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ϕ-FEM for the heat equation: optimal convergence on

unfitted meshes in space

Michel Duprez∗and Vanessa Lleras†and Alexei Lozinski‡and Killian Vuillemot§

March 21, 2023

Abstract

Thanks to a finite element method, we solve numerically parabolic partial differential
equations on complex domains by avoiding the mesh generation, using a regular background
mesh, not fitting the domain and its real boundary exactly. Our technique follows the ϕ-
FEM paradigm, which supposes that the domain is given by a level-set function. In this
paper, we prove a priori error estimates in l2(H1) and l∞(L2) norms for an implicit Euler
discretization in time. We give numerical illustrations to highlight the performances of
ϕ-FEM, which combines optimal convergence accuracy, easy implementation process and
fastness.

1 Introduction

The classical finite element method for elliptic and parabolic problems (see e.g. [1]) needs a
computational mesh fitting the boundary of the physical domain. In some applications in en-
gineering or bio-mechanics, the construction of such meshes may be very time-consuming or
even impossible. Alternative approaches, such as Fictitious Domain [2] or Immersed Boundary
Methods (IBM) (see e.g. [3] for a review), can work on unfitted meshes but are usually not very
precise. More recent variants, such as CutFEM [4], demonstrate optimal convergence orders
but are less straightforward to implement than the original IBM. In particular, CutFEM needs
special quadrature rules on the cells cut by the boundary. Finally, we can also mention the
Shifted Boundary Method [5] that avoids the non-trivial integration by introducing a boundary
correction based on a Taylor expansion.

A new Finite Element Method on unfitted meshes, named ϕ-FEM, combining the optimal
convergence and the ease of implementation, was recently proposed in [6, 7]. Initially developed
for stationary elliptic PDEs, it has been extended in [8] to a broader class of equations, including
the time-dependent parabolic problems, without any theoretical analysis. The goal of the present
note is to provide such an analysis in the case of the Heat-Dirichlet problem

∂tu−∆u = f in Ω× (0, T ), u = 0 on Γ× (0, T ), u|t=0 = u0 in Ω, (1)
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Strasbourg, France. IMAG, Univ Montpellier, CNRS UMR 5149, 499-554 Rue du Truel, 34090 Montpellier,
France. killian.vuillemot@umontpellier.fr

1



where T > 0, Ω ⊂ Rd, d = 2, 3 is a bounded domain with a smooth boundary Γ given by a
level-set function on Rd

Ω := {ϕ < 0} and Γ := {ϕ = 0} . (2)

(Note that some FEM on unfitted meshes have been developed for such problems for example,
in [9, 10]).

For the discretization in time, we use the implicit Euler scheme. The Dirichlet boundary
conditions are imposed via a product with the level-set function ϕ. An appropriate stabilization
is introduced to the finite element discretization to obtain well-posed problems. A somewhat
unexpected feature of this stabilization is that it works under the constraint on the steps in time
and space of the type ∆t ⩾ ch2. This does not affect the practical interest of the scheme since it
is normally intended to be used in the regime ∆t ∼ h. We shall provide a priori error estimates
for this scheme in l2(H1) norms of similar orders as for the standard FEM, cf. [1]. We also study
the l∞(L2) convergence and prove a slightly suboptimal theoretical bound for it, while it turns
out to be optimal numerically.

2 Definitions, assumptions, description of the scheme and
the main result.

We assume that Ω lies inside a box O ⊂ Rd and that Ω and Γ are given by (2). The box O
is covered by a simple quasi-uniform simplicial (typically Cartesian) background mesh denoted
by T O

h . We introduce the active computational mesh Th :=
{
T ∈ T O

h : T ∩ {ϕh < 0} ≠ ∅
}
on

Ωh = (∪T∈Th
T )

o
, the subdomain of O composed of mesh cells intersecting Ω, cf. Fig. 1 (right).

