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ABSTRACT
Fitting apparel and apparel in performing different activ-

ities is essential for the functional yet comfortable experience
of the user. 4D scans, i.e. 3D scans in continuous timestamps,
of the body (part) in performing those activities are the basis
for the design of garments/apparel in 4D. In this paper, we
proposed a semi-automatic workflow for constructing 4D scans
of the body parts with the emphasis on registering noisy scans at
a given timestamp. Continuous 3D scans regarding the moving
body parts are captured first from different depth cameras from
different view angles. In a given timestamp, the collected 3D
scans are roughly aligned to a template using the rigid Iterative
Closest Points (ICP) algorithm. Then these scans are further
registered using a newly proposed non-rigid Iterative Closest-
Farthest Points (ICFP) algorithm, in which correspondences
between the source and the target are established by either
closest or farthest points based on the newly defined logical
distance concept and the probability theory. Experimental re-
sults indicated that the ICFP method is robust against noise and
the scanning accuracy can be as high as 3.4 %. It also reveals

∗Address all correspondence to this author.

that, for the human foot, the differences of ball width and ball
angles between the loaded and the unloaded situation can be as
large as 8 mm and 2 degrees, respectively. This highlights the
importance of using 4D scan in designing garments and apparel.

Keywords: 4D scans, accuracy, robust, non-rigid Iterative
Closest-Farthest Points (ICFP), logical distance;

1 INTRODUCTION
Due to comparatively huge changes in shape during deform-

ing a dynamic object, dynamic anthropometry and 4D scanning
have attracted a lot of attention in clothing technology recently
[1, 2]. The 4D scanning gives valuable information regarding
human body deformation during moving, conducting an activity
and dynamic workload, establishes the fundamentals of compre-
hensive ergonomic fit design e.g., personal protective equipment,
workwear, sportswear, and other practical garments [3, 4].

The concept of body measurement started with using mea-
surement tape, which was time-consuming and required consid-
erable effort [5]. Advancement in technology introduces the 3D
scanning tool-kits [6–11], which improves the effectiveness and
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efficiency of measuring the body shapes [12, 13]. However, the
3D body measuring techniques [14, 15] and scanners only al-
lowed the collecting data in static postures, e.g., hand posture
in [16, 17]. Thus, the scan captures the muscular system aiming
to hold the static position and neglects the interaction between
the body and environment during movement. As a result, gar-
ments are still designed based on the anthropometric standard
position specified in standards and sizing framework as stand-
ing upright, legs hip widespread, arms slightly abducted [18,19].
However, body proportion diverges from static to dynamic status,
especially during intense activities such as sports. Therefore, it is
important to investigate the body during motion, to extract mean-
ingful features alterations i.e., dimensions, and transfer the the
features into the garment enhancement process. To this end, the
technological development from 3D to 4D scanning approaches
establishes scanning in motion [20, 21].

Kirk et al. [22] introduced a method to evaluate the raising
and lowering of the body surface with respect to connection with
position changes via measurement lines on the knee. Schmid
et al. [23] proposed seam damages were usually affected by
changes of body geometry. The research group of Ashdown stud-
ied dimensional variation on the basis of 3D point cloud for the
upper and the lower body half [24–26]. Based on the state-of-the-
art methodology the deformation of the body surface was stud-
ied through discreet static postures. However, there is a paucity
of literature regarding measurement alteration during movement
and only a few researchers address this challenge [18, 19].

The concept of dynamic anthropometry was prosperously
implemented mainly for the enhancement of high-performance
sportswear. The challenges were decreasing muscle fatigue, in-
creasing comfort, and resistance diminution and performance de-
velopment [27, 28]. Firstly, Morlock et al. [29] studied deviation
in body measurements from work to sports corresponded pos-
tures of men and women that the population sample was very
large [19]. Next, body motion is mainly observed through Mo-
tion Capture Technology. The method captures the deformation
by tracking a few pre-selected landmarks on the body mostly
for articulation reconstruction. The approach has broad appli-
cations such as video game design, computer-animated movies,
or biomechanical analyses in the fields of medicine and sports.
The acquisition of 3D surfaces with motion scanning has been
studied by many researchers such as [30–33]. A finite number
of landmarks highlighted with trackable markers are mounted on
the human body and the position of the landmarks was estimated
by the systems.

