine the separability among the multiple positive classes
and the negative one and, simultaneously, provides per-class
prototypes. At inference time, the encoder network as well
as the learnt prototypes are employed to classify previously
unseen test samples.

To assess the behavior of our framework, we provide
an experimental analysis of real-world benchmarks coming
from different domains. The benchmarks for Multi-Positive
and Unlabelled learning were generated by following a
similar protocol as the one adopted by [12], [13]. Results
show the effectiveness of the proposed framework w.r.t.
recent competing methods especially tailored to deal with
MPUL scenarios.

The rest of the paper is structured as follows: Section II
discusses related work, preliminary definitions and technical
background on Multi-Positive Unlabelled Learning are in-
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troduced in Section III, the ProtoMPUL framework is pre-
sented in Section IV, Section V describes and discusses the
experimental evaluation. Section VI concludes and draws
possible future works.

II. RELATED WORK
PU learning has been introduced in [8] where the problem
has been defined and motivated as important for many
practical applications where positive samples are cheap to
acquire. For instance, it might be easy to acquire files of
patients who have a particular disease, but it might be
difficult to get the files of patients for which we have
a negative diagnosis. At the same time, one could easily
and cheaply get unlabelled data by using data for patients
without a diagnosis. Due to its practical usefulness, PUL
has recently been used in a wide variety of applicative
scenarios [14] and has been further developed in many
theoretical papers [8].

Methods to deal with the PUL setting can be roughly
divided into three families [15]. The first family [16], [17]
employs a two-step method where reliable negative samples
are first selected and then used to train a traditional binary
classifier. As the second step is a trivial application of binary
classification, methods falling in this family mostly differ
for the way they determine the reliable negative samples.
For instance, in [17] the authors search features of positive
samples that have a distribution that is markedly different in
the unlabelled set. Reliable negative samples are then found
by removing from the unlabelled set the samples having
the positive feature signature. In [18] the authors propose
to exploit probabilistic generative models to characterize
the distribution of the positive samples, and to label as
reliable negative samples those that are in the lowest density
regions with respect to the positive ones. In addition, the
proposed framework creates mixtures of generative models
by adopting a bagging mechanism from the discriminative
framework as an effective and cheap alternative to the
classical Expectation Maximization strategy.

The second family of approaches formulates the PU
learning problem as a cost-sensitive task [19], [20] where
the errors on positive and negative samples are weighted
differently. Here, differences between approaches can be
significative, but mainly concern the schemas used for
assigning the weights. For instance, in [20] a fixed weight
is used on negative samples, while in [19] weights vary
depending on the negative sample. In [21] a novel non-
negative risk estimator for positive and unlabelled learning
setting is introduced. The proposed estimator can be used
to evaluate the risk for a set of symmetric losses (e.g.,
the mean-squared-error reduction) as well as train common
binary classifiers for the case of positive and unlabelled
learning.

The third family [22] models the unlabeled data as
negative samples with label noise, thus PU learning reduces
to a binary classification problem with one-sided label
noise. [23] proposes an adaptive sampling framework for

positive and unlabelled learning and for learning with label
noise. The proposed framework iteratively estimates the
class mislabeling probability with an adaptive sampling
procedure which reduces the risk of selecting mislabeled
instances for model training. Subsequently, it is able to
construct generalizable models even when a large proportion
of mislabeled instances is present in the data.

[12] was the first work to propose an extension of the
standard (binary) PU learning to the multi-class scenario,
introducing the Multi-positive Unlabelled (MPU) learning
setting. The proposed approach is based on a one-step
method in which the MPU learning problem is modeled
minimizing multiple convex loss functions acting on labelled
and unlabelled data.

More recently, [13] presented a new MPU learning ap-
proach based on a risk estimator derived from the one
proposed in [12]. The authors build on the observation
that the risk estimator proposed in [12] was affected by
overfitting issues possibly caused by the unboundedness of
the estimators. The authors propose a bounded risk estimator
that alleviates this problem and avoids possible biases.

In our work, we use deep autoencoders, metric learning
and deep clustering to induce an embedding that simplifies
separating the negative class from the positive one. It is
similar in spirit, albeit very different in practice, to the
approaches in the first of the positive unlabelled learning
families introduced above. Also, while most of the research
efforts in the PU learning literature have been devoted to
cope with a binary setting in which only one positive class
is available at training time (e.g.,[8]), we concern ourselves
with the problem of non-binary PUL settings, i.e., a setting
where we have multiple positive classes and one negative
class as those proposed in [11], [24], [12]. To this end, we
build on the problem definition proposed in [12], but lever-
aging the combination of three deep learning techniques: the
minimization of a metric learning loss, deep autoencoders,
and deep clustering. As we show in the ablation study in
Section V, each one of the three components we propose
provides improved accuracy to the final solution.

