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 h IFREMER, Biodivenv, 79 route de pointe fort, 97231 Le Robert, France 19 

Abstract  20 

French Mediterranean lagoons are frequently subject to shellfish contamination by Diarrheic 21 

Shellfish Toxins (DSTs) and Paralytic Shellfish Toxins (PSTs). To predict the effect of 22 

various environmental factors (temperature, salinity and turbidity) on the abundance of the 23 

major toxins producing genera, Dinophysis and Alexandrium, and the link with shellfish 24 

contamination, we analysed a 10-year dataset collected from 2010 to 2019 in two major 25 

shellfish farming lagoons, Thau and Leucate, using two methods: decision trees and Zero 26 

Inflated Negative Binomial (ZINB) linear regression models. Analysis of these decision trees 27 

revealed that the highest risk of Dinophysis bloom events occurred at temperature <16.3°C 28 

and salinity <27.8, and of Alexandrium at temperature ranging from 10.4 to 21.5°C and 29 

salinity  >39.2. The highest risk of shellfish contaminations by DSTs and PSTs occurred 30 

during the set of conditions associated with high risk of bloom events. Linear regression 31 

prediction enables us to understand whether temperature and salinity influence the presence of 32 

Alexandrium and affect its abundance. However, Dinophysis linear regression could not be 33 

validated due to overdispersion issues. This work demonstrates the tools which could help 34 

sanitary management of shellfish rearing areas. 35 

Keywords 36 

Alexandrium, Dinophysis, Toxic blooms, Temperature, Salinity, Prediction 37 

I. Introduction 38 

                                                            
 Abbreviations : DT: Decision tree, IRR : Incidence Risk Ratio, LD : Limit of Detection, LQ: Limit of 

Quantification, OR: Odds Ratio, REPHY: French Observation and Monitoring program for Phytoplankton and 

Hydrology in coastal waters,  REPHYTOX: French Monitoring Program for Phytotoxins in marine organisms, 

ZINB: Zero Inflated Negative Binomial 
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The geographical expansion of harmful algae and their durable settlement in many marine 39 

ecosystems has become a major concern all over the world (Hallegraeff et al. 2003; Drake et 40 

al. 2005; Hallegraeff 2010; Casas-Monroy et al. 2015; Glibert 2020). Harmful algae (HA) 41 

proliferation or HABs (Harmful Algal Blooms) leads to observable negative effects on marine 42 

resources, economics and human health (Granéli and Turner, 2006). Many HA produce toxins 43 

that can contaminate marine resources and lead to human intoxication (Pulido 2016). For this 44 

reason, the proliferation of HAs in water is frequently monitored near shellfish farming areas 45 

(Anderson et al. 2001). Studies showed that blooms can be impacted by many environmental 46 

factors such as temperature and salinity (Anderson and Keafer, 1987; Laabir et al. 2011), light 47 

(Figueroa et al. 2018), oxygen concentration in sediment and nutrient availability (Collos et 48 

al. 2007, 2009; Xu et al. 2010; Ishikawa et al. 2014). Blooms are generally triggered by the 49 

synergic combination of several factors  (Accoroni et al. 2015; Raso et al. 2012) among which 50 

temperature and salinity play a key role as they can influence every phases of bloom 51 

dynamics, including initiation, growth and termination (Figueroa et al. 2018; Granéli and 52 

Turner 2006). Many dinoflagellates including Alexandrium show planktonic and benthic 53 

forms, and initiation of the blooms depends on the success of cysts germination which occurs 54 

after a dormancy period. The duration of this phase was shown to be influenced by 55 

temperature, and some HA cysts germinate only within specific ranges of temperature 56 

(Anderson and Keafer 1987; Genovesi et al. 2009). Moreover, germination can be linked with 57 

water agitation leading to sediment resuspension (Laanaia et al. 2013) which is generally 58 

associated with variations in water temperature and salinity. Growth corresponds to biomass 59 

increase which duration and maximum concentration can be influenced by temperature and 60 

salinity along with other factors such as nutrients  (Bill et al. 2016; Collos et al. 2007; Davis 61 

et al. 2015; Ishikawa et al. 2014; Laabir et al. 2011; Ralston et al. 2015; Raso et al. 2012; Xu 62 

et al. 2010). Bloom termination happens when environmental conditions are no longer 63 
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favourable, which can be attributed to nutrient depletion or inadequate temperature leading to 64 

mortality or encysment (Ralston et al. 2014; Verity et al. 1988).  65 

As a consequence of these various and contrasted impacts of environmental factors on HAB 66 

dynamic, efforts have been made  to develop early HABs warning systems based on 67 

environmental predictors. Conventionally, statistical numerical modelling has been used for 68 

HABs prediction (González Vilas et al. 2014). Through linear regression, these models can 69 

efficiently predict phytoplankton dynamics because they are capable of integrating many 70 

predictors and can be adapted to different data distributions (Davidson et al. 2016). Given the 71 

cyclic and seasonal pattern in HABs, they have mainly been investigated through time series 72 

modelling based on a range of variables measured over time (Cruz et al., 2021). For instance, 73 

several studies have applied linear regression to forecasting the blooms of Pseudo-nitzschia 74 

