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Abstract. Past environmental information is typically in-
ferred from proxy data contained in accretionary sediments.
The validity of proxy data and analysis workflows are usu-
ally assumed implicitly, with systematic tests and uncertainty
estimates restricted to modern analogue studies or reduced-
complexity case studies. However, a more generic and con-
sistent approach to exploring the validity and variability of
proxy functions would be to translate a sediment section into
a model scenario: a “virtual twin”. Here, we introduce a con-
ceptual framework and numerical tool set that allows the def-
inition and analysis of synthetic sediment sections. The R
package sandbox describes arbitrary stratigraphically con-
sistent deposits by depth-dependent rules and grain-specific
parameters, allowing full scalability and flexibility. Virtual
samples can be taken, resulting in discrete grain mixtures
with defined parameters. These samples can be virtually pre-
pared and analysed, for example to test hypotheses. We illus-
trate the concept of sandbox, explain how a sediment sec-
tion can be mapped into the model and explore geochrono-
logical research questions related to the effects of sample
geometry and grain-size-specific age inheritance. We sum-
marise further application scenarios of the model framework,
relevant for but not restricted to the broader geochronological
community.

1 Introduction

Information about the evolution of earth-surface dynamics
beyond the time span of instrumental records is predomi-
nantly gathered from sediment deposits, serving as host ma-
terial of proxy data. Proxies are based on the presupposition
that a specific sediment property is representative of an un-
known environmental variable or can be unequivocally con-
verted into such. The validity of proxies is usually an as-
sumption based on conceptual relationships, modern ana-
logue data, or physical principles. Further implicit assump-
tions arise from practical and methodological constraints,
such as minimal post-depositional alteration, representative
sampling, appropriate sample preparation and measurement,
and robust estimation of uncertainty ranges. All these pre-
conditions are typically assumed or at least considered to be
of generic validity, but their impact on the interpretations is
rarely tested.

Numerical modelling of the earth surface processes has
reached an advanced level (Willgoose et al., 1991; Schoorl
et al., 2000; Tucker et al., 2001; Lowry et al., 2013; Hobley
et al., 2017). Yet, the commonly utilised landscape evolution
models almost exclusively focus on specific parts of the ter-
restrial sediment cascade, such as weathering, erosion, and
material transport processes, or at least have model-specific
strengths and weaknesses in representing elements of this
process phalanx. However, the formation of sediment de-
posits as proxy carriers is rarely considered. Most often, sedi-
ment is simply flushed out of the terminal node or pixel of the
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modelled area, or deposition is reduced to the pure formation
of geometric bodies (e.g. Lowry et al., 2013). Despite its im-
portance, the host material of our environmental information
is significantly understudied from a numerical perspective.

Describing a sediment deposit by a model would include
a geometric description of the entire body (width, length,
depth) as well as a thematic description of its constituents
(e.g. voids, grains and their geometrical, mineralogical, or
chemical composition) by a vast number of parameters. As
an example, describing a 10 m deep and 1 m wide and long
column of loess would require describing as many as 1014

single grains, and each by a series of parameters. Depend-
ing on the research question, one might reduce the geomet-
ric dimension of the deposit and thus the number of indi-
vidual constituents to describe. Likewise, it is possible to
limit the number of parameters used to define each con-
stituent. However, the general challenge remains. An alter-
native to this geometric and parametric reductionist approach
is a model not at the scale of its discrete constituents but one
with model-wide rules that describe the properties of poten-
tial constituents at any given location within the sedimentary
deposit.

Here, we introduce the R package sandbox, a novel
framework to create virtual sediment deposits. We explain
the concept and structure of sandbox along with a step-by-
step description of how to map a “real-world” loess section
into a model. We illustrate different potential applications us-
ing simple examples, acknowledging that more realistic rep-
resentations are possible with additional parameterisation ef-
forts. While we focus on geochronometric data, various other
applications can be pursued. The Supplement contains an ex-
tensive tutorial to the package, elaborated examples on how
to implement more realistic deposition effects, and all code
used to create the figures of this article.

2 Philosophy and structure of sandbox

sandbox is a free and open framework to build and anal-
yse virtual sediment sections in R (R Development Core
Team, 2021). The package (Dietze and Kreutzer, 2021) is
available at the Comprehensive R Archive Network (CRAN).
The current developer version is available on GitHub (https:
//github.com/coffeemuggler/sandbox/, last access: 19 May
2022). The term framework implies that sandbox is not tai-
lored to a specific task but instead provides methods to use
the tool in different scenarios. Specifically, sandbox does
not impose any default physical rules to mimic sedimenta-
tion processes. Nevertheless, such process-based rules can be
implemented if desired (see the Supplement for examples).
Users can reduce or expand the default range of parameters
applied to describe the constituents of a sediment section.
sandbox is essentially a one-dimensional model. It de-

scribes the geometry of a sedimentary deposit only by its
depth while assuming infinite width and length. Boundary

conditions are treated as irrelevant apart from the distance to
surface.
sandbox has a parametric (termed rule-based from here

on) and probabilistic design. Sediment properties are defined
by depth-dependent rules, containing the definitions of grain
properties as probability density function parameters.
sandbox allows the user not only to build synthetic

sediment sections but also to sample them, prepare the
samples, measure them, and work with the synthetic re-
sults as with real-world measurement data. The function
make_Sample() generates a finite number of sediment
particles based on the rule-controlled parameters together
with information on the sampling depth and sample container
geometry. This step is the transition from rule-based to the
discrete data realm.

Understanding sandbox (Fig. 1) requires some key terms
used in the modelling environment:

– Population. A population is the most basic, coherent el-
ement of the entire model. A population is a set of sed-
iment grains with common characteristics. All grains
from one population share the same (range of) proper-
ties of certain parameters, such as grain size, deposi-
tional age, or mineralogic composition.

– Grain. Grains are the atomic elements of the model.
They are always sampled from populations and de-
scribed by a set of parameters. Each population has a
defined probability of occurrence, which is defined as a
parameter.

