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OPTIMAL POSITION OF CAMERAS DESIGN IN A 4D FOOT SCANNER

Keywords: Optimal amera network configurations, accuracy, robustness, sensitivity, additive manufacturing, product evaluation;

Optical motion capturing explains the three-Dimensional (3D) position estimation of points through triangulation employing several depth cameras. Prosperous performance relies on level of visibility of points from different cameras and the overlap of captured meshes in-between. Generally, the accuracy of the estimation is practically based on the camera parameters e.g., location and orientations. Accordingly, the camera network configurations play a key role in the quality of the estimated mesh. This paper proposes an optimal approach for camera placement based on characteristics of a depth camera D435i -Intel RealSense. The optimal problem includes a cost function that contains several minimisation and maximisation terms. The minimisation terms are distance of the cameras to the center of the scanning object, resolution error, and sparsity. And the maximisation terms are distance between each two pair of cameras, percent of captured point from an object, and the level of overlap between cameras. The object is designed based on practical experiments of human walking and is a bounding box around one step of dynamic foot work-space from heel strike posture to toe-off posture.

INTRODUCTION

Foot shape is recognized as a very diverse character among the population, containing sex [START_REF] Wunderlich | Gender differences in adult foot shape: implications for shoe design[END_REF][START_REF] Krauss | Sex-related differences in foot shape[END_REF][START_REF] Krauss | Comparison of female foot morphology and last design in athletic footwear-are men's lasts appropriate for women?[END_REF], and age [START_REF] Tomassoni | Gender and age related differences in foot morphology[END_REF]. This diversity may not be considered in footwear sizing, as available footwear fitting standards require only length and width of foot, and arch length to adjust to standardized shoe sizes [START_REF] Boppana | Dynamic foot morphology explained through 4D scanning and shape modeling[END_REF]. Such diversity challenges the users to define a proper fit, leading to non-suited footwear in terms of comfortable and fitting increase the chance of occurring injury during ambulation [START_REF] Dobson | The three-dimensional shapes of underground coal miners' feet do not match the internal dimensions of their work boots[END_REF]. Comfort-based footwear fit has determined direct positive impact on enhancing biomechanical performance [START_REF] Pryhoda | Alternative upper configurations during agilitybased movements: part 1, biomechanical performance[END_REF], decreasing the chance of movement-related injury [START_REF] Mundermann | Relationship between footwear comfort of shoe inserts and anthropometric and sensory factors[END_REF], and practical-wise it is the most important factor for users to choose footwear [START_REF] Mart\'\inez-Mart\'\inez | Use of SOMs for footwear comfort evaluation[END_REF]. Thus, Footwear should be fully/semi personalised fit to satisfy any customer in terms of comfort, safety and fitting [START_REF] Minnoye | PER-SONALIZED PRODUCT DESIGN THROUGH DIGITAL FABRICATION[END_REF].

Available approaches of designing footwear established on employing static lasts, which supposes the foot includes rigid segments. Due to the fact that the foot is a deformable part of the body [START_REF] Tajdari | Discrete time delay feedback control of stewart platform with intelligent optimizer weight tuner[END_REF][START_REF] Tajdari | Implementation and intelligent gain tuning feedback-based optimal torque control of a rotary parallel robot[END_REF], the assumption usually leads to failure investigating the dynamic movements in the foot morphology, specifically for a loaded foot in estimation of ankle joint mechanics [START_REF] Zelik | Ankle and foot power in gait analysis: Implications for science, technology and clinical assessment[END_REF][START_REF] Vickers | Animal communication: when i'm calling you, will you answer too?[END_REF]. Proofs have been studied on articular motion through the loaded foot [START_REF] Lundgren | Invasive in vivo measurement of rear-, mid-and forefoot motion during walking[END_REF][START_REF] Wolf | Functional units of the human foot[END_REF], which impacts linear foot measurements, especially during transitioning between postures i.e., from sitting to standing [START_REF] Xiong | Foot deformations under different loadbearing conditions and their relationships to stature and body weight[END_REF] or during the stance phase of gait [START_REF] Grau | Improvement of safety shoe fit-evaluation of dynamic foot structure[END_REF]. The measurements of the dynamic foot recommend morphological variations happening, which are not reachable via static linear and circumferential measurements. Accordingly, characteriing the diverse population of foot shapes would be challenging within individuals in presence of different loading scenarios e.g., gait. One solution to the challenge may be recruiting motion tracking techniques for capturing the foot deformation for shoe penalisation.