A very recent topic of capturing the dynamic body surface
deformation over the moving articulation attracted a lot of atten-
tion, as it is often challenged by capture speed, computational
speed, and accuracy of the measurements [20]. Most approaches
exploit equipment founded on the concept of light and depth sen-
sor technology. Employing techniques and measurement princi-
ples i.e., triangulation or light section algorithms, the surfaces

are estimated. However, in each time frame, the methods fail
to capture the 4D pattern (correspondence) but instead deliver
an independant 3D mesh describing shape of the scanned object,
which needs higher knowledge to extract the 4D features.

In this paper, we present a workflow of automatically ex-
tracting dynamic features from the foot during walking. In de-
tail, the method first aligns 3D point clouds extracted from seven
depth cameras around the walking foot through the well-known
rigid Iterative Closest Points (ICP) registration method. Then a
reference foot model is nonrigidly registered on the aligned 3D
raw data to define the patterns and features in each time inter-
val. In the proposed nonrigid ICP algorithm, a new correspond-
ing point selection approach is proposed and implemented for a
more effective and effcient registration.

The rest of the paper is presented as follows: first, the
methodology is introduced in Section 2 where the techniques of
the rigid alignment and nonrigid registration are discussed. In
Section 3.1, the setup of the experiments is introduced. In Sec-
tion 4, experimental results on the comparison of the proposed
approach output and the reference data provided by Artec Eva
scanner are presented. Finally, a short conclusion is drawn and
future research directions are highlighted as well.

2 METHODOLOGY
In this section, we introduce a methodology that reconstructs

a temporally corresponded 3D mesh out of different 3D pieces
of point cloud through a source mesh, i.e., making a complete
3D shape using a few different depth cameras around the object.
For proceeding with the methodology, we use a rigid ICP regis-
tration technique to register each piece containing the captured
point clouds by each camera, correctly on the source mesh, and
then the source mesh will be registered on the combined pieces
(target mesh) through a non-rigid ICP registration method. Due
to a high degree of noise, the corresponding points selection is
modified from only considering the closest point to logical dis-
tance selection. The logical distance selection may choose the
closest or farthest point on the target to a point on the source
as the corresponding point, based on the topology of the recon-
structed target. By iteratively reconstructing 3D shape out of the
extracted 3D data from each camera in a time frame, we are able
to make time series of 3D scans known as 4D scanning.

2.1 Rigid registration
In the proposed research, we focus on the geometry of the

foot. Firstly, we estimate the points visible from each camera on
the source mesh used in [34] which is scaled to have approxi-
mately the same foot length as the scanned data with one of the
side cameras (e.g., the red points on a side camera in FIGURE 1
are used to scale the gray source mesh in order to have the same
length as the red point-cloud). These estimated points from each
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(a) (b) (c)

FIGURE 1: Pre-defined points on the source mesh for a side cam-
era (the camera 3 in FIGURE 3): (a) Front view. (b) Side view.
(c) Bottom view.

camera are used as the target for any extracted data from the rele-
vant camera. Then using the rigid ICP method we are able to find
the extrinsic transformation matrix that is able to map each piece
of data to the correct location on the source mesh. As an exam-
ple of showing the predefined points on the source mesh, we de-
picted the predefined points for a side camera in FIGURE 1(e.g.,
camera 3 described in Section 3.3).