(Anderson et al. 2010; Lane et al. 2010; Seubert et al. 2013). The interest in alternatives like 75 

Machine Learning (ML) models has recently increased. ML methods consist of using 76 

computer systems that are able to learn and draw inference from data patterns without explicit 77 

instructions. One of the many advantages of ML methods is their ability to predict highly 78 

dynamic and complex phenomena and to handle big and non-linear data. A wide variety of 79 

machine learning approaches has been used over the past years to forecast HABs (Franks 80 

2018; Cruz et al. 2021). Among them, decision trees (DTs) seem to be highly relevant tools. 81 

A DT is a tree-like structure in which the leaves represent outcome labels and the branches 82 

represent conjunctions of the input features that resulted in those outcomes. Aside from 83 

overcoming the problems due to missing data, they are easy to interpret since they provide 84 

concrete thresholds that can be used by marine stakeholders. In South Korea, Shin (2017) 85 

used DTs to forecast cyanobacteria blooms and (Park et al. 2011) applied this method to 86 

predict red tide blooms. 87 
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French Mediterranean lagoons are special ecosystems as they are semi-enclosed marine 88 

systems, containing many shellfish farming areas, and they are frequently subject to HAB 89 

events and particularly proliferation of the dinoflagellates Alexandrium pacificum and 90 

Dinophysis acuminata complex responsible for intoxication events threatening human health 91 

and resulting in economic losses (Deslous-Paoli et al. 1998; Collos et al. 2009; Laabir et al. 92 

2011; Laanaia et al. 2013; Belin et al. 2021; Séchet et al. 2021). Until now, no machine 93 

learning approach has been developed to quantify and predict the risks of HABs proliferations 94 

and shellfish contamination in these ecosystems. Based on a ten-year dataset of parameters 95 

(temperature, salinity and turbidity) and of HA taxa, using both decision trees and a Zero-96 

Inflated Negative Binomial regression model, this study aimed at providing robust tools to 97 

predict the risk of bloom of the two major HA genera in French Mediterranean lagoons, 98 

Dinophysis and Alexandrium, and the subsequent shellfish contamination in exploited semi-99 

enclosed marine systems. 100 

2. Materials and methods 101 

2.1. Data recovery 102 

Data were collected from the framework of the REPHY and REPHYTOX monitoring net-103 

works (REPHY - French Observation and Monitoring program for Phytoplankton and Hy-104 

drology in coastal waters 2019; REPHYTOX - French Monitoring program for Phytotoxins in 105 

marine organisms 2019).  106 

Briefly, the data comes from field surveys carried out by Ifremer in two exploited French 107 

Mediterranean lagoons, Thau (7000ha, mean depth 4m, water temperature range : 3.9-29.6°C; 108 

salinity range : 27.4-42.9) and Leucate (5400ha, mean depth 1.9m water temperature range 109 

0.9-29.3°C, salinity range: 8.4-42.3) (Fiandrino et al. 2017; Ladagnous and Le Bec 1997) 110 

from January 2010 to December 2020 (Fig 1). The concentration of phytoplankton species 111 
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was measured using the Utermöhl method (Utermöhl 1931) with a 10 mL Hydrobios cham-112 

ber. The limit of quantification (LQ) and the threshold limit of detection (LD) are both 100 113 

cell/L. Temperature, salinity, turbidity, total phytoplankton including the lipophilic toxins 114 

producer Dinophysis spp. and the paralytic shellfish toxins producer Alexandrium spp., were 115 

monitored twice a month at three stations in shellfish farming areas in the Thau lagoon (Mar-116 

seillan, Bouzigues and Crique de l’Angle), and two stations in the Leucate lagoon (Parc and 117 

Grau) (Fig 1). Mussels and oysters were sampled in these stations twice a month. At least 1 kg 118 

of shellfish, composed of a minimum of ten individuals, were sampled randomly and Lipo-119 

philic toxins (Okadaic Acid (OA), Dinophysistoxins (DTXs) and Pectenotoxins (PTXs)) were 120 

measured by Liquid Chromatography coupled to tandem Mass Spectrometry (LC-MS / MS) 121 

(ANSES LSA-INS-0147, Standards and Reference Material were provided by the NRC-122 

CNRC, Marine Analytical Chemistry Standards Program. Institute for Marine Biosciences). 123 

Each of the constitutive toxins was corrected by a TEF (Toxic Equivalent Factor) to account 124 

for its potential toxicity. The quantification of PSTs was carried out by mouse bioassay, cali-125 

brated and validated to give quantitative results (Anses PBM BM LSA-INS-0143). 126 

