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Abstract. Visual neuroprostheses are devices that restore limited visual
perception for visually impaired patients. Some of these neuroprostheses,
implanted in the retina or the visual cortex include an implant, a comput-
ing device and an external camera to capture the scene. An impoverished
visual perception is restored when the microstimulation of the retina or
the visual cortex activates white spots called phosphenes. However, the
resolution of current implants (i.e. the number and spacing of the elec-
trodes) that have passed the clinical trial phases remains low. Such low
resolution, coupled with the limited number of different colors rendered
by the implants, limits the information that can be transferred. The reg-
ular rendering process used with the implants, called scoreboard, is in-
sufficient to support complex comprehension tasks. To allow the patient
to better perceive his environment, ongoing research aims at maximizing
the quality and quantity of information provided by the implant. We
set up a comparative study between different renderings and we showed
that providing the blind with the possibility to switch between different
renderings significantly increases the understanding of the environment.

Keywords: Visual neuroprostheses · Interactive rendering · Adaptive rendering
· Retinal implant · Computer vision · Blind people.

1 INTRODUCTION

According to the WHO [1], 253 million people are visually impaired: 36 million
of them are blind and 217 million have moderate to severe visual impairment.
Visual neuroprostheses first appeared in the 1960s [2] and have emerged as a
promising technique for partially restoring vision in people with visual impair-
ment. Over the last ten years, several implants have been placed on blind people
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and have been in clinical trials [3]. In this study, we compared three different
prosthetic rendering modes: the scoreboard mode (Control); a combination of
semantic object segmentation and scene structure detection called ”Combined”,
similar to a recent state of the art method [6]; and a mode called ”Switch” which
allows to alternate between the Combined rendering and two other renderings
where only objects or only structure appear respectively. The study designed is
based on the analysis of the needs of blind people provided by Ratelle and Cou-
turier [4]. Our hypothesis is that the Switch rendering mode provides a better
understanding of the organization of the objects as well as the structure in an
external scene than the Control (scoreboard) and Combined rendering modes.
Since it is impossible to perform such tests on implanted patients, the study was
performed with a prosthetic vision simulator inspired by clinical reality. Our
results, obtained on 20 subjects, show the interest of the ”Switch” mode in the
understanding of static scenes (images).

Fig. 1. Examples of prosthetic renderings: (a) shows the initial image in a virtual
environment. (b) shows how (a) is rendered with scoreboard rendering. (c) shows how
(a) is rendered with a method that detects only objects, and (d) shows how (a) is
rendered with a method that enhances structural information (structure enhancement).
(e) is a rendering combining (c) and (d) and called Combined.

2 RELATED WORK

2.1 Visual neuroprostheses

Visual neuroprostheses are devices designed to restore light perception in peo-
ple with partial or total blindness. They consist of a portable camera, a small
computer and a matrix of electrodes that is implanted in the retina. These
implants generate electrical micro-stimulations that cause the appearance of
blurred points called phosphenes. Several devices have been developed and some
implants have been clinically tested. Existing commercial visual neuroprosthe-
sis systems are based on retinal implantation of a limited number of electrodes
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(6x10 for the Argus II developed by Second Sight [7], 21x18 for the PRIMA
system developed by Pixium Vision [5]). While these neuroprostheses have im-
proved the daily lives of many blind people [8], the restored visual perception is
too weak to allow more advanced perceptual or sensorimotor processes such as
navigation.

2.2 Different phosphenic renderings depending on the task

The limitations of current visual neuroprostheses pose significant problems for
rendering a scene in a comprehensible manner. The historical method of ”score-
board” rendering consists in reducing the captured image to the resolution of the
implant, then converting the image to grayscale and quantifying the grayscale
to the intensity level supported by the implant (Fig. 1B).

However, several studies have shown that specific image processing can im-
prove the performance of subjects in various tasks from perception to naviga-
tion [6, 9–11]. Specifically, Sanchez-Garcia et al. [6] proposed a rendering that
constructs a schematic representation of indoor environments, highlighting the
structural informative edges and silhouettes of segmented objects. An example
of this type of rendering is proposed on Fig. 1E.

3 PROSTHETIC VISION SIMULATOR

Due to the difficulty of accessing implanted patients to test different renderings,
the use of a prosthetic vision simulator is common in the literature [6, 9, 10,
12]. As its name indicates, the simulator allows to simulate different implants
(size, position, resolution) in various contexts (2D or 3D visual scenes, static or
dynamic).