Here, ϕh is a piecewise polynomial interpolation of ϕ in finite element space of degree l ∈ N∗

on T O
h . We shall also need a submesh T Γ

h , containing the elements of Th that are cut by
the approximate boundary Γh := {ϕh = 0}: T Γ

h = {T ∈ Th : T ∩ Γh ̸= ∅}. Finally, we
denote by FΓ

h the set of the internal facets E of mesh Th belonging to the cells of the set T Γ
h ,

FΓ
h := {E (internal facet of Th) such that ∃T ∈ Th : T ∩ Γh ̸= ∅ and E ∈ ∂T}.
Introduce a uniform partition of [0, T ] into time steps 0 = t0 < t1 < . . . < tN = T with

tn = n∆t. The basic idea of ϕ-FEM is to introduce the new unknown w = w(x, t) and to set
u = ϕw so that the Dirichlet condition u = 0 is automatically satisfied on Γ since ϕ vanishes
there. Using an implicit Euler scheme to discretize (1) in time and denoting fn(·) = f(·, tn), we
get the following discretization in time: given un = ϕwn find un+1 = ϕwn+1 such that

ϕwn+1 − ϕwn

∆t
−∆(ϕwn+1) = fn+1 . (3)

To discretize in space, we introduce the finite element space of degree k on Ωh,

V
(k)
h = {vh ∈ H1(Ωh) : vh|T ∈ Pk(T ), ∀T ∈ Th} ,

for some k ⩾ 1. Supposing that f and u0 are actually well defined on Ωh (rather than on

Ω only), we can finally introduce the ϕ-FEM scheme for (1) as follows: find wn+1
h ∈ V

(k)
h ,
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n = 0, 1, . . . , N − 1 such that for all vh ∈ V
(k)
h∫

Ωh

ϕhw
n+1
h

∆t
ϕhvh +

∫
Ωh

∇(ϕhw
n+1
h ) · ∇(ϕhvh)−

∫
∂Ωh

∂

∂n
(ϕhw

n+1
h )ϕhvh

+ σh
∑

E∈FΓ
h

∫
E

[
∂(ϕhw

n+1
h )

∂n

] [
∂(ϕhvh)

∂n

]
− σh2

∑
K∈T Γ

h

∫
K

(
ϕhw

n+1
h

∆t
−∆(ϕhw

n+1
h )

)
∆(ϕhvh)

=

∫
Ωh

(
un
h

∆t
+ fn+1

)
ϕhvh − σh2

∑
K∈T Γ

h

∫
K

(
un
h

∆t
+ fn+1

)
∆(ϕhvh) (4)

with un
h = ϕhw

n
h for n ⩾ 1 and u0

h ∈ V
(k)
h an interpolant of u0. Moreover, ϕh is the piecewise

polynomial interpolation of ϕ in V
(l)
h , with l ⩾ k. This scheme contains two stabilization terms:

the ghost stabilization (the sum on the facets in FΓ
h ) as in [11], and a least-square stabilization

(the terms multiplied by σh2) that reinforces (3) on the cells of T Γ
h .

Remark 1. Our approach can be easily generalized to non-homogeneous Dirichlet boundary
conditions u = uD on Γ × (0, T ). We can pose then un

h = ϕhw
n
h + Ihug(·, tn) where ug is some

lifting of uD from Γ to Ωh and Ih stands for a finite element interpolation to V
(k)
h . Scheme (4)

should then be modified accordingly, replacing ϕhw
n+1
h by ϕhw

n+1
h + Ihug(·, tn+1) which results

in some additional terms on the right-hand side.

We recall from [6] the assumptions on the domain and on the mesh required in the theoretical
study of the convergence of the ϕ-FEM scheme. These assumptions are satisfied if the boundary
Γ is regular enough and the mesh Th is fine enough.

Assumption 1. The boundary Γ can be covered by open sets Oi, i = 1, . . . , I on which ones we
can introduce local coordinates ξ1, . . . , ξd with ξd = ϕ and such that, up to order k + 1, all the
partial derivatives ∂αξi/∂x

α and ∂xα/∂αξi are bounded by a constant C0 > 0. Thus, on O, ϕ is
of class Ck+1 and there exists m > 0 such that on O \ ∪i=1,...,IOi, |ϕ| ⩾ m.

Assumption 2. The approximate boundary Γh = {ϕh = 0} can be covered by element patches
{Πk}r=1,...,NΠ

such that :

• Each patch Πr can be written Πr = ΠΓ
r ∪ Tr with ΠΓ

r ⊂ T Γ
h and Tr ∈ Th \ T Γ

h . Moreover
Πr contains less than M elements and these elements are connected;

• T Γ
h = ∪r=1,...,NΠΠ

Γ
r ;

• Two patches Πr and Πs are disjoint if r ̸= s.