2.3. Data processing and analyses 127 

2.3.1. Preliminary processing 128 

All data analyses were performed using R software (R Core Team 2020). Since Alexandrium 129 

pacificum and Alexandrium tamarense are difficult to distinguish by light microscopy, 130 

abundances of both species were added to each other and were thereafter named Alexandrium 131 

tamarense/pacificum. As for Dinophysis, regulatory monitoring considers all species that can 132 

be identified in the lagoons because they are all likely to contaminate shellfish. Thus, even 133 

though the D. accuminata complex represents the vast majority of the species found in Thau 134 

and Leucate, we chose to consider data at the genus level. The value of toxin concentrations 135 
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below the detectable threshold was estimated to be the detectable threshold divided by 2 since 136 

a non-detectable value does not mean that there is no toxin in shellfish. When toxins were 137 

detectable but not quantifiable, the value was estimated by the means of the detectable and 138 

quantifiable thresholds. 139 

2.3.1. Exploratory analysis 140 

Bivariate analyses were performed in order to identify which factors were mainly related to 141 

phytoplankton and toxin concentrations. Pairwise Spearman and Pearson coefficients were 142 

calculated between phytoplankton and environmental factors, and between toxins and 143 

environmental factors. 144 

2.3.2. Building decision trees 145 

Variable selection and encoding 146 

Decision trees (DT) were used to predict the risks of HABs and of bivalve contamination 147 

considering temperature, salinity and turbidity as predictors. Prior to the analysis, Dinophysis 148 

and A. tamarense/pacificum concentrations were converted to binary variables: the abundance 149 

of cells was encoded by 1 when the concentration exceeded 1000 cells/L for A. 150 

tamarense/pacificum (value inducing the sanitary warning protocol) and 500 cells/L for 151 

Dinophysis (estimated value indicating a bloom, the sanitary warning protocol being induced 152 

by a concentration of cells >= LD), and by 0 when the abundances were beyond these 153 

concentrations. Toxin concentrations were converted to categorical variables based on the 154 

regulatory thresholds: they were encoded by 0 when concentrations were below 80 µg per kg 155 

of shellfish flesh) for lipophilic toxins and below 340 µg/kg  for PSTs, by 1 when they were 156 

between 80 µg/kg-1 and 160 µg/kg for lipophilic toxins, and between 340 µg/kg and 800 157 

µg/kg for PSTs, and by 2 when they were above 160 µg/kg for lipophilic toxins and above 158 

800 µg/kg for PSTs. 159 
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Decision tree analysis 160 

The DTs building process is described in Fig 2. DTs were set up with the rpart package  161 

(Therneau and Atkinson 2019) using the CART algorithm (Breiman et al. 1984). As a 162 

supplementary constraint, a minimum of 10 observations was imposed for a branch to become 163 

a branch node and there had to be at least 5 observations per leaf node. A maximum of 10 164 

nodes per tree was imposed. In order to set up a robust tool: for each predicted variable, the 165 

experiment with DT was repeated 100 times; each time, the data set was split into two sets, 80 166 

% made up the training set and 20% the testing set. The split algorithm allowed all the 167 

different pairs of training and testing sets to have approximately the same proportion of 0, 1 168 

(and 2 for the toxins) in the predicted variables. The structures of the 100 trees were then 169 

compared in order to find the most common one. For each node the process consisted of: 170 

- Finding the most frequent variable 171 

- Finding the most frequent threshold for this variable 172 

- Selecting the trees with this variable and threshold 173 

- Repeating the process at the next children nodes for the selected trees only. 174 

Secondly, the most common structure was determined and an average of the trees presenting 175 

this structure was then calculated. To this end, the mean of the number of observations for 176 

each node and the average proportions of 0, 1 or 2 were calculated. In order to test the trees’ 177 

performance outside the training data sets, the selected structures were tested on the testing 178 

data sets. The average testing trees were then processed in the same way as for the average 179 

learning trees. 180 

Finally, pruning analysis was applied in order to prevent overfitting by reducing the size of 181 

the trees and to prevent overtraining. Pruning a tree consists in removing the redundant and/or 182 
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less important nodes to improve its predictive accuracy. The pruning process followed these 183 

rules: 184 

- The proportion of 1 or 2 in at least one of the nodes of the testing trees should be above 20% 185 

- The number of observations in each node of the testing trees should be above 3 186 

2.3.3. Linear models 187 

Type of regression  188 

Mixed linear models were set up to predict phytoplankton concentrations in the Thau and 189 

Leucate lagoons based on hydrological factors. The distributions of HA abundance were 190 

characterized with a very high frequency of 0, meaning that HA were not detected most of the 191 

time. In addition, abundances are discrete variables, hence the Zero Inflated Negative 192 

Binomial (ZINB) model (Greene 1994) appeared to be the most suitable regression for this 193 

dataset. ZINB regression is used for data that exhibits excess zeros and over dispersion. In 194 

Zero Inflated (ZI) models (Lambert 1992), theory suggests that the excess zeros are generated 195 

by a separate process from the count values and that the excess zeros can be modelled 196 

independently. Thus, the ZINB model has two parts, the negative binomial count model and 197 

the logit model for predicting excess zeros. The process explaining the excess zeros could 198 

correspond to an absence of HA cyst germination, when count values would represent the 199 

proliferation of vegetative cells once germination had occurred. Type 2 ZINB were used for 200 

the models because the Akaike Information Criteria (AIC) (Akaike 1974) were lower than 201 

type 1 ZINB. As the variables were time series data sampled in different stations, it was 202 

necessary to check the influence of the stations, and to check that the relationships between 203 

the variables would still be significant without this influence. Mixed models were thus 204 