Due to the inherent connection between virtual reality systems and naturalistic applications, motion tracking techniques as the key component of the systems should be sufficiently robust and accurate [START_REF] Lanzoni | Design of Customized Virtual Reality Serious Games for the Cognitive Rehabilitation of Retrograde Amnesia After Brain Stroke[END_REF]. Partly, motion tracking has been employed to estimate the position and direction of the viewing gate to define the eyepoint to be able to render the most accurate perspective of images. Furthermore, body motion tracking [START_REF] Tajdari | Semi-Real Evaluation, and Adaptive Control of a 6DOF Surgical Robot[END_REF][START_REF] Tajdari | Intelligent Optimal Feed-Back Torque Control of a 6DOF Surgical Rotary Robot[END_REF] is usually deployed to establish avatars which virtually models the human to the viewer. Meanwhile, optical motion tracking, as a well-known technique, may cover the eyepoint estimation and the dynamic avatar generation. To do so, arrangement of several cameras is an undeniable part of any motion tracking technique. The arrangement should guarantee the free movement of the users to be able to track the targeted features. The feature points (generally detectable via passive or active landmarks) are identified from camera outputs which give the 3D position of the landmarks through triangulation between the multiple camera outputs [START_REF] Elkhuizen | Gloss, color, and topography scanning for reproducing a Painting's appearance using 3D printing[END_REF][START_REF] Malhan | Algorithms for Improving Speed and Accuracy of Automated Three-Dimensional Reconstruction With a Depth Camera Mounted on An Industrial Robot[END_REF][START_REF] Tajdari | Feature preserving non-rigid iterative weighted closest point and semi-curvature registration[END_REF]. Apparently, the accuracy and the quality of the 3D reconstructed point-clouds [START_REF] Goto | Analysis of a 3D anthropometric data set of children for design applications[END_REF][START_REF] Tajdari | Image-based modelling for adolescent idiopathic scoliosis: mechanistic machine learning analysis and prediction[END_REF] rely on the number of the employed cameras and their configuration. However, the number is competing with the cost of the final product and partly the speed of the process. Thus, this paper focuses on an automatic method to optimally define the position and orientation of a set of cameras in a foot scanner.

Recent research investigating the cameras' configuration have mainly addressed two main challenges that may result in inaccurate reconstruction: [START_REF] Wunderlich | Gender differences in adult foot shape: implications for shoe design[END_REF] Locating the finite number of cameras to maximally penalize the accuracy error of the final triangulation performance and (2) Locating the cameras to establish the optimum views with existence of occlusion.