Theorem 1. Assume Ω ⊂ Ωh, l ≥ k, Assumption 1-2, f ∈ H1(0, T ;Hk−1(Ωh)) and u ∈
H2(0, T ;Hk−1(Ω)) being the exact solution to (1), un(·) = u(·, tn) and wn

h be the solution to (4)
for n = 1, . . . , N . For σ large enough, there exist c, C > 0 depending only on the regularity of
mesh Th and on the constants of Ass. 1-2 (with C also depending on T ), such that if ∆t ⩾ ch2

then(
N∑

n=0

∆t|un − ϕhw
n
h |2H1(Ω)

) 1
2

⩽ C∥u0 − u0
h∥L2(Ωh)

+ C(hk +∆t)
(
∥u∥H2(0,T ;Hk−1(Ω)) + ∥f∥H1(0,T ;Hk−1(Ωh))

)
3



and

max
1⩽n⩽N

∥un − ϕhw
n
h∥L2(Ω) ⩽ C∥u0 − u0

h∥L2(Ωh)

+ C(hk+ 1
2 +∆t)

(
∥u∥H2(0,T ;Hk−1(Ω)) + ∥f∥H1(0,T ;Hk−1(Ωh))

)
.

Remark 2.

• If k = 1, the norms on the right hand side of the estimates above can be replaced by the
norm of f alone in H1(0, T ;L2(Ωh)). Indeed, recalling Ω ⊂ Ωh, this assumption on f
implies u ∈ H2(0, T ;L2(Ω)) ∩ H1(0, T ;H2(Ω)), see e.g. [12, Theorems 5 and 6, Chapter
7.1]. On the other hand, imposing such regularity on u over Ω, would not suffice to control
the extension of f outside of Ω, so that the regularity of f on Ωh should be postulated any
way. This contrasts with the usual a priori estimates for standard FEM (see e.g. [1]).

• If k > 1, we need to suppose the regularity of both u and f as stated above.

In the rest of the paper, the letter C, eventually with subscripts, will stand for various
constants depending on the mesh regularity, the constants from Ass. 1-2, and also on T (when
specifically mentioned). Before the proof of Theorem 1, we recall some results from [6] about
ϕ-FEM for the Poisson equation with Dirichlet boundary conditions.

Lemma 1 (cf. [6, Lemma 3.7]). Consider the bilinear form

ah(u, v) =

∫
Ωh

∇u · ∇v −
∫
∂Ωh

∂u

∂n
v + σh

∑
E∈FΓ

h

∫
E

[
∂u

∂n

] [
∂v

∂n

]
+
∑

K∈T Γ
h

σh2

∫
K

∆u∆v.

Provided σ is chosen big enough, there exists an h-independent constant α > 0 such that

ah(ϕhvh, ϕhvh) ⩾ α|ϕhvh|2H1(Ωh)
, ∀vh ∈ V

(k)
h .

Lemma 2 (cf. [6, Theorem 2.3]). For any f ∈ Hk−1(Ωh), let wh ∈ V
(k)
h be the solution to

ah(ϕhwh, ϕhvh) =

∫
Ωh

fϕhvh − σh2
∑

K∈T Γ
h

∫
K

f∆(ϕhvh)

and u ∈ Hk+1(Ω) be the solution to

−∆u = f in Ω, u = 0 on Γ

extended to ũ ∈ Hk+1(Ωh) so that u = ũ on Ω and ∥ũ∥Hk+1(Ωh) ⩽ C∥u∥Hk+1(Ω) ⩽ C∥f∥Hk−1(Ωh).
Provided σ is chosen big enough, there exists an h-independent constant C > 0 such that

|ũ− ϕhwh|H1(Ωh) ⩽ Chk∥f∥Hk−1(Ωh) and ∥ũ− ϕhwh∥L2(Ωh) ⩽ Chk+ 1
2 ∥f∥Hk−1(Ωh).

