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ABSTRACT

Recent approaches in self-supervised learning of image representations can be
categorized into different families of methods and, in particular, can be divided
into contrastive and non-contrastive approaches. While differences between the
two families have been thoroughly discussed to motivate new approaches, we fo-
cus more on the theoretical similarities between them. By designing contrastive
and covariance based non-contrastive criteria that can be related algebraically and
shown to be equivalent under limited assumptions, we show how close those fam-
ilies can be. We further study popular methods and introduce variations of them,
allowing us to relate this theoretical result to current practices and show the influ-
ence (or lack thereof) of design choices on downstream performance. Motivated
by our equivalence result, we investigate the low performance of SimCLR and
show how it can match VICReg’s with careful hyperparameter tuning, improving
significantly over known baselines. We also challenge the popular assumption
that non-contrastive methods need large output dimensions. Our theoretical and
quantitative results suggest that the numerical gaps between contrastive and non-
contrastive methods in certain regimes can be closed given better network design
choices and hyperparameter tuning. The evidence shows that unifying different
SOTA methods is an important direction to build a better understanding of self-
supervised learning.

1 INTRODUCTION

Self-supervised learning (SSL) of image representations has shown significant progress in the last
few years (Chen et al., 2020a; He et al., 2020; Chen et al., 2020b; Grill et al., 2020; Lee et al.,
2021b; Caron et al., 2020; Zbontar et al., 2021; Bardes et al., 2021; Tomasev et al., 2022; Caron
et al., 2021; Chen et al., 2021b; Li et al., 2022a; Zhou et al., 2022a;b; HaoChen et al., 2021), ap-
proaching, and sometime even surpassing, the performance of supervised baselines on many down-
stream tasks. Most recent approaches are based on the joint-embedding framework with a siamese
network architecture (Bromley et al., 1994) which are divided into two main categories, contrastive
and non-contrastive methods. Contrastive methods bring together embeddings of different views of
the same image while pushing away the embeddings from different images. Non-contrastive meth-
ods also attract embeddings of views from the same image but remove the need for explicit negative
pairs, either by architectural design (Grill et al., 2020; Chen & He, 2020) or by regularization of the
covariance of the embeddings (Zbontar et al., 2021; Bardes et al., 2021; Li et al., 2022b).

While contrastive and non-contrastive approaches seem very different and have been described as
such (Zbontar et al., 2021; Bardes et al., 2021; Ermolov et al., 2021; Grill et al., 2020), we pro-
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pose to take a closer look at the similarities between the two, both from a theoretical and empirical
point of view and show that there exists a close relationship between them. We focus on covariance
regularization-based non-contrastive methods (Zbontar et al., 2021; Ermolov et al., 2021; Bardes
et al., 2021) and demonstrate that these methods can be seen as contrastive between the dimensions
of the embeddings instead of contrastive between the samples. We, therefore, introduce the term
dimension-contrastive methods which we believe is better suited for them, and refer to the original
contrastive methods as sample-contrastive methods. To show the similarities between the two, we
define contrastive and non-contrastive criteria based on the Frobenius norm of the Gram and co-
variance matrices of the embeddings, respectively, and show the equivalence between the two under
assumptions on the normalization of the embeddings. We then relate popular methods to these cri-
teria, highlighting the links between them and further motivating the use of the sample-contrastive
and dimension-contrastive nomenclature. Finally, we introduce variations of an existing dimension-
contrastive method (VICReg), and a sample-contrastive one (SimCLR). This allows us to verify this
equivalence empirically and improve both VICReg and SimCLR through this lens.
Our contributions can be summarized as follows:

• We make a significant effort to unify several SOTA sample-contrastive and dimension-
contrastive methods and show that empirical performance gaps can be closed completely.
By pinpointing its source, we consolidate our understanding of SSL methods.

• We introduce two criteria that serve as representatives for sample- and dimension-
contrastive methods. We show that they are equivalent for doubly normalized embeddings,
and then relate popular methods to them, highlighting their theoretical similarities.

• We introduce methods that interpolate between VICReg and SimCLR to study the practical
impact of precise components of their loss functions. This allows us to validate empirically
our theoretical result by isolating the sample- and dimension-contrastive nature of methods.

• Motivated by the equivalence, we show that advantages attributed to one family can be
transferred to the other. We improve SimCLR’s performance to match VICReg’s, and
improve VICReg to make it as robust to embedding dimension as SimCLR.

2 RELATED WORK

Sample-contrastive methods. In self-supervised learning of image representations, contrastive
methods pull together embeddings of distorted views of a single image while pushing away embed-
dings coming from different images. Many works in this direction have recently flourished (Chen
et al., 2020a; He et al., 2020; Chen et al., 2020b; 2021b; Yeh et al., 2021), most of them using the
InfoNCE criterion (Oord et al., 2018), except HaoChen et al. (2021), that uses squared similarities
between the samples. Clustering-based methods (Caron et al., 2018; 2020; 2021) can be seen as
contrastive between prototypes, or clusters, instead of samples.

Non-contrastive methods. Recently, methods that deviate from contrastive learning have emerged
and eliminate the use of negative samples in different ways. Distillation-based methods such as
BYOL (Grill et al., 2020), SimSiam (Chen & He, 2020) or DINO (Caron et al., 2021) use archi-
tectural tricks inspired by distillation to avoid the collapse problem. Information maximization
methods (Bardes et al., 2021; Zbontar et al., 2021; Ermolov et al., 2021; Li et al., 2022b) maximize
the informational content of the representations and have also had significant success. They rely
on regularizing the empirical covariance matrix of the embeddings so that their informational con-
tent is maximized. Our study of dimension-contrastive learning focuses on these covariance-based
methods.

Understanding contrastive and non-contrastive learning. Recent works tackle the task of un-
derstanding and characterizing methods. The fact that a method like SimSiam does not collapse is
studied in Tian et al. (2021). The loss landscape of SimSiam is also compared to SimCLR’s in Pokle
et al. (2022), which shows that it learns bad minima. In Wang & Isola (2020), the optimal solutions
of the InfoNCE criterion are characterized, giving a better understanding of the embedding distri-
butions. A spectral graph point of view is taken in HaoChen et al. (2022; 2021); Shen et al. (2022)
to analyze self-supervised learning methods. Practical properties of contrastive methods have been
studied in Chen et al. (2021a). In Huang et al. (2021) Barlow twins criterion is shown to be related
to an upper bound of a sample-contrastive criterion. We go further and exactly quantify the gap be-
tween the criterion, which allows us to use the link between methods in practical scenarios. Barlow
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Twins’ criterion is also linked to HSIC in Tsai et al. (2021). The use of data augmentation in sample-
contrastive learning has also been studied from a theoretical standpoint in Huang et al. (2021); Wen
& Li (2021). In Balestriero & LeCun (2022), popular self-supervised methods are linked to spectral
methods, providing a unifying framework that highlights their differences. The gradient of various
methods is also studied in Tao et al. (2021), where they show links and differences between them.
In Lee et al. (2021a), a link is made between CCA and SCL by showing similar error bounds on
linear classifiers.

3 EQUIVALENCE OF THE CONTRASTIVE AND NON-CONTRASTIVE CRITERION

While our results only depend on the embeddings and not the architecture used to obtain them,
nor do they depend on the data modality, all the studied methods are placed in a joint embedding
framework and applied on images. Given a dataset D with individual datum di ∈ Rc×h×w, this
datum is augmented to obtain two views xi and x′i. These two views are then each fed through a
pair of neural networks fθ and f ′θ′ . We obtain the representations fθ(xi) and f ′θ′(x

′
i), which are

fed through a pair of projectors pθ and p′θ′ such that embeddings are defined as pθ(fθ(xi)) and
p′θ′(f

′
θ′(x

′
i)). We denote the matrices of embeddings K and K′ such that K·,i = pθ(fθ(xi)), and

similarly for K′, we have K ∈ RM×N , with M the embedding size and N the batch size, and
similarly for K′. These embedding matrices are the primary object of our study. In practice, we use
fθ = f ′θ′ and pθ = p′θ′ . While most self-supervised learning approaches use positive pairs (xi, x′i)
and negative pairs {∀j, j 6= i, (xi, xj)}

⋃
{∀j, j 6= i, (xi, x

′
j)} for a given view xi, we focus on the

simpler scenario where negative samples are just {∀j, j 6= i, (xi, xj)}. There is no fundamental
difference when θ = θ′ and when the same distribution of augmentations is used for both branches,
and we therefore make these simplifications to make the analysis less convoluted.