The accumulative error was analyzed by Sanders-Reed [START_REF] Sanders-Reed | Error propagation in twosensor three-dimensional position estimation[END_REF] in 3D position estimation via two-camera triangulation. Accord-ing to the analysis, the configuration of cameras plays a key role on the level of the accumulative error which defined a 90 degree angle between the sensors as the optimal configuration. The accumulative error is maximised when the sensors have the same orientation (either 0 or 180 degree). Olague and Mohr [START_REF] Olague | Optimal camera placement for accurate reconstruction[END_REF] studied the properties of the accumulative error in the process of the triangulation and validated the outputs practically. They proposed a metric of the accumulative error via extracting the component with maximum value through the diagonal of covariance matrix of the 3D point reconstruction. The maximum value indicates the highest accumulative error regarding a certain configuration (position and orientation). To achieve a global optimal solution to the optimal problem, a genetic algorithm is applied. To simplify the problem, Olague et al. considered a constraint that cameras must be located on a plane with a constant distance from the target point. Cowan and Kovesi [START_REF] Cowan | Automatic sensor placement from vision task requirements[END_REF] specified a group of constraints impacting the quality of the cameras' network to circumvent the time-consuming trial-and-error method for designing the configuration of the cameras' network (locations). They mapped the captured object into its surfaces. Then, the solution regarding each surface was extracted individually and independently according to a group of predefined constraints and next, each of the local solutions were integrated. The integration presented a global solution to the optimal problem. For each constraint e.g., resolution loss, sparsity, and occlusion, they determined a valid 3D volume that guarantees any point in that area fulfil the related constraint. Then, they considered the overlap area of those individual 3D volumes as checking area(s) where all constraints are satisfied. Mason [START_REF] Mason | Heuristic reasoning strategy for automated sensor placement[END_REF] continued the idea of Cowan and Kovesi [START_REF] Cowan | Automatic sensor placement from vision task requirements[END_REF] with extended constraints and offered a novel model to determine the optimal placement. The model introduced by Cowan and Kovesi only covers sedentary occlusion known as self-occlusion. Mason's heuristic approach defines a solution for a specific target, however, the result can be a non-optimal output regarding too much simplifications of the target. Moreover, moving targets are big restrictions for Mason's approach. To avoid facing the object surfaces, Wu, Sharma, and Huang [START_REF] Wu | Analysis of uncertainty bounds due to quantization for threedimensional position estimation using multiple cameras[END_REF] contemplate the overlap of the mapped pyramids instead of dealing with a computationally expensive numerical measurement to tackle with the unknown bounds. Chen and Davis [START_REF] Chen | An occlusion metric for selecting robust camera configurations[END_REF] assumed a probabilistic model for the occlusion, where a vertical plane was supposed as the occluder next to the target point. The model anticipates the visibility of a target point by at least two cameras considering all valid orientations of the occluder around the vertical axis. Though the Chen and Davis' model perfectly tackles the dynamic occlusion regarding the error metric, the convergence angles of the cameras are not addressed. As a result, the method proceeds to define configurations leading to comparatively large errors in target points alignment outperformed by poor triangulation regarding locating nearly parallel cameras.

The limited space, the number of cameras and the intrinsic and extrinsic properties of the cameras restrict the positioning of the tracking cameras especially for foot scanning as the bottom of the foot is very complicated to be scanned. Generally, the cameras configuration considering the space constraint and having maximum overlap between cameras and maximum visibility of the foot to the cameras is very challenging. This paper proposes an optimal approach to locate a group of depth cameras D435i -Intel RealSense for a pre-defined box-shape work-space to maximize the percentage of observed points of a target object with minimum accuracy error of the 3D reconstruction in the existence of dynamic occlusion. Generally, work-space location of the target objects is known in many augmented and virtual reality systems. For instance, Rahimian et al. requested the participants to walk across a single-lane road [START_REF] Rahimian | Using a virtual environment to study the impact of sending traffic alerts to texting pedestrians[END_REF], and after some iterations the valid work-space would be identified for a single step of walking. The approach we present estimates the optimal positions and orientations of a group of cameras for a predefined set of target points. Where the best set considers, first, all possible locations of occluders and specifies the cameras' locations in order to have the maximum visibility of the target points between at least two triangulable views i.e., the views' that have the maximum distance with each other and the maximum overlap of capturing the target points. Secondly, the placements should consider that the targets are visible from the widest range of viewpoints to have an acceptable level of overlap for alignment.

We propose a method to define the optimal positions for 2 to 7 cameras regarding the motion tracking, where always one of the cameras is located on the bottom of the work-space.

METHODOLOGY

In order to derive the equations of modeling a depth camera, a number of simplified assumptions were considered and the rest of the parameters are optimally designed based on the desired work-space and related constraints.