Remark 3. This result is proven in [6] under the more stringent assumption f ∈ Hk(Ωh) which
was used to assure ũ ∈ Hk+2(Ωh) and to provide an interpolation error of ũ by a product ϕhwh.
However, in [13, Lemma 6] we have proven a better interpolation estimate ∥ũ−ϕhIhw∥Hs(Ωh) ⩽
Chk+1−s∥f∥Hk−1(Ωh) (s = 0, 1) for ũ = ϕw and the Scott-Zhang interpolant Ih. Thus, f ∈
Hk−1(Ωh) is actually sufficient.
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Lemma 3. For all vh ∈ V
(k)
h , there holds

∥ϕhvh∥L2(Ωh) ⩽ CP |ϕhvh|H1(Ωh).

Proof. Let Ω̃h = {ϕh < 0}. By the Poincaré inequality,

∥ϕhvh∥L2(Ω̃h)
⩽ Cdiam(Ω̃h)|ϕhvh|H1(Ω̃h)

,

and diam(Ω̃h) ⩽ diam(O). Moreover, thanks to [6, Lemma 3.4], it holds

∥ϕhvh∥L2(Ωh\Ω̃h)
⩽ ∥ϕhvh∥L2(ΩΓ

h)
⩽ Ch|ϕhvh|H1(ΩΓ

h)
,

where ΩΓ
h is the domain occupied by the mesh T Γ

h . We conclude noting Ω ⊂ Ω̃h ∪ ΩΓ
h.

Proof of Theorem 1. There exists a function ũ ∈ H2(0, T ;Hk−1(Ωh)), an extension of u to Ωh,
such that

∥ũ∥H2(0,T ;Hk−1(Ωh)) ⩽ C∥u∥H2(0,T ;Hk−1(Ω)). (5)

Let wn
h be the solution to our scheme, which we rewrite as∫

Ωh

ϕh
wn+1

h − wn
h

∆t
ϕhvh + ah(ϕhw

n+1
h , ϕhvh)−

∑
T∈T Γ

h

σh2

∫
T

ϕh
wn+1

h − wn
h

∆t
∆(ϕhvh)

=

∫
Ωh

fn+1ϕhvh −
∑

T∈T Γ
h

σh2

∫
T

fn+1∆(ϕhvh) (6)

for n ⩾ 1 while ϕhw
0
h should be replaced with u0

h for n = 0.

For any time t ∈ [0, T ], introduce w̃h(·, t) = w̃h ∈ V
(k)
h , as in Lemma 2, with f replaced by

f − ∂tũ evaluated at time t:

ah(ϕhw̃h, ϕhvh) =

∫
Ωh

(f − ∂tũ)ϕhvh − σh2
∑

K∈T Γ
h

∫
K

(f − ∂tũ)∆(ϕhvh). (7)

Let w̃n
h = w̃h(tn) and enh := ϕh(w

n
h−w̃n

h) for n ⩾ 1 and e0h := u0
h−ϕhw̃

0
h. Taking the difference

between (6) and (7) at time tn+1, we get∫
Ωh

en+1
h − enh

∆t
ϕhvh + ah(e

n+1
h , ϕhvh)−

∑
T∈T Γ

h

σh2

∫
T

en+1
h − enh

∆t
∆(ϕhvh)

=

∫
Ωh

(
∂tũ

n+1 − ϕh
w̃n+1

h − w̃n
h

∆t

)
ϕhvh −

∑
T∈T Γ

h

σh2

∫
T

(
∂tũ

n+1 − ϕh
w̃n+1

h − w̃n
h

∆t

)
∆(ϕhvh).

Taking vh = wn+1
h − w̃n+1

h , i.e. ϕhvh = en+1
h , applying the equality

∥en+1
h ∥2L2(Ωh)

− (enh, e
n+1
h )L2(Ωh) =

∥en+1
h ∥2L2(Ωh)

− ∥enh∥2L2(Ωh)
+ ∥en+1

h − enh∥2L2(Ωh)

2
,

and estimating the terms in the RHS by Cauchy-Schwarz and inverse inequalities

∥∆en+1
h ∥L2(T ) ⩽ Ch−2∥en+1

h ∥L2(T )
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we deduce that

∥en+1
h ∥2L2(Ωh)

− ∥enh∥2L2(Ωh)
+ ∥en+1

h − enh∥2L2(Ωh)

2∆t
+

(I)︷ ︸︸ ︷
ah(e

n+1
h , en+1

h )−

(II)︷ ︸︸ ︷
σh2

∫
ΩΓ

h

en+1
h − enh

∆t
∆en+1

h

⩽ C

∥∥∥∥∂tũn+1 − ϕh
w̃n+1

h − w̃n
h

∆t

∥∥∥∥
L2(Ωh)

∥en+1
h ∥L2(Ωh)︸ ︷︷ ︸

(III)

. (8)

Thanks to the coercivity lemma 1, the term (I) can be bounded from below by α|en+1
h |2H1(Ωh)

.

