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Abstract. Visual neuroprostheses are devices that restore limited visual percep-
tion for visually impaired patients. Some of these neuroprostheses, implanted in 
the retina or the visual cortex include an implant, a computing device and an 
external camera to capture the scene. An impoverished visual perception is re-
stored when the microstimulation of the retina or the visual cortex activates white 
spots called phosphenes. However, the resolution of current implants (i.e. the 
number and spacing of the electrodes) that have passed the clinical trial phases 
remains low. Such low resolution, coupled with the limited number of different 
colors rendered by the implants, limits the information that can be transferred. 
The regular rendering process used with the implants, called Scoreboard, is in-
sufficient to support complex comprehension tasks. To allow the patient to better 
perceive his environment, ongoing research aims at maximizing the quality and 
quantity of information provided by the implant.  We set up a comparative study 
between different renderings and we showed that providing the blind with the 
possibility to switch between different renderings significantly increases the un-
derstanding of the environment. 

Keywords: Visual neuroprostheses, Interactive rendering, Adaptive rendering, 
Retinal implant, Computer vision, Blind people. 

1 Introduction 

According to the WHO [1], 253 million people are visually impaired: 36 million of 
them are blind and 217 million have moderate to severe visual impairment. Visual neu-
roprostheses first appeared in the 1960s [2] and have emerged as a promising technique 
for partially restoring vision in people with visual impairment. Over the last ten years, 
several implants have been placed on blind people and have been in clinical trials [3]. 
In this study, we compared three different prosthetic rendering modes: the Scoreboard 
mode (Control); a combination of semantic object segmentation and scene structure 
detection called "Combined", similar to a recent state of the art method [6]; and a mode 
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called "Switch" which allows to alternate between the Combined rendering and two 
other renderings where only objects or only structure appear respectively. The study is 
based on the analysis of the needs of blind people provided by Ratelle and Couturier 
[4]. Our hypothesis is that the Switch rendering mode provides a better understanding 
of the organization of the objects as well as the structure in an external scene than the 
Control (Scoreboard) and Combined rendering modes. Since it is impossible to perform 
such tests on implanted patients, the study was performed with a prosthetic vision sim-
ulator inspired by clinical reality. Our results, obtained on 20 subjects, show the interest 
of the "Switch" mode in the understanding of static scenes (images). 
 

 
Fig. 1. Examples of prosthetic renderings: (a) shows the initial image in a virtual environment. 
(b) shows how (a) is rendered with Scoreboard rendering. (c) shows how (a) is rendered with a 
method that detects only objects, and (d) shows how (a) is rendered with a method that enhances 
structural information (structure enhancement). (e) is a rendering combining (c) and (d) and 
called Combined.  

2 Related Work 

2.1 Visual Neuroprostheses 

Visual neuroprostheses are devices designed to restore light perception in people with 
partial or total blindness. They consist of a portable camera, a small computer and a 
matrix of electrodes that is implanted in the retina. These implants generate electrical 
micro-stimulations that cause the appearance of blurred points called phosphenes. Sev-
eral devices have been developed and some implants have been clinically tested. Exist-
ing commercial visual neuroprosthesis systems are based on retinal implantation of a 
limited number of electrodes (6x10 for the Argus II developed by Second Sight [7], 
21x18 for the PRIMA system developed by Pixium Vision [5]). While these neuropros-
theses have improved the daily lives of many blind people [8], the restored visual per-
ception is too weak to allow more advanced perceptual or sensorimotor processes such 
as navigation. 
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2.2 Different Phosphenic Renderings Depending on the Task 

The limitations of current visual neuroprostheses pose significant problems for render-
ing a scene in a comprehensible manner. The historical method of "Scoreboard" ren-
dering consists in reducing the captured image to the resolution of the implant, then 
converting the image to grayscale and quantifying the grayscale to the intensity level 
supported by the implant (Fig. 1B). 

However, several studies have shown that specific image processing can improve 
the performance of subjects in various tasks from perception to navigation [6,9-11]. 
Specifically, Sanchez-Garcia et al. [6] proposed a rendering that constructs a schematic 
representation of indoor environments, highlighting the structural informative edges 
and silhouettes of segmented objects. An example of this type of rendering is proposed 
on Fig. 1E. 

3 Prosthetic Vision Simulator 

Due to the difficulty of accessing implanted patients to test different renderings, the use 
of a prosthetic vision simulator is common in the literature [6,9,10,12]. As its name 
indicates, the simulator allows to simulate different implants (size, position, resolution) 
in various contexts (2D or 3D visual scenes, static or dynamic). 