Assumptions

To model the camera, we convey the camera parameters based on the distance to a detected point. The parameters that are considered in this paper are the spatial error, the resolution, and the acceptable viewing angle for Depth Camera D435i -Intel RealSense. The error of a 3D point location is the distance between the real measurement and the location estimation by the camera. Practically, the fixed resolution of the camera might lead to sparsity when the distance between the object and the camera becomes large and the error also increases by the distance. According to [START_REF] Ahn | Analysis and noise modeling of the Intel RealSense D435 for mobile robots[END_REF], the error has a parabolic relation with the distance as shown in FIGURE 1(a), where the error has the following equation.

Error resolution (dis) = p 1 dis 2 + p 2 dis + p 3 ;

(1) where dis unit is in meter, and p 1 , p 2 , and p 3 are the parameters of the fitted curve as follows.

p 1 = 0.009458; p 2 = -0.002578; p 3 = -0.000655;

Moreover, the viewing angle of the camera is assumed as a constant and equal to 60 • based on [START_REF] Ahn | Analysis and noise modeling of the Intel RealSense D435 for mobile robots[END_REF].

With the same approach for the resolution error and from [START_REF] Ahn | Analysis and noise modeling of the Intel RealSense D435 for mobile robots[END_REF], the sparsity variation has also a parabolic relation with the distance as shown in FIGURE 1(b), where the function has the following equation.

Error sparsity (dis) = p 4 dis 2 + p 5 dis + p 6 ;

(

where p 4 , p 5 , and p 6 are the parameters of the fitted curve as follows.

p 4 = -0.006931; p 5 = 0.03473; p 6 = -0.005851; (4)

Work-space definition

Currently the assumption is made that the participants place their feet in the middle of the walkway. However, in practice, a slight variance of location will happen due to the fact each person is unique. To capture the location of the heel strike of each participant, we invited 8 participants (3 females and 5 males), 6 within the age range of 20 and 30, 2 around 60 years, with a varying height between 1.6m and 2.1m and Body Mass Index (BMI) between 21 and 28.7. Paint was applied to their feet and they were instructed to walk across in several manners shown in FIGURE 2(a) to see if it is possible to reduce the variance of the location of the heel strike while ascertaining a natural walk. The resulting paintings where digitally overlayed to show where the average foot location was of each participant. Several runs were conducted with different commands. During one walk the participants were instructed to place their foot in the middle of a drawn box. The next walk the participants were instructed to place their feet in a certain position from the edge and were given the command to just walk to the other side.

Both results of the test were digitized and overlaid to show where the participants placed their feet. These images can be seen in FIGURE 2(b) and (c). It was found that the users, with the proper instruction and foot placement, were able to land their feet naturally in the same area. The area is shown as a bonding box in FIGURE 2(d). Considering the right foot, the left foot and both feet these three scenarios of scanning, we extracted three bounding boxes reported in TABLE 1 where we considered the biggest box for our calculation regarding finding the optimal camera positioning. It worth mentioning that the measured max- 

Optimal design of the foot scanner

As the future application of the scanner is to scan feet during walking, the work-space of any dynamic foot is considered as predefined as discussed in the previous section and equal to a rectangular box. According to FIGURE 3, r i is the distance between i th camera to the center of the box, d i j belongs to the distance between i th camera and j th camera, and G is the center of the object. In addition, the (x i , y i , z i ) corresponded to the location of i th camera are optimized through the following cost function.

J tot =

Minimizing : J r , J e , J s Maximizing :

J d , J v , J o (5) 
where J tot is the total cost function including both minimization and maximization terms. Regarding the minimization, J r explains a term regarding the distance of each camera to the center of the work-space, denoted as r i in FIGURE 3, and is considered as follows where n is the number of cameras.

J r = n ∑ i=1 |r i | 2 (6)
J e is explaining the error of resolution calculated from (1) where we considered r i as the dis in (1) for each camera to simplify the calculations. Accordingly, J e would be extracted as follows

J e = n ∑ i=1 |Error resolution (r i )| 2 (7) 
The last minimization term as J s defines the sparsity of the points in (3) and is denoted as follows.

J s = n ∑ i=1 |Error sparsity (r i )| 2 (8) 
Regarding the maximization, we have three terms of J d , J v and J o which refer to the distance between each two cameras (e.g., 10 distances for 5 cameras), the number of the captured points on the box through all the cameras, and the overlap level between cameras, respectively. These teams should be maximised to have the maximum visible area of the object with the cameras and avoid having too close cameras to each other. The J d is calculated as follows.