We now use the Young inequality (with some ε > 0) and the inverse inequality ∥∆en+1
h ∥L2(T ) ⩽

CIh
−1|en+1

h |H1(T ) to bound the term (II):

(I)− (II) ⩾ α|en+1
h |2H1(Ωh)

− σh2

2ϵ(∆t)2
∥en+1

h − enh∥2L2(ΩΓ
h)

− ϵσC2
I

2
|en+1

h |2H1(ΩΓ
h)

⩾
3

4
α|en+1

h |2H1(Ωh)
− 1

2∆t
∥en+1

h − enh∥2L2(ΩΓ
h)
, (9)

where we have chosen ϵ so that ϵσC2
I /2 = α/4 and then assumed σh2/(ϵ∆t) ⩽ 1. This will

allow us to control the negative term above by the similar positive term in (8), and leads to the
restriction ∆t ⩾ ch2 with c = σ/ϵ.

We turn now to the RHS of (8), i.e. term (III). By triangle inequality∥∥∥∥∂tũn+1 − ϕh
w̃n+1

h − w̃n
h

∆t

∥∥∥∥
L2(Ωh)

⩽

∥∥∥∥∂tũn+1 − ũn+1 − ũn

∆t

∥∥∥∥
L2(Ωh)

+

∥∥∥∥ ũn+1 − ũn

∆t
− ϕh

w̃n+1
h − w̃n

h

∆t

∥∥∥∥
L2(Ωh)

. (10)

By Taylor’s theorem with integral remainder

ũn(·) = ũn+1(·)−∆t∂tũ
n+1(·)−

∫ tn+1

tn

∂ttũ(t, ·)(tn − t)dt

so that∥∥∥∥∂tũn+1 − ũn+1 − ũn

∆t

∥∥∥∥
L2(Ωh)

=
1

∆t

∥∥∥∥∫ tn+1

tn

∂ttũ(t, ·)(tn − t)dt

∥∥∥∥
L2(Ωh)

⩽
√
∆t∥∂ttũ∥L2(tn,tn+1;L2(Ωh)).

Differentiating −∆u = f − ∂tu and (7) in time, we obtain thanks to Lemma 2,

∥∂t(ũ(t)− ϕhw̃h)(t)∥L2(Ωh) ⩽ Chk+ 1
2 ∥(∂tf − ∂ttũ)(t)∥Hk−1(Ωh).

Thus, for the second term in (10), we get by the last interpolation estimate:∥∥∥∥ ũn+1 − ũn

∆t
− ϕh

w̃n+1
h − w̃n

h

∆t

∥∥∥∥
L2(Ωh)

=
1

∆t

∥∥∥∥∫ tn+1

tn

∂t(ũ(t, ·)− ϕhw̃h(t, ·))dt
∥∥∥∥
L2(Ωh)

⩽
Chk+ 1

2

√
∆t

∥∂tf − ∂ttũ∥L2(tn,tn+1;Hk−1(Ωh)).

6



Collecting these estimates and applying the Young inequality with some δ > 0 and Poincaré
inequality from Lemma 3, we get

(III) ⩽
C

δ

(
∆t∥∂ttũ∥2L2(tn,tn+1;L2(Ωh))

+
h2k+1

∆t
∥∂tf − ∂ttũ∥2L2(tn,tn+1;Hk−1(Ωh))

)
+

δC2
P

2
|en+1

h |2H1(Ωh)
. (11)

Substituting (9) and (11) to (8) and taking δ so that δC2
P = α/2 yields

∥en+1
h ∥2L2(Ωh)

− ∥enh∥2L2(Ωh)

2∆t
+

α

2
|en+1

h |2H1(Ωh)

⩽ C

(
∆t∥∂ttũ∥2L2(tn,tn+1;L2(Ωh))

+
h2k+1

∆t
∥∂tf − ∂ttũ∥2L2(tn,tn+1;Hk−1(Ωh))

)
.