– Parameter. Parameters are used to describe populations
and, hence, sediment grains drawn from these popula-
tions. They can be seen as the “thematic” definition of
a virtual sediment deposit. There are two major groups
of parameters: general and specific. General parameters
are depth-dependent sediment descriptions regardless of
the population the grains are sampled from. Examples
of general parameters are water content and external
dose rate (ionising radiation per time unit). Specific pa-
rameters describe sediment grains with respect to the
population to which a grain belongs. Hence, for each
population, there is another parameter definition. Exam-
ples are grain size, element or mineral constituents, and
specific density.

– Rule. Rules describe how parameters change with
depth. Rules can be regarded as the “spatial” definition
of a sediment deposit. They are defined as interpolation
functions based on parameter–depth relationships. The
default interpolation function is a spline.

– Rule book. A rule book is the combination of parameters
(“thematic” definition) and rules (“spatial” definition)
to one coherent reference book. A rule book ultimately
comprises the definition of the entire virtual sediment
section and generates individual samples. There is an

Geochronology, 4, 323–338, 2022 https://doi.org/10.5194/gchron-4-323-2022

https://github.com/coffeemuggler/sandbox/
https://github.com/coffeemuggler/sandbox/


M. Dietze et al.: sandbox – creating and analysing synthetic sediment sections with R 325

Figure 1. Concept of the model sandbox. Grains are the atomic elements of the model. They are drawn from populations and assigned
parameters, which in turn are controlled by rules. Both rules and parameters are stored in rule books that act as coherent reference objects.
Preparation functions are used to virtually process samples that are generated based on rule books.

empty rule book available by default. A user can modify
a rule book’s content at any time.

– Analysis function. Once a rule book defines a virtual
sediment deposit, it can be “exploited” using the pre-
selection of available functions, for example, by gen-
erating sets of samples with make_Sample(). These
samples can then be subject to additional analysis func-
tions of the package, such as prepare_Sieving()
and prepare_Subsample(). All these prepare-
functions use information stored in each grain.

3 Materials and methods

3.1 Available functions

To start from scratch, it is necessary to create a new empty
rule book, which can then be expanded by adding rules and
parameters. A new rule book can be created by the func-
tion get_RuleBook(), using the default keyword book
= "empty".

book <- get_RuleBook(book = "empty")

This will generate a list object with all principal ele-
ments required to define a virtual sediment section: a book
name ($book); a true age definition ($age); and the defini-
tion of population likelihoods ($population), grain sizes
($grainsize), packing density ($packing), and specific
grain density ($density).

True age means that there is an initial age for each
grain depending on its depth. With depths and ages defined
at discrete intervals and interpolated by a spline function,
sandbox uses a very simplistic representation of the sedi-
ment accumulation process by default. It does not account for

hiatuses or autocorrelated incremental sedimentation pulses
followed by pauses (Blaauw and Christen, 2011). However,
such dedicated relationships can be implemented if required
(see the Supplement for examples).

Grain sizes are defined on a φ scale throughout (φ =
−log2

(
D
D0

)
, with D the diameter in µm and D0 the refer-

ence diameter 1000 µm) to account for the non-normal distri-
bution of these data (Krumbein, 1937). Packing density de-
scribes the ratio between compound sample volume and the
volume of solid particles in that sample. For regular spheres
in a 3D space, the close-packing density cannot exceed 0.74
(Hales, 1992). For natural soil material, the packing density
is usually around 0.3 to 0.6 (Blume et al., 2010). The pack-
ing density becomes relevant for sandbox when taking vir-
tual samples by volume or further volume-based processing
steps. The specific grain density (2.65 g cm−3 for quartz) is
needed to define grain masses.

The function add_Population() allows other grain
populations to be added to a rule book, which by default only
has one. Populations can be added at any time, and all spe-
cific rules of the rule book will be updated for the respec-
tive number of additional populations. The function requires
specifying the rule book to be updated and providing the
number of populations to add.

Using add_Rule() allows expansion of the range of ap-
plications and addition of, for example, information about the
chemical or mineralogical composition of a sediment sec-
tion. The new rule will automatically add the correspond-
ing new parameter. The function requires specifying the rule
book to be changed (book), a name (name) for the new
rule and corresponding parameter, whether it is a specific or
general rule (group), and how the resulting parameter is al-
lowed to vary (type). Possible variation types are type =
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"exact" (no variation), type = "normal" (variability
according to a normal distribution defined by additional rules
of mean and standard deviation), type = "uniform"
(variability according to a uniform distribution defined by
minimum and maximum values), and type = "gamma"
(variability following a Gamma distribution defined by its
shape and scale parameters as well as an offset constant). De-
pending on the type of variability, the function will add the
required parameters (value, mean, sd, min, max, shape, scale,
offset) to the rule book. To add, for example, a rule that de-
fines a uniformly varying pH value for all populations, the
following code is needed:

book3 <- add_Rule(book = book,
name = "pH",
group = "general",
type = "uniform")

The function set_Rule() allows the actual rules of the
rule book to be defined. An empty rule book just contains the
templates of required rules (five in total). These templates
need to be filled with proper definitions. This is the main
purpose of set_Rule(). Depending on how a rule defines
the parameter variability, one needs to provide different in-
formation along with their respective depth intervals to es-
tablish the right interpolation function. To define the rule for
grain depositional ages, one needs to define a list that con-
tains the depth intervals for the corresponding true age in-
formation and assign this to the rule book. To assign grain
density rules, allowing for variability around a mean with a
given standard deviation, one needs to create a nested list,
one for each population, containing the means and standard
deviations at the corresponding depth intervals. The below
example will first define the rules as a 1 m depth interval,
with a linear age increase of 1 ka m−1. Then, the density for
the population (P1) is defined as 2.5 g cm−3 on average, but
with a depth-dependent standard deviation. Finally, the grain
packing density is set to 0.5 without scatter throughout the
sediment section.