J d = n ∑ i=1 n ∑ j=i |d i j | 2 (9)
where d i j is the distance between i th camera and j th camera. Accordingly, J v is calculated as

J v = N v N tot 2 ( 10 
)
where N v is the number of points captured with at least one camera and N tot denotes the total number of the points on the rectangular shape box. Moreover, J o is generated as

J o = 1 N 2 tot n 2 N tot ∑ i=1 n 2 o i (11) 
where n o i defines the number of cameras that could capture the point i th . Thus, the optimal problem is finding a set of optimal design camera positions in X as follows

X = x 1 y 1 z 1 . . . x n-1 y n-1 z n-1 z n (12) such that min J tot = α 1 J r + α 2 J e + α 3 J s -α 4 J d -α 5 J v -α 6 J o ( 13 
)
subject to Camera classification :

             -z 1 ≤ 0 . . . -z n-1 ≤ 0 z n ≤ 0
Walking way :

         -|y 1 | + 0.3 ≤ 0 . . . -|y n-1 | + 0.3 ≤ 0
Allowed work-space of cameras :

         |y 1 | -0.5 ≤ 0 . . . |y n-1 | -0.5 ≤ 0
Bottom camera :

y n = 0 x n = 0 ( 14 
)
By applying the algorithm in [START_REF] Lagarias | Convergence properties of the Nelder-Mead simplex method in low dimensions[END_REF], the optimal parameters are designed and for each of the cases the values related to the both feet will be obtained.

RESULTS

Here, we perform several experiments with differing number of cameras to find the optimum position of the cameras. Also we investigate the effects of the number of cameras in terms of the overlap percentage of pairs of cameras for the minimum number of cameras as well as the maximum overlap to maximise the performance of any mesh registrations methods.

Solving the optimal problem

In all the experiments one camera is on the bottom of the box (negative values for z axis) and the rest of the cameras have positive value along the z axis as defined in [START_REF] Vickers | Animal communication: when i'm calling you, will you answer too?[END_REF]. The box includes 3708 points as N tot = 3708. In addition the optimization parameters in [START_REF] Zelik | Ankle and foot power in gait analysis: Implications for science, technology and clinical assessment[END_REF] are considered as 2. According to the table, except the cases with having one or two cameras on top, the other cases have J v equal to one meaning all the points on the box were visible to at least one camera. The position of the cameras are also visually shown in FIGURE 4, where the points with red color on the box are the captured points with at least one camera and the blue ones are not captured with any cameras.

α 1 = 200, α 2 = 1.2, α 3 = 1.2,

Percent of overlap between pair of cameras

A crucial step to reconstruct a scanned object through multiple depth cameras is using surface registration methods. Surface registration is capable to assemble multiple 3D point clouds in a common coordinate system via aligning the overlapping parts of the point clouds [START_REF] Yang | Posture-invariant three dimensional human hand statistical shape model[END_REF][START_REF] Yang | Identify dominant dimensions of 3D hand shapes using statistical shape model and deep neural network[END_REF]. The point clouds may contain characteristics of a single shape as a mesh structure to explain the surface of the 3D objects or scenes. To form a complete 3D shape, different 3D captured datasets of an object from different viewpoints are needed which should cover all the targeted areas of the object with acceptable level of overlap between each pair of the views. This facilitates a well-performed registration to recombine all the datasets and reconstruct as accurate as possible the 3D mesh of the original scanned object or scenes [START_REF] Lempitsky | Global optimization for shape fitting[END_REF]. In the registration process of a multiple-camera scanner, these datasets must be registered on each other and the quality of the registration is very depending on the level of overlap between each two pair of cameras from the object. Thus, here we investigate the degree of overlap based on the number of used cameras with optimal positions.

Overlap percent (P i o ) from camera i th to camera j th is calculated as follows.