Multiplying this by 2∆t and summing on n = 0, . . . , N − 1, we get

∥eNh ∥2L2(Ωh)
+ α∆t

N∑
n=1

|enh|2H1(Ωh)

⩽ ∥e0h∥2L2(Ωh)
+ C(∆t2∥∂ttũ∥2L2(0,T ;L2(Ωh))

+ h2k+1∥∂tf − ∂ttũ∥2L2(0,T ;Hk−1(Ωh))
).

Thus, observing that the sum above can be stopped at any number n ⩽ N , we get

max
n=1,...,N

∥enh∥L2(Ωh) +

(
∆t

N∑
n=1

|enh|2H1(Ωh)

) 1
2

⩽ C∥e0h∥L2(Ωh) + C
(
∆t∥∂ttũ∥L2(0,T ;L2(Ωh)) + hk+ 1

2 ∥∂tf − ∂ttũ∥L2(0,T ;Hk−1(Ωh))

)
.

Lemma 2 applied to −∆u = f − ∂tu in Ω at times tn gives

max
n=0,...,N

∥ũn − ϕhw̃
n
h∥L2(Ωh) ⩽ Chk+1/2∥f − ∂tũ∥C([0,T ],Hk−1(Ωh)),(

∆t

N∑
n=1

|ũn − ϕhw̃
n
h |2H1(Ωh)

) 1
2

⩽ Chk∥f − ∂tũ∥C([0,T ],Hk−1(Ωh)).

In particular,

∥e0h∥L2(Ωh) ⩽ ∥u0 − u0
h∥L2(Ωh) + ∥u0 − ϕhw̃

0
h∥L2(Ωh)

⩽ ∥u0 − u0
h∥L2(Ωh) + Chk+1/2∥f − ∂tũ∥C([0,T ],Hk−1(Ωh)).

Combining this with the regularity of f and ũ, cf. (5), together with the bound ∥·∥C([0,T ],·) ⩽
C∥ · ∥H1(0,T ;·) (with C depending on T ) gives the announced result .

3 Numerical experiments

In this section, we illustrate the performance of our approach on two test cases1. We have
implemented ϕ-FEM in FEniCS [14], the codes of the simulations are available in the github
repository

1The experiments are executed on a laptop equipped with an Intel Core i7-12700H CPU and 32Gb of memory.
Moreover, for the first test case, we use the serial default solver of FEniCS. For the second test case, the GMRES
linear solver is used with hypre amg as preconditioner.
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Figure 1: Left: considered domain for the first test case. Center: a conforming mesh for the
standard FEM. Right: a uniform Cartesian mesh for ϕ-FEM.

https://github.com/KVuillemot/PhiFEM_Heat_Equation

In our numerical simulations, if the expected convergence is of order C1h
p +C2∆tm, we will

fix ∆t = hp/m in such a way we only need to observe if the error is of order hp numerically.

Remark 4 (Norms for the simulations). To illustrate the convergence of the methods with the
simulations, since it is numerically complex to compute the error on the exact domain Ω, we will
use the following formula

∥uh − uref∥2l2(0,T,H1
0 (Ωref))

∥uref∥2l2(0,T,H1
0 (Ωref))

≈
∑N

n=0 ∆t
∫
Ωref

|∇uh(., tn)−∇uref(., tn)|2dx∑N
n=0 ∆t

∫
Ωref

|∇uref(., tn)|2dx
,

and
∥uh − uref∥2l∞(0,T,L2(Ωref))

∥uref∥2l∞(0,T,L2(Ωref))

≈
maxn=0,...,N

∫
Ωref

(uh(., tn)− uref(., tn))
2dx

maxn=0,...,N

∫
Ωref

(uref(., tn))2dx
,

where uh denotes an approximation of the L2-orthogonal projection of the solution on the refer-
ence mesh Ωref and uref the reference solution.