## describe rule definitions
depth <- list(c(0, 1, 2, 3))
age <- list(c(0, 1000, 2000, 3000))
density <- list(P1 = list(
mean = c(2.5, 2.5, 2.5, 2.5),
sd = c(0.0, 0.1, 0.2, 0.0)))

packing <- list(
P1 = list(mean = rep(0.5, 4),
sd = rep(0, 4)))

## assign age rule
book <- set_Rule(
book = book,
parameter = "age",
value = age,
depth = depth)

## assign density rule
book <- set_Rule(
book = book,
parameter = "density",
value = density,
depth = depth)

## assign packing rule
book <- set_Rule(
book = book,
parameter = "packing",
value = packing,
depth = depth)

make_Sample() is a special function used to turn the
essential information of a rule book into a discrete set of n
grains. For this, the function requires the arguments book
(the rule book used to define the sediment section), depth
(defining the centroid depth where the sample is created), and
geometry (defining the geometrical shape of the sample
container). Currently, two types of sample containers are im-
plemented: "cuboid" and "cylinder". Depending on
which of the two container shapes is used, further input is
needed regarding height, width, length, and radius.
The function output is a data.frame object with all grains,
each described by the parameters contained in the rule book.
The following code snippet creates a 1 cm3 large sample
cube:

## assign packing rule
sample_1 <- make_Sample(
book = book,
depth = 1,
geometry = "cuboid",
height = 0.01,
width = 0.01,
length = 0.01)

With prepare_Sieving(), one can simulate the
physical sieving of a sample. The function requires the ar-
guments sample (the sample object to be processed) and
interval (sieve interval in φ units). Based on this infor-
mation, it will remove all grains from the sample object that
do not fall into the sieve intervals and return the updated data
set.

Splitting a bulk sample into a set of subsamples is per-
formed by the function prepare_Subsample(). This
can be done by splitting a sample into a defined num-
ber of equally large subsamples (specified by the argument
number), by creating subsets of a defined volume (spec-
ified by the argument volume), or by creating subsam-
ples defined by sample weight (specified using the argument
weight). In the latter two cases, the remainder of the bulk
sample that does not allow the last subsample to be filled will
be rejected. The volume option accounts for the packing den-
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sity, and the weight option accounts for the specific density
of the sample grains.

A special kind of subsampling is performed by the func-
tion prepare_Aliquot(). Aliquots are defined in lumi-
nescence analysis as sample subsets that compose a mono-
layer of sediment, fixed onto small metal discs, supplied to
the measurement device. The function mimics this typical
workflow step and requires the specification of the aliquot
disc size containing the grain monolayer and a packing den-
sity of the grains on that disc, usually 0.65. Note that this
value differs from the original packing density value used to
define the rule book.

Finally, the package contains a convenience function
convert_units(). This function can be used to con-
vert grain-size units between the metric and the φ scale.
Note that the package also contains a further function
add_Parameter(), which is a helper function used by
set_Rule(), and not for direct usage.

3.2 The loess deposit Gleina

We use a 17 m thick real-world loess deposit from a former
brickyard in the Saxonian Loess Region, eastern Germany
(Meszner et al., 2011, 2013; Meszner, 2015). For this site, we
can access a detailed granulometric data set (Meszner et al.,
2021) along with a geochronological framework (Zech et al.,
2017), both suitable in the context of this study.

The grain-size distribution of all 42 samples of the loess
section were measured with a Horiba LA950 laser particle
sizer, providing 98 grain-size classes. About 0.5 to 1.5 mg
air-dried and homogenised material were treated with 10 %
HCl for 24 h and subsequently treated with 40 % H2O2 for
72 h. Each sample was measured for 5 s with ultrasonic exci-
tation for 10 s in the device to disaggregate particles mechan-
ically. We used the Mie scattering theory with a refraction
index of 1.55 and an absorption index of 1.33. The median
distribution of 10 consecutive measurements per sample has
been exported for further analyses.

3.3 EMMAgeo as auxiliary tool

To convert the quasi-continuous grain-size distributions into
discrete populations, i.e. parametric descriptions (mean and
standard deviation) of grain-size rules for sandbox, we un-
mixed the data set using the R package EMMAgeo v0.9.6
(Dietze and Dietze, 2016, 2019). This package allows end-
member modelling analysis (EMMA) of grain-size data sets;
it describes grain-size distributions as a linear combination
of end-member loadings and scores. Loadings are the funda-
mental, genetically interpretable grain-size distributions in-
herent to all grains. They can be interpreted in terms of dis-
crete sediment sources, transport pathways, and/or transport
processes. Scores depict the contribution of each loading to
each sample and can be considered as a description of the
relevance of a transport process for a given sample. In the

context of this study, loadings refer to the grain-size distri-
bution of particular populations (parameter definition), and
scores refer to the depth-dependent likelihood of a popula-
tion to be sampled (rule definition). Here, we used determin-
istic EMMA with three end-members (q = 3) and no trans-
formation (l = 0). The resulting loadings were approximated
with log-normal distribution functions (i.e. normal distribu-
tion functions in the φ space) to get the best-fit values of
mean and standard deviation for each of the three popula-
tions.

3.4 Mapping a deposit into sandbox

All analytical data of the Gleina loess section (Meszner et al.,
2011), including the reanalysed grain-size data and end-
member scores, were linearly interpolated to equal intervals
of 25 cm, starting at 0.5 m depth and ending at 10.75 m depth
(see the Supplement for details on the data set). We used
the fine-grain luminescence ages (Zech et al., 2017) to build
an interpolated age–depth relationship as true age–depth in-
formation, despite potential ambiguities, just for the sake of
simplicity and to serve as an example.