performed, using the stations as grouping factors. Only random-intercept models were 205 

performed because random-slope models did not converge. The significance of Random 206 

effects was tested by performing an Anova between the models with and without random 207 
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effects. Random effects were kept for the logistic and/or the negative binomial part only when 208 

it was significant it when it allowed the model to fit the data better;  this was shown on the 209 

residuals graphs.     210 

Variable selection and encoding 211 

The model building process is described in Fig 3. A model was set up to predict HA 212 

concentrations using the hydrological factors as predictors (i.e the predictive variables) and 213 

showing a Spearman or a Pearson coefficient with a p-value lower than 20%. The linearities 214 

of the relationships were tested by performing maximum likelihood tests between models 215 

before and after having transformed the factors to categorical variables. When non-linear 216 

relationships were found, the variables were encoded as categorical variables, the levels being 217 

determined by the ranges depicted by the DT and by visual examination of the distribution 218 

graphics. Several combinations of variables and of levels were tested and the AIC was used to 219 

select the best fitting model. The Incident Risk Ratio (IRR) was calculated for the negative 220 

binomial part (IRR = exp (coefficient)). An IRR >1 means an increase of the average 221 

microalgae’s abundance. As for the logit part, a particularity in the ZI model is that the 222 

coefficient and the Odds Ratio (OR = exp(coefficient)) characterize the probability of zero, in 223 

this case the probability of absence of the HABs. To make it easier to understand, we choose 224 

to depict the Odds Ratio of the presence of the algae: OR (Presence) = 1/OR. An OR 225 

(presence) >1 means an increase of the probability of presence of the alga. 226 

Validation 227 

The validation of the model was based on the standardized residuals simulated with the 228 

DHARMa package (Hartig 2020). The resulting simulated residuals graphics obtained with 229 

this package are interpretable the same way as the residuals graphics for simple linear models 230 

(Hartig 2020). Specialized goodness-of-fit tests were performed on the simulated residuals 231 
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with the DHARMa package: the Kolmogorov-Smirmnov test, a non-parametric dispersion test 232 

based on the standard deviation of the simulated residuals, testing whether the simulated 233 

dispersion is equal to the observed dispersion, and an outlier test that tests whether there are 234 

more simulation outliers than expected. Finally, Nakagawa’s conditional and marginal R² 235 

were calculated to show how much of the variability was explained by the global model and 236 

by random effects. 237 

3. Results 238 

3.1. Exploratory data analysis 239 

Correlation coefficients between phytoplankton abundance, abiotic factors and toxins in Thau 240 

and Leucate lagoons were calculated as shown in Tab 1A and 1B respectively. In both 241 

lagoons, the coefficients showed significant correlations between phytoplankton and abiotic 242 

factors: In Thau, the Spearman coefficient showed a positive correlation (p.val<0.001) 243 

between A. tamarense/pacificum and salinity (Sal.). In Leucate, Dinophysis was negatively 244 

correlated to temperature (Temp.) and Sal. (p.val<0.001), whereas it was positively correlated 245 

to Temp. in Thau (p.val<0.001) (Tab. 1). Dinophysis was also positively correlated to 246 

turbidity (Turb.) (Spearman coefficient 0.15, p.val <0.001) (Tab. 1). When significant, the 247 

correlations between A. tamarense/pacificum, Dinophysis and abiotic factors were quite low, 248 

absolute values ranged from 0.15 to 0.31 (Tab. 1). In both lagoons, whenever significant, the 249 

Spearman coefficients between the environment and toxic phytoplankton species were always 250 

stronger than the Pearson coefficients, suggesting non-linear relationships. Furthermore, 251 

toxins were highly correlated to the abundance of the microalgae which produce them. The 252 

significant correlations between A. tamarense/pacificum and PSTs in Thau ranged from 0.41 253 

to 0.58 and the Pearson coefficients were stronger than the Spearman coefficients, with 254 

p.val<0.001, suggesting a linear relationship (Tab. 1). The lipophilic toxins (OA, PTX, DTX) 255 
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were positively correlated with the abundance of Dinophysis, the significant coefficients 256 

ranged from 0.45 to 0.69 (p.val<0.00) (Tab 1). Furthermore, abiotic factors seemed to have 257 

similar impact on the toxins as on the microalgae producing them. In Thau, PSTs were 258 

positively correlated to Sal. (significant correlation coefficients ranged from 0.3 to 0.41, 259 

p.val<0.05) (Tab. 1). In Leucate, lipophilic toxins were negatively correlated to both Temp. 260 

(coefficients ranging from -0.38 to -0.57) and Sal. (significant coefficients ranging from -0.14 261 

to -0.35) and positively correlated to Turb. (significant coefficient ranging from 0.27 to 0.28, 262 

p.val<0.001) (Tab. 1). The Spearman coefficients showed that A. tamarense.pacificum and 263 

Dinophysis abundances were non-linearly but positively correlated with the abundance of 264 

dinoflagellates and diatoms, and that these correlations were stronger for A. 265 

tamarense/pacificum (coefficients ranging from 0.18 to 0.29, p.val<0.001) than for 266 

