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Abstract. The human cerebral cortex is folded, making sulci and gyri
over the whole cortical surface. Folding presents a very high inter-subject
variability, and some neurodevelopmental disorders are correlated to lo-
cal folding structures, named folding patterns. However, it is tough to
characterize these patterns manually or semi-automatically using geo-
metric distances. Here, we propose a new methodology to identify typical
folding patterns. We focus on the cingulate region, known to have a clin-
ical interest, using so-called skeletons (3D representation of folding pat-
terns). We compare two models, β − V AE and SimCLR, in an unsuper-
vised setting to learn a relevant representation of these patterns. We add
a decoder to SimCLR to be able to analyse latent space. Specifically, we
leverage the data augmentations used in SimCLR to propose a novel kind
of augmentations based on folding topology. We then apply a clustering
on the latent space. Cluster folding averages, interpolation in the latent
space and reconstructions reveal new pattern structures. This structured
representation shows that unsupervised learning can help in the discov-
ery of still unknown patterns. We will gain further insights into folding
patterns by using new priors in the unsupervised algorithms and inte-
grating other brain data modalities. Code and experiments are available
at github.com/neurospin-projects/2021 jchavas lguillon deepcingulate.
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1 Introduction

The human cortex is convoluted, made of folds, called gyri, separated by grooves,
the sulci. Contrary to macaque, whose cortical folding follows a systematic
scheme, human cortex folding is highly variable, making it a fingerprint of each
individual [27]. Although this diversity seems, first, intractable, neuroanatomists
have succeeded in defining a partially reproducible scheme, which has led to
the nomenclature of sulci used in neuroscience [21]. But each sulcus can have
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a large number of patterns, which hinders its reliable identification (Fig. 1B).
Deep learning could be a real lever to deal with this tremendous inter-individual
variability.

Shapes of the folding patterns are particularly interesting to study as they
are ”trait” features, they remain during lifespan, contrary to ”state” features
(e.g. sulci depth or width) that are not stable throughout life [3]. Some works
tried to decipher folding patterns and identify the most common shapes. His-
torically, this was done visually [29], enabling to define central sulcus knob and
the omega-shape of the mid-fusiform sulcus in particular [30,28]. However, man-
ually finding relevant geometrical shapes is very hard due to the high diversity
of folding patterns. Thus some studies tried to automate the characterization of
folding patterns mainly based on geometric distances [25,20,8]. More recently,
[24] trained neural network classifiers to map geometric shapes to folding pat-
terns applied to the broken-H shape pattern in the orbitofrontal region.

However, characterizing the full diversity of folding patterns remains out
of reach for these automatic geometric methods. Unsupervised deep learning
methods is a natural next step: they have been used for detecting anomalies in
folding shapes [12], but they have not been used yet to characterize the normal
inter-individual variability of folding patterns.

Numerous approaches try to tackle unsupervised representation learning prob-
lems. On the one hand, auto-encoders (AE) are generative models that build a
latent space comprising much fewer dimensions than the input, suggesting that
the representations could be more easily understood, leading eventually to pat-
tern discovery. For example, [12] showed that β-VAE are promising to detect
anomalies of folding patterns.

On the other hand, self-supervised methods, particularly contrastive learning
models, have proved to be very powerful. The foundation contrastive model,
SimCLR [6], permits structuring the obtained latent space without using any
labels. Its strength lies in the possibility to integrate prior information either
by choosing the adapted random augmentations or by integrating into the loss
function similarity information from other modalities.

Many works start to apply such framework to biomedical imaging. Thus,
[26] proposed 3D versions of several self-supervised tasks on various objectives
including brain tumor segmentation. Self-supervised methods offer the opportu-
nity to leverage additional prior information from medical data. For instance, [10]
applied contrastive learning to brain MRI and took advantage of available meta-
data such as age and sex.This accelerating research on nearby fields shows that
it is the right moment to apply self-supervised learning to the folding pattern
characterization problem.

This study aims to pave the way for unsupervised deep learning to system-
atize the identification of typical folding patterns across the cortex in the future.
More specifically, we aim to compare two unsupervised deep learning models
in the task of obtaining a latent space structured enough to bring out folding
patterns. To achieve this goal, we developed a deep learning pipeline that fo-
cuses on the folding pattern of predefined regions. We tested the pipeline on
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the cingulate region, as it is sufficiently variable to justify the use of our meth-
ods, and it has a clinical interest for psychiatric disorders [31,22,2]. Then, we
chose, adapted and compared two powerful and standard unsupervised methods,
namely a contrastive learning model, SimCLR [6] to which we added a decoder,
and a generative model, β-VAE [13]. Last, we proposed ways to analyze the
results which are new and challenging with respect to classical deep learning
literature as the input sample topologies are very different from classical 3D
images.