We created a new empty rule book (gleina) and added
two more grain populations to the default one, to accom-
modate the three end-members. Their relative contributions
(depth-dependent scores, EM_scores) were used as pop-
ulation probabilities and added to the rule book. The para-
metric approximations of the end-member grain-size distri-
butions (EM_gsd) were added as grain-size rules. We set the
population-specific packing densities to 0.7 for the coarse-
grained end-member, 0.6 for the medium, and 0.5 for the fine
end-members, each with a standard deviation of 0.01. Grain-
specific densities were set to 2.65± 0.01 g cm−3 for all pop-
ulations, imposing predominantly quartz minerals. The fol-
lowing code snippet is a one-to-one version of this descrip-
tive text.
## load the measurement data
X <- read.table(
file = "gleina_interpolated.txt",
header = TRUE)

## convert cm to m, get number of records
X$depth_int <- X$depth_int / 100
n <- nrow(X)

## create empty rule book
gleina <- get_RuleBook(book = "empty")

## add two further populations
gleina <- add_Population(book = gleina,
populations = 2)

## assign rule definitions to lists
depth <- list(X$depth_int)
age <- list(X$age_int)
EM_scores <- list(
list(X$EM_1),
list(X$EM_2),
list(X$EM_3))

EM_gsd <- list(
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list(mean = rep(6.38, n),
sd = rep(0.9, n)),

list(mean = rep(4.69, n),
sd = rep(0.5, n)),

list(mean = rep(4.29, n),
sd = rep(0.5, n)))

EM_packing <- list(
list(mean = rep(0.7, n),

sd = rep(0.01, n)),
list(mean = rep(0.6, n),

sd = rep(0.01, n)),
list(mean = rep(0.5, n),
sd = rep(0.01, n)))

EM_density <- list(
list(mean = rep(2.65, n),

sd = rep(0.01, n)),
list(mean = rep(2.65, n),

sd = rep(0.01, n)),
list(mean = rep(2.65, n),

sd = rep(0.01, n)))

## add rule definitions
gleina <- set_Rule(
book = gleina,
parameter = "age",
value = age,
depth = depth)

gleina <- set_Rule(
book = gleina,
parameter = "population",
value = EM_scores,
depth = depth)

gleina <- set_Rule(
book = gleina,
parameter = "grainsize",
value = EM_gsd,
depth = depth)

gleina <- set_Rule(
book = gleina,
parameter = "packing",
value = EM_packing,
depth = depth)

gleina <- set_Rule(
book = gleina,
parameter = "density",
value = EM_density,
depth = depth)

3.5 Application examples and parameterisation

To illustrate the basic functionality and potential applicabil-
ity of sandbox, we investigate three simple research ques-
tions and two more elaborated examples. The main goal of
these tests is not to create the most realistic representations
of depositional processes and resulting sediment sections, but
rather to illustrate how parameters are defined, samples are
examined, and the model’s flexibility can be utilised. See the
Supplement for the actual code implementation along with
additional examples on more realistic physical process rep-
resentation. The questions are as follows:

1. How does the sample container geometry impact the
age scatter? Container geometry means that we have
inspected the differences between cylindric and cuboid
sample containers, all with the same volume. We sim-

ulated cylinders with 10 mm diameter; cubes of 10 mm
width and height and 0.8 mm length; and cuboids of 20,
40, and 80 mm width and 5, 2.5, and 1.25 mm height,
respectively. While the real-world applicability of such
container geometries is limited, the test stresses the in-
fluence of sampling depth intervals, including minimal
values. It can also be interpreted as mimicking the man-
ual extraction of a thin sediment layer. Cuboid container
lengths were set to 0.8 mm throughout. Note that we can
work directly with the sampled material without any
further preparation steps. Thus, small sample volumes
are sufficient. The virtual sampling depth for the test
was set to 5 m, using the depth-interpolated true ages of
the sampled grains as a direct proxy for age scatter.

2. What is the effect of sample container size on age un-
certainty? Here we test different cylinder diameters for
different profile depths of the Gleina loess section. We
have sampled the virtual Gleina section at 1 m intervals,
using containers with diameters ranging from 0.5 to
50 cm, keeping the volume constant at 0.5 cm3. Again,
0.5 and 50 cm wide containers are far from reality. How-
ever, they define a safe lower and upper limit of possi-
ble cases and manually collected samples. This second
question differs from the first one by also accounting for
the deposition rate as the expected depth-dependent age
span in a sample.

3. What kind of luminescence age bias can be expected due
to preparation using standard grain-size intervals if the
three components building the loess section have differ-
ent bleaching probabilities? The rationale for this ques-
tion is that sediment deposits are typically composed of
material from different sources, contributed by different
processes. Depending on the transport mechanism (for
example low-energy but far-distance aeolian transport
versus high-energy night-time hill wash), the exposure
of grains to daylight may differ and so may the resetting
likelihood of their luminescence signal. Poorly bleached
grains with an inherited luminescence signal will appear
older than their actual last transport event. At the same
time, different transport mechanisms or energies will
contribute grains of different size, hence linking age in-
heritance with grain size. Over time, the relative impor-
tance of transport processes with such different bleach-
ing potential may change and so may the convoluted
age inheritance effect at different depths of a sediment
section. For this test, we have added a new specific rule
(inherited), which defines an inherited age in years
for each population. For the coarse-grained population
(end-member 3), we assumed a poor bleaching likeli-
hood and thus a uniformly distributed random age in-
heritance within the arbitrarily chosen range of 0 years
to 5000 years. For the two other populations, we im-
posed uniform random inheritance ages between 0 and
200 years. We collected samples every 0.5 m using a
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Figure 2. End-member modelling results of the measured grain-size data of the Gleina section. Dashed lines in the loadings plot show
fitted log-normal distribution curves according to the parameters in the bottom legend panel. Grey shaded areas in the loadings panel depict
grain-size intervals used for sieving to enrich individual end-members. Sample IDs in the scores plot denote samples from top to bottom.

5 cm cylinder, sieved the sampled material for the typi-
cal coarse-grain (90–200 µm) and fine-grain (4–11 µm)
fraction (e.g. Kreutzer et al., 2012a) and calculated the
mean age composed of the true deposition age and the
inheritance from each grain. In addition, we have pre-
pared three additional data sets, this time adjusting the
limits of the virtual sieve to isolate each of the three end-
members as well as possible (see Fig. 2 for intervals), in
order to inspect the age differences inherent to the three
different components that constitute the sediment sec-
tion.