First test case : the source term is deduced from a manufactured solution and the
FEM solution is compared to this manufactured solution. For this case, we will consider
a simple smooth domain : the circle centered in (0, 0), with radius 1 as represented in Fig. 1.
The level-set function is given using the equation of the circle, i.e. ϕ(x, y) = −1 + x2 + y2. Its
approximation ϕh will be the interpolation of ϕ with Pk+1 finite elements, except for Fig. 6 (right).
Moreover, we consider the manufactured solution given by uref = cos

(
1
2π(x

2 + y2)
)
exp(x) sin(t)

so that uref satisfies uref(t = 0) = u0
ref = 0 and uref = 0 on Γ × (0, T ). Here, Ωref = Ωh. We

represent the errors in l2(H1) norm on Fig. 2 and in l∞(L2) norm on Fig. 3, both with P1 and P2

finite elements (k = 1 and k = 2). Here, the numerical results fit well the theoretical convergence
order of Theorem 1 and behaves even better since we observe a convergence of orders two and
three for the l∞(L2) norm instead of 1.5 and 2.5 respectively. We remark that the theoretical
constraint ∆t ⩾ ch2 is not satisfied for the P2 finite elements but it does not affect the practical
convergence. We also represent the l2(H1) and l∞(L2) errors with respect to the computation
time (here, the computation time is the sum of time needed to assemble the finite element matrix
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Figure 2: First test case. l2(0, T ;H1(Ω)) relative errors with respect to h with P1 elements and
∆t = h (left) and with P2 elements and ∆t = h2 (right). Standard FEM (red squares) and
ϕ-FEM (blue dots), σ = 1.
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Figure 3: First test case. l∞(0, T ;L2(Ω)) relative errors with respect to h with P1 elements and
∆t = h2 (left) and with P2 elements and ∆t = h3 (right). Standard FEM (red squares) and
ϕ-FEM (blue dots), σ = 1.

and to solve the finite element systems at each time step, without the time used to construct the
meshes) in Fig. 4. We observe that in this case, ϕ-FEM is significantly faster than a standard
FEM to obtain a solution with the same precision.

In Fig. 5 (left), we represent the l2(H1) error and in Fig. 5 (right) the l∞(L2) error, both
with respect to σ. This allows us to emphasize the influence of σ on the stability of the errors
and validates our choice of σ = 1 in the other simulations.

Finally, in Fig. 6, we justify our choice for the degree of interpolation of ϕ since in our theo-
retical result, Pk is sufficient but we observe here that the error decreases for l = 2. Furthermore,
in our previous paper [7], our theoretical results in the Neumann case hold true only for l ≥ k+1.
Here, since the interpolation is exact from l = 2 we do not need to compute highest degrees of
interpolation for the level-set function to compare the results.

Second test case : the source term is given and the FEM solution is compared to a
standard FEM solution on a very fine mesh. We now consider a more realistic test case
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Figure 4: First test case. l2(0, T ;H1(Ω)) with ∆t = h (left) and l∞(0, T ;L2(Ω)) with ∆t = h2

(right) relative errors with respect to the computation time. Standard FEM (red squares) and
ϕ-FEM (blue dots), P1 elements, σ = 1.
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Figure 5: First test case. l2(0, T ;H1(Ω)) relative errors with respect to σ for different mesh sizes,
with ∆t = h (left) and l∞(0, T ;L2(Ω)) relative errors with respect to σ, ∆t = h2 (right), both
with P1 elements.
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Figure 6: First test case. l2(0, T ;H1(Ω)) relative errors with respect to h for different values
of l, ∆t = h (left) and l∞(0, T ;L2(Ω)) relative errors with respect to h for different values of l,
∆t = h2 (right), both with P1 elements and σ = 1.

since we will apply some forces and consider the resulting distribution of heat in the considered
domain. More precisely, this time, we impose u = 0 on Γ× (0, T ), the initial condition is u0 = 0

in Ω and we define a source term given by f(x, y, z, t) = exp
(
− (x−µ1)

2+(y−µ2)
2+(z−µ3)

2

2σ2
0

)
for

each (x, y, z, t) ∈ Ω× (0, T ), with (µ1, µ2, µ3, σ0) = (0.2, 0.3,−0.1, 0.3). The final time is fixed to
T = 1. Moreover, for this test case, we will consider a more complex and 3D domain from [15],
given by

ϕ(x, y, z) = x2 + y2 + z2 − r20 −A

11∑
k=0

exp

(
− (x− xk)

2 + (y − yk)
2 + (z − zk)