Our contributions are three-fold. First, we implement an efficient topology-
based augmentation for SimCLR. Second, we propose models reconstruction of
cingulate patterns as alternative to local average folding pattern to explain the
encoded features and last, a preprocessing pipeline to study efficiently folding
patterns. Our work constitutes a first step to increase the knowledge on folding
patterns that will permit to find biomarkers for brain disease.

2 Methods

2.1 Pre-processing

From brain MRI images, we used skeletons whose concept was first introduced
in [19]. They consist in 3D images of the cortical folds obtained with Brain-
VISA/Morphologist preprocessing pipeline (https://brainvisa.info/web/).
Skeletons’ voxels are divided into background and folds (Figure 1A). Fold voxels
can hold several values depending on their topological meaning (fold bottom,
fold junction, etc.). Using this input enables to focus on the folding geometry
and eliminates some biases such as age or site.

We focus our study on the cingulate region of the right hemisphere (Fig. 1A).
We learned a mask of the cingulate and paracingulate sulci over a database where
the folds were manually labelled [1]. In short, labeled subjects were first affinely
normalized to a standard brain referential (ICBMc2009); then, each subject voxel
belonging to the sulci of interest increments a sulcus-specific mask. We combined
and dilated these two resulting masks to get a simple Region of Interest (ROI).
We then applied this final mask to skeleton images of any unlabeled brain. Our
final input is a 2-mm resolution 3D crop of dimension 20x40x40 (Fig. 1B) with
integer values representing local topologies.

2.2 Learning Cingulate Region Representations

We compared two unsupervised deep learning models : an autoencoder-based
model and a contrastive learning framework.

β-VAE. AE-based models are commonly used to learn representations and
to model the inter-subject variability. With an encoder θ, they enable to project
data from input space X onto a latent space Z comprising much fewer dimen-
sions. The latent code is then reconstructed thanks to a decoder ϕ. β-VAE [13],

https://brainvisa.info/web/
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Fig. 1. Framework to study skeletons in the cingulate region of the HCP dataset. A)
Sample crop of the cingulate region represented as buckets superimposed with the white
matter mesh. Red voxels are bottom voxels. B) Samples of the studied crops, given as
inputs to the unsupervised algorithms. C) Whole pipeline. We generate crops of the
cingulate region based on a manually labeled dataset. We train both models (β-VAE
and SimCLR), we then infer and perform downstream analysis of our two models.

an extension of VAE [15], is particularly interesting as the latent space is con-
strained to follow a prior distribution and input data are encoded as a distri-
bution. The objective function is a combination of the reconstruction error and
the matching of two distributions using the Kullback-Liebler (KL) divergence.
The two terms are weighted thanks to β, which enables to improve latent factors
disentanglement [13]. β-VAE is trained to maximize:

L(θ, ϕ;x, z, β) = Eqϕ(z|x)[log pθ(x|z)]− βDKL(qϕ(z|x)||p(z)) (1)

where p(z) corresponds to the prior distribution (here, a reduced centered
Gaussian distribution) and qϕ(z|x), the posterior distribution. We ran the model
on binarized skeletons.

SimCLR. SimCLR is an instance discrimination contrastive model. For each
sample x of the batch of size N, we generate at each epoch two views xi and
xj , whose model outputs are respectively zi and zj . The model trains to bring

together views from the same image, that is it minimizes
∑N

i=1 ℓi,j=pos(i) +∑N
j=1 ℓj,i=pos(i), ℓi,j being the loss function for a positive pair of examples (τ is

a temperature parameter) :

ℓi,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1,k ̸=i exp(sim(zi, zk)/τ)
, (2)

View generations are the algorithms specific to our problem: they use the
discrete topology of the fold skeleton. For each fold, the bottom line voxels can be
distinguished from the inner part of the fold surface because they do not split the
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skeleton background into two different local connected components [19] (Figure
1A). Then, the bottom line tag permits to define a topology-based augmentation,
which conserves the bottom lines in all views but remove the inner part of some
folds. The first view combines random [-10,10]° rotations over all axes and a 60%
rolling cutout with only bottom lines kept inside the cutout volume. The second
view combines random [-10,10]° rotations over all axes followed by a 60% rolling
cutout with the whole skeleton conserved inside the cutout whereas only bottom
values are kept outside the cutout volume. All views are then binarized. This
topology-based augmentation forces the model to learn the sheet-based structure
of the fold-based skeleton.