Dinophysis (coefficients ranging from 0.08 to 0.09, p.val<0.05) (Tab. 1). 267 

3.2. Decision trees  268 

Decision trees were able to predict when blooms of A. tamarense/pacificum and Dinophysis 269 

could occur (Fig 4). Turb. was never kept in pruned DTs and appeared thus to be a non-270 

determinant risk factor in Dinophysis and A. tamarense/pacificum blooms. Results showed 271 

that, for Temp. between 10.4°C and 21.5 °C and Sal. >39.2, the mean risk of a bloom of A. 272 

tamarense/pacificum occurrence was over 50% (Fig 4A). The mean risk was less than 12% 273 

when Sal. is <39.2 and, even with a high salinity, it was near 0% when Temp. was <10.4 °C. 274 

The decision tree for Dinophysis (Fig 4B) indicated that Sal. <27.8 and Temp <16.3°C led to 275 

a mean risk of bloom over 50%. This situation was however quite rare (only 21 observations 276 

over the 10 years monitoring). Sal. >32.0 along with Temp.  <16.3°C also led to a high 277 

probability of bloom (in average 26% of the testing datasets). Temp. >16.3 °C led to a low 278 

risk (on average 4.2% of the testing data sets). No low threshold of temperature was found for 279 

Dinophysis.   280 
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Decision trees were able to predict when shellfish contaminations could occur (Fig 5). The 281 

trees showed that toxins were usually found in animals in the conditions promoting a bloom 282 

event (Fig 5). Again, Turb. was never kept in the pruned DTS. In Thau, the risk of 283 

contamination of mussels and oysters by PSTs was significant for seawater Sal. > 37.7 and 284 

39.9, respectively (Fig 5 A/B). Low Temp. also promoted risks of shellfish contamination. 285 

For mussels, Temp. <18.5°C combined with Sal. >37.7 yielded a total mean risk of 286 

contamination of 92% (44.9% between 340 µg/kg and 800 µg/kg (labelled 1 on the figure) 287 

and 47.1% exceeding 800 µg/kg (labelled 2 on the testing data sets). For oysters, Temp. 288 

<16°C combined with Sal. >39.9 led to a 57% mean risks of contamination, the latter being 289 

mainly comprised between 340 µg/kg and 800 µg/kg (52.3% of the observations in the testing 290 

dataset). It is possible that the contaminations were rare below a low Temp. threshold, but 291 

were not represented on the decision trees because of a low number of observations. In 292 

Leucate, the risks of mussel and oyster lipophilic contamination was higher when Temp. is 293 

<16.3 °C and <13.5 °C, respectively (Fig 5 C/D). The 16.3°C threshold showed that mussels 294 

would become contaminated as soon as Temp. allowed Dinophysis blooms. Under this Temp., 295 

the risk of contamination was high independently of the Sal. (56.7% and 31.1% risk of a 296 

contamination over 160µg/kg (labelled 2 on the figure) for a Sal. respectively > and <33.5). In 297 

oysters, contamination by lipophilic toxins happened at Temp. <13.5°C and Sal. < 27.8 that 298 

led to 30.7% mean risk of contamination (over 160 µg/kg) in the testing data sets. In all, these 299 

trees showed that the conditions in which oysters were contaminated were more restrictive 300 

than for mussels: the Temp. and Sal. ranges were systematically narrower for oysters. 301 

3.3. Linear regression 302 

In order to predict A. tamarense/pacificum abundance in Thau, a ZINB model was set up 303 

using two categorical predictors (temperature, split into four levels, and salinity, split into 304 

three levels) and one continuous predictor, turbidity (Tab 2). The splits have been selected 305 
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thanks to the results of decision trees and from visual examination of data distribution. The 306 

negative binomial part of the model, which depicted how predictors impact cell abundance, 307 

showed that the reference Temp. level, 14.6 to 21.5 °C, was associated with the highest 308 

average microalgal abundance. The IRR revealed that the average abundance was multiplied 309 

by 0.15 when Temp. was >25°C (p.val 4.38e-3), and by 0.010 when Temp. was <10.4°C 310 

(p.val <7.73e-5). A Sal. >36 was associated with the highest average abundance of A. 311 

tamarense/pacificum: the average abundance was multiplied by 0.25 when Sal. was <36 312 

compared with a Sal. >39.2, but no difference was shown when Sal. was comprised between 313 

36 and 39.2. Turb. did not significantly impact A. tamarense/pacificum abundance. It should 314 

be noted, before interpreting the logit part of the model, the coefficients were conversely 315 

related to the presence of the alga. In order to depict how the predictors affect the probability 316 

of presence of the alga, we choose to calculate OR (presence) = 1/(exp(coefficient)). This part 317 

of the model showed that the reference Temp. level was associated with the highest 318 

probability of presence of A. tamarense/pacificum. For instance, the odds of its presence were 319 

multiplied by 0.14 when the temperature was <10.4°C and by 0.15 when it was >25. The 320 

reference Sal. (over 39.2) led to the highest likelihood of the presence of A. 321 

tamarense/pacificum: the odds of the presence were multiplied by 0.21 when Sal. was <36 322 

and by 0.44 when it was between 36 and 39.2. Turb. was not associated with the presence of 323 