III. MULTI-POSITIVE AND UNLABELLED LEARNING
The Positive and Unlabelled learning (PUL) setting [8]
considers a scenario in which we dispose of a training
dataset D = {P ∪ U} composed by a set P of positive
samples and a set U of unlabelled samples. The unlabelled
samples set U contains both positive and negative samples
but their label information is not accessible. In this scenario,
the PUL setting has the objective to exploit both P and U to
learn a binary classification model allowing the assignment
of a binary label (positive or negative) to new, previously
unseen, samples.

The Multi-Positive and Unlabelled learning (MPUL) set-
ting [12] generalizes the PUL approach to a multi-class sce-
nario in which the positive set P contains samples belonging
to K − 1 classes (with the associated label information)
while the set U contains samples (but not labels) of all the
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K classes, i.e., the K − 1 positive classes plus samples
belonging to the (unknown) negative class. In this scenario,
the MPUL setting has the objective to learn a multi-class
classification model from both P and U with the aim to
classify previously unseen samples to one of the K classes.

More formally, in the MPUL scenario, we denote with
P = (Xl, Yl), the positive examples. P is thus a pair formed
by a set of examples Xl = {xi}Nl

i=1 and a set of labels
Yl = {yi}Nl

i=1. Each example xi is a vector in Rd, and the
corresponding label yi is an element of the set {1, . . . ,K−
1}. In this setting, the additional set U = Xu = {xi}Nu

i=1

contains no label information. With X we indicate the union
of labelled and unlabelled samples X = {Xl ∪Xu}. In the
following N , Nl, and Nu represent the number of examples
in the sets X , Xl, and Xu respectively. We emphasize that
a sample xn ∈ Xu can belong to any one of the K classes
(K− 1 positive classes plus the negative one), but the label
information is unknown at learning time.

IV. PROTOTYPE BASED MPUL
In this section, we introduce ProtoMPUL: a deep neural
architecture (see Fig. 2) and the corresponding training
algorithm to deal with Multi-Positive Unlabelled learning
setting. The current architecture is tailored for propositional
(tabular) data (e.g., all involved neural networks are fully
connected).
ProtoMPUL exploits metric learning and deep clustering

based strategies in order to characterize the K − 1 positive
classes as well as the unknown negative class. The result of
the learning process consists of a prototype representation
for each of the K classes. At the end of the process,
classification can be performed by projecting the samples
in the learnt embedded space and classifying them with the
class corresponding to their closest prototype.

The algorithm to train ProtoMPUL goes through three
different stages: Stage 1) an autoencoder is pre-trained on
the full set of available data via a layer-wise incremental
procedure [25]; Stage 2) the autoencoder is complemented
by a metric learning loss allowing the system to integrate the
information provided by the labelled samples; Stage 3) the
class separability is reinforced by adopting a deep learning
clustering approach [26] which, ultimately, provides the per-
class prototype representation.

The three stages have the objective to modify progres-
sively the manifold in which the original data is projected
enforcing a cluster structure to separate all the classes
involved in the classification problem.

The training algorithm for ProtoMPUL (see Algo-
rithm 1) takes as inputs the set of positive and unlabelled
samples with the associated label information (Xl, Yl, Xu)
and the total number of classes K. The algorithm is also
parametric with respect to the stopping condition in the
loops that characterize each stage. While more sophisticated
convergence criteria could be devised1, in our experiments

1E.g., the difference in the loss of two consecutive iterations being
smaller than a user-given parameter.
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FIGURE 2. ProtoMPUL architecture

Algorithm 1: ProtoMPUL
Data: X = Xl ∪Xu, Yl, K.

Stage 1
Use greedy layer-wise pretraining to initialize
Θe,Θd by descending the gradient: ∇Θe,Θd

Lr(X);