4. How can depth-dependent packing densities be re-
alised? While the above examples mainly aimed at ab-
stract and simplified sediment section properties, one
might also want to implement more physically or sedi-
mentologically meaningful rules. Exemplarily, we show
how a variable, depth-dependent packing density can be
implemented. This example may be used when mod-
elling successive sediment compaction with depth due

to increasing overburden. For this, we use a simple
porosity model (Sheldon and Retallack, 2001) to mod-
ify the packing density as a function of depth.

5. How can heteromorphism due to distinct mineral grain
specific densities be implemented? This example simu-
lates the transport of equally heavy grains of different
size, a case that can be expected for sediment of inho-
mogeneous composition. To parameterise this example,
we change one of the three populations of the exist-
ing rule book, i.e. the smallest grain population corre-
sponding to end-member 1, allowing for it to be either
composed of quartz (specific density of 2650 kg m−3) or
zircon (specific density 4600 kg m−3). The diameter of
the zircon grains is then calculated to result in an equal
weight as the larger quartz grains. To make the effects
visible, we additionally change the grain-size standard
deviation of end-member 1 from 0.9 to 0.1. We note that
this still is a simplified approach not fully in agreement
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with drag force constraints. Nevertheless, it serves the
illustration of the generic approach.

4 Results

4.1 End-member modelling analysis

Deterministic EMMA (Fig. 2) resulted in an overall R2 of
0.74 (sample-wise R2

= 0.93, class-wise R2
= 0.56). The

three end-members were unimodal with φ modes at 6.38,
4.68, and 4.29 (12, 39, and 51 µm). Secondary artificial
modes occurred below the main modes of the other end-
members, as commonly encountered in EMMA (Dietze and
Dietze, 2019). Hence, normal functions were only fitted
to the primary modes. The best fits were reached for φ
6.38± 0.9, 4.68± 0.5, and 4.29± 0.5.

4.2 Effect of sample container geometry and size on
age scatter

The sample container shape directly reflects the single-grain
age distribution of the sampled material (Fig. 3). Cylinders
produce a sinusoidal distribution shape of ages with a stan-
dard deviation of 3.7 years, while cubic containers produce a
flat distribution with a standard deviation of 4.2 years. Note
that the absolute scatter is an arbitrary number with no real-
world equivalent. It merely depends on the deposition rate
and container size (see below). Along that line, as the cuboids
become more elongated in the horizontal direction by factors
2, 4, and 8, the standard deviations of the flat age distribu-
tions decrease to 2.1, 1.1, and 0.5 years, respectively. This
purely geometric effect is also witnessed by the constant av-
erage age for all types of sampling containers.

Sample container size has a variable effect on the age scat-
ter (Fig. 4), also depending on the deposition rate of the in-
vestigated sediment section. In general, larger sample con-
tainer sizes systematically increase the age scatter inherent
to the sampled grains, following a linear relationship. How-
ever, the sampling depth modulates the overall scatter, which
determines the sediment deposition rate here. For the de-
position ranges of the virtual Gleina section, we found age
scatter as high as 4624 years (using a 50 cm wide sampling
depth interval) in the basal section with a deposition rate of
0.033 m ka−1. More realistically, 5 cm wide sampling con-
tainers still yielded an age scatter of 481 years. In the cen-
tral parts of the section with deposition rates as high as
3.9 m ka−1, that error reduced to 4 and 43 years for container
diameters of 5 and 50 cm, respectively.

4.3 OSL age bias due to prepared grain-size ranges

The impact of age inheritance can range from marginal to
significant, depending on the analysed grain size fraction.
Note that here we can ignore analytical scatter in age and thus
error bars in Fig. 5 because we implicitly know the true ages

of the sampled grains and focus completely on the systematic
effects. Analysing the typically utilised coarse-grain fraction
(90–200 µm, Fig. 5a) can introduce a systematic mean differ-
ence between apparent and true age of up to 2500 years (up
to 10 %). That offset is controlled by the relative contribution
of the coarse-grained end-member to a sample. The result is
a stratigraphically inconsistent age–depth relationship with
four age inversions. When using the typically encountered
size interval of the fine-grain fraction (4–11 µm, Fig. 5b) to
estimate average grain ages, the age offset is minimal, about
118 years on average. There are no age inversions visible in
this size fraction. However, the age offset still correlates with
the contribution of end-member 1, from which a few grains
still leak into the sieve interval.

When targeting grain-size intervals that specifically aim
to isolate the three end-members inherent to the grain-size
distribution of all samples, the coarse-grain end-member
(Fig. 5c) mimics the offset and stratigraphic inversion pat-
terns of the coarse-grain samples. The intermediate end-
member (Fig. 5d) shows similar trends to the coarse one but
with less severe effects (800 years maximum offset). Finally,
the fine-grain end-member (Fig. 5e) shows an average age
offset of 100 years (corresponding to the imposed range of
0–200 years) without any relationship to the contribution of
the coarse-grained end-member.

4.4 Depth-dependent packing density behaviour

The simulation of a depth-dependent packing density rela-
tionship first required the function that relates these two met-
rics to be defined, following the porosity model by Sheldon
and Retallack (2001).
rho_depth <- rho_qz - rho_qz * rho_0 *

exp(-k * X$depth_int)
Here rho_qz is the specific quartz grain density
(2650 kg m−3); rho_0 is the initial relative porosity at
zero depth, for loessic material typically around 0.6 (Blume
et al., 2010); and k is an empirical material dependent
compaction rate coefficient, here arbitrarily set to 10−1.
In a second step, this depth-dependent packing density
can simply be added as a rule for all three popula-
tions of the existing rule book, for example with a con-
stant scatter of 10 kg m−3 (rho_scatter <- rep(10,
length(rho_depth))). The resulting depth-dependent
packing density (Fig. 6a) follows the expected exponential
trend.

gleina_packing <- set_Rule(
book = gleina,
parameter = "packing",
value = list(
list(mean = rho_depth,

sd = rho_scatter),
list(mean = rho_depth,

sd = rho_scatter),
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Figure 3. Effect of sample container geometry on scatter of sampled grain ages. X axes all scaled to the same range.