2.2 Filtering
Usually, the output of the depth cameras is very noisy, and

also there may be some point clouds that are not presenting any
targeted features, e.g. from the background. Thus, first we filter
the 3D point cloud of the target mesh (T).In this process, the
closest point for each point on T is found on the source mesh (S),
and the distance between each point on T and its corresponding
point on S are compared with a distance limit (dl) as follows.

dl = m+2σ (1)

where, m is the average of all the closest distance from T to S,
and σ is the standard deviation of the closest distance population.
The points that have a distance greater than the dl will be rejected
as follows. {

keep, if dp ≤ dl

re ject, if dp > dl
(2)

where dp is the distance from a point p on T to its corresponding
point on S. It is worth mentioning that we consider the distance
from S to T only, many useful points on T might be excluded due
to the imperfect alignment of the pieces during establishing the
T.

2.3 Nonrigid corresponding selection
In the use of the conventional ICP method, given a point on

the S, the closest point on the T is considered as its correspond-

ing point. As only the Euclidean distance is used in establishing
the correspondences, in terms of a high level of noise or dis-
turbances, the topography of the original S may be lost. Thus,
we use a logical distance instead of the closest point approach
to establish the correspondences. Accordingly, firstly the closest
point from each point on T to S is established. Regarding the
miss alignment and disturbances for some points, the found dis-
tance is comparatively high, which may never be considered as a
corresponding point regarding the conventional ICP correspond-
ing point selection algorithm. However, not all the far points are
spare as there may be considerable error with rigid registration
then some useful points can be located in far distance from the
source mesh. In addition if the deformation is very high e.g.,
closed finger hand as a target versus opened finger hand as a
source mesh highlights the disability of using only closest dis-
tance to find the correspondences. Thus, we define a varying
distance boundary by iteration that increases the probability of
finding the useful point although they are far. In the process of
finding correspondences from each point on T to S, each point
on S may be selected for more than one point on the T. In this
case, we logically select either the closest or farthest point. In
each iteration of the registration process, we define a boundary
distance as follows for the corresponding distance matrix from T
to S as follows.

Bound = m+ζ σ (3)

where m and σ are the mean and standard deviation of the
counted distance for the correspondences from T to S, accord-
ingly. If for a point on S a population of points T are selected
which includes more than one point, then we consider the point
with the highest distance among the population, if all the dis-
tance for the population is greater than the bound. Otherwise, we
select the closest point as the corresponding point to the point on
S. The process of the corresponding point selection is explained
in Algorithm 1.

Discussion: To study the probability of success with the
considered value in (3), statistical solutions are employed. First,
we assume that the closest distance from points on T to points
on S establishes a normally distributed population with an aver-
age of m and standard deviation of σ . Accordingly and based on
Miller’s studies of Freund’s statistics [35] used in [36–38], the
probability indicator z is defined as follows.

z =
Bound−m

σ
(4)

=
m+ζ σ −m

σ
= ζ (5)

Using Table III of the book [35], while z = ζ , the probability (P)
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Algorithm 1 The proposed corresponding selection approach

Input: Target point clouds (T) and Source point clouds (S)
Output: Corresponding points

1: Initialization
2: SourceID: Find the closest point from each point on T to a

point on S
3: SourceDis: The distance between the two corresponding

points regarding SourceID
4: IDclass = unique(SourceID): Defines all the involved points

from source as correspondences
5: Bound = mean(SourceDis) + std(SourceDis)
6: k = 1
7: while k ≤ length(IDclass) do
8: ResembleID = find(SourceID == IDclass(k))
9: DistanceMatrix = SourceDis(SourceID(ResembleID))

10: if isempty(find(SourceDis(ResembleID)<Bound,1)) then
11: The corresponding point is the farthest
12: else
13: The corresponding point is the closest
14: end if
15: k = k+1
16: end while

of having a distance more than the bound is

P(Distance > Bound) = 0.5−P(z) = 0.5−P(ζ ) (6)