Stage 2
while stopping condition 2 not met do

update Θe, Θd by descending the gradient:
∇Θe,Θd

Lr(X);
update Θe by descending the gradient:
∇Θe

γmLm(Xl, Yl);
end

Stage 3
Θp = K-means(encΘe(X), K);
while stopping condition 3 not met do

every T iterations do
update the auxiliary target distribution B
using (4);

break if percentage of changed labels ≤ δ;
end
update Θe, Θd, Θp by descending the gradient:
∇Θe,Θd,ΘpLr(X) + γcLc(X);

update Θe by descending the gradient:
∇Θe

γmLm(Xl, Yl);
end
Result: Θe,Θp

we simply use a fixed number of epochs for each stage
and treat it as a user-defined parameter. The results of the
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algorithm are the parameters Θe of the encoder function
encΘe

and the set of prototypes {pi}Ki=1 encoded by Θp.
Stage 1 performs a greedy layer-wise pre-training of the

autoencoder. The autoencoder will provide the embeddings
of the samples that are central to our approach. The goal
of this stage is to initialize the autoencoder to a sensible
starting point by training it to autoencode the complete set
of data (X = {Xl ∪Xu}). In later stages the autoencoder
will be refined using information from the label set Yl
and from the clustering loss. In all our experiments the
autoencoder is based on fully connected layers and has
shape 500 − 500 − 2000 − 10 − 2000 − 500 − 500. The
central (bottleneck) layer provides a new representation for
the samples which are therefore embedded in some subspace
of R10. The layers in the autoencoder are based on the
ReLU [27] activation function. As previously mentioned,
the autoencoder model is trained layer-wise following the
procedure proposed in [25]. The layer-wise greedy strategy
incrementally trains the encoder and the decoder networks
adding one layer at a time, facilitating the parameters
optimization of the deep autoencoder. In addition, for this
pretraining stage, we adopt a denoising strategy [28] to learn
the model parameters in which the autoencoder network has
to reconstruct a particular sample from its corrupted version.

The objective function optimized in this stage is the re-
construction loss function Lr over the whole set of samples
X:

Lr(X) =
1

N

N∑
i=1

‖decΘd
(encΘe(xi))− xi‖22 (1)

where N is the number of labelled and unlabelled samples,
encΘe

(·) (respectively decΘd
(·)) is the encoder (respectively

decoder) network with parameters Θe (respectively Θd).
Here and in the following ‖ · ‖2 denotes the L2 norm.

Stage 2 of the framework refines the autoencoder by
alternating a gradient descent on the Lr loss, with a gradient
descent on a metric learning loss in which the label in-
formation associated with the positive samples is leveraged
to learn a label-aware projection of the original data. The
metric loss Lm is defined as follows:

Lm(Xl, Yl) =
2

N2
l −Nl

Nl∑
n=1

Nl∑
n′=n+1

1[yn=yn′ ][d
2
nn′ − βs]+

(2)

+ (1− 1[yn=yn′ ])[βd − d2
nn′ ]+

where 1yn=yn′ is an indicator function that returns 1 if xn
and xn′ belong to the same class and 0 otherwise. d2

nn′

is the squared euclidean distance between the embeddings
of xn and xn′ while [·]+ is the ramp function defined as
[z]+ = max(0, z) commonly used in the hinge loss or
in ReLU units. βs and βd are two margin parameters that
allow one to adjust the contribution of the two components
of the Lm loss function. The loss induces a penalty when
the squared distance dnn′ between two samples of the
same class (1[yn=yn′ ]) is larger than βs since in this case

[d2
nn′ − βs]+ would be positive. Similarly, it induces a

penalty when the squared distance of samples of different
classes is smaller than βd. Thus, the smaller βs is, the closer
two samples of the same class are required to be to not
incur in a penalty; while the bigger βd is, the more distant
two samples of different classes are required to be. The
goal of the Lm loss function is to exploit the available label
information Yl to stretch the geometric manifold induced by
the embedded representation with the aim of integrating the
class information. In so doing it forces arranging the samples
belonging to the same class to be close together (minimizing
the term [d2

nn′ − βs]+) and samples belonging to different
classes to be far away from each other (minimizing the term
[βd−d2

nn′ ]+). We note that the Lm loss can only be applied
on the set of labelled samples Xl, which explains the need
of optimizing Lm and Lr separately.

Stage 3 starts with the initialization of the model pro-
totypes with the centroids derived by a clustering step on
the current embedded representation of X . In principle any
distance-based clustering algorithm could be used, in our
experiments we adopted the well-known K-means clustering
algorithm [29] setting the number of clusters equal to K.
The first K − 1 centroids are initialized in the center of
mass of the embeddings of samples belonging to the K− 1
positive classes. The last centroid is initialized randomly
selecting a sample with a probability proportional to the
distance of the closest centroid.

After the initialization of the prototypes, the main loop
in Stage 3 relies on an alternate optimization strategy
where encΘe , decΘd

, and the deep soft-clustering net-
works are tuned using X by descending the gradient
∇Θe,Θd,Θp

Lr(X) + γcLc(X), and encΘe
is further refined

using the labelled samples by descending the gradient
∇ΘeLm(Xl, Yl).