Figure 4. Effect of cylindric sample container size. Warmer colours
indicate a higher age scatter.

list(mean = rho_depth,
sd = rho_scatter)),

depth = depth)

Sampling the modified rule book at 2 m sampling intervals
with small containers (0.05 mm cuboid edge size) resembles
the effect that denser packing yields in general more grains
with increasing depth. However, the trend is superimposed
by the also depth-dependent contribution of the three end-
members, each with a different grain size.

4.5 Heteromorphism of grains with distinct specific
density

To implement an equal contribution of grains from two pop-
ulations of equal grain mass but correspondingly different
mineral density, and hence diameter, we first determined the
mass of a 1 mm large quartz grain and used this mass to solve
for the diameter of an equally heavy zircon grain to retrieve
the diameter conversion factor (i.e, 83.20754%).

m_sand <- 2650 * (4/3 * pi * 0.00053)
d_zirc = 2 * (m_sand / (4/3 * pi * 4600))(1/3)
f_conversion <- d_zirc * 100 / 0.001

Accordingly, the average grain size of quartz grains (6.38
φ) reduces to 6.65 φ for equally heavy zircon grains. Since
we have added a new population, the packing densities and
also the specific grain densities need to be re-defined. Note
that in order to make this small change in diameter visible
(Fig. 7), we change the standard deviation of end-member 1
from 0.9 to 0.1 φ.

gleina_zirc <- add_Population(
book = gleina,
populations = 1)

EM_gsd_zirc <- list(
list(mean = rep(6.38, n),

sd = rep(0.1, n)),
list(mean = rep(4.69, n),

sd = rep(0.5, n)),
list(mean = rep(4.29, n),

sd = rep(0.5, n)),
list(mean = rep(6.65, n),

sd = rep(0.1, n)))

EM_packing_zirc <- list(
list(mean = rep(0.7, n),

sd = rep(0.01, n)),
list(mean = rep(0.7, n),

sd = rep(0.01, n)),
list(mean = rep(0.7, n),

sd = rep(0.01, n)),
list(mean = rep(0.7, n),

sd = rep(0.01, n)))

EM_density_zirc <- list(
list(mean = rep(2.65, n),

sd = rep(0.01, n)),
list(mean = rep(2.65, n),

sd = rep(0.01, n)),
list(mean = rep(2.65, n),

sd = rep(0.01, n)),

https://doi.org/10.5194/gchron-4-323-2022 Geochronology, 4, 323–338, 2022



332 M. Dietze et al.: sandbox – creating and analysing synthetic sediment sections with R

Figure 5. Age inheritance effects due to different sieve intervals of the modelled Gleina section. (a) Typical coarse-grain sieve intervals.
(b) Typical fine-grain sieve intervals. (c–e) Optimised sieve intervals to isolate the three inherent grain-size end-members as well as possible.
See Fig. 2 for interval definitions. The left plot panels show average true depositional ages (grey dots) and apparent measurement ages (black
dots), composed of true and inherited ages per grain. Right plot panels show age inheritance (black lines) and contribution of end-member 1
(grey lines) as a function of depth. Red arrows mark age inversions.
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Figure 6. Depth-dependent sediment packing density evolution and resulting effects of generated samples. (a) Exponential relationship of
depth and packing density following the model by Sheldon and Retallack (2001) with a decisively high compaction rate of 10−1. (b) Re-
sulting increasing number of grains per equally large sample containers (2 m sampling interval), showing some scatter due to the also
depth-dependent contribution of populations of different size.

Figure 7. Properties of a virtual sample created at a depth of 11 m from a rule book with both quartz and zircon grains (see the Supplement
for details). (a) Grain-size distribution, dominated by narrow distributions (0.1 φ standard deviation) of a quartz end-member 1 (6.38 φ)
and an additional zircon population (6.65 φ) as well as suppressed minor contributions of coarser quartz end-members. (b) Histogram of
the specific grain densities of all grains, showing a roughly equal occurrence of the two dominant populations of quartz (2650 kg m−3) and
zircon (4600 kg m−3).

list(mean = rep(4.60, n),
sd = rep(0.01, n)))

Also in need of updating are the relative contributions of
the initial end-member 1, because now it needs to share its
abundance with the zircon grains. Thus, the depth-dependent
contribution needs to be updated for both populations, as
well.

EM_contr_zirc <- list(
list(X$EM_1 / 2),
list(X$EM_2),
list(X$EM_3),
list(X$EM_1 / 2))
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Finally, the new rules need to be added to the rule book to
implement all the changes.

gleina_zirc <- set_Rule(
book = gleina_zirc,
parameter = "population",
value = EM_contr_zirc,
depth = depth_fill)

gleina_zirc <- set_Rule(
book = gleina_zirc,
parameter = "grainsize",
value = EM_gsd_zirc,
depth = depth_fill)

gleina_zirc <- set_Rule(
book = gleina_zirc,
parameter = "packing",
value = EM_packing_zirc,
depth = depth_fill)

gleina_zirc <- set_Rule(
book = gleina_zirc,
parameter = "density",
value = EM_density_zirc,
depth = depth_fill)

When taking a random sample at a depth that is dom-
inated by end-member 1 (i.e. 10.7 m, see Fig. 2 and Sup-
plement), the distribution of grain sizes is dominated by the
shared occurrence of both the original quartz end-member
and the added zircon population. The resulting dominant
double peak in the grain-size spectrum (Fig. 7a) underlines
the shared contribution of these two mineral grains and is
also reflected by the almost equal distribution of specific den-
sities (Fig. 7b) throughout the sample.

5 Discussion

5.1 Structure and implementation of sandbox

The proposed structure of sandbox, consisting of grains,
populations, parameters, rules, and functions, allows con-
sistent definition synthetic sections as virtual twins of sedi-
ment deposits. Further extension of a rule book is possible by
adding populations, grain parameters, and rules. The avail-
able distribution functions to describe parameters and rules
cover a significant range of use cases. Adding other functions
would require updating the R code of the package, either by
a new package release or by editing the functions manually.