P i o = N i, j o N i o × 100 (15) 
where, N i, j o is the number of points on the scanned object captured with both camera i th and camera j th , and N i o is the total number of points captured with camera i th . To study the effect, we designed the optimal camera locations through minimizing the cost function in [START_REF] Zelik | Ankle and foot power in gait analysis: Implications for science, technology and clinical assessment[END_REF] for different number of cameras on top and reported the overlap percent for each pair of cameras in FIG-URE 5. According to the figure, the overlap range increases by increasing the number of top cameras up to 5. After the 5 cameras on top the range is more or less constant. Thus, 5 cameras on top should be enough to have acceptable registration. However, as we would like to have a symmetric design we prefer 6 cameras on top to have three cameras on each sides.

Scanner prototype

The scanner used in this study is the first prototype of a 4D foot scanner at TUDelft [START_REF] Kwa | Design of an accurate and low cost 4D foot scanner for podiatrists[END_REF]. As shown in FIGURE 6, the scanner utilizes seven RealSense D435i depth cameras to capture a 4D foot scan. In order for the user to start and end a scanning process, two AdaFruit VL53L0X ToF distance sensors (30 to 1000 mm range) are integrated, which are connected through an Adafruit TCA9548a Multiplexer (MUX). A rectangular-shaped glass platform is able to support users of up to 200 kg in the context of walking. To this end, the final scanner is fitted with a tempered ClearVision low-iron glass plate from AGC's Planibel Extra Clear glass collection. This type of glass is known for its high light transmission rate (92% for 6 mm). The glass plate has a nominal thickness of 12 ± 0.3 mm and a width and height of 600 ± 2 mm and 600 ± 3 mm, respectively. These dimensions match the scanning plate support platform of Vidmar's (2020) 4D foot scanner setup. The glass was chosen over polycarbonate (PC) or polymethyl methacrylate (PMMA) because of their sensitivity to scratching. It is desired to have a durable scanning solution, which also includes the quality of the scanning surface. Since glass has excellent scratch-resistant and light transmission properties, and there is a constant interaction between the walking users and the scanning plate, glass is chosen over other materials.

Accuracy

Through the explained 3D registration method in [START_REF] Tajdari | Dynamic 3D foot mesh reconstruction based on Nonrigid iterative closest-farthest points registration[END_REF] which uses a probability function [START_REF] Tajdari | Fuzzy control of anticipation and evaluation behaviour in real traffic flow[END_REF][START_REF] Tajdari | Intelligent architecture for car-following behaviour observing lane-changer: Modeling and control[END_REF][START_REF] Tajdari | Simultaneous intelligent anticipation and control of follower vehicle observing exiting lane changer[END_REF][START_REF] Tajdari | Robust control of a 3-dof parallel cable robot using an adaptive neuro-fuzzy inference system[END_REF], we use seven cleaned frames captured by each camera to reconstruct the foot. According to the method each cleaned data-set is rigidly registered on a reference model to build a rough point-cloud of the foot, then the reference model is non-rigidly registered on the point-cloud to have a meaningful mesh. Due to the larger overlap between each data-set captured by each camera in the proposed method than the study in [START_REF] Tajdari | Dynamic 3D foot mesh reconstruction based on Nonrigid iterative closest-farthest points registration[END_REF], their registration method shows better performance though our camera arrangement comparing to their non- optimal camera arrangement. Accordingly, the used reference model (source mesh) is shown in FIGURE 7(a).