More specifically, given the initial prototypes, in this
Stage we exploit the deep clustering strategy pioneered
in [26] as a way to further improve the data partitioning.
The deep clustering approach starts by computing a soft
assignment Q between the embeddings and the prototypes;
then, based on these assignments, the embedded data repre-
sentation as well as the prototypes are updated descending
the gradients of the clustering loss Lc. The loss is based
on the Kullback-Leibler (KL) divergence between the dis-
tribution representing the soft-assignments of samples to the
prototypes and an auxiliary target distribution B:

Lc(X) = KL(B‖Q) =
N∑
n=1

K∑
k=1

bnk log
bnk
qnk

(3)

The auxiliary target distribution B is computed every T
iterations using the formula:

bnk =
q2
nk/q̄k∑K

k′=1 q
2
nk′/q̄k′

(4)

where q̄k =
∑N
n=1 qnk is used as a normalization factor

so to avoid preferring bigger clusters. As emphasized in
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[26], distribution B is defined in terms of Q implying that
the minimization of Lc(X) is a form of self-learning. In
fact, in a self-learning setting, an initial classifier is used
to label an unlabelled dataset in order to train itself on its
own high confidence predictions. In our case the distribution
B plays the role of the high-confidence predictions and by
minimizing the Kullback-Leibler (KL) divergence between
B and Q, one gets the information needed to further update
the embeddings to improve the partitioning of the samples.

To compute the soft assignment, following [26], [30], we
exploit the Student’s t-distribution as a kernel to measure
the similarity between points in the embedded space and
the prototypes [31]:

qnk =
(1 + ||encΘe

(xn)− pk||2)−1∑K
k′=1(1 + ||encΘe

(xn)− pk′ ||2)−1
(5)

where encΘe(xn) is the embedded representation of the n-th
sample, pk (respectively pk′ ) is the k-th (respectively k′-th)
prototype, and qnk is the soft assignment between sample xn
and prototype pk. Such distribution forces the assignment to
have sharper probabilities (closer to 0 or 1) by squaring the
original distribution and then normalizing it [32].

To weight the contribution of metric learning and deep
clustering, we multiply the metric loss Lm and the clustering
loss Lc by the user-tunable hyper-parameters γm and γc,
respectively.

The algorithm terminates providing the learnt prototypes
Θp. The prototypes, along with the learnt encoder encΘe

allow classifying new samples by first mapping them into
the embedded space and then assigning them the class of
the nearest prototype:

fΘeΘp
(x) = arg min

k∈{1...K}
||encΘe

(x)− pk||2.

The time complexity of the framework is given by the
sum of the complexities of the three stages it is built on.
We observe that the time complexity of stages two and three
are dominated by the complexity of the gradient descent
(backpropagation) algorithm, which is O(YWNE), where
Y is the number of layers in the network, W = O(R2)
is the number of weights per layer, R is the maximum
number of neurons per layer, N is the number of examples
and E is the number of epochs. Stage one is more costly
because it involves the training procedure for the greedy
layer-wise pretraining strategy, which repeats the training
Y times yielding a total complexity of O(Y 2WNE). In
summary, the total complexity is just the sum of the three
given complexities which is dominated by the O(Y 2WNE)
term.

V. EXPERIMENTAL EVALUATION
In this section, we introduce the experimental settings and
datasets we have adopted to evaluate the proposed frame-
work, as well as the results and the related discussion.

We provide several quantitative evaluations. In the first
one, we provide an ablation study about the different

components on which ProtoMPUL is built. In the second
evaluation, we compare the proposed approach w.r.t recent
competitors considering a setting similar to the one reported
in [12]. In the third and fourth evaluations, we assess the
sensitivity of the different competing approaches to the
variation of the number of positive classes as well as to
the variation of the number of labelled samples. Finally, we
summarize and discuss information about the execution time
of the different methodologies.

A. EXPERIMENTAL SETTINGS AND DATASETS
We consider recent state-of-the-art methods as well as
reference methods:

• our main competitors are two recent methods proposed
in [13], named AREA (Alternative Risk EstimAtor)
and UREA (Unbiased Risk EstimAtor). Both methods
are based on the concept of an empirical risk estimator.
While the former considers an (unbounded) estimator
that can suffer from overfitting, the latter solves such
a problem allowing a better generalization on unseen
data;

• similarly to what was done in [12], we consider a linear
Support Vector Machine [33] (named Linear SVM) ap-
proach learnt on the original multi-class classification
problem. This is not a competitor for our approach.
Rather, we keep it as a reference method since labels
for all the classes (including the negative one) are
available at the training stage;

• additionally, with respect to what has been done in
previous studies, since deep learning approaches are
non-linear methods, we also consider a radial basis
function Support Vector Machine [33] ((named RBF
SVM)) as an additional reference method trained on
the fully labelled data set.