The fundamental assumption of sandbox is a valid, true
age–depth relationship. At face value, this assumption im-
plies that a sediment section fulfills the stratigraphic princi-
ple. However, this enforced principle is implemented through
a spline function. Such an interpolator of discrete age–depth
pairs works appropriately as long as there is steady accretion

of material with time. However, additional effort is required
to account for stratigraphic gaps (see the Supplement).

5.2 The virtual Gleina section

The measurement-based description of the Gleina loess sec-
tion was translated into parameters and rules for sandbox.
End-member modelling analysis yielded three predomi-
nantly unimodal end-members (Fig. 2). The secondary mode
of EM 3 that emerges right below the main mode of EM 1 is
a typical model artefact (Dietze and Dietze, 2019) and should
thus not be interpreted as genetically meaningful. However,
EM 2 has a suppressed secondary mode around 1 µm, which
is statistically robust (high R2 values) and does not inter-
fere with a mode of any other end-member. Thus, this sec-
ondary mode may indeed represent a transport regime that
contributed a primarily bimodal grain-size distribution. It has
been repeatedly reported that loess particles are transported
not just as single grains of medium to coarse silt size but
also as aggregates of smaller particles, either forming silt-
sized agglomerates or adhering to such larger particles (Van-
denberghe, 2013). In general, the three end-member load-
ings show the typical properties of central European loess
deposits (e.g. Bertran et al., 2016).

5.3 Geometric sampling effects

Different sample containers have a purely geometric effect
on a sample’s age composition (Fig. 3): circular containers
result in a sinusoidal age distribution and rectangular con-
tainers in a flat one. From a relative age scatter perspective,
cylindric containers are preferential to cube-shaped ones of
the same vertical extent because most grains are sampled
from the desired target depth. Furthermore, flatter containers
result in linearly decreasing relative age scatter. These find-
ings may be rather obvious and could be tested also with even
less scripting overhead just by drawing random numbers
from a parametric distribution function. Nevertheless, they
serve as a simple example of how easily questions may be ap-
proached quantitatively yet systematically with sandbox.

Container size and shape become more relevant when the
material deposition rate is also considered. For high deposi-
tion rates, like those typical for loess environments (e.g. the
central part of the Gleina section between 8 and 3 m depth,
Fig. 4), age differences among grains due to container size
is small, a few years per centimetre container height. How-
ever, when section intervals with low loess deposition rates
are sampled, such as the basal and top parts with more promi-
nent pedogenic features, the age scatter can increase by sev-
eral orders of magnitude simply because the grains in the
container represent a larger range of true ages. Hence, age
scatter due to sampling is no artefact but actually represents
the range of sampled grain ages. In the Gleina section, a stan-
dard luminescence sampling cylinder of 5 cm diameter can
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thus add an age scatter of several hundred years, regardless
of the absolute depositional age.

While there are ways to minimise this sample container
size effect, the documented practice in published articles
seems to show that in most cases standard sampling con-
tainers are used. Reducing the age scatter may be accom-
plished by using flatter and more elongated sampling con-
tainers or even extracting material from horizontally aligned
slits carved into an outcrop when this is possible. This sam-
pling procedure requires more manual adjustment and is
thus prone to other shortcomings (e.g. sample contamina-
tion, light-shielding efforts). Nevertheless, we advocate that
virtual sediment modelling is useful in advance to estimate
the expected age scatter effect for given sample container ge-
ometries if one has a prior order of magnitude estimate of the
deposition rate, for example, based on morphologic deposit
features or stratigraphic relationships with other sections.

5.4 Sample population effects

In the age bias modelling exercise, we have explored how
it is possible to simulate grain population-specific age in-
heritance effects and to which extent these can impact the
resulting subsample ages when subsampling is achieved by
sieving. Then, we have shown how one can attribute age in-
heritance phenomena to the underlying grain-size-based pop-
ulations identified by EMMA.

Real-world analogues of age inheritance could be poorly
bleached grains, an effect that in many cases has been at-
tributed to a transport process that exposes those grains to
direct sunlight only randomly and for brief time intervals.
Examples of such processes are near-bed fluvial transport,
rapid mass wasting, and soil erosion (Fuchs and Owen, 2008;
Fuchs et al., 2010). Typically, such specific transport pro-
cesses tend to focus also the grain-size distribution of the ma-
terial they carry (Weltje, 1997; Vandenberghe, 2013). Hence,
this problem fulfills the preconditions for end-member mod-
elling analysis in a particular way. The technique allows the
transport processes to be isolated due to their characteris-
tic grain-size distributions. The resulting end-member infor-
mation can then be used to adjust the sieve interval limits
for subsequent age determination analyses, to the extent that
other analytical operations permit this. Mineral grains of spe-
cific density other than quartz, such as zircon, have a similar
effect: the higher density will result in smaller grains trans-
ported at the same energy level of the transport medium. This
in turn will cause a bimodal grain-size distribution (Fig. 7 a),
which can be identified by EMMA and be accounted for by
adjusted sieve intervals. Explicitly testing the potential to
identify zircon contamination of OSL samples would be a
further relevant and feasible application of sandbox but is
beyond the scope of this study.

We found that straightforward application of good prac-
tice, isolating the typically utilised coarse-grain or fine-grain
fractions for luminescence dating, can lead to two very dif-

ferent age estimates for the different fractions. Unfortunately,
in principle, it is not possible to tell which of the two is more
correct than the other – apart from the fact that in our exam-
ple, one of the age–depth relationships was stratigraphically
consistent, whereas the other was not. This inability to iden-
tify the “correct” solution is due to the phenomenon of mul-
tiplicity: different mechanisms leading to the same, equiv-
ocal result. The two-grain size fractions are subject to dif-
ferent microdosimetric effects, and sample preparation work
flows, both being potential causes of differences in the result-
ing depositional age estimates (e.g. Fuchs and Lomax, 2019).
In addition, the two grain-size fractions are also subject to
different transport processes and depositional circumstances.
These two classes of effects, methodological and transport
dynamics, can affect the resulting age estimates in a cumula-
tive and counteracting way. Hence, to at least account for the
transport class of effects, we recommend applying EMMA
before deciding on the grain-size fraction for subsequent age
determination workflows. This approach not only quantifies
the number and grain-size characteristics of the populations
inherent to a set of samples, but it also allows adjustment of
the grain-size fractions for age determination to ideally avoid
overlapping of end-members.