To decode SimCLR latent code, we freeze SimCLR weights and train a de-
coder whose input layer is the representation space. The decoder backbone is
the one of the β − V AE decoder, and the decoder loss is the cross entropy
reconstruction error.

2.3 Identifying Folding Patterns

Characterizing Folding Shapes. To identify folding patterns, data are en-
coded to the latent space of both models and reduced to a 2-dimensions space
with t-SNE algorithm. The reduction to two dimensions enables to get more
hints of the learned representations and to analyze subjects groups more easily.
A clustering is then performed with hierarchical affinity propagation (AP) algo-
rithm [11]. One advantage of AP is that the number of expected clusters does
not have to be precised. However it may output a very large number of clusters,
making it difficult to understand from an anatomical point of view. Hence, fol-
lowing the method used in [20], we applied the algorithm in an iterative way until
a maximum number of five clusters is found. We stress out that the maximum
of five clusters is an arbitrary number and that it has not a biological meaning
beyond facilitating our understanding.

The analysis of the main anatomical characteristics of the clusters can be
done either on the latent codes or on the input space based on cluster labels.
The first method enables to understand the encoded characteristics in the la-
tent dimensions. For β − V AE we generated images corresponding to clusters’
centroids from their latent codes which are next decoded. Then, we travelled be-
tween clusters through the latent space to analyse variations across dimensions.
For SimCLR, we reconstructed latent representation of the nearest subject of
each cluster centroid. The second method computes the local per -cluster aver-
aging pattern in the input space [25].

3 Experiments and Results

Datasets. We use HCP database3 in which MRI images were obtained with
a Siemens Skyra Connectom scanner with isotropic resolution of 0.7 mm. We

3 https://www.humanconnectome.org/
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focused on the right hemisphere of 550 subjects. 80% of subjects were used for
training and the remaining 20% were used for validation.

Fig. 2. β-VAE and SimCLR latent spaces analysis. (A.) t-SNE representation of Sim-
CLR latent space. Insets are decoded latent codes of nearest neighbours for each cluster
centroid. (B.) t-SNE representation of β-VAE latent space. Insets are decoded latent
codes of cluster centroids and of interpolations between cluster centroids. Leftmost and
rightmost patterns of (C.) are respectively the decoded latent code of cluster 0 and
1 centroids of the β-VAE model. Intermediate patterns of (C.) are obtained traveling
through the latent space and then decoded.

Model Implementation. Our β-VAE comprises fully convolutional encoder
and decoder of symmetrical architectures with three convolutional blocks and
two fully connected layers. The backbone of our SimCLRmodel is the DenseNet [14],
followed by two fully connected projection overheads based on [9] benchmark on
3D MRI images. To adapt to our smaller input, we reduced the size of the
DenseNet network down to two dense blocks. We call latent space, the represen-
tation space of the SimCLR model, which has a better representation quality
than output space [6].

To find the best hyperparameters (size of the latent space for both models,
β value for β-VAE and temperature τ for SimCLR), we performed a gridsearch
where the best combination is chosen based on the loss value, the silhouette score
on the latent space and the reconstruction abilities for β-VAE. We obtained β=2
(tested range 1-8) and τ=0.1 (tested range 0.01-0.3), as well as a latent size of
4 (tested range 2-150) for both models, which enabled to balance between the
model performance and the clustering quality. Training of 300 epochs lasted for
approximately 1 hour and 2 hours for β-VAE and SimCLR respectively, on an
Nvidia Quadro RTX5000 GPU.
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Latent Space Structure. Fig. 2A and B present clustering results. The silhou-
ette score with AP on the latent space is 0.17 and 0.42, respectively for β-VAE
and SimCLR. It becomes 0.43 and 0.44 when applied to the t-SNE space, in-
dicating a tendency towards a clustered distribution with close clusters. This
range of score is common when dealing with complex data such as neuroimaging
modalities [16]. For both models, four clusters were identified but the organiza-
tion of the latent space is different: β-VAE latent space seems to distinguish four
groups of subjects, separated only with a thin boundary whereas SimCLR latent
space is more structured and could be interpreted as a manifold, consistent with
the biological reality of folding patterns.