It is worth stressing that, while the first two approaches
(UREA and AREA) are direct MPU learning competitors
(using exactly the same amount of label information as well
as the same learning setting as ProtoMPUL), the two SVM
methods are deployed in the standard supervised setting: all
samples in the training set are labelled and they cover the
whole set of K classes. Their performances should then be
taken as an upper bound of the possible performances an
MPUL approach might achieve.

We evaluate the performances of the different ap-
proaches on nine standard multi-class classification tasks.
The datasets characteristics are reported in Table 1.

Given a dataset, for each positive class, we consider a
60/20/20 (train/validation/test) split of the associated sam-
ples. Among the training samples of a specific class, only
half of them (i.e., 30% of the class samples) are associated
to label information, while the rest are assigned to the
unlabelled training set. The rest of the class samples belong
to the validation and to the test set. Regarding the negative
class, half of the samples are assigned to the unlabelled
training set, while the rest are assinged to the test set. We

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174590, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

note that at training time one does not know the identity
of the negative class, hence hyper-parameters are only
estimated using the positive classes and the validation set
cannot contain negative examples. As usual, the validation
set is used to choose the best hyper-parameter settings for
the different competing approahces, while the test set is used
to assess the ability of the different methods to generalize
on unseen samples.

As evaluation metric, we choose the F1 score [34] since,
even if not perfect [35], it is very popular in the evaluation of
the predictive performances in class unbalanced scenarios.

To avoid possible bias due to the way in which datasets
are split, we repeat the process described above 5 times and
we average the obtained results.

TABLE 1. Datasets characteristics

Dataset # Samples # Feat. # Classes
FMnist 70000 784 10

Har 10299 561 6
Landsat 6435 36 6
Mnist 70000 784 10

Optdigits 5620 64 10
Pendigits 10992 16 10
Semeion 1593 256 10

Sonar 208 60 2
Usps 9298 256 10

Except for the SVM methods, all the other approaches
(including ProtoMPUL) are learnt via stochastic gradient
descent through the Adam optimizer [36] with a batch size
equals to 256.

For each dataset and each method, we used a grid search
to find the best hyper-parameters configuration using a
validation set based on the positive samples only. Regarding
ProtoMPUL, the hyper-parameter values for learning rate,
weight decay and γc are 10−3, 10−4 and 10−1, respectively;
γs is chosen from { 0.1, 1 }, βs is set equal to βd and their
value ranges in the set { 1, 10, 100 }. For the convergence
criterium, the stopping threshold tol (i.e., the percentage of
changed labels in Algorithm 1, Stage 3) is set to 0.1%, while
the number of maximum iterations in the three stages is set
to 10 000.

For what it concerns UREA and AREA, the hyper-
parameters λ and η are chosen from the range
{10−4, ..., 10−1}.

For the SVM classifier, the complexity parameter C
ranges in the set {10−1, ..., 102} while for RBF SVM, the
kernel radius varies considering values in the set of possible
values {10−5, ..., 10−1}. For all methods, data are rescaled
via z-score normalization.

Experiments are carried out on a workstation equipped
with an Intel R© Xeon R© CPU E5-2643@3.30GHz, with 128
GB of RAM. No Graphical Processing Unit was employed
during the experiments.

B. ABLATION STUDY
The first experiment we have conducted has the objective to
validate the importance of the components of ProtoMPUL.

TABLE 2. Summary of the ProtoMPUL ablations involved in the experimental
evaluation. “lwp” stands for the layer-wise pretraining of the autoencoder.

Stage 1 Stage 2 Stage 3
lwp Lr Lm Lr Lm Lc

Abla0 7 3 3 3 3 3
Abla1 3 3 7 3 3 3
Abla2 3 7 3 3 3 3
Abla3 3 3 3 3 3 7
Abla4 3 3 3 7 3 3
Abla5 3 3 3 3 7 3

To this end, we compare the performances of ProtoMPUL
to several of its ablations.

To choose the ablation settings, we considered only con-
figurations that involve coherent subsets of the components
that our framework adopts.

The summary of the different ProtoMPUL ablations are
reported in Table 2. The first ablation (Abla0) evaluates the
appropriateness of the layer-wise training procedure associ-
ated to the first stage of ProtoMPUL. Successively, Abla1

and Abla2 are specially tailored to evaluate the importance
of the set of loss functions employed in the second stage
of our framework while, the remaining ablations (Abla3,
Abla4 and Abla5) assess the interplay of the full set of loss
functions in the third stage of our proposal.