3.1 Simulated Implant 

We chose to simulate the PRIMA system developed by Pixium Vision (Paris, France), 
composed of a 21x18 electrodes array. Our choice is motivated by the fact that it is the 
most recent implant having passed satisfactory clinical trials [3]. It is also one of those 
that allows a visual rendering with the highest resolution to date. Indeed, the current 
technical limitations do not allow to have a very high number of electrodes (the Argus 
II has only 6x10 electrodes [13]). 

A dropout rate of 10\% was applied to the electrodes to simulate non-functional or 
broken electrodes. A Gaussian blur was applied to the generated phosphenes, the size 
of the phosphenes within the same implant varied between 0.235° and 0.275° of the 
field of view. The spacing between two phosphenes varied between 0.55° and 0.825° 
of the field of view. 

3.2 Phosphenic Renderings 

Scoreboard rendering (Control): The image is reduced to the resolution of the im-
plant. We then quantize the intensity into four levels of gray. Finally, we transform each 
rectangular area that now represents an implant electrode into a phosphene. 

Combined rendering (objects + structure): First, we extract an object segmentation 
map from the input image, see Fig. 2-1A. As with the Scoreboard rendering, this image 
is scaled and quantized, see Fig. 2-2A. In parallel, we also extract the edges of the scene 
structure and then we scale and quantize the image, see Fig. 2-1B-2B. We then 
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combined 2A and 2B into a single image (Fig. 2-3). Finally, we transform each rectan 
gular area that now represents an implant electrode into a phosphene (Fig. 2-4). 

 
Fig. 2. Generation of the Combined rendering (objects + structure). 

Switch rendering: The Switch rendering mode allows the subject to change the ren-
dering at will. In this mode, the available renderings are the Combined rendering, the 
Objects rendering and the Structure rendering. The Objects rendering is obtained by 
transforming the image from Fig. 2-2A into a phosphenic version. The Structure ren-
dering is obtained by transforming the image from Fig. 2-2B into a phosphenic version. 

4 Material, Methods and Protocol 

4.1 Hypothesis, Subjects and Experimental Conditions 

We hypothesized that the ability to switch rendering types in real time to perform out-
door visual scene comprehension tasks allows subjects to perform better visually. The 
subjects were recruited in an engineering school and via social networks (LinkedIn, 
Facebook). 20 subjects, (11 men and 9 women aged from 17 to 55 years, mean: 25 
years, sd: 13 years), participated in the experiment. Each participant had normal or cor-
rected vision. All subjects gave their consent to participate in the study and allow stor-
age of their anonymized data, in accordance with the GDPR. We used the three exper-
imental conditions presented in section 3.2. 

4.2 Protocol and Variables Analyzed 

The experimental session contained three blocks corresponding to the three experi-
mental conditions. Each block was divided into three parts including familiarization 
with the rendering used in the block, the test phase, and then a questionnaire regarding 
the rendering the subject just used in the block. During the test phase, the subject had 
to answer a series of 15 questions including 5 questions in three categories named "ob-
jects", "streets", "doors and crosswalks". Once an answer was selected, users could 
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move on to the next question. The order of the blocks and questions was randomized to 
limit inter-block or inter-question bias. At the end of each block, subjects were asked 
subjective questions about the appropriateness of the rendering used in that block. The 
questions focused on the pleasure experienced and the perceived usability of the ren-
dering used in that block. 

To address our hypothesis, we measured, for each subject, two variables: (i) the va-
lidity of each answer (correct / incorrect / I don't know), (ii) the response time to each 
question. To analyze the quantitative results we performed two-way ANOVA tests ac-
cording to the model (Condition * Task * Interaction), and then used a Tukey post-hoc 
test to compare pairs two by two. In the figures, we used 95% confidence intervals. 

5 Results 

Correct answers: The two-way ANOVA showed that the number of correct answers 
was significantly different by rendering (F(2,171) = 15.834; p < 0.0001) and by task 
F(2,171) = 81.730; p < 0.0001). The interaction was also significant (F(4,171) = 5.728; 
p < 0.001). Switch condition is highly effective in identifying objects, but even more in 
understanding street patterns, see Fig. 3. 

 
Fig. 3. Average number of correct responses per Render and per Task. Detection of crosswalks 
and doors is equivalent for all conditions. Identification of objects and street patterns is signifi-
cantly improved with the Switch rendering. (N=20. Bars indicate 95\% confidence interval. 
*=0.05 ; **=0.01 ; ***=0.001 ; ****=0.00001). 