this alga. Overall, what emerged from the two parts of the models was that the conditions in 324 

which A. tamarense/pacificum usually reached higher abundances were generally the same as 325 

those in which the probability of finding it were the highest.  326 

Random effects were significant for both parts of the model (p.val of the Anovas describing 327 

random effects for the log and negative binomial parts were respectively 1.82e-7 and 4.88e-3) 328 

which indicated that a part of the variability in A. tamarense/pacificum’s presence and 329 

abundance was due to the location. The conditional Nakagawa R² was 0.402 whereas the 330 
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marginal Nakagawa R² was 0.206. The model thus described almost 40.2% of the data 331 

variability, with 19.6% (0.402-0.206) being explained by random effects. 332 

The study of residuals (Fig 6) showed no significant problem: the QQplot curve was straight, 333 

the Kolmogorov-Smirnov and Dispersion tests were not significant (respectively p.val: 0.36 334 

and 0.056). The graph of residuals against predicted values showed that residuals followed a 335 

uniform law (no particular shape was revealed) and the predicted quantile curves were aligned 336 

with the observed quantile curves. Five outliers were revealed by this graph, but did not 337 

invalidate the model (p.val of the outlier test: 0.088). No significant problems were detected 338 

through these graphics. 339 

4. Discussion and conclusion 340 

4.1. Discussion 341 

In this work, we developed an innovative approach to forecast the risk of HABs and shellfish 342 

contamination occurring in the marine environment. Our study was based on a solid long-term 343 

database integrating ten years of sanitary monitoring results. After having explored the data 344 

through exploratory bivariate analyses, we used two complementary methods, DTs and 345 

statistical ZINB models, in order to reveal the relationships between environmental 346 

parameters such as temperature and salinity, HABs and shellfish contamination. 347 

First, the exploratory bivariate analyses indicated an impact of temperature and salinity on 348 

HABs. These results were in accordance with several studies showing that temperature and 349 

salinity influence the occurrence of Alexandrium and Dinophysis blooms (Abdenadher et al. 350 

2012; Anderson and Keafer 1987; Gomis et al. 1996; Itakura et al. 2002; Ninčević Gladan et 351 

al. 2008; Swan et al. 2018). The correlation coefficients were medium to low, but were not 352 

expected to be much higher as they depicted the influence of only one variable on the HA 353 
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abundances variability. The exploratory analyses showed thus that temperature and salinity 354 

were to be adequate predictors in following multivariate analyses. 355 

By using decision trees, we determined the range of optimum temperature and salinity 356 

associated with high risks of blooms. The proportion of blooms with a salinity above 39.2 and 357 

temperature ranging between 10.4 and 21.5 for A. tamarense/pacificum, and when salinity 358 

was below 27.8 for Dinophysis spp. exceeded 50%, which could trigger safeguard measures 359 

of the reared shellfish. If the optimal ranges of temperature and salinity may appear wide, they 360 

only represent 9.7% and 3.1% of the data in Thau and Leucate, respectively, which has to do 361 

with the broad ranges of temperature and salinity in Mediterranean lagoons. The temperatures 362 

were congruent with previous observations showing that A. tamarense/pacificum blooms 363 

mainly occur from October to December and April to June but were rarely observed in 364 

summer and winter (Laabir et al. 2011, 2012). Laanaia (2013) highlighted that Alexandrium 365 

blooms occurred mainly during periods when salinity was below 39.3 from 2002 to 2006. 366 

Even though substantial risks could subsist outside the optimum ranges depicted by the DTs 367 

(11.9% risk of A. tamarense/pacificum bloom below 39.2), this study could thus reveal a 368 

change in  A. tamarense populations composition together with a variation in intra-species 369 

physiological constants in Thau over the past few years. Our work also showed positive 370 

correlations between toxins in bivalves and the HAs producing them, as well as with the 371 

environmental factors that impact these algae. The optimal temperature and salinity ranges 372 

associated with high risks of shellfish contamination by phycotoxins were congruent with the 373 

ranges increasing the risks of blooms. In Mediterranean lagoons, all referenced Dinophysis 374 

species were potentially toxic. Recently, qPCR analyses the Alexandrium species in Thau 375 

lagoon showed that the proportion of non-toxic Alexandrium species during a bloom were 376 

very low (Sectox project, Eric Abadie, unpublished data). This could explain the high 377 

correlations between algae and toxins. The correlation coefficients and the DTs showed that 378 
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relationships between phytoplankton and toxins were stronger in mussels than in oysters. 379 

Mussels are considered as sentinel organisms for lipophilic toxins as they are known to be 380 

contaminated more easily than the other bivalves (Levinton et al. 2002). However, a strong 381 

inter-individual variability in the accumulation of toxins has been documented in oysters 382 