Table 3 reports the results of the ablation study. We can
observe that, generally, ProtoMPUL outperforms all its dif-
ferent ablations or it attains comparable performances. The
only case in which a different trend is exhibited is related to
the Sonar dataset. This is probably because this benchmark
is the smallest one we have in terms of samples (around 200)
and this factor negatively influences the ProtoMPUL train
procedure. It is also worth mentioning that, as we show in
Section V-C, all MPUL methods fail on this dataset, which
might indicate a general problem with this dataset that also
affect the ablation study.

We can note that the layer-wise strategy seems worthy
of interest since Abla0 is dominated most of the time by
ProtoMPUL. For the rest of the ablations, the complete
system is usually better, often by a large margin. This trend
is violated only by Abla5 on the OptDigits dataset, but
the same ablation setting is much worse than the complete
system on all the other datasets. Based on this evidence
we conclude that all the components of ProtoMPUL are
important and their interplay contributes to the state-of-the-
art results that we show in the next Section.

C. EVALUATION OF COMPETING APPROACHES
Table 4 summarizes the results, in terms of F1 score,
obtained by the different competing approaches on the set
of benchmarks introduced in Section V. We can observe
that ProtoMPUL outperforms the direct competing meth-
ods (AREA and UREA) on the majority of the datasets.
When this does not happen (FMnist), performances are
still largely comparable. Regarding the comparison between
ProtoMPUL and the two SVM models, we note that
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TABLE 3. Results (in terms of F1 score) of the different ProtoMPUL ablations as well as the performances of ProtoMPUL. For each method, both average and
standard deviation are reported. Best results are highlighted in blue.

Dataset ProtoMPUL Abla0 Abla1 Abla2 Abla3 Abla4 Abla5
FMnist 0.818±0.024 0.802±0.021 0.238±0.120 0.427±0.133 0.747±0.053 0.645±0.041 0.750±0.011

Har 0.967±0.006 0.935±0.009 0.264±0.138 0.507±0.178 0.775±0.161 0.835±0.142 0.841±0.179
Landsat 0.842±0.017 0.821±0.020 0.752±0.186 0.711±0.174 0.551±0.082 0.674±0.141 0.682±0.129
Mnist 0.954±0.006 0.923±0.010 0.059±0.042 0.776±0.031 0.873±0.076 0.825±0.077 0.858±0.060

Optdigits 0.973±0.004 0.943±0.005 0.643±0.060 0.889±0.106 0.899±0.112 0.921±0.113 0.976±0.008
Pendigits 0.924±0.011 0.929±0.013 0.763±0.142 0.745±0.070 0.794±0.081 0.906±0.025 0.890±0.015
Semeion 0.849±0.025 0.849±0.025 0.047±0.056 0.769±0.110 0.775±0.072 0.809±0.120 0.796±0.113

Sonar 0.346±0.049 0.405±0.052 0.439±0.192 0.105±0.000 0.473±0.129 0.481±0.076 0.308±0.089
Usps 0.929±0.008 0.915±0.008 0.047±0.040 0.682±0.121 0.875±0.061 0.920±0.015 0.863±0.098

RBF SVM achieves better performances on almost all the
datasets compared to Linear SVM. This clearly shows that
the former represents a more robust and effective upper
bound for the MPU learning approaches. It is also interesting
to note that ProtoMPUL outperforms the Linear SVM
method on some datasets (Landsat, Mnist and Optdigits)
even though Linear SVM has complete knowledge about
the involved set of classes. When compared to the other
methods with complete knowledge of the classes (RBF
SVM), ProtoMPUL achieves results that are not so far
from them, thus demonstrating the quality of the proposed
framework.

We assess the statistical significance of the obtained
results using two statistical tests. We compute a Friedman
test [37] to assess if the difference in the observed accuracies
is statistically significant and, successively we set up a one-
tail independent Student’s-T test to assess if the observed
average F1 scores can support the hypothesis µ1 > µ2,
where µ1 is the performance of the ProtoMPUL and µ2 is
the performance of a direct competitor (AREA or UREA).
In all cases, we consider the test passed when it supports
the alternate hypothesis at the 0.05 confidence level.