It should be noted that in the Table III of the book, z is bounded
where z∈ [0, 3.09] which 0≤P(z)≤ 0.499. Thus, P(Distance>
Bound) is always equal or less then 0.5. As the methodology
is iterative with a maximum iteration of jmax, the probability of
missing a useful point would be P(Distance > Bound) jmax

which
would be a very small value. In fact, greater values of the Bound
resulted from greater values of ζ , means the closest point which
is often used in the conventional ICP algorithm is addressed in
the selection. While, smaller values of the Bound (smaller value
of ζ ) emphasises more on selecting the farthest point which may
map all the source mesh vertices to the farthest point and results
in the source mesh topology loss. There must be an optimal value
of ζ that balances the closest and farthest selection process as
discussed in Section 3.2.

2.4 Nonrigid registration
In this section, based on the established correspondences, a

cost function based on Amberg [39] is defined. Amberg [39] pro-
posed the non-rigid registration formulation as a combination of

distance and stiffness terms summarised in the following formula

E(X) = ‖

[
αM⊗G

WD

]
X−

[
0

WU

]
‖2

F

= ‖AX−B‖2
F (7)

where, The sparse matrix D is formed to facilitate the trans-
formation of the source vertices with the individual transforma-
tions contained in X via matrix multiplication, and denoted as
D = diag(vT

1 ,v
T
2 , . . . ,v

T
n ), where vi ∈ S and i = 1, ...,n, and n is

the number of vertices on the S. W is a diagonal matrix consist-
ing of weights wi. α is the stiffness constraint. To regularise the
deformation, an additional stiffness term is introduced. Using
the Frobenius norm ‖.‖F , the stiffness term penalizes the differ-
ence of the transformations of neighboring vertices, through a
weighting matrix G = diag(1,1,1,γ). During the deformation, γ

is a parameter to stress differences in the skew and rotational part
against the translational part of the deformation. The value of γ

can be specified based on data units and the types of deforma-
tion [39]. The node-arc incidence matrix M (e.g. Dekker [40])
of the template mesh topology is employed to convert the stiff-
ness term functional into a matrix form. As the matrix is fixed
for directed graphs, the construction is one row for each edge of
the mesh and one column per vertex. To establish the node-arc
incidence matrix of the source topology, the indices (i.e. the sub-
scripts) of edges and vertices are addressed, for any edge of r
which is connected to vertices (i, j) , in rth row of M, and the
nonzero entries are Mri =−1 and Mr j = 1.

3 EXPERIMENT SETUP
3.1 Parameters of the proposed method

Table 1 presents parameters used in the experiment. Dur-
ing the minimization of the cost function, γ in G introduced in
(7), was chosen to one. The stiffness constraint, α , is the low-
ering scalar. In the experiments α is decreasing from 1000 to
1. Regarding dependency of α values to the dynamic of source
surface, the bounds of these values were manually defined so
that only global deformations were considered in the beginning
of registration. On the other hand, the lower limit of the α also
depend on the data type [39]. Accordingly, a small α may cause
singularity of A in Eq. (7), which leads to instability of the solu-
tion. Therefore, our experiments started with a sufficiently high
α .

To have a smoother registration process, we averaged a num-
ber of points from a set with size of 3 (Nmean = 3). In the im-
plementation of [41], the system of linear equations that arises in
each step was solved with the help of the UMFPACK library [42].
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TABLE 1: Parameters used in simulation configuration.

Parameter Value Description

α 1000:1 stiffness ratio

Nmean 3 Target points averaging size

ε 0.001 Convergence error threshold

jmax 50 Convergence iteration threshold

kmax 20 Number of iteration for the outer
loop

TABLE 2: Components of the final product in FIGURE 3.