(Pousse et al. 2018), meaning that sanitary risks remain substantial even in shellfish other than 383 

mussels. Together, our results suggested that the DT is a tool which can provide relevant 384 

information that will be useful in sanitary monitoring. 385 

Through linear regression, the model confirmed the DT results obtained with A. 386 

tamarense/pacificum and showed how abiotic factors influence either its presence or its cell 387 

abundance when present. The optimal set of parameters chosen by the CART algorithm was 388 

significantly associated with the maximum average abundance and odds of presence of the 389 

algae. Moreover, this model specified the sets of parameters more accurately by 390 

distinguishing significantly more levels of temperature and salinity than the DT. It also 391 

revealed that the optimal sets of parameters are similar for the presence of the microalgae and 392 

for their abundance when they were present: this could indicate that germination and 393 

proliferation occured in the same conditions (Temperature from 14.6 to 21.5°C and Salinity 394 

>39.2). Actually, from 2010 to 2020, most of the substantial blooms occurred within these395 

conditions, as the bloom of October 2015 (820000 cells/mL) and October 2017 (35000 396 

cells/mL). Few other blooms occurred for slightly lower salinities, as in June 2011 (250000 397 

cells/mL; Salinity 36.6). This is however not in total contradiction with the model since the 398 

latter shows that, even though a salinity over 39.2 increases the risk of Alexandrium presence, 399 

its abundance when it’s present could be increased by a salinity over 36. This brings to light 400 

that, if this model shows conditions where risks are very important, it does not mean that 401 

blooms cannot occur outside them. The model predicting Dinophysis spp. abundance could 402 

not be validated due to overdispersion issues. In contrast to Alexandrium, Dinophysis feeds on 403 
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living preys and acquires its kleptochloroplasts originating from a cryptophyte through 404 

predation on the ciliate Mesodinium rubrum (Park et al. 2006; Reguera et al. 2012). Hence, its 405 

growth depends on the presence of cryptophyte preys and ciliates, which themselves depend 406 

on environmental factors like light intensity (Kim et al. 2008; González-Gil et al. 2010). The 407 

mixotrophic status of Dinophysis spp. and the influence of its predator make its dynamics 408 

more complex and difficult to integrate in a linear regression model. Further studies 409 

integrating more variables, abiotic as well as biotic, may allow to validate a model for 410 

Dinophysis spp. 411 

Several other environmental factors could have been integrated to increase the model’s 412 

performances regarding the mechanisms of blooms. Indeed, temperature and salinity changes 413 

may occur along with variations in other factors such as nutrients, water column conditions 414 

and residence time which can trigger or deplete blooms. In addition to the direct impact of 415 

temperature toward Alexandrium cyst germination (Anderson and Keafer 1987; Genovesi et 416 

al. 2009), this factor is likely to be related with water stability or turbulence. In this regard, 417 

winds seem to be a critical factor in lagoons by promoting turbulence and resuspension and 418 

decreasing temperature (Laanaia et al. 2013). As instance, an important bloom of 419 

Alexandrium occurred in 2004 for a salinity of 36.5 (outside the optimal salinities depicted by 420 

the DTs): this bloom was triggered by cysts germination resulting from water column 421 

agitation by strong winds, also inducing a drop in temperature (Laanaia et al. 2013). 422 

Moreover, salinity and temperature may be associated with nutrient availability as they can be 423 

linked with nitrogenous and phosphorous fluxes between compartments (organic and 424 

inorganic nutrients in water column, organisms and sediments) (Bougis 1974; Boynton and 425 

Kemp 1985; Grenz et al. 1992). Many studies showed that nutrient availability is positively 426 

associated with Dinophysis (Ajani et al., 2016) and Alexandrium growth (Collos et al., 2007; 427 

2009; Natsuike et al., 2018) and that a lack of nutrients could lead to sexuality, and thus to the 428 



19 
 

decline of blooms (Anderson and Lindquist 1985). Unfortunately, nutrient measurements by 429 

the REPHY network were not performed at the same time and stations than those of this 430 

work. Further studies including nutrient availability in water would allow to understand if 431 

temperature and salinity have an indirect impact on cells abundance as their variation occur 432 

along nutrients fluxes. Oxygen and light intensity are also known to influence Alexandrium 433 

proliferations (Anderson and Keafer 1987; Keafer et al. 1992; Ajani et al. 2016; Valbi et al. 434 

2019) and light increases toxin production by HA (Ogata et al. 1987). As nutrients, these 435 

factors were not measured during the period or sites considered here but could be integrated in 436 

further studies. We tried to integrate turbidity, although the linear regression showed no 437 

significant impact and it never ended up as a remaining variable in the pruned DTs. In the 438 

Mediterranean lagoons as in all aquatic ecosystems, turbidity can result from a large panel of 439 

environmental variations such as water turbulence (Baas et al. 2005) and surface winds (Arfi 440 

et al. 1993). These different factors could have various impacts on Alexandrium and 441 

Dinophysis distribution, which may explain why turbidity appears to be a bad predictor of the 442 

concentration of these species.  443 

The approach developed here provided robust, easily interpretable, reliable results. At first, 444 

the DTs highlighted the set of parameters in which blooms and shellfish contamination were 445 

the most likely to happen, and provided an estimation of the risk within these sets. The 446 

models statistically confirmed the set for A. tamarense/pacificum, specified it by providing 447 

narrower ranges, and linked them to the mechanisms of blooms. The robustness of the DTs 448 

was ensured by repeating each experiment 100 times and calculating average DTs on both 449 

learning and testing datasets, thus providing a very robust tool. The number of observations 450 

used for toxins DTs was quite low, but the sets of parameters for phytoplankton and toxins 451 