3.1 Simulated implant

We chose to simulate the PRIMA system developed by Pixium Vision (Paris,
France), composed of a 21x18 electrodes array. Our choice is motivated by the
fact that it is the most recent implant having passed satisfactory clinical trials [3].
It is also one of those that allows a visual rendering with the highest resolution
to date. Indeed, the current technical limitations do not allow to have a very
high number of electrodes (the Argus II has only 6x10 electrodes [13]).

A dropout rate of 10% was applied to the electrodes to simulate non-functional
or broken electrodes. A Gaussian blur was applied to the generated phosphenes,
the size of the phosphenes within the same implant varied between 0.235° and
0.275° of the field of view. The spacing between two phosphenes varied between
0.55° and 0.825° of the field of view.

3.2 Phosphenic renderings

Scoreboard rendering (Control): The image is reduced to the resolution of
the implant. We then quantize the intensity into four levels of gray. Finally, we
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transform each rectangular area that now represents an implant electrode into
a phosphene.

Combined rendering (objects + structure): First, we extract an object
segmentation map from the input image, see Fig. 2-1A. As with the Scoreboard
rendering, this image is scaled and quantized, see Fig. 2-2A. In parallel, we
also extract the edges of the scene structure and then we scale and quantize
the image, see Fig. 2-1B-2B. We then combined 2A and 2B into a single image
Fig. 2-3. Finally, we transform each rectangular area that now represents an
implant electrode into a phosphene Fig. 2-4.

Fig. 2. Generation of the combined rendering (objects + structure).

Switch rendering: The Switch rendering mode allows the subject to change
the rendering at will. In this mode, the available renderings are the Combined
rendering, the Objects rendering and the Structure rendering. The Objects ren-
dering is obtained by transforming the image from Fig. 2-2A into a phosphenic
version. The Structure rendering is obtained by transforming the image from
Fig. 2-2B into a phosphenic version.

4 MATERIAL, METHODS AND PROTOCOL

4.1 Hypothesis, Subjects and experimental conditions

We hypothesized that the ability to switch rendering types in real time to per-
form outdoor visual scene comprehension tasks allows subjects to perform better
visually. The subjects were recruited in an engineering school and via social net-
works (LinkedIn, Facebook). 20 subjects, (11 men and 9 women aged from 17
to 55 years, mean: 25 years, sd: 13 years), participated in the experiment. Each
participant had normal or corrected vision. All subjects gave their consent to
participate in the study and allow storage of their anonymized data, in accor-
dance with the GDPR. We used the three experimental conditions presented in
section 3.2.
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4.2 Protocol and variables analyzed

The experimental session contained three blocks corresponding to the three ex-
perimental conditions. Each block was divided into three parts including fa-
miliarization with the rendering used in the block, the test phase, and then a
questionnaire regarding the rendering the subject just used in the block. Dur-
ing the test phase, the subject had to answer a series of 15 questions including
5 questions in three categories named ”objects”, ”streets”, ”doors and cross-
walks”. Once an answer was selected, users could move on to the next question.
The order of the blocks and questions was randomized to limit inter-block or
inter-question bias. At the end of each block, subjects were asked subjective
questions about the appropriateness of the rendering used in that block. The
questions focused on the pleasure experienced and the perceived usability of the
rendering used in that block.

To address our hypothesis, we measured, for each subject, two variables: (i)
the validity of each answer (correct / incorrect / I don’t know), (ii) the response
time to each question. To analyze the quantitative results we performed 2-way
ANOVA tests according to the model (Condition * Task * Interaction), and then
used a Tukey post-hoc test to compare pairs two by two. In the figures, we used
95% confidence intervals.

5 RESULTS

Correct answers: The two-way ANOVA showed that the number of correct
answers was significantly different by rendering (F(2,171) = 15.834; p < 0.0001)
and by task F(2,171) = 81.730; p < 0.0001). The interaction was also significant
(F(4,171) = 5.728; p < 0.001). Switch condition is highly effective in identifying
objects, but even more in understanding street patterns, see Fig. 3.

”I don’t know” answers: The two-way ANOVA (Condition * Task *
Interaction) showed that the number of ”I don’t know” answers was signif-
icantly different by rendering (F(2,171) = 10.543; p < 0.0001) and by task
F(2,171) = 5.882; p < 0.001). However, the interaction was not significant
(F(4,171) = 1,909; p = 0.111).

Response time: The two-way ANOVA showed that the response time is sig-
nificantly different according to the experimental condition (F(2,891) = 17.245;
p < 0.0001) and according to the task F(2,891) = 14.081; p < 0.0001). However,
the interaction was not significant (F(4,891) = 0.465; p = 0.762).

Subjective questionnaire: Participants were asked to respond with a score
between 1 and 7 to a series of questions at the end of each of the three blocks.
The two-factor ANOVA (Render * Task * Interaction) shows that the score was
significantly different by rendition (F(2,228) = 11.878; p ¡ 0.0001) and by task
(F(3,228) = 5.604; p < 0.001). The interaction was significant (F(6,228) = 7.537;
p < 0.0001). We observe that in terms of pleasure of use, the Combined and
Switch renderings are significantly better rated than the Control rendering (score-
board). We can also observe that in terms of difficulty of use, perceived usability



6 J. Desvergnes et al.

Fig. 3. Average number of correct responses per Render and per Task. Detection of
crosswalks and doors is equivalent for all conditions. Identification of objects and street
patterns is significantly improved with the Switch rendering. (N=20. Bars indicate 95%
confidence interval. *=0.05 ; **=0.01 ; ***=0.001 ; ****=0.00001).

and the amount of information presented, the Switch rendering is better rated
than the Control rendering. We also notice that the Control and Combined ren-
derings are not perceived with a different level of difficulty. On top of that, for
the question: ”I found the ability to switch renderings very useful”, we obtain
an average score of 6.2 +/- 0.52 (out of 7).

Ranking: Subjects were finally asked to rank the renderings in order of
preference along four criteria: for identifying intersections and street corners, for
identifying objects, for identifying doorways and crosswalks, and overall. Fig. 4
shows these results. We observe that the order of preference for the renderings
is Switch, Combined, Control, regardless of the task performed.

6 DISCUSSION AND PERSPECTIVE

Our results show that the detection of crosswalks and doors is easy, regardless
of the rendering used. This is not surprising because for doors, the rendering
is always a white rectangle that is easy to perceive. Crosswalks are less easy
to perceive than doors but easier to perceive than other objects because they
appear as a succession of parallel rectangles.

On the other hand, the identification of objects and the understanding of
the street organization depend strongly on the rendering used. The results show
that the Switch rendering is significantly better than the Control and Combined
rendering. We observed that the Combined rendering is not significantly better
than the Control rendering for object detection. This is not consistent with the
study by Sanchez et al. [6]. This distinction can be explained by the resolution
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Fig. 4. Average final ranking given by users (N=20). Switch rendering is the best
ranked on average, regardless of the task performed.

of the implants used in our simulator (21x18) which is lower than that used
in theirs (32x32). Indeed, according to Cha et al. [14], 600 electrodes with a
Scoreboard rendering (Control) are sufficient to obtain an already functional
perception. The Control rendering gets more ”I don’t know” responses than the
Switch rendering in the ”objects” and ”streets” tasks. The Switch rendering is
systematically more used in terms of time than the Control rendering whatever
the task. It is also more used than the Combined renderer in the ”Doors and
crosswalks” type tasks. One could imagine that with training, the decision is
made more quickly with the Switch mode.

According to the analysis of subjective judgments and ranking of the render-
ing modes, we highlight that the Switch rendering mode has a clear advantage
over the Scoreboard rendering mode in all categories. The final ranking shows
that the top-ranked rendering mode is Switch over both Combined and Score-
board.

Limitations and perspectives: However, we can address the issue of pre-
dicting the segmentation and structure images to build the different renderings.
In our study, these datas are very easy to obtain because the objects of the scene
are labeled. In real conditions, we would have to find another way to recover this
information. The addition of neural networks would solve this problem. The pre-
diction of semantic segmentation maps has been widely discussed lately, leading
to the birth of neural networks such as EfficientDet [15] which obtain excel-
lent performances. Regarding structure recovery there are also some networks
trained to predict this kind of information such as PanoRoom [17]. There are
still two problems to manage, the errors in the predictions and the calculation
time. It is necessary that the predictions are not too far from reality and that
these predictions are produced in quasi-real time.

Another limitation is that our study does not allow us to capture the notion
of motion since we use static images. The motion information is a very useful



8 J. Desvergnes et al.

information, so much so that some devices use event-based cameras [16] to create
a phosphenic rendering. To push the realism to the maximum it could also
be interesting to realize an experiment in real condition. The device could be
composed of a virtual reality helmet equipped with a camera that films the scene
and a smartphone that takes care of calculating the visual rendering. The interest
to make a study in real conditions is double: on one hand we could propose a
complete device of study very close to reality, which would allow the future works
to be tested on a realistic model. Moreover, we could measure the reaction of the
subjects in navigation tasks and not in perception and comprehension tasks.
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