We start by defining precisely which contrastive and non-contrastive criteria we will be studying
throughout this work. These criteria will be used to classify methods in two classes, sample-
contrastive, which corresponds to what is traditionally thought of as contrastive, and dimension-
contrastive, which will encompass non-contrastive methods relying on regularizing the covariance
matrix of embeddings.
Definition 3.1. Given a matrix A ∈ Rn×n. We define its extracted diagonal diag (A) ∈ Rn×n as:

diag (A)i,j =
{
Ai,i, if i = j

0, otherwise.
(1)

Definition 3.2. A method is said to be sample-contrastive if it minimizes the contrastive criterion
Lc = ‖KTK−diag(KTK)‖2F . Similarly, a method is said to be dimension-contrastive if it minimizes
the non-contrastive criterion Lnc = ‖KKT − diag(KKT )‖2F .

The sample-contrastive criterion can be seen as penalizing the similarity between different pairs
of images, whereas the dimension-contrastive criterion can be seen as penalizing the off-diagonal
terms of the covariance matrix of the embeddings. These criteria respectively try to make pairs of
samples or dimensions orthogonal.

Invariance criterion. While Lc and Lnc focus on regularizing the embedding space, they are not
optimized alone. They are usually combined with an invariance criterion that aims at producing
the same embedding for two views of the same image. As such, a complete self-supervised loss
would look like LSSL = Linv+Lreg with Lreg being either Lc or Lnc for our prototypical sample-
contrastive and dimension-contrastive methods. This invariance criterion is generally a similarity
measure, such as the cosine similarity or the mean squared error of the difference between a pos-
itive pair of samples. Both are equivalent from an optimization point of view if using normalized
embeddings, hence we focus on the regularization part which is the source of differences between
these methods.
Proposition 3.1. Considering an infinite amount of available negative samples, SimCLR and DCL’s
criteria lead to embeddings where for negative pairs (x, x−) ∈ RM we have

E
[
xTx−

]
= 0 and Var

[
xTx−

]
=

1

M
. (2)

SimCLR and DCL cannot be easily linked to Lc since they rely on cosine similarities instead of
their square or absolute value. Indeed, while Lc aims at making pairs of embeddings or dimensions
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orthogonal, SimCLR and DCL’s criteria go a step further and aim at making them opposite. Both
cannot be satisfied perfectly in practice, as we would need as many dimensions as samples for Lc
to have all negative pairs be orthogonal, and more than two vectors cannot be pairwise opposite
for SimCLR and DCL’s criterion. Nonetheless, as shown by Proposition 3.1, SimCLR and DCL’s
criteria will lead to dot products of negative pairs with a null mean, which is exactly the aim of Lc.
This shows that while the original formulations of DCL and SimCLR do not fit perfectly into our
theoretical framework, they will still lead to results similar to other methods that we study. In order to
complement this result, we introduce SimCLR-sq and SimCLR-abs as variations of SimCLR, which
respectively use square or absolute values of cosine similarities. We define DCL-sq and DCL-abs
similarly. We provide a study of SimCLR-sq and SimCLR-abs in supplementary section G, where
we compare them to SimCLR. The main conclusion is that the distribution of off-diagonal terms of
the Gram matrix is similar between all studied methods, with a high concentration of values around
zero, as predicted by Proposition 3.1. We also see that changing SimCLR into these variations does
not impact performance. We even see a small increase in top-1 accuracy on ImageNet (Deng et al.,
2009) with linear evaluation when using SimCLR-abs, where we reach 68.71% top-1 accuracy,
compared to 68.61% with our improved reproduction of SimCLR. Both of these theoretical and
practical arguments reinforce the proximity of SimCLR to our framework.
Proposition 3.2. SimCLR-abs/sq, DCL-sq/abs, and Spectral Contrastive Loss (HaoChen et al.,
2021) are sample-contrastive methods. Barlow Twins (Zbontar et al., 2021), VICReg (Bardes et al.,
2021) and TCR (Li et al., 2022b) are dimension-contrastive methods.

Even though they do not fit perfectly in our framework, we discuss how methods such as DINO,
SimSiam, or MoCo can be linked to Lc and Lnc in supplementary section B. From proposition 3.2
we can see that sample-contrastive and dimension-contrastive methods can respectively be linked
together by Lc and Lnc. This alone is not enough to show the link between those two families of
methods and we will now discuss the link between Lc and Lnc to show how close those families are.
Theorem 3.3. The sample-contrastive and dimension-contrastive criteria Lc and Lnc are equivalent
up to row and column normalization of the embedding matrix K. Consider a batch size of N and an
embedding dimension of M . We have:

Lnc +

M∑
j=1

‖Kj,·‖42 = Lc +

N∑
i=1

‖K·,i‖42. (3)

Theorem 3.3 is similar to lemma 3.2 from Le et al. (2011), where we consider matrices that are
not doubly stochastic. It is worth noting that our result does not rely on any assumption about the
embeddings themselves. A similar result was also used recently in HaoChen et al. (2022), where
they relate the spectral contrastive loss to Lnc.
The proof of theorem 3.3 hinges on the fact that the squared Frobenius norm of the Gram and Covari-
ance matrix of the embeddings are equal, i.e., ‖KTK‖2F = ‖KKT ‖2F . This means that penalizing all
the terms of the Gram matrix (i.e., pairwise similarities) is the same as penalizing all of the terms of
the Covariance matrix. While this gives an intuition for the similarity between the contrastive and
non-contrastive criteria, it is not as representative of the criteria used in practice as Lc and Lnc are.
While theorem 3.3 shows that sample-contrastive and dimension-contrastive approaches minimize
similar criteria, for none of these methods can we conclude that both criteria can be used in-
terchangeably. However, if both rows and columns of K were L2 normalized, we would have
Lnc = Lc + N −M . In this case, both criteria would be equivalent from an optimization point
of view, and we could conclude that sample-contrastive and dimension-contrastive methods are all
minimizing the same criterion.

Influence of normalization. The difference between the two criteria then lies in the embedding
matrix row and column norms, and most approaches do normalize it in one direction. Since SimCLR
relies on the cosine distance as a similarity measure between embeddings, we can effectively say that
it uses normalized embeddings. Similarly, Spectral Contrastive Loss projects the embeddings on a
ball of radius

√
µ, with µ a tuned parameter, meaning that the embeddings are normalized before

the computation of the loss function.
Barlow Twins normalizes dimensions such that they have a null mean and unit variance, so all
dimensions will have a norm of

√
N . VICReg takes a similar approach where dimensions are

centered, but their variance is regularized by the variance criterion. This is similar to what is done for
Barlow Twins and thus leads to dimensions with constant norm. However, for TCR, the embeddings

4



Published as a conference paper at ICLR 2023

are normalized and not the dimensions, contrasting with other dimension-contrastive methods.
One of the main differences between normalizing embeddings or dimensions is that in the former
case, embeddings are projected on a M − 1 dimensional hypersphere, and in the latter, they are not
constrained on a particular manifold; instead, their spread in the ambient space is limited.

Nonetheless, a constraint on the norm of the embeddings also constrains the norm of the dimensions
indirectly, and vice versa, as illustrated in lemma 3.4.
Lemma 3.4. If embeddings are normalized such that ∀i, ‖K·,i‖2 = a we have

N2

M
a4 ≤

M∑
j=1

‖Kj,·‖42 ≤ N2a4. (4)

Conversely, if dimensions are normalized such that ∀j, ‖Kj,·‖2 = a we have

M2

N
a4 ≤

N∑
i=1

‖K·,i‖42 ≤M2a4. (5)

Following the proof of lemma 3.4, the lower bounds can be constructed with a constant embedding
matrix and the upper bounds with an embedding matrix where either the rows or columns contain
only one non-zero element. Both correspond to collapsed representations and will thus not be at-
tained in practice. While it is impossible to characterize non-collapsed embedding matrices and, as
such, derive better practical bounds, these bounds can still be useful to derive the following corol-
lary. We study how close methods are to these bounds in practice in section H of the supplementary
material. The main conclusion is that in all practical scenarios, the sum of norms will be very close
to the lower bounds, deviating by a single-digit factor.
Corollary 3.4.1. If embeddings are L2-normalized we have

Lnc −N +
N2

M
≤ Lc ≤ Lnc −N +N2. (6)

Similarly, if dimensions are L2-normalized we have

Lc −M +
M2

N
≤ Lnc ≤ Lc −M +M2. (7)

Lemma 3.4 applied to Theorem 3.3 directly gives us corollary 3.4.1, which means that in practical
scenarios, even when we compare methods where the embeddings are not doubly normalized, the
contrastive and non-contrastive criteria can’t be arbitrarily far apart. We further show experimentally
in section 5.1 that the normalization strategy does not matter from a performance point of view on
SimCLR, reinforcing this argument. Considering the previous discussions, we thus argue that the
main differences between sample-contrastive and dimension-contrastive methods come from the
optimization process as well as the implementation details.

Disguising VICReg as a contrastive method. To illustrate theorem 3.3 we can rewrite VICReg’s
criterion to make Lc appear. We first recall the different components of VICReg’s criterion. The
variance criterion v is a hinge loss that aims at making the variance along every dimension greater
than 1, and the covariance criterion c is exactly defined as Lnc applied to centered embeddings. For
more details, confer Bardes et al. (2021). To make Lc appear, we will still apply the invariance and
variance criterion on the embeddings, but the covariance criterion will be applied to the transposed
embeddings, effectively making it contrastive since we have:

c(KT ) = ‖KT
(
KT
)T − diag

(
KT
(
KT
)T) ‖2F = ‖KTK − diag(KTK)‖2F = Lc(K). (8)

We then just need to add a regularization term on the norms of embeddings and dimensions as
follows:

Lreg(K) =
N∑
i=1

‖K·,i‖42 −
M∑
j=1

‖Kj,·‖42, (9)

and VICReg’s loss function can then be written as

LV ICReg = λ

N∑
i=1

‖K·,i−K′·,i‖22+µ (v(K) + v(K′))+ν (Lc(K) + Lreg(K) + Lc(K′) + Lreg(K′)) .

(10)
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This rewriting can be seen as a variation of SCL to which is added Lreg and that uses the variance
loss for normalization. Being able to make VICReg’s criterion sample-contrastive highlights the
close relationship between existing sample-contrastive and dimension-contrastive methods and fur-
ther shows that the difference in the behavior of different methods is not mainly due to whether they
are contrastive or not.

4 INTERPOLATING BETWEEN METHODS: IMPACT OF THE LOSS FUNCTION.

While we have discussed the link between the contrastive and non-contrastive criteria, we can won-
der how the design differences in popular criteria manifest themselves in practice. To do so we start
by introducing variations on VICReg that will allow us to interpolate between VICReg and SimCLR
while isolating precise components of the loss function. While our focus will be on performance,
we provide an analysis of the optimization quality in supplementary section J. The conclusion is that
while some design choices negatively impact the optimization process on the embeddings, there are
no easily visible differences in the representations which are used in practice.

VICReg variations. We introduce two variants of VICReg, one that is non-contrastive but inspired
by the InfoNCE criterion and one that is contrastive and also inspired by the InfoNCE criterion.
The former is motivated by one of the main differences between methods, which is the use of the
LogSumExp (LSE) for the repulsive force (e.g., SimCLR) or the use of the sum of squares (e.g.,
SCL, VICreg, BT). The latter is motivated by the wish to design contrastive methods, where im-
plementation details such as the negative pair sampling are as close as possible to another method.
This way, comparing VICReg to either of those methods will yield a comparison that truly isolates
specific components of the loss function. These two methods can also be seen as a transformation
from VICReg to SimCLR, which allows us to see when the behavior of VICReg becomes akin to
SimCLR’s, as illustrated in the following diagram:

VICReg
LogSumExp−−−−−−→ VICReg-exp Contrastive−−−−−−→ VICReg-ctr

Neg. pair sampling−−−−−−−−−−→ SimCLR

The first variant that we will introduce is VICReg-exp, which uses a repulsive force inspired by the
InfoNCE criterion. We first define the exponential covariance regularization as:

cexp(K) =
1

d

∑
i

log

∑
j 6=i

eC(K)i,j/τ

 , (11)

VICReg-exp is then VICReg where we replace the covariance criterion by this exponential covari-
ance criterion, giving an overall criterion of

LV ICReg−exp = λ

N∑
i=1

‖K·,i −K′·,i‖22 + µ (v(K) + v(K′)) + ν (cexp(K) + cexp(K′)) . (12)

We then define VICReg-ctr, which is VICReg-exp where we transpose the embedding matrix before
applying the variance and covariance regularization. This means that the variance regularization
will regularize the norm of the embeddings, and the covariance criterion now penalizes the Gram
matrix, with the same repulsive force as in DCL. Transposing the embedding matrix for the variance
criterion leads to more stable training and enables the use of mixed precision. We thus have the
following criterion:

LV ICReg−ctr = λ

N∑
i=1

‖K·,i−K′·,i‖22 +µ
(
v(KT ) + v(K′T )

)
+ ν

(
cexp(KT ) + cexp(K′T )

)
. (13)

This way, VICReg-exp will allow us to study the influence of the use of the LogSumExp opera-
tor in the repulsive force, and VICReg-ctr to study the difference between sample-contrastive and
dimension-contrastive methods when comparing it to VICReg-exp. We will now be able to study
the optimization of the two criteria and see how different design choices affect it.
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Figure 1: VICReg, VICReg-exp, and VICReg-ctr perform similarly in 100 epochs training, vali-
dating empirically our theoretical result. While the original implementation of SimCLR performs
significantly worse – which is unexpected per our theory – we are able to improve its performance to
VICReg’s level. This further validates our findings. While different projector architectures impact
performance, behaviors are similar across methods. Confer supplementary section K for numerical
values and hyperparameters.

5 PRACTICAL DIFFERENCES BETWEEN SAMPLE-CONTRASTIVE AND
DIMENSION-CONTRASTIVE METHODS

While we have discussed how close sample and dimension contrastive methods are in theory, one of
the primary considerations when choosing or designing a method is the performance on downstream
tasks. Linear classification on ImageNet has been the main focus in most SSL methods, so we will
focus on this task. We will consider the two following aspects, which are responsible for most of the
discrepancies between methods.

Loss implementation. Thanks to VICReg-exp, we are able to study the difference between penal-
izing the Frobenius norm directly and using a LogSumExp to penalize it. Similarly, for VICReg-ctr
we are able to study the practical differences between the contrastive and non-contrastive criteria.
Finally, with SimCLR we will be able to see how the last details between VICReg-ctr and it can
impact performance.

Projector architecture. One of the main differences in methods is how the projector is designed.
To describe projector architectures we use the following notation: X − Y − Z means that we use
linear layers of dimensions X , then Y and Z. Each layer is followed by a ReLU activation and a
batch normalization layer. The last layer has no activation, batch normalization, or bias.
In order to study the impact that this has on performance with respect to embedding size, we study
three scenarios. First, d − d − d, which is the scenario used for VICReg and BT, then 2048 − d
which was originally used for SimCLR, and finally 8192 − 8192 − d which was optimal for large
embeddings with VICReg.

Due to the extensive nature of the following experiments, we use a proxy of the classical linear
evaluation on ImageNet, where the classifier is trained alongside the backbone and projector. Rep-
resentations are fed to a linear classifier while keeping the gradient of this classifier’s criterion from
flowing back through the backbone. The addition of this linear classifier is extremely cheap and
avoids a costly linear evaluation after training. The performance of this online classifier correlates
almost perfectly with its offline counterpart, so we can rely on it to discuss the general behaviors of
various methods. This evaluation was briefly mentioned in Chen et al. (2020a) but without experi-
mental support. We discuss the correlation between the two further in supplementary section E.

Empirical validation. The first takeaway from figure 1 is that the transition VICReg →
VICReg-exp via the addition of the LogSumExp did not alter overall performance or behav-
ior. While small performance differences are visible between the two when using light projec-
tors, especially at low embedding dimension, as soon as we use a larger projector these differ-
ences disappear with them achieving 68.13% and 68.00% respectively. Focusing on the transition
VICReg-exp → VICReg-ctr, we can see that there is no noticeable gap in performance in a setting
where we were able to isolate the sample-contrastive and dimension-contrastive nature of the meth-
ods. This validates empirically our theoretical findings on the equivalence of sample-contrastive
and dimension-contrastive methods. When comparing VICReg-ctr to our reproduction of SimCLR,
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Table 1: Normalisation strategy used by different methods. Scenarios A and B for SimCLR enable a fairer
comparison to VICReg-ctr and VICReg respectively.

Method VICReg VICReg-exp VICReg-ctr SimCLR

Classical A B

Dimension centering 3 3 3 7 3 3
Embedding norm 1 1 1
Dimension norm

√
N

√
N

√
N/M

using the original hyperparameters, we can see that VICReg-ctr performs significantly better than
SimCLR, achieving 67.92% top-1 accuracy compared to 66.33%. This is surprising since the main
difference between the two is that VICReg-ctr uses fewer negative pairs, which should not improve
performance. As such we will focus on showing that the previously known performance of SimCLR
is suboptimal and then fix it. In supplementary section F we further validate our results with k-nn
classification accuracy and also show that features correlate extremely well between methods.

Improving SimCLR’s performance. To the best of our knowledge, the highest top-1 accuracies
reported on ImageNet with SimCLR in 100 epochs are around 66.8% (Chen et al., 2021a). While
much higher than the 64.7% originally reported, this is still significantly lower than VICReg. Moti-
vated by the performance of VICReg-ctr, we used the same projector as VICReg and heavily tuned
hyperparameters, allowing us to find that a temperature of 0.15 and base learning rate of 0.5 can
lead to a top-1 accuracy of 68.6%, matching VICReg’s performance in Bardes et al. (2021). This
reinforces our theoretical insights and highlights the contribution of precise engineering1 in recent
self-supervised advances. As it stands, SimCLR can still serve as a strong baseline.

A larger projector increases performance. From figure 1 we can see that for every studied method,
going from a projector with architecture 2048 − d to 8192 − 8192 − d yielded a significant boost
in performance, especially for VICReg and VICReg-ctr, both gaining 3.5− 4 points. The projector
d − d − d is in between the two depending on the embedding dimension but also shows a similar
trend, the performance increases with the number of parameters for every method. While out of the
scope of this work, the study of the importance of the projector’s capacity is an exciting line of work
that should help gain a deeper understanding of its role in self-supervised learning. We provide a
preliminary discussion in the supplementary section I.

Clearing up misconceptions. While contrastive methods are often thought of as sample ineffi-
cient, thus requiring large batch sizes, and non-contrastive methods as dimension inefficient, thus
requiring projectors with large output dimensions, we argue that both of these assumptions are mis-
leading and that all of these apparent issues can be alleviated with some care. Most notably, the
need for large batch sizes of contrastive methods has been studied in Yeh et al. (2021) and Zhang
et al. (2022) where the main conclusions are that with more tuning of the InfoNCE parameters, the
robustness of SimCLR and MoCo to small batches can be improved. Regarding the robustness of
non-contrastive methods to embedding dimension, our experiments show that with a more adequate
projector architecture and with careful hyperparameter tuning, the drop in performance at low em-
bedding dimension is not as present as initially reported (Zbontar et al., 2021; Bardes et al., 2021).
With 256-dimensional embeddings, we were able to achieve 61.36% top-1 accuracy by tuning VI-
CReg’s hyperparameters, compared to the 55.9% that were initially reported in Bardes et al. (2021).
This can be further improved to 65.01% with a bigger projector. While a drop is still present, we are
able to reach peak performance at 1024 dimensions, which is lower than the representation’s dimen-
sion of 2048 and shows that a large embedding dimension is not a deciding factor in downstream
performance.

5.1 INFLUENCE OF THE NORMALIZATION STRATEGY

While we have shown that the performance gap between sample-contrastive and dimension-
contrastive methods can be closed with careful hyperparameter tuning, in the studied settings not

1Popular PyTorch implementations of SimCLR that are compatible with DDP use a wrong gather opera-
tor, which when combined with DDP divides the gradients by the world size. The implementation in VICReg’s
codebase is correct and should be used. This change had a significant impact on performance and allowed us
to reach VICReg’s performance.
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Figure 2: The performance of SimCLR is unchanged when introducing centering or dimension
standardization, highlighting the lack of importance of normalization on peak performance.

all details are equal. This is especially true regarding the normalization strategies that are used, and
we illustrate the different ones in table 1. In order to show that these differences do not impact
performance, we will introduce two variations of SimCLR. First, we will look at SimCLR with the
centering of the dimensions, and then at SimCLR with the centering of the dimensions as well as
a normalization along the dimensions instead of the embeddings. This last strategy is in essence
a standardization of the dimensions and is the same scheme used by VICReg. More precisely the
dimension standardization can be written as :

∀i ∈ [1, . . . ,M ] K·,i =
K̂·,i
‖K̂·,i‖2

×
√
N

M
with K̂·,i = K·,i −

1

N

N∑
j=1

Kj,i. (14)

These variations will allow us to compare VICReg and SimCLR when both adopt the same normal-
ization strategy, resulting in a comparison that will more closely fit our theoretical framework.

As we can see in figure 2, the centering and dimension standardization do not impact performance
at all and we are able to achieve the same peak performance as before. The performance is slightly
lower with a shallow projector 2048 − d, but in all the other scenarios we retrieve the same perfor-
mance as the original SimCLR. This performance is on par with VICReg and its variations which
reinforces our theoretical result in practice. This was further confirmed in a 1000 epoch run, where
SimCLR with dimension standardization was able to reach 72.6% top-1 accuracy, compared to
73.3% for VICReg. While a small difference persists, hyperparameter tuning is very expensive in
this setting and is most likely the cause of this gap.
From these results, we can conclude that while the normalization strategy can be theoretically mo-
tivated or can ease the optimization process, it is not a deciding factor in the performance of self-
supervised methods and that the normalization strategy that should be used is the one that is the
easiest to work with for a given method.

6 CONCLUSION

Through an analysis of their criteria, we were able to show that sample-contrastive and dimension-
contrastive methods have learning objectives that are closely related, as they are effectively minimiz-
ing criteria that are equivalent up to row and column normalization of the embedding matrix. This
suggests a certain duality in the behavior of such methods, which we studied empirically. Through
the lens of variations of VICReg, we were able to study popular design choices in self-supervised
loss functions and show their lack of impact on performance, significantly improving the robust-
ness to embedding dimension of VICReg along the way. Motivated by our theoretical findings, we
performed ample hyperparameter tuning on SimCLR and were able to close its performance gap
with VICReg. We also showed that the normalization strategy does not play an important role in
performance. This further reinforces the similarities between methods as predicted by our theoreti-
cal results. We expect that our results will help extend theoretical works in self-supervised learning
to a wider family of methods, as well as help analyses by deriving criteria that are easier to work
with. We also expect that our findings will help alleviate preconceived ideas on contrastive and
non-contrastive learning. If one thing must be remembered from this work, it is that dimension-
contrastive and sample-contrastive methods are two sides of the same coin. Finally, perhaps the
most important message of this work is to show that different SOTA SSL methods can be unified.
Pinpointing the source of the advancements is an important direction to consolidate our understand-
ing.
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8 REPRODUCIBILITY STATEMENT

While our pretrainings are very costly, each taking around a day with 8 V100 GPUs, we provide
complete hyperparameter values in table S6. They are compatible with official implementations of
the losses, and for VICReg-ctr and VICReg-exp we also provide PyTorch pseudocode in supple-
mentary section L. In order to reproduce our main figure, we also give the numerical performance
in table S5. All of this should make our results reproducible, and, more importantly, should make it
so that practitioners can benefit from the improved performance that we introduce.
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marking images in self-supervised latent spaces. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2022.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical de-
pendence with hilbert-schmidt norms. In International conference on algorithmic learning theory,
pp. 63–77. Springer, 2005.

10



Published as a conference paper at ICLR 2023

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
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A BACKGROUND

In this section, we will recall the loss functions of all the methods we are considering throughout
our theoretical analysis.

DCL: We first take a look at DCL’s criterion. We consider that K is l2 normalized column-wise, i.e.
embeddings are normalized. We have

LDCL =

N∑
i=1

− log

(
eK

T
·,iK

′
·,i/τ∑

j 6=i e
KT
·,iK·,j/τ

)
=

N∑
i=1

−
KT·,iK′·,i
τ

+ log

∑
j 6=i

eK
T
·,iK·,j/τ

 . (15)

SimCLR: We now take a look at SimCLR’s criterion. We consider that K is l2 normalized column-
wise, i.e. embeddings are normalized. We have

LSimCLR =

N∑
i=1

− log

(
eK

T
·,iK

′
·,i/τ

eK
T
·,iK′·,i/τ +

∑
j 6=i e

KT
·,iK·,j/τ

)
(16)

=

N∑
i=1

−
KT·,iK′·,i
τ

+ log

eKT
·,iK

′
·,i/τ +

∑
j 6=i

eK
T
·,iK·,j/τ

 . (17)

Spectral Constrastive Loss: Spectral Contastive Loss is defined as

LSCL = −2
N∑
i=1

KT·,iK′·,i+
∑
j 6=i

(
KT·,iK·,j

)2
= −2

(
N∑
i=1

KT·,iK′·,i

)
+‖KTK−diag(KTK)‖2F . (18)

The normalization that is employed is to project all embeddings on a ball of radius µ. This means
that if their norm is lower than µ, nothing will happen to them.

Barlow Twins: We consider thatK is l2 normalized row-wise, i.e. dimensions are normalized. This
gives us:

LBT =

M∑
j=1

(
1− (KK′T )j,j

)2
+λ

M∑
i,j,i 6=j

(KK′T )2j,i =
M∑
j=1

(
1− (KK′T )j,j

)2
+λ‖KK′T−diag(KK′T )‖2F .

(19)

VICReg: VICReg’s criterion is defined as

LV ICReg = λ

N∑
i=1

‖K·,i −K′·,i‖22 + µ (v(K) + v(K′)) + ν (c(K) + c(K′)) . (20)

With c a criterion that penalizes the off-diagonal terms of the covariance matrix as

c(K) =
∑
i 6=j

Cov(K)2i,j = ‖KKT − diag(KKT )‖2F = Lnc, (21)

and v a criterion that aims at normalizing dimensions, i.e. rows of K.

TCR: TCR’s cost function is defined as

LTCR = −1

2
log det (I + αCov(K)) = −1

2
log det

(
I + αKKT

)
= −1

2

∑
i

log
(
1 + ασ2

i

)
,

(22)
where σi is the i-th singular value of K.
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B LINKS BETWEEN METHODS AND OUR CRITERIA

While we focus on methods for which the regularization is obtained through the criterion, several
other methods can be linked informally to our results. The difficulty in linking them to Lc or Lnc
can also come from choices that are motivated by practical limitations, such as the use of a memory
bank, and which do not change methods fundamentally.

One of the most surprising lines of works, BYOL (Grill et al., 2020) and SimSiam (Chen & He,
2020), showed that using stop-gradient on one side of the encoder and using a predictor network to
create asymmetry was enough to avoid collapse and learn good representations. Even though they
do not avoid collapse explicitly through their criteria, recent works such as Halvagal et al. (2022)
or Theorem 3 from Tian et al. (2021) have shown links between the training dynamics of SimSiam
and variance and covariance regularization, akin to what Lnc would lead to. While these analyses
require assumptions such as the linearity of the encoder, they still help shine a light on SimSiam and
BYOL’s behavior and enable us to see how they can be related to our results.

Due to the popularity of sample-contrastive methods, several variants have emerged to improve
their sample efficiency or their performance in general. One such modification is illustrated in
MoCo (He et al., 2020; Chen et al., 2020b; 2021b) where a memory bank of sample is combined
with an exponential moving average (EMA) of the encoder to provide better negative pairs and
thus improve training. While this makes it hard to relate MoCo to our framework, it still relies on
an InfoNCE criterion like SimCLR and thus leads to similar representations. SimCLR and MoCo
become especially close near convergence since the online network and the EMA one will be very
similar and thus the two methods also become more alike.

Clustering methods such as DeepCluster (Caron et al., 2018), SwAV (Caron et al., 2020) or
DINO Caron et al. (2021) can also be related informally to sample-contrastive approaches. Similarly
to MoCo, the main difference lies in the construction of the negative pairs, which are constructed us-
ing cluster centers here. The embeddings are then contrasted with these clustering prototypes using
losses akin to InfoNCE. In DINO, the clustering aspect is more subtle as it is done online, thanks to
the last linear layer of the projector which can be thought of as the bank of cluster prototypes, and
the embeddings are then the outputs of the penultimate layer. Its projector can thus be decomposed
into two parts, the first being the classical projector which is followed by L2 normalization, and
the last layer which acts as a clustering layer thanks to the softmax that follows it. As such, while
clustering methods cannot be clearly linked to our framework, a link to sample-contrastive methods
is still present, even if only informally.

Overall, while not all methods can fit clearly into our results, we are still able to relate most of them
to sample-contrastive or dimension-contrastive methods, even if it is with less rigor. This further
reinforces the similarity between methods.

C PROOFS

Lemma C.1. Let X,Y ∼ σD−1 two i.i.d. random variables corresponding to vectors uniformly
distributed on SD−1. Their dot product follows the following distribution

XTY + 1

2
∼ Beta

(
D − 1

2
,
D − 1

2

)
.

Proof. A similar result was proved in Fernandez et al. (2022), though we go one step further and
derive the distribution of XTY+1

2 . We follow a more geometrical argument and invite the reader to
confer Fernandez et al. (2022) for an alternative approach.

By the symmetry of the hypersphere, the distribution of XTY is the same as the one of
XT (1, 0 . . . , 0), which corresponds to rotating the reference frame. The cumulative distribution
function then corresponds to the surface of the hyperspherical cap of angle cos−1 (X1).
Using the formulas for the area of a spherical cap on SD derived in Li (2011), as well as the fact
than sin2(cos−1(x)) = 1 − x2 we directly obtain that for XTY > 0 (i.e. cos−1 (X1) ≤ π

2 ), we
have 1− (XTY )2 ∼ Beta

(
D−1
2 , 12

)
.
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Since the density of the Beta distribution has reflectional symmetry, we see that (XTY )2 ∼
Beta

(
1
2 ,

D−1
2

)
.

By substituting in u = XTY+1
2 if follows directly that

u ∼ Beta
(
D − 1

2
,
D − 1

2

)
, (23)

concluding the proof.

Proposition C.2. Considering an infinite amount of available negative samples, SimCLR and DCL’s
criteria lead to embeddings where for negative pairs (x, x−) ∈ RM we have

E
[
xTx−

]
= 0 and Var

[
xTx−

]
=

1

M
. (24)

Proof. The proof hinges on Theorem 1 from Wang & Isola (2020), which states that as the number
of negative samples goes to infinity, optimizing the repulsive force of the InfoNCE criterion leads
to uniformly distributed embeddings on the M -hypersphere.

This uniform distribution allows us to leverage Lemma C.1 in saying that as the number of neg-
ative samples goes to infinity, for any pair of random embeddings X,Y , we have XTY+1

2 ∼
Beta

(
M−1

2 , M−12

)
.

We can directly obtain the two following properties

E
[
XTY + 1

2

]
=

M−1
2

M−1
2 + M−1

2

=
1

2
⇒ E

[
XTY

]
= 0, (25)

Var
[
XTY + 1

2

]
=

M−1
2 × M−1

2(
M−1

2 + M−1
2

)2 (M−1
2 + M−1

2 + 1
) =

1

4M
⇒ Var

[
XTY

]
=

1

M
, (26)

concluding the proof.

Proposition C.3. SimCLR-abs/sq, DCL-sq/abs, as well as Spectral Contrastive Loss are sample-
contrastive methods. Barlow Twins, VICReg, and TCR are dimension-contrastive methods.

Proof. DCL-sq/abs: We first take a look at DCL-sq/abs’s criteria. We consider that K is l2 normal-
ized column-wise, i.e. embeddings are normalized. Let f : R→ R+ be either defined as f(x) = x2

for DCL-sq or as f(x) = |x| for DCL-abs. We have

LDCL =

N∑
i=1

− log

 ef(K
T
·,iK

′
·,i)/τ∑

j 6=i e
f(KT

·,iK·,j)/τ

 =

N∑
i=1

−
f
(
KT·,iK′·,i

)
τ

+ log

∑
j 6=i

ef(K
T
·,iK·,j)/τ

 .

(27)
The first part of this criterion is the invariance criterion and the second part is the LogSumExp(LSE)
of embeddings’ similarity. We know that this is a smooth approximation of the max operator with
the following bounds:

max
(
{∀j 6= i, f

(
KT·,iK·,j

)
}
)
≤ τ log

∑
j 6=i

ef(K
T
·,iK·,j)/τ

 ≤ max
(
{∀j 6= i, f

(
KT·,iK·,j

)
}
)
+τ log(N−1).

(28)
We can thus say that using either

N∑
i=1

log

∑
j 6=i

ef(K
T
·,iK·,j)/τ

 or
N∑
i=1

max
j 6=i

f
(
KT·,iK·,j

)
, (29)
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as repulsive force will lead to the same result, a diagonal Gram matrix. Since this is the same goal
as for our sample-contrastive criterion, DCL-sq and DCL-abs are sample-contrastive methods.

The link to Lc is more visible with the right term, which corresponds to only penalizing one value
per row/column of the Gram matrix. While this is less effective than penalizing all of them at once,
given sufficient training iterations it will converge to the same solution.

SimCLR-sq/abs: We now take a look at SimCLR-abs/sq’s criteria. We consider thatK is l2 normal-
ized column-wise, i.e. embeddings are normalized. Let f : R→ R+ be either defined as f(x) = x2

for SimCLR-sq or as f(x) = |x| for SimCLR-abs. We have

LSimCLR =

N∑
i=1

− log

 ef(K
T
·,iK

′
·,i)/τ

ef(K
T
·,iK′·,i)/τ +

∑
j 6=i e

f(KT
·,iK·,j)/τ

 (30)

=

N∑
i=1

−
f
(
KT·,iK′·,i

)
τ

+ log

ef(KT
·,iK

′
·,i)/τ +

∑
j 6=i

ef(K
T
·,iK·,j)/τ

 . (31)

Due to the presence of the positive pair in the repulsive force (right term), we cannot use the same
reasoning with the max operator as for DCL-sq/abs which gave a clear intuition.

Nonetheless one can clearly see that to minimize this criterion, all the similarities between the nega-
tive pairs, i.e. ∀i,∀j 6= i, f

(
KT·,iK·,j

)
, need to be minimized. As this will result in a diagonal Gram

matrix, we can say that minimizing this criterion will also minimize our sample-contrastive one. We
can thus conclude that SimCLR-sq and SimCLR-abs are sample-contrastive methods.

Spectral Constrastive Loss: We will now consider Spectral Constrastive Learning’s criterion. We
have

LSCL = −2
N∑
i=1

KT·,iK′·,i+
∑
j 6=i

(
KT·,iK·,j

)2
= −2

(
N∑
i=1

KT·,iK′·,i

)
+‖KTK−diag(KTK)‖2F . (32)

This means that Spectral Contrastive Loss also falls in the sample-contrastive category.

Barlow Twins: Looking at Barlow Twin’s criterion we have

LBT =

M∑
j=1

(
1− (KK′T )j,j

)2
+λ

M∑
i,j,i 6=j

(KK′T )2j,i =
M∑
j=1

(
1− (KK′T )j,j

)2
+λ‖KK′T−diag(KK′T )‖2F .

(33)

Since the distribution of augmentations is the same for both views of the images, and the backbone
is shared, taking a negative pair from K or K′ is the same. Barlow Twins’ criterion can then be
rewritten as

LBT =

M∑
j=1

(
1− (KK′T )j,j

)2
+ λ‖KKT − diag(KKT )‖2F . (34)

As such the right part of Barlow Twins’ criterion is indeed the dimension-contrastive criterion,
making Barlow Twins a dimension-contrastive method.

VICReg: VICReg’s criterion is defined as

LV ICReg = λ

N∑
i=1

‖K·,i −K′·,i‖22 + µ (v(K) + v(K′)) + ν (c(K) + c(K′)) . (35)

Recall that c is a criterion that penalizes the off-diagonal terms of the covariance matrix as follows:

c(K) =
∑
i6=j

Cov(K)2i,j = ‖KKT − diag(KKT )‖2F = Lnc. (36)

This means that VICReg is a dimension-contrastive method.
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TCR: TCR’s cost function is defined as

LTCR = −1

2
log det (I + αCov(K)) = −1

2
log det

(
I + αKKT

)
= −1

2

∑
i

log
(
1 + ασ2

i

)
,

(37)
where σi is the i-th singular value of K. As discussed in Li et al. (2022b), this criterion leads to a
diagonal covariance matrix, similarly to the non-contrastive criterion. We can thus say using either

− 1

2

∑
i

log
(
1 + ασ2

i

)
or ‖KKT − diag(KKT )‖2F (38)

will lead to diagonal covariance matrices, or similarly, null off-diagonal terms in the Covariance
matrix. This means that TCR also falls in the category of dimension-contrastive methods.

Theorem C.4. The sample-contrastive and dimension-contrastive criteria Lc and Lnc are equivalent
up to row and column normalization of the embedding matrix K. Consider a batch size of N and an
embedding dimension of M . We have:

Lnc +

M∑
j=1

‖Kj,·‖42 = Lc +
N∑
i=1

‖K·,i‖42. (39)

Proof. This proof is heavily inspired by the proof of Lemma 3.2 from Le et al. (2011) which provides
a similar result for doubly stochastic matrices.
We have

Lnc = ‖KKT − diag(KKT )‖2F (40)

= tr
[
(KKT − diag(KKT ))T (KKT − diag(KKT ))

]
(41)

= tr(KKTKKT )− 2tr(KKT diag(KKT )) + tr(diag(KKT ) diag(KKT )) (42)

= tr(KKTKKT )− tr(KKT diag(KKT )) (43)

= tr(KTKKTK)− tr(KKT diag(KKT )). (44)

Similarly for Lc, we obtain

Lc = ‖KTK − diag(KTK)‖2F (45)

= tr(KTKKTK)− tr(KTK diag(KTK)). (46)

Since
(
KTK

)
i,i

= ‖K·,i‖22 we deduce that tr(KTK diag(KTK)) =
∑N
i=1 ‖K·,i‖42. Similarly, we

obtain that tr(KKT diag(KKT )) =
∑M
j=1 ‖Kj,·‖42.

Plugging this back in, we finally deduce that

Lnc = Lc +

N∑
i=1

‖K·,i‖42 −
M∑
j=1

‖Kj,·‖42, (47)

concluding the proof.

Lemma C.5. If embeddings are normalized such that ∀i, ‖K·,i‖2 = a we have

N2

M
a4 ≤

M∑
j=1

‖Kj,·‖42 ≤ N2a4. (48)

Conversely, if dimensions are normalized such that ∀j, ‖Kj,·‖2 = a we have

M2

N
a4 ≤

N∑
i=1

‖K·,i‖42 ≤M2a4. (49)
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Proof. We start with the first set of inequalities. Since ∀i, ‖Ki,·‖22 ≥ 0 we have

M∑
j=1

‖Kj,·‖42 ≤

 M∑
j=1

‖Kj,·‖22

2

= ‖K‖4F = N2a4. (50)

Which gives us our upper bound. For the lower bound, using the convexity of the function f : x→
x2 we obtain

1

M

M∑
j=1

‖Kj,·‖42 ≥

 1

M

M∑
j=1

‖Kj,·‖22

2

=
N2

M2
a4. (51)

Combining those two inequalities gives us the desired bounds.

For the second set of inequalities, we follow the same reasoning and use the fact that in this scenario
‖K‖2F =Ma2 giving us the aforementioned bounds and concluding the proof.

D TRAINING PROCEDURE

For training, we follow common procedure and use a ResNet-50 backbone (He et al., 2016), with
the LARS (You et al., 2017) optimizer. We use by default a base learning rate of 0.3 and compute
the effective learning rate as lr = base lr × batch size

256 . We also use a momentum of 0.9 and
weight decay of 10−6. The learning rate follows a cosine annealing schedule after a 10-epoch linear
warmup. We train for 100 epochs in all of our experiments.
For data augmentation, we follow the protocol of BYOL (Grill et al., 2020) which is as follows

Table S1: Image augmentation parameters, taken from (Grill et al., 2020).

Parameter View 1 View 2

Random crop probability 1.0 1.0
Horizontal flip probability 0.5 0.5
Color jittering probability 0.8 0.8
Brightness adjustment max intensity 0.4 0.4
Contrast adjustment max intensity 0.4 0.4
Saturation adjustment max intensity 0.2 0.2
Hue adjustment max intensity 0.1 0.1
Grayscale probability 0.2 0.2
Gaussian blurring probability 1.0 0.1
Solarization probability. 0.0 0.2

Each experiment was run on 8 Nvidia V100 GPUs, with 32GB of memory each, and took around 24
hours to complete.

While this was our base experimental protocol, it was adapted for each method, mostly by changing
method-specific hyperparameters as well as the learning rate, confer supplementary section K for
the exact hyperparameters used for each experiment. The Pytorch pseudocode for VICReg-exp and
VICReg-ctr is also available in supplementary section L.

E ONLINE LINEAR PROBE

As previously discussed, to evaluate our experiments, we relied on the use of a linear classifier that
is trained jointly with our main network. This means that it is trained on suboptimal representations
and stronger augmentations compared to what is typically done for linear evaluation. Even though
these two approaches seem closely related, we are interested in finding how well they are correlated.
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To do so, we trained a linear evaluation on VICReg and VICreg-exp with a projector architecture
of 8192 − 8192 − d, d ∈ [256, 512, 1024, 2048, 8192] using the following protocol. We train the
linear classifier on frozen representations for 100 epochs with a batch size of 1024 using the SGD
optimizer with a base learning rate 0.25 (for VICReg) or 1.4 (for VICReg-exp), momentum 0.9,
weight decay 10−6 and using a cosine annealing learning rate scheduler. We compute the learning
rate as lr = base lr× batch size

256 . For augmentations, we follow standard procedure and use random
cropping with a scale between 0.08 and 1 with an image size of 224 × 224 and horizontal flip with
a probability 0.5 during training. For evaluation, we do a center crop.

Table S2: Relationship in performance between the online linear probe and the offline linear classi-
fier. We used VICReg and an expander with architecture 8192− 8192− d.

Embedding dimension 256 512 1024 2048 8192

Online top-1 65.01 66.72 68.06 68.06 68.13
Offline top-1 65.11 66.64 67.96 68.00 68.02

Table S3: Relationship in performance between the online linear probe and the offline linear classi-
fier. We used VICReg-exp and an expander with architecture 8192− 8192− d.

Embedding dimension 256 512 1024 2048 8192

Online top-1 65.24 66.71 67.86 68.00 67.93
Offline top-1 65.30 66.58 67.83 67.89 68.18

As we can see in table S2 and S3, the performance achieved by the offline classifier is extremely
close to the performance of the online classifier. While the online classifier cost in compute is
negligible, the linear evaluation is almost as long as the pretraining due to data loading bottlenecks
and it requires a significant amount of learning rate tuning. This makes this online classifier a
very appealing alternative since it demonstrates very correlated performances for a fraction of the
computing cost.

Training a linear regression on those two sets of evaluations gives a model with a slope of 0.97, an
intercept of 2.1, and an R2 of 1.0. It is worth noting that since most values are close to 68, the fitting
of linear regression on this data is sensitive to noise. Nonetheless, the low intercept, as well as the
closeness of the slope to 1, confirm the negligible gap between the two evaluation methods that we
previously intuited.

F ADDITIONAL EVIDENCE OF THE SIMILARITY OF LEARNED
REPRESENTATIONS

The goal of this section is to provide additional empirical evidence of the similar properties of repre-
sentations learned by sample-contrastive and dimension-contrastive methods. To this effect, we will
evaluate representations with a k-nn classifier and compare their similarities with CKA (Kornblith
et al., 2019).

k-nn evaluation. In order to see if our previous results only validated similar performance in a linear
classification setting, we will look at performance with k-nn classifiers which evaluate how well a
metric is preserved instead of linear separability. We rely on the protocol of Bardes et al. (2021),
and use values of k in [1, 5, 10, 20, 50, 200], with temperatures in [0.05, 0.07, 0.1, 0.2, 0.5, 1] for the
weighting of the classifiers. We then look at the best performance achieved by all methods to give a
comparison that is as fair as possible.

As we can see in figure S1, we are able to retrieve behaviors similar to figure 1, although results ap-
pear less stable for VICReg-exp and VICReg-ctr. Nonetheless, looking at the transition VICReg-exp
→ VICReg-ctr we can see that the peak performance is still preserved, further validation our results
for these methods were the dimension-contrastive and sample-contrastive natures are isolated. Sim-
ilarly as for linear evaluation, the original implementation of SimCLR performs significantly worse
than other methods, but our tuned SimCLR can recover the performance of VICReg with a 5.5 point
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Figure S1: Reproduction of figure 1 with a k-nn classifier. We notice the same pattern as previously,
where going from dimension-contrastive to sample-contrastive does not lead to a significant drop in
performance.

increase in performance. This highlights how the practical implications of our results extend beyond
linear classification, while further validating our theory.

CKA. CKA (Centered Kernel Alignment) (Kornblith et al., 2019) is a powerful tool to study the
similarities between representations, which relies on HSIC (Hilbert-Schmidt Independance Crite-
rion) (Gretton et al., 2005) with a given kernel. We will use a linear kernel for simplicity. For
each method, we will study three different experiments that reached the same level of performance
to measure both intra- and inter-method correlation between representtions. We also consider a
random network to give a lower bound of what we can expect.
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Figure S2: CKA of the learned representations on all considered methods. For a given method,
we use experiments with different output dimensions (1024,2048,8192) that achieved equivalent
performance.

As we can see in figure S2, all of the learned representations are highly correlated, where intra-
and inter-methods CKA are very similar. This both shows that different self-supervised methods,
whether dimension-contrastive or sample-contrastive, provide consistent representations over differ-
ent runs and also all learn similar representations. These results contrast with the findings in Figure 2
from Gwilliam & Shrivastava (2022) where they found that different methods lead to representations
with low CKA. We believe that their findings can be explained by different training setups between
methods since the models used were trained with different projectors and data augmentation.
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Both of these analyses help cement our results, where we can now say that through the lens of linear
classification, k-nn classification, and CKA, all studied self-supervised methods produce extremely
similar representations.

G IMPACT OF THE SIMILARITY MEASURE ON SIMCLR

While SimCLR uses cosine similarity to push away negative pairs, we will look at what happens
when we use the square or absolute value of cosine similarities, as in SimCLR-sq or SimCLR-abs.
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Figure S3: Influence of using squared or absolute values of the cosine similarities for VICReg, with
different projector architectures.

As we can see in figure S3, the use of the squared or absolute values of the similarities did not impact
the performance on image classification, it even improved slightly with a large projector when using
the absolute values, achieving 68.7% top-1 accuracy.
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Figure S4: Histogram of cosine similarities for negative pairs in SimCLR-abs, SimCLR-sq and
SimCLR.

As we can see in figure S4, for all three methods we obtain a distribution of cosine similarities that
is centered at 0, but they all have very different standard deviations. The main culprit of this differ-
ence is dimensional collapse, as studied extensively in Jing et al. (2022). We study this behavior in
figure S5, where we see that the three methods show different levels of collapse. While SimCLR-
abs appears to have an almost full rank embedding matrix, we can see some collapse at around 256
dimensions for SimCLR, and 64 for SimCLR-sq. Per proposition 3.1, we know that with a perfect
optimization of SimCLR’s criterion, we should observe a variance of 1/D for the cosine similarities,
if we have D-dimensional embeddings. However this is not the ambient dimension but the embed-
dings’ dimension, and so when combining this result with the dimensional collapse, we clearly see
that SimCLR-abs should have less variance as it has the least amount of collapse, and SimCLR-sq
the highest variance as it has the most amount of collapse. Since this is what we observe in practice,
these results are coherent with the three methods producing similar cosine similarities distributions,
albeit with different standard deviations depending on the amount of dimensional collapse.
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Figure S5: Singular value distribution of the embeddings and representations computed on the train-
ing set of ImageNet for SimCLR, SimCLR-abs and SimCLR-sq. All methods use 512 dimensional
embeddings.

H ROW AND COLUMN NORMS INTERPLAY

While we provided bounds that apply to any matrix in lemma 3.4, in practice embedding matrices
have a particular structure and one can wonder where the norms are in between the relatively distant
bounds.
To study this we took 1024 images from ImageNet, computed the corresponding embedding matri-
ces, and then l2-normalized the rows or columns.

Table S4: The empirical interplay between embedding matrix norms under row- or column-wise
l2-normalization for different methods and projector architectures. We abbreviate thousands with k
and millions with M. The experiment ”Random” indicates a randomly initialized network.

Experiment Projector Colum normalization Row normalization
N2

M

∑
‖Kj,·‖42 N2 M2

N

∑
‖K·,i‖42 M2

VICReg 8192− 8192− 8192 128 128.19 1M 65k 83k 67M
VICReg-exp 8192− 8192− 8192 128 128.26 1M 65k 95k 67M
VICReg-ctr 8192− 8192− 512 2048 2078 1M 256 287 262k

SimCLR 8192− 8192− 512 2048 2061 1M 256 433.54 262k
8192− 8192− 8192 128 129.43 1M 65k 113k 67M

Random 8192− 8192− 8192 128 361.34 1M 65k 75k 67M

As we can see in table S4, for every method, in any expansion or projection scenario, we are always
close to the lower bound, deviating by a factor of 3 at most. This is significantly smaller than the
factorsN orM in lemma 3.4 which are tight when making no assumptions on the embedding matrix
K. As previously discussed these extreme cases consist respectively of a constant matrix and one
with only one non-zero element per row/column. It is logical that the embedding matrices that we
have in practice are closer to a constant matrix, with a uniform spread of information, even though
they still present some sparsity.
As such, for all practical concerns, the bounds are much closer in practice than they theoretically
are. This means that the sample-contrastive and dimension-contrastive criteria will also be closer in
practice.
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I IMPACT OF THE PROJECTOR CAPACITY
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Figure S6: Online performance on ImageNet for VICReg, VICReg-exp, VICReg-ctr, and SimCLR
with respect to embedding dimensions when changing the projector’s architecture.

As discussed in section 5, the design of the projector plays a significant role in downstream perfor-
mance. In figure S6, we also overlay the results for a projector with architecture 2048−2048−d on
top of the previously discussed ones. Such a projector offers similar behavior as an 8192−8192−d
one, but with a bit lower performance. The drop in performance is especially noticeable in
dimension-contrastive methods.
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Figure S7: Online performance on ImageNet for VICReg, VICReg-exp, VICReg-ctr, and SimCLR
with respect to the number of parameters in their projector.

As we can see in figure S7, if we take a look at the performance with respect to the number of
parameters of the projector we can see a clear trend that indicates that performance is increased
when increasing the number of parameters of the projector. This conclusion holds for all methods
though there are some scenarios that are clear outliers. For example, for VICReg and VICReg exp
we can see that with a 2048− 256 projector, the performance is significantly lower than expected.

While it would be interesting to see if this increase in performance saturates at some point, our
largest projectors already have 151 million parameters. Increasing it further quickly starts to become
impractical due to memory constraints during training, and as such, we leave this study to future
work.

Another aspect worth mentioning is that the increase in performance when increasing the number of
parameters is not automatic. For example for VICReg, the scenario 2048 − 2048 − 1024 achieves
66.68% top-1 for 10 million parameters, but the scenario 8192− 8192− 256 only achieves 65.01%
even though it has 86 million parameters. This drastic difference suggests that some care must be
taken when designing the projector and that even though the number of parameters is important, the
architecture in itself also is.
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J INFLUENCE OF LOSS FUNCTION DESIGN ON OPTIMIZATION QUALITY

As previously discussed, the introduction of VICReg-exp allows us to study the influence of the use
of the LogSumExp operator in the repulsive force, and VICReg-ctr to study the difference between
sample-contrastive and dimension-contrastive methods when comparing it to VICReg-exp. This
enables us to quantify the impact of these design choices on the quality of the optimization process.

While a perfect optimization of the aforementioned criteria would lead to embeddings with similar
properties for the covariance and Gram matrix, one can wonder how well they are optimized in
practice and whether design choices have a significant impact. To this effect we will look at the
Gram and Covariance matrices after optimization, both on the embeddings to study the quality
of the optimization process and on the representations to study the transferability of this process
to the representations since they are used for downstream tasks. For the embeddings, we use the
same normalization process as is used during training, and we center the representations to alleviate
the fact that the last ReLU layer constrains them to the positive orthant. This centering on the
representations is only done to make the visualization more interpretable.

As we can see in figure S8, while VICReg penalizes the off-diagonal terms of the covariance matrix
and not the Gram matrix, both matrices have off-diagonal terms that are significantly smaller than
their diagonal counterparts. Similarly for VICReg-exp, we can see that both the Gram and covari-
ance matrices are dominated by their diagonal in the embedding space, though there is noise in the
off-diagonal terms. This is due to the use of the LogSumExp, which as a smooth approximation of
the max operator, will mostly penalize the largest values. On the other hand, using squared values
will make them penalized by their absolute and not relative value.
We also observe the same behavior for VICReg-ctr and SimCLR, leading to Gram and covariance
matrices that are dominated by their diagonal but are overall noisier than for VICReg and VICReg-
exp. This suggests that the main culprit of this noise is indeed the LogSumExp but that the sample-
contrastive nature of VICReg-ctr and SimCLR also played a role in creating it.

Looking at the representations, the differences between the methods start to fade. They all still
produce Gram and covariance matrices that are dominated by their diagonal, but with some off-
diagonal noise. Even though we could see a clear difference in the quality of the optimization in the
embedding space, the similarity in the representation space makes it harder to interpret for practical
scenarios. Indeed, we saw that all methods can be made to perform the same when evaluating the
representations.
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(a) VICReg
Covariance matrix Gram matrix
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(ii) On the representations

(b) VICReg-exp
Covariance matrix Gram matrix

(i) On the embeddings

Covariance matrix Gram matrix

(ii) On the representations

(c) VICReg-ctr
Covariance matrix Gram matrix

(i) On the embeddings

Covariance matrix Gram matrix

(ii) On the representations

(d) SimCLR-Tuned

Figure S8: Covariance and similarity matrices on a random part of the ImageNet training set, using
VICReg, VICReg-exp, VICReg-ctr, and SimCLR pretrained on ImageNet for 100 epochs. The
covariance matrix is limited to the first 64 dimensions, while the Gram matrix is limited to the first
64 samples. In all cases, we used a projector with an output dimension of 2048, the same as the
representation dimension.
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K COMPLETE PERFORMANCE AND HYPERPARAMETER TABLES

Table S5: Top-1 accuracy on ImageNet using the online linear classifier, including all performances
for figures 1 and S6.

Experiment Projector 256 512 1024 2048 8192

VICReg

d− d− d 61.36 63.50 65.35 66.74 68.13
8192− 8192− d 65.01 66.72 68.06 68.07 68.13
2048− d 59.57 64.51 64.64 64.15 64.06
2048− 2048− d 64.16 65.87 66.68 66.74 66.78

VICReg-exp

d− d− d 61.02 63.90 66.33 66.82 67.93
8192− 8192− d 65.24 66.71 67.86 68.00 67.93
2048− d 61.53 63.59 65.06 64.31 64.34
2048− 2048− d 64.66 65.77 66.99 66.82 66.88

VICReg-ctr

d− d− d 62.87 64.95 66.21 66.93 67.73
8192− 8192− d 67.72 67.86 67.84 67.92 67.73
2048− d 64.79 64.83 65.00 64.81 64.44
2048− 2048− d 66.95 66.91 66.98 66.93 67.18

SimCLR-Orig

d− d− d 63.42 64.35 65.05 65.61 66.08
8192− 8192− d 66.11 66.33 66.00 66.02 66.08
2048− d 64.78 64.69 64.83 64.66 64.73
2048− 2048− d 65.36 65.75 65.61 65.61 65.70

SimCLR-Tuned

d− d− d 63.42 65.35 66.36 67.62 68.68
8192− 8192− d 68.45 68.61 68.49 68.48 68.68
2048− d 66.13 66.04 66.19 66.42 66.27
2048− 2048− d 67.48 67.50 67.62 67.62 67.65

Table S6: Hyperparameters used for the results in table S5. Sim., Var. and Cov. indicate the weights
of the criteria in VICReg and its variations. τ indicates the temperature used for LogSumExp-based
methods. The hyperparameters for VICReg and SimCLR are usable with the official implementa-
tions. For VICReg-exp and VICReg-ctr, the hyperparameters are compatible with the pseudocode
in section L.

Experiment Projector Batch size base lr VICReg
τ

Sim. Var. Cov.

VICReg

d = 256 1024 0.3 25 25 4
d = 512 1024 0.3 25 25 2
d = 1024 1024 0.3 25 25 2
d = 2048 1024 0.3 25 25 2
d = 8192 1024 0.3 25 25 0.5

VICReg-exp d 6= 8192 1024 0.5 1 1 2 0.1
d = 8192 1024 0.8 1 1 2 0.1

VICReg-ctr All 1024 0.6 1 1 1 0.15

SimCLR-Tuned All 2048 0.5 0.15
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L VICREG VARIATIONS PSEUDOCODE

Algorithm 1: VICReg-exp PyTorch pseudocode.

# f: encoder network,p: projector network, lambda, mu, nu:
coefficients of the invariance, variance and covariance
losses, N: batch size, D: dimension of the
representations, tau: temperature

# mse_loss: Mean square error loss function, relu: ReLU
activation function, cut_out_diag: remove the diagonal of
a matrix,

for x in loader: # load a batch with N samples
# two randomly augmented versions of x
x_a, x_b = augment(x)

# compute embeddings
k_a = p(f(x_a)) # N x D
k_b = p(f(x_b)) # N x D

# invariance loss
sim_loss = mse_loss(k_a, k_b)

# variance loss
std_k_a = torch.sqrt(k_a.var(dim=0) + 1e-04)
std_k_b = torch.sqrt(k_b.var(dim=0) + 1e-04)
std_loss = torch.mean(relu(1 - std_k_a))/2 + torch.mean(

relu(1 - std_k_b))/2

# covariance loss
k_a = k_a - k_a.mean(dim=0)
k_b = k_b - k_b.mean(dim=0)
cov_k_a = (k_a.T @ k_a) / (N - 1)
cov_k_b = (k_b.T @ k_b) / (N - 1)
cov_loss = torch.logsumexp(cut_out_diag(cov_k_a/tau),1).

mean()/2 +
torch.logsumexp(cut_out_diag(cov_k_b/tau),1).

mean()/2

# loss
loss = lambda * sim_loss + mu * std_loss + nu * cov_loss

# optimization step
loss.backward()
optimizer.step()
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Algorithm 2: VICReg-ctr PyTorch pseudocode.

# f: encoder network,p: projector network, lambda, mu, nu:
coefficients of the invariance, variance and covariance
losses, N: batch size, D: dimension of the
representations, tau: temperature

# mse_loss: Mean square error loss function, relu: ReLU
activation function, cut_out_diag: remove the diagonal of
a matrix,

for x in loader: # load a batch with N samples
# two randomly augmented versions of x
x_a, x_b = augment(x)

# compute embeddings
k_a = p(f(x_a)) # N x D
k_b = p(f(x_b)) # N x D

# invariance loss
sim_loss = mse_loss(k_a, k_b)

#Make the method contrastive
k_a = k_a.T
k_b = k_b.T

# variance loss
std_k_a = torch.sqrt(k_a.var(dim=0) + 1e-04)
std_k_b = torch.sqrt(k_b.var(dim=0) + 1e-04)
std_loss = torch.mean(relu(1 - std_k_a))/2 + torch.mean(

relu(1 - std_k_b))/2

# covariance loss
k_a = k_a - k_a.mean(dim=0)
k_b = k_b - k_b.mean(dim=0)