The Friedman test comfortably rejects the null hypothesis
(the F1 scores would be the same regardless of the algo-
rithm) at the confidence level 0.05 since the non-parametric
statistical test provides us a p-value of 0.00178. Table 5
summarizes the results of the independent Student’s-T test.
Green values indicate results with a significance level better
than 0.05 and red values indicate results that are not statis-
tically significant. We can observe that the difference in the
observed mean values are always statistically significant (at
the given confidence level) when ProtoMPUL is compared
with UREA. In the case of the AREA approach, the differ-
ence in the observed mean is not significant only 2 times
out of 9. It is worth pointing out that: i) the first of these two
cases (FMnist dataset, comparison with AREA) corresponds
to the one result where ProtoMPUL is not better than the
competitor, i.e., the result is actually a positive outcome for
us (the test µ2 > µ1 also fails the test at the 0.05 significance
level); 2) the second case (Sonar dataset) is one where all
MPUL methods fail to learn anything useful.

D. SENSITIVITY TO THE NUMBER OF POSITIVE
CLASSES
In this experiment, we evaluate the sensitivity of the ap-
proaches to the number of positive classes. To this end, we
have chosen two datasets among those having the maximal
number of labels (Pendigits and Semeion) and evaluate
how varying the number of positive classes impacts on the
classification performances. The number of positive classes
has been varied using values from the set {2,4,6,8,9} (9
being the largest possible value given the labels in the
unmodified dataset). Results are reported in Fig. 3.

These results show that ProtoMPUL achieves superior
performances with respect to the competitors (AREA and
UREA) in both benchmarks and almost all cases. When this
is not the case, i.e., for the Pendigits dataset and number
of classes equal to 4 and 6, the results are still largely
comparable. More in general, we observe that all the MPUL
methods have decreasing performances as the number of
positive classes increases, but the decrease appears to be
less severe in the case of ProtoMPUL.

E. SENSITIVITY TO THE AMOUNT OF LABELLED
SAMPLES
In this experiment, we evaluate the sensitivity of the algo-
rithms to the number of labelled samples on Pendigits and
Semeion. We chose these datasets based on the following
factors: i) these are the same two datasets we used in
the previous experiment, this simplify the experimentation,
allows for easier reporting, and keeping the choice fixed
seems fairer; ii) the two datasets are both hard ones, as
mentioned in the previuos section, all MPUL approaches
have decreasing performances as the number of positive
classes grows and these datasets are among the ones with the
largest number of classes; iii) they are a large and a small
dataset, allowing us to assess how the algorithms work in
the two regimes.

In the experiment we varied the amount of labelled
samples for the positive classes. Specifically, we let the
percentage (with respect to the positive examples in the
experiment reported in Section V-C) of positively labelled
examples to vary in the set: {20%, 40%, 60%, 80%, 100%}.
Results are provided in Fig. 4.

We can observe that ProtoMPUL outperforms the com-
petitors (AREA and UREA) no matter the percentage of
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TABLE 4. Results (in terms of F1 score) of the different competing approaches on the set of considered benchmarks. For each method, both average and standard
deviation are reported. Best results for MPU learning approaches are highlighted in bold. Best results for SVM baselines are emphasized in a light blue tonality.

Dataset Linear SVM RBF SVM AREA UREA ProtoMPUL

FMnist 0.858±0.001 0.909±0.001 0.836±0.003 0.749±0.006 0.818±0.024
Har 0.986±0.002 0.989±0.001 0.960±0.005 0.917±0.011 0.967±0.006

Landsat 0.816±0.008 0.925±0.008 0.815±0.008 0.773±0.024 0.842±0.017
Mnist 0.904±0.002 0.981±0.000 0.874±0.005 0.729±0.002 0.954±0.006

Optdigits 0.958±0.004 0.988±0.003 0.932±0.004 0.864±0.050 0.973±0.004
Pendigits 0.925±0.006 0.994±0.001 0.879±0.008 0.780±0.027 0.924±0.011
Semeion 0.863±0.018 0.931±0.012 0.659±0.024 0.619±0.041 0.849±0.025

Sonar 0.744±0.033 0.105±0.000 0.269±0.160 0.167±0.049 0.346±0.049
Usps 0.933±0.005 0.978±0.003 0.902±0.004 0.893±0.014 0.929±0.008
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FIGURE 3. Performances, as the number of positive classes varies, of the tested methods on the Pendigits and Semeion datasets for the ProtoMPUL (in olive),
AREA (in red) and UREA (in orange) algorithms. Gray lines show the performances of the reference algorithms: Linear SVM (dotted) and RBF SVM (dashed).

TABLE 5. p-values results of the paired Student’s-T test with null hypothesis
µ1 > µ2 (µ1 is the average performance of ProtoMPUL). Green values
indicate statistically significant results with significance level of 0.05 while red
values indicate not statistically significant results.