DTs were congruent which tends to validate the results. By validating the model’s predictions 452 

thanks to residuals graphs and to adequation, dispersion and outlier tests, this work confirmed 453 
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that temperature and salinity did have an impact on A. tamarense/pacificum’s presence and 454 

abundance. Moreover, including random effects in the model by grouping on the sampling 455 

sites allowed us to exclude the variability due to location, thus increasing its reliability.  456 

4.2. Conclusion 457 

This study is a first step in forecasting the risks due to HABs in French Mediterranean 458 

lagoons. Few variables were used, as they came from a network thought to trigger sanitary 459 

alerts based on few parameters. Models were set up for two lagoons, including Thau which is 460 

the fourth oyster farming area in France. They provided ranges of temperature and salinity 461 

triggering blooms, and these ranges could be linked to the mechanisms of blooms. The robust 462 

results could help stakeholders to manage the sanitary regulation of these lagoons in the future 463 

according to network measurements. The methods developed in this study could be used to 464 

investigate other data sets describing different ecosystems and integrating more biotic and 465 

abiotic variables, which could allow to increase the model’s performance. 466 
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Table 1 : Correlation coefficients between A. tamarense/pacificum, Dinophysis, diatoms, other dinoflagellates, 

abiotic factors (temperature, salinity and turbidity) and toxins in Thau and Leucate lagoons from 2010 to 2019.  

 

Temp.: Temperature; Sal.: Salinity; Turb.: Turbidity. Non-italics: Pearson coefficients. Italics: Spearman 
coefficients. Bold: p.val <0.05. Underlined: p.val < 0.01. Bold and underlined: p.val <0.001. Colorized in blue: 
Significant positive correlation coefficients. Colorized in red: Significant negative correlation coefficients. 
Paralytic Shellfish Toxins (PST); Okadaic acid (OA); Pectenotoxins (PTX); Dinophysis toxins (DTX); Toxins in 
the mussels (m); Toxins in the oysters (o). 

  

Thau lagoon 

 A. tamarense/ 
pacificum 

Diatoms Dinoflagellates Sal. Temp. Turb. 

A. tamarense/ 
pacificum 

 -0.01 
0.18 

0.05 
0.29 

0.04 
0.17 

0.02 
0.02 

0.04 
0.05 

PST 
(m) 

0.41 
0.17 

-0.11 
-0.23 

-0.2 
-0.05 

0.3 
0.33 

-0.18 
-0.38 

-0.14 
-0.31 

PST 
(o) 

0.58 
0.44 

-0.18 
-0.19 

-0.12 
-0.06 

0.27 
0.41 

0.04 
-0.04 

0.15 
-0.16 

Leucate lagoon 

 Dinophysis Diatoms Dinoflagellates Sal. Temp. Turb. 

Dinophysis  -0.01 
0.09 

-0.04 
0.08 

-0.21 
-0.22 

-0.23 
-0.31 

0.03 
0.15 

OA 
(m) 

0.45 
0.67 

-0.06 
-0.15 

-0.06 
-0.07 

-0.28 
-0.34 

-0.38 
-0.51 

0.08 
0.27 

OA+PTX+DTX 
(m) 

0.46 
0.66 

-0.06 
-0.15 

-0.06 
-0.08 

-0.28 
-0.35 

-0.39 
-0.51 

0.08 
0.27 

OA 
(o) 

0.5 
0.69 

-0.08 
-0.2 

-0.05 
-0.1 

-0.14 
-0.19 

-0.39 
-0.56 

0.13 
0.28 

OA+PTX+DTX 
(o) 

0.52 
0.69 

-0.08 
-0.22 

-0.06 
-0.13 

-0.12 
-0.17 

-0.38 
-0.56 

0.12 
0.28 



Table 2 : Zero inflated negative binomial model predicting A. tamarense/pacificum concentrations in Thau 

Negative Binomial regression Logistic regression 
Term Coefficient IRR p.val Coefficient OR(presence) p.val

Intercept 8.72 6.11e3 <2e-16 *** -0.65 1.92 0.060
Temp. <10.4 -2.28 0.010 <7.73e-5 *** 1.93 0.14 1.60e-7 *** 

Temp. ϵ[10.4; 14.6[ -0.78 0.45 0.030 * 0.76 0.46 6.02e-3 ** 
Temp. ϵ[21.5; 25[ -1.76 0.17 3.45e-7 *** 1.15 0.31 2.03e-5 *** 

Temp. > 25 -1.92 0.15 4.38e-3 ** 1.90 0.15 2.66e-5 *** 
Sal. < 36 -1.38 0.25 4.85e-4 *** 1.53 0.21 7.45e-7 *** 

Sal. є [36; 39.2[ 0.22 0.81 0.49 0.81 0.44 1.47e-3 ** 
Turb. 0.13 1.13 0.13 -0.094 1.09 0.051 

The sampling site nested are as random effects. IRR: Incident Risk Ratio. OR: Odds Ratio. Temp.: Temperature. 
Sal.: Salinity. Turb.: Turbidity. 