5.5 Implementing more realistic, physically based rules

Physically based process laws are not implemented to
sandbox by default. While there are obvious links among
grain parameters of real-world deposits (specific density and
grain size, grain size or shape and packing density, depth and
packing density, and so on), these are not represented from
the start. However, if a model exercise requires such process-
simulating relationships, these can be added by defining
rules. The research questions 4 to 5 highlight how one can ex-
emplarily implement such physical relationships with a lim-
ited amount of extra definitions.

The depth-dependent packing density evolution (Fig. 6)
shows how such imposed relationships clearly affect subse-
quent analysis steps, for example by increasing the number
of grains per sample. However, the value used for the com-
paction rate coefficient k was set to an unrealistically high
number for illustrative purposes. This implied roughly a dou-
bling of the packing density of loessic material within just
10 m of sediment thickness. Mixing grains of different min-
eralogy, here directly implemented by the specific grain den-
sity, is a realistic scenario in many real-world cases of depo-
sitional systems. The two examples (as well as further ones
detailed in the Supplement) illustrated the necessary flexibil-
ity of sandbox but also the additional need in scripting the
desired features.

5.6 Potential further applications

This article’s primary purpose is to introduce the synthetic
sediment section modelling framework sandbox, particu-

https://doi.org/10.5194/gchron-4-323-2022 Geochronology, 4, 323–338, 2022



336 M. Dietze et al.: sandbox – creating and analysing synthetic sediment sections with R

larly with emphasis on luminescence-based age determina-
tion. We have demonstrated how the framework can be mod-
ified in general. Thus, it is possible and encouraged to ap-
ply the package beyond such simple or rather specific exam-
ples. sandbox can also be used to pursue questions inher-
ent to other age determination techniques, such as radiocar-
bon, cosmogenic nuclide, electron spin resonance, palaeo-
magnetism, and detrital zircon dating, or even varved lake
sediments or dendrochronology age models. When parame-
ters are assigned for mineralogical or chemical grain prop-
erties, further scientific questions can be approached, for
example, from disciplines like provenance analysis (based
on detrital zircon age distributions, mineralogical compo-
sition, or rare earth element concentrations). In the Sup-
plement of this article we provide an example about how
sandbox can be linked with other R packages, such as
RLumModel (Friedrich et al., 2016) and Luminescence
(Kreutzer et al., 2012b).

Inverse problems (Zeeden et al., 2018) are another po-
tential cross-topic field for the application of sandbox. In
many cases, there are no analytical solutions to link multi-
parameter workflows to given sets of outcomes. Hence, one
can only run large scenarios with different parameter combi-
nations to identify the parameter space that can deliver plau-
sible solutions. The sandbox framework provides the flex-
ibility and efficiency needed to run many such scenarios for
different questions.

A further independent field of application regards the def-
inition of reference data sets, for example, to test age model
approaches (e.g. Galbraith et al., 2005) or to explore the po-
tentials and limitations of mixed-age distributions (Arnold
and Roberts, 2009) based on real-world examples. Especially
in light of the last two application fields, inverse problems
and reference data, sandbox provides the tool for creating
virtual twins of sediment section, and hence to define the
problem solution as a basis for comparing the performance
of competing or new analytical routines. This is mainly in
times of evolving machine learning approaches essential as
those powerful tools rely on well-defined and labelled train-
ing or reference data.

5.7 Limitations

The structure of the package was designed to allow for flex-
ibility and computational simplicity. This required setting a
few fundamental assumptions, which resulted in structural
limitations. Some of these limitations may be partly ac-
counted for by workarounds. Most fundamentally, sandbox
has no methods to account for erosional processes implicitly.
As mentioned above (Sect. 5.1), the framework is based on a
valid and intact age–depth relationship.

There is no support for post-depositional modification of
grain properties at the moment. Such post-depositional dy-
namics may be added by defining further rules. For example,
pedoturbation may be implemented as the probability to find

grains from depths other than the actual sampling depths for
each grain in a sample container, i.e. a rule that says if one
sample is at 5 m depth there is a 10 % chance to sample grains
from 10 cm below.

The 1D structure is another albeit intended structural lim-
itation of sandbox. As a result, it is for example not possi-
ble to account for effects like increased packing density due
to grain-size differences among the populations, as would be
expected when smaller particles can fill the voids between
larger ones. Currently, the packing density only becomes rel-
evant during the sampling process where it determines the
number of grains that can fill a sample of a given volume. If
in future the demand arises, the model can be expanded to
2D or 3D. However, this would come at the cost of defining
rules not just for the depth direction but also in lateral direc-
tions. At present it is more feasible to tackle such scenarios
by defining different virtual sediment sections.

There are no topologic relations among the sampled
grains. Apart from depth information for each grain,
sandbox can provide neither information on the 3D loca-
tion of the grains within a sample container nor on the dis-
tances among their centroids. This precludes asking ques-
tions that require grain-to-grain information.

6 Conclusions

The R package sandbox provides a flexible and scalable
framework to tackle research questions emerging from en-
vironmental reconstruction and numerical landscape repre-
sentation. Its structure and available functions allow a vir-
tual twin of given or artificially designed sediment sections
to be created focusing on sediment grains and their properties
along a depth vector. The current focus on geochronology is a
pragmatic one. The framework can be used for numerous fur-
ther cross-discipline topics, including geochemical analysis,
soil formation representation, inverse modelling, and repro-
ducible reference data set generation.

Code and data availability. The sandbox source code is avail-
able as an R package on CRAN. The living source code and devel-
opment is transparently accessible via GitHub (https://github.com/
coffeemuggler/sandbox, last access: 25 May 2022) and provided at
GFZ Data Services (https://doi.org/10.5880/GFZ.4.6.2021.005, Di-
etze and Kreutzer, 2021). The Supplement contains an extensive
manual to the package and the code used to prepare the figures in
this text.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gchron-4-323-2022-supplement.
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