Deciphering the Patterns. Both models were able to produce reconstructions
that are compliant with the inputs, presenting a simplified version of the scene
which enables to focus and bring out the most important features (Fig. 2A
and B). For SimCLR, the black cluster seems to have a small paracingulate,
which is a pattern described in the literature [20]. The brown and orange cluster
seems to correspond to two parallel sulci without a callosal sulcus. Based on
the latent space organization, similar to a manifold, it is interesting to analyse
the reconstructions in terms of evolution. The curvature of the longest sulcus
becomes more bent from the black to the yellow cluster.

In the case of β − V AE, cluster 0 (green) shows another pattern defined in
the literature [20]: a split anterior cingulate sulcus. Cluster 1 (blue) presents
a long paracingulate, while the pink has a shorter paracingulate. Lastly, the
indigo presents a slight paracingulate. In Fig. 2C, interpolating from one cluster
to another shows that the latent space is continuous and regular, and we can
progressively see the change of patterns as indicated by the arrows. More detailed
and complete interpolations are presented in supplementary materials.

It is interesting to link these decoder outputs to the cluster average of the
folding pattern based on the input space (figure 3). For SimCLR model, the black
cluster average could correspond to a simple anterior cingulate. Subjects of the
brown cluster could have a sketch of the paracingulate sulcus, which increases
in length in the orange average to present two long parallel sulci. Finally, the
yellow average also includes a sketch of a sulcus parallel to the anterior cingulate,
but in the left part of the ROI, where it is not usually called a paracingulate
sulcus in anatomical literature. Both methods, cluster averages and decoders,
represent something different: in the first case, it is the geometrically-aligned
average of all subjects in a cluster; in the latter case, it is the reconstruction of
one representative subject from the latent space. They can converge either to
the same (orange and yellow cluster) or to an apparently different (black cluster)
representation.

For β − V AE, when comparing with centroids’ generation, we find a similar
shape for the green average (cluster 0): cingulate split in two. Conversely, for
the blue cluster, based only on the average pattern, we could interpret a simple
cingulate, but in the light of the reconstructions, the swollen anterior part could
represent a paracingulate. Cingulate and paracingulate could be merged in the
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average representation due to positional variations among subjects. For indigo
and pink folding averages, only the highly variable paracingulate pits are kept
contrary to the decoder reconstructions. Thus, only the decoder part will permit
to get rid of the too complex inter-individual variability and to focus on the
main shapes.

Fig. 3. Representative patterns as cluster averages. A) Description of typical folding
structures in our ROI using the icbm152 average template. B), C) Local average
sulci obtained for each cluster with β-VAE and SimCLR encodings respectively. Colors
match cluster colors of Fig. 2.

4 Discussion and Conclusion

Our work proposes several method contributions that can be useful for the com-
munity. We introduced topology-based augmentations in the SimCLR setting,
which is directly applicable for studies working on skeletons or similar inputs
[23]. It is all the more interesting as the augmentations used for contrastive
views is still under investigation to understand what makes good views, es-
pecially in biomedical images. Moreover, we added a decoder to SimCLR and
analyzed SimCLR and β-VAE reconstructions to recover folding patterns. Last,
we proposed a preprocessing based on a mask, enabling to focus on the region
of interest, while avoiding the disadvantages of parallelepipedic bounding boxes
used in [12].

Our work also finds a structured latent space for the cingulate region with
both models, β-VAE and SimCLR. The organization obtained with SimCLR
seems more consistent with anatomical reality of folding patterns and can be
linked to folding manifolds [18]. In return, the generative and regularization
aspect of the β − V AE is a real lever to understand the learned representations
and ease the analysis of this complex region. Note that, if we chose a higher
maximum number of clusters, it would have been tricky to analyse but it could
be closer to reality. In addition, according to the distribution of SimCLR latent
space, a finer clustering, with a higher granularity could be of interest.
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To encourage a structured and well separated latent space, we wish to in-
troduce in future cluster objectives in the learning phase both for generative
models [7], and for contrastive models [4,5,17].

Another line of research will be to adapt our model further to the folding
topology by developing other topology-based augmentations and by introduc-
ing other specific priors such as the geometry-based similarity measure between
input samples [25].

Finally, we found both cluster averages and decoder outputs to be similar to
known cingulate patterns that correlate with executive functions and psychiatric
disorders [3]. This similarity makes us firmly believe that such latent space struc-
tures could correlate with medically relevant parameters. Our study is therefore
a first step towards the systematization of the search for main region-specific
patterns to then analyze their potential correlations with human cognition and
disease.
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