Part
Number

Description Application

0-6 RealSense D435i capturing 3D point cloud

7-8 AdaFruit
VL53L0X ToF
stance sensors

Define start and end of scan-
ning

3.2 Tuning of ζ

In this section we numerically investigate the percentage of
mean mesh quality loss and percentage of the target vertices in-
volved in the nonrigid registration for a domain of ζ . There is an
optimum point which maximise the involved vertices and min-
imises the mesh quality loss. Accordingly, we consider a cost
function as follows.

minJ = ∑
|Q̄ f inal− Q̄0|

Q̄0 +
NT

in

NT
tot

(8)

where Q̄ f inal and Q̄0 are the average of mesh quality for all ver-
tices on the source mesh before and after registration respec-
tively. Also, NT

in is the number of vertices from target employed
as corresponding points during the nonrigid registration process,
and NT

tot is the total number of vertices on the target mesh. As
stated in Section 2.3, ζ equals to z and has an acceptable range
in [0, 3.09]. The results reported in FIGURE 2 shows best per-
formance where ζ = 1.7.

3.3 Scanner introduction
The scanner used in this study is the first prototype of a 4D

foot scanner at TUDelft [43]. As shown in FIGURE 3 and re-
ported in TABLE 2, the scanner utilizes seven RealSense D435i
depth cameras to capture a 4D foot scan.

FIGURE 2: Variation of J for a domain of ζ .

FIGURE 3: Scanner.

4 RESULTS
4.1 Raw data

Using the scanner, we were able to capture the geometric
shape of the foot as shown in FIGURE 4(a), which is very noisy
and the foot part is not the majority of the extracted data. Thus,
we manually deleted the spare parts through MeshLab software.
In which the result is depicted in FIGURE 4(b).

4.2 Frame selection
During scanning a foot many frames are captured by each

camera while the captured frames are not synchronised with
each other. In this paper, we manually looked at the frame by
frame extracted with each camera and picked the ones that corre-
sponded to the same posture. We considered five main postures
as shown in FIGURE 5 as: 1. Heel strike, 2. Foot-flat, 3. Mid-
stance, 4. Heel-off, and 5. Toe-off. Accordingly, the selected
frames from an experiment is shown in FIGURE 6.
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(a)

(b)

FIGURE 4: Raw data from one of the RealSense depth camera:
(a) Uncleaned. (b) Cleaned.

FIGURE 5: Main postures during walking.

4.3 Accuracy
Employing the discussed technique in Section 2, we assess

the accuracy of the scanner through two static 3D objects of hu-
man foot and human hand as follows.

4.3.1 Foot model: The used source mesh is shown in
FIGURE 7(a). To evaluate the effectiveness of the introduced
algorithm, we scanned a foot with an Artec Eva scanner in a no-
load case as shown in FIGURE 7(b), then the scanned foot was
printed out via Ulimaker S5 scanner shown in FIGURE 7(c). The
printed foot is scanned with our scanner in static mode which is
compared with the scan data of using the Artec Eva. Next, some
dimensions shown in FIGURE 8 are compared between the two
scanners’ output. We firstly find the scaling ratio which maps the

FIGURE 6: Selected frames.

(a) (b) (c)

FIGURE 7: No-load foot. (a) The source mesh. (b) Scanned
through Artec Eva scanner. (c) Printed Artec Eva output via Ul-
timaker S5 printer.

length of the reconstructed foot to the length of the foot collected
with the Artec Eva scanner and then calculate the errors for the
other dimensions as width, ball width, and ball angle according
to [44]. Based on FIGURE 8, Lr, Wr, BWr, and αr explain the
length, width, ball width, and ball angle of the scanned foot with
the Artec Eva scanner respectively. And, Le, We, BWe, and αe
define the length and width of the estimated foot through our
method respectively. The scaling factor of r is considered as
follows,

r =
Lr

Le
(9)

where in our experiment, Lr = 222.2 mm, Le = 0.3561 mm
which results in r = 623.9. Thus any dimension extracted from
our method is multiplied to the r and compared with the corre-
sponded values on the Artec Eva scanner output summarised in
TABLE 3. According to the table, the errors for the width is 3.2
mm, for the ball width is 3.4 mm, and for the ball angle is 0.9◦,
which shows the average percentage error is about 3.4%.