To evaluate the accuracy of the results with the introduced algorithm, we scanned a foot with Artec Eva scanner in a no-load condition as shown in FIGURE 7(b), then the scanned foot was printed out via Ulimaker S5 scanner shown in FIGURE 7(c). The printed foot is scanned with our scanner in static mode which is comparable with the scan data of the Artec Eva. Next, the output of the Artec Eva scanner dimensions are compared with the corresponded dimensions of our method output data depicted in FIGURE 8. We first find the scaling ratio which maps the length of the reconstructed foot to the length of the foot collected with the Artec Eva scanner and then calculate the errors for the other dimensions as width, ball width, and ball angle according to [START_REF] Tang | Foot anthropometrics in individuals with diabetes compared with the general Swedish population: Implications for shoe design[END_REF]. Based on FIGURE 8, L r , W r , BW r , and α r explain the length, width, ball width, and ball angle of the real scanned foot in the no-load case with the Artec Eva scanner respectively. And, L e , W e , BW e , and α e define the length and width of the estimated foot through our method respectively. The scaling factor of r is considered as follows 4. According to the table, the errors for the width is 1.8 mm, for the ball width is 2.5 mm, and for the ball angle is 0.3 • , which shows the average percentage error based on the Artec Eva scanner is about 2.5%.

r = L r L e (16) 

CONCLUSION

This paper proposes an approach to find the optimal number, position and orientation of depth cameras to scan a foot for fast 3D mesh reconstruction. The optimisation problem aims to have minimum camera scanning error, sparsity, and the scanner dimension, and to have maximal overlap between scans captured by an adjacent pair of cameras. The results showed the scanner with seven cameras (one on the bottom and six on top) have the most optimum performance. The future works lie on optimal design of a scanner equipped by Azure Kinect cameras to improve the accuracy of individual scans. In addition, the optimal problem will be integrated with a term regarding the lighting, as it is one of the most important factors on the quality of the captured data. Moreover, a human factor term will be integrated in the cost function to assure the participants reproduce their everydaywalking step in a comfortable manner, which is essential for ergonomics study and product design, e.g. shoe design.
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 1 FIGURE 1: Camera parameter.

FIGURE 2 :

 2 FIGURE 2: (a) Participants were instructed to try to land their feet in the middle without further instructions. (b) Participants were instructed to where to place their feet and to walk to the other side. (c) Average foot position participants. (d) the practical test-bed.
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 3 FIGURE 3: Camera parameter.
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 4 FIGURE 4: The optimal camera positions. (a) One camera on top. (b) Two cameras on top. (c) Three cameras on top. (d) Four cameras on top. (e) Five cameras on top. (f) Six cameras on top.

FIGURE 5 :

 5 FIGURE 5: Percent of overlap variation based on the number of cameras on top.
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 6 FIGURE 6: Scanner.

FIGURE 7 :FIGURE 8 :

 78 FIGURE 7: No-load foot. (a) The source mesh. (b) Scanned through Artec Eva scanner. (c) Printed Artec Eva output via Ultimaker S5 printer.

TABLE 4 :

 4 Error results of the parameters introduced in FIG-URE 8 with r = 600.mm) BW r = 92.6 r × BW e = 95.1 2.5 Ball Angle α r = 10.8 • α e = 11.1 • 0.3 • where in our experiment, L r = 222.2 mm, L e = 0.3701 mm which results in r = 600.4. Thus any dimension extracted from our method is multiplied to the r and compared with the corresponded values on the Artec Eva scanner output summarised in TABLE

TABLE 1 :

 1 The choice of options.

	Parameter		Cases	
		Left foot	Right foot Both feet
	Width (cm)	15.5	13.2	25.5
	Height (cm)	17.5	17.5	17.5
	Length (cm)	30.5	29.8	34.5

TABLE 2 :

 2 The optimal positions as [x,y,z] in cm and percent of captured area of the box ( √ J v ).

	Camera ID			Number of cameras on top		
		1	2	3	4	5	6
	i	[92,31,49]	[-91,50 49]	[-29,50,50]	[100,50,17]	[100,50,17]	[28,48,26]
	ii		[92,-32,49]	[-100,-50,50] [-100,50,17]	[-69,50,29]	[-22,43,25]
	iii			[100,-50,17]	[-100,-50,50] [-100,-50,17] [-65,30,23]

TABLE 3 :

 3 Components of the final product in FIGURE6.

	Component Description	Application
	i-vi and	RealSense D435i Capturing 3D point cloud
	Bottom		
	Glass	ClearVision low-	For capturing sole
		iron glass plate	
	Printed	Printed out via	For accuracy evaluation
	foot	Ultimaker S5	
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