Dataset ProtoMPUL vs AREA ProtoMPUL vs UREA
FMnist 9.33e-01 1.25e-04

Har 4.00e-02 9.87e-06
Landsat 6.18e-03 3.89e-04
Mnist 7.00e-09 3.48e-13

Optdigits 1.06e-07 6.29e-04
Pendigits 3.82e-05 2.01e-06
Semeion 9.11e-07 2.54e-06

Sonar 1.67e-01 2.08e-04
Usps 7.25e-05 5.32e-04

labelled samples from positive classes is employed. In addi-
tion, it exhibits a more stable behavior than the competitors.

F. COMPUTATIONAL COSTS
In this section, we provide an overview of the computational
cost of training the tested approaches. The training time
(in seconds) is reported in Table 6. We do not provide
figures for the inference time because, as usual for neural
networks, the inference time is negligible when compared to
the training time. Also, for what it concerns ProtoMPUL
specifically, the total cost is given by the cost of encoding
the example using encΘeand by the (negligible) cost of
comparing the result with the set of learned prototypes. All
methods have been run on CPU as already mentioned in
Section V-A. ProtoMPUL is clearly the algorithm with the

highest computational requirements, but it is worth noticing
that it is also the one with the smallest variability between
experiments. This is due to the fact that the time complexity
of ProtoMPUL is dominated by the layer-wise pretraining
we perform in the first phase, and this is largely affected by
the number of layers; a parameter that is kept fixed in our
experiments. In our opinisson, while the time performances
are clearly not favorable to ProtoMPUL, they are still
within reason and can be largely justified by the better
performances of the learnt model.

TABLE 6. Execution time in seconds. LSVM is a shorthand for Linear SVM,
RSVM is a shorthand for RBF SVM.

Dataset LSVM RSVM AREA UREA ProtoMPUL

FMnist 688 57 180 44 304 46 224 34 650
Har 28 960 5 056 5 168 8 118
Landsat 1 1 400 416 9 384
Mnist 652 125 660 45 264 46 672 34 896
Optdigits 1 1 512 528 4 206
Pendigits 1 1 464 496 4 656
Semeion 1 1 464 464 2 568
Sonar 1 1 112 112 144
Usps 8 200 2 240 2 288 7 464

VI. CONCLUSION
In this work, we have presented a new framework for Multi-
Positive and Unlabelled learning (MPUL) for the classifi-
cation of propositional (or tabular) data. Our framework,
ProtoMPUL, combines deep metric learning and deep
clustering approaches with the goal to model the set of K−1

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3174590, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

0 50 100

0.8

0.9

1

% labeled samples

F
1
sc
or
e

Pendigits

0 50 100
0.4

0.6

0.8

1

% labeled samples

F
1
sc
o
re

Semeion

FIGURE 4. Performances, as the number of positive examples varies, of the tested methods on the Pendigits and Semeion datasets for the ProtoMPUL (in olive),
AREA (in red) and UREA (in orange) algorithms. Gray lines show the performances of the reference algorithms: Linear SVM (dotted) and RBF SVM (dashed).

positive classes on which label information is available
and, simultaneously, providing also a characterization of
the unknown negative class. The training algorithm for
ProtoMPUL is based on three stages. In the first one an
autoencoder is incrementally trained to extract a preliminary
embedding of the data. Successively, the learning procedure
is complemented by a metric loss function with the aim
to involve the available label information. The last stage
integrates a deep learning clustering process to further
enforce class separability and extract a set of prototypes
(one for each of the K−1 positive classes plus an additional
one for the negative class). At inference time, the encoder
network as well as the learnt prototypes are employed to
classify previously unseen test samples.

The experimental comparison with the state of the art
MPUL competitors on standard propositional datasets has
demonstrated the quality of the proposed solution, while
the in depth ablation analysis has highlighted that all the
different components of ProtoMPUL play an important role
in its performances. The experiments with a varying number
of positive classes have shown that all MPUL methods tend
to have decreasing performances as the number of positive
classes grows, but also that ProtoMPUL is remarkably
robust to this issue. The same kind of observations can be
made about the performances of the algorithms when the
number of labelled examples decreases: again ProtoMPUL
has better overall performances and appears to be more
robust than the competitors. All these benefits have to
be counterbalanced by a larger computational demand for
training the model.

Several possible research ramifications are possible for
future works. Among them, we plan to extend our frame-
work to work with other kinds of data (e.g., images, multi-
variate time-series) adapting the autoencoder network to the
specificity of the input data. We also intend to extend the
proposed methodology to situations and scenarios in which
multiple unknown negative classes can be present. Finally,
to reduce the computational demands of the algorithm, we
plan to optimize phase 1, either by replacing the layer-wise
pretraining with some alternative strategy less computation-

ally demanding, or by changing the neural architecture to
avoid the pretraining altogether.
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