4.3.2 Hand model: As an extra validation, we used a
hand model in [6] as shown in FIGURE 9. According to the
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(a) (b)

FIGURE 8: Dimension definition: (a) Artec Eva. (b) Our
method.

TABLE 3: Error results of the parameters introduced in FIG-
URE 8 while the scaling ratio r = 623.9.

Parameter Artec Eva Our approach MAE

Width (mm) Wr = 87.3 r×We = 84.1 3.2

Ball Width (mm) BWr = 92.6 r×BWe = 89.2 3.4

Ball Angle αr = 10.8◦ αe = 11.7◦ 0.9◦

figure, the 3D printed hand, the Artec Eva scan of the hand, the
used source mesh, and the output of our scanner are depicted in
FIGURE 9(a), (b), (c), and (d) respectively. Furthermore, we
rigidly aligned the output of our scanner with the Artec Eva scan
as shown in FIGURE 9(e) to visually compare the accuracy of the
output. To numerically investigate the deviation of our scanner
output with the Artec eva scan we figured the histogram of the
distance between a point on our scan and its closest point on the
Artec eva scan. Accordingly, the average error is about 2 mm
which is acceptable in ergonomics study.

4.4 Posture reconstruction
Through the explained method in this paper, we use seven

cleaned frames for each posture as the input of the proposed
method. Accordingly, the output is depicted in FIGURE 11 for
the bottom view and the side view of the reconstructed scans of
one foot shown in FIGURE 6 over three feet we reconstructed
in this paper. The deformation of the source mesh is logically
related to the corresponded posture, which shows the acceptable
visual performance of the approach. In addition, the deformation
of each the foot width is compareable between adjacent frames,
where the posture with more load on front of foot has bigger
width shown in FIGURE 11. To study the deformation numeri-

(a) (b) (c) (d) (e)

FIGURE 9: Hand evaluation: (a) Real model. (b) Artec Eva scan.
(c) Source mesh. (d) Our method scan. (e) Aligned our output to
Artec Eva scan.

FIGURE 10: Error sparsity histogram.

cally, we reported the introduced dimensions in Section ”Accu-
racy”, for different postures per case in FIGURE 12 which shows
the deformation direction of all the feet are the same however the
amplitude is different. The feet belong to three cases as follows:

Case 1: Male, from Middle-east, 30 years old, with Body
Mass Index (BMI) equal to 27.8.
Case 2: Male, from Asia, 25 years old, with BMI equal to
26.8.
Case 3: Male, from Europe, 24 years old, with BMI equal
to 21.9.

The figure shows the variation of the foot per case in different
postures and please note that in the posture 5, the length of the
foot is not the real length and is the distance between tip of the
big toe to the heel of the foot, and the bending of the foot is not
considered. This resulted in a sudden decrease of the foot length
in the figure.

5 CONCLUSION
The method presented in this paper demonstrates a workflow

of extracting any time-varying features from dynamic scans of a
deformable object. The semi-automated procedure includes pre-
defining points which may be seen by each depth camera, man-
ually cleaning the raw data from each camera, rigid registration
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FIGURE 11: Results of posture reconstruction for the case 1.

FIGURE 12: Results per different cases.

of the extracted data from each camera to the corresponded pre-
defined points, and finally non-rigidly registering a source mesh
on the point cloud reconstructed through the rigid registration.
Reconstructing the final mesh through the non-rigid registration
for several frames in a time series provides a 4D feature outcome
(for specific points) or 4D trackable scanning (for all the points)
which is unique. Comparison of the output of our algorithm with
the dimensions extracted from the scanning data of the same ob-
ject using an Artec Eva scanner shows the estimated dimensions
have acceptable error. Further developments include deriving a
full automated approach for the filtering, the predefined point

selection, and corresponded frame selection, a higher frequency
scanner, and integrating temporal super-resolution repetitive mo-
tion techniques to have higher resolution of the 4D scanning.
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