2

σ2
0

)
,

with

(xk, yk, zk) =
r0√
5

(
2 cos

(
2kπ

5

)
, 2 sin

(
2kπ

5

)
, 1

)
, 0 ⩽ k ⩽ 4 ,

(xk, yk, zk) =
r0√
5

(
2 cos

(
(2(k − 5)− 1)π

5

)
, 2 sin

(
(2(k − 5)− 1)π

5

)
,−1

)
, 5 ⩽ k ⩽ 9 ,

(xk, yk, zk) = (0, 0, r0) , k = 10 ,

(xk, yk, zk) = (0, 0,−r0) , k = 11 ,

with r0 = 0.6, σ = 0.3 and A = 1.5. The resulting domain and meshes are given in Fig. 7.
Here, uref denotes the solution of a classical finite element method on Ωref that is a very fine

conforming mesh. In this case, to be more precise, we introduce a partition of the interval [0, T ]

into time steps 0 = tref0 < tref1 < · · · < trefM = T with trefn = n∆tref and ∆tref = h
p/m
ref , where

href denotes the size of cells of Ωref. Then, in the numerical simulations each discretization is
built so that {tn}n=0,...,N is a subset of

{
trefn

}
n=0,...,M

. In Fig. 8, we consider P1 finite elements

(k = 1), and P2 finite elements for the interpolation ϕh of ϕ (l = 2). We compare here the
l2(H1), l∞(L2) relative errors between the solution of the ϕ-FEM scheme (4) and a standard
FEM. The numerical results fit well the theoretical convergence order announced in Theorem 1,
namely, order one for the l2(H1) norm and order two for the l∞(L2) error.
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Figure 7: Left: considered domain for the second test case. Center: a conforming mesh for the
standard FEM. Right: a uniform Cartesian mesh for ϕ-FEM.
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Figure 8: Second test case. l2(0, T ;H1(Ω)) relative errors with respect to h with ∆t = h (left)
and l∞(0, T ;L2(Ω)) relative errors with respect to h with ∆t = h2 (right), both with P1 elements.
Standard FEM (red squares) and ϕ-FEM (blue dots), σ = 1.
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4 Conclusion

In the present work, we proposed a FEM scheme following the ϕ-FEM paradigm to approx-
imate the solution of the heat equation and proved its convergence, which is optimal in the
l2(0, T ;H1(Ω)) norm and quasi-optimal in the l∞(0, T ;L2(Ω)) norm. We remark that, in com-
parison with [6], we need less regularity on the exact solution in the a priori error estimates.

A first advantage of the ϕ-FEM paradigm is its ease of implementation. Indeed, it uses
standard shape functions contrary to the XFEM approach. Moreover, it uses standard integration
tools contrary to cutFEM needing an integration on the real boundary and some integrations on
cut cells.

A second interesting aspect of our approach is the computational time of the simulation. The
low cost (computational time) of ϕ-FEM can be explained by the fact that the boundary of the
geometry in the classical finite element method is approximated by some linear functions while,
in the ϕ-FEM paradigm, the boundary is taken into account thanks to the level set function ϕ,
which can be of high degree without increasing the size of the finite element matrix.

In the mathematical analysis, we supposed that the boundary of the considered domain is
regular enough. The case of less regular domains will be the aim of future work.

Funding

This work was supported by the Agence Nationale de la Recherche, Project PhiFEM, under
grant ANR-22- CE46-0003-01.

References

[1] Vidar Thomée. Galerkin finite element methods for parabolic problems, volume 25 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 1997.

[2] R. Glowinski, T. Pan, and J. Periaux. A fictitious domain method for Dirichlet problem and
applications. Computer Methods in Applied Mechanics and Engineering, 111(3-4):283–303,
1994.

[3] R. Mittal and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech., 37:239–
261, 2005.

[4] C. Annavarapu, M. Hautefeuille, and J. Dolbow. A robust Nitsche’s formulation for interface
problems. Computer Methods in Applied Mechanics and Engineering, 225-228:44–54, 2012.

[5] A. Main and G. Scovazzi. The shifted boundary method for embedded domain computations.
Part I: Poisson and Stokes problems. J. Comput. Phys., 372:972–995, 2018.

[6] M. Duprez and A. Lozinski. ϕ-FEM: a finite element method on domains defined by level-
sets. SIAM J. Numer. Anal., 58(2):1008–1028, 2020.

[7] Michel Duprez, Vanessa Lleras, and Alexei Lozinski. A new ϕ-FEM approach for problems
with natural boundary conditions. Numerical Methods for Partial Differential Equations,
39(1):281–303, 2023.
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