"I don't know" answers: The two-way ANOVA (Condition * Task * Interaction) 
showed that the number of "I don't know" answers was significantly different by ren-
dering (F(2,171) = 10.543; p < 0.0001) and by task F(2,171) = 5.882; p < 0.001). How-
ever, the interaction was not significant (F(4,171) = 1,909; p = 0.111). 
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Response time: The two-way ANOVA showed that the response time is significantly 
different according to the experimental condition (F(2,891) = 17.245; p < 0.0001) and 
according to the task F(2,891) = 14.081; p < 0.0001). However, the interaction was not 
significant (F(4,891) = 0.465; p = 0.762). 

Subjective questionnaire: Participants were asked to respond with a score between 1 
and 7 to a series of questions at the end of each of the three blocks. The two-factor 
ANOVA (Render * Task * Interaction) shows that the score was significantly different 
by rendition (F(2,228) = 11.878; p < 0.0001) and by task (F(3,228) = 5.604; p < 0.001). 
The interaction was significant (F(6,228) = 7.537; p < 0.0001). We observe that in terms 
of pleasure of use, the Combined and Switch renderings are significantly better rated 
than the Control rendering (Scoreboard). We can also observe that in terms of difficulty 
of use, perceived usability and the amount of information presented, the Switch render-
ing is better rated than the Control rendering. We also notice that the Control and Com-
bined renderings are not perceived with a different level of difficulty. On top of that, 
for the question: "I found the ability to switch renderings very useful", we obtain an 
average score of 6.2 +/- 0.52 (out of 7). 

Ranking: Subjects were finally asked to rank the renderings in order of preference 
along four criteria: for identifying intersections and street corners, for identifying ob-
jects, for identifying doorways and crosswalks, and overall. Fig. 4 shows these results. 
We observe that the order of preference for the renderings is Switch, Combined, Con-
trol, regardless of the task performed. 

 
Fig. 4. Average final ranking given by users (N=20). Switch rendering is the best ranked on 
average, regardless of the task performed. 

6 Discussion and Perspective 

Our results show that the detection of crosswalks and doors is easy, regardless of the 
rendering used. This is not surprising because for doors, the rendering is always a white 
rectangle that is easy to perceive. Crosswalks are less easy to perceive than doors but 
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easier to perceive than other objects because they appear as a succession of parallel 
rectangles. 

On the other hand, the identification of objects and the understanding of the street 
organization depend strongly on the rendering used. The results show that the Switch 
rendering is significantly better than the Control and Combined rendering. We observed 
that the Combined rendering is not significantly better than the Control rendering for 
object detection. This is not consistent with the study by Sanchez et al. [6]. This dis-
tinction can be explained by the resolution of the implants used in our simulator (21x18) 
which is lower than that used in theirs (32x32). Indeed, according to Cha et al. [14], 
600 electrodes with a Scoreboard rendering (Control) are sufficient to obtain an already 
functional perception. The Control rendering gets more "I don't know" responses than 
the Switch rendering in the "objects" and "streets" tasks. The Switch rendering is sys-
tematically more used in terms of time than the Control rendering whatever the task. It 
is also more used than the Combined renderer in the "Doors and crosswalks" type tasks. 
One could imagine that with training, the decision is made more quickly with the Switch 
mode.  

According to the analysis of subjective judgments and ranking of the rendering 
modes, we highlight that the Switch rendering mode has a clear advantage over the 
Scoreboard rendering mode in all categories. The final ranking shows that the top-
ranked rendering mode is Switch over both Combined and Scoreboard. 

Limitations and perspectives: However, we can address the issue of predicting the 
segmentation and structure images to build the different renderings. In our study, these 
datas are very easy to obtain because the objects of the scene are labeled. In real condi-
tions, we would have to find another way to recover this information. The addition of 
neural networks would solve this problem. The prediction of semantic segmentation 
maps has been widely discussed lately, leading to the birth of neural networks such as 
EfficientDet [15] which obtain excellent performances. Regarding structure recovery 
there are also some networks trained to predict this kind of information such as Pano-
Room [17]. There are still two problems to manage, the errors in the predictions and 
the calculation time. It is necessary that the predictions are not too far from reality and 
that these predictions are produced in quasi-real time. 

Another limitation is that our study does not allow us to capture the notion of motion 
since we use static images. The motion information is a very useful information, so 
much so that some devices use event-based cameras [16] to create a phosphenic ren-
dering. To push the realism to the maximum it could also be interesting to realize an 
experiment in real condition. The device could be composed of a virtual reality helmet 
equipped with a camera that films the scene and a smartphone that takes care of calcu-
lating the visual rendering. The interest to make a study in real conditions is double: on 
one hand we could propose a complete device of study very close to reality, which 
would allow the future works to be tested on a realistic model. Moreover, we could 
measure the reaction of the subjects in navigation tasks and not in perception and com-
prehension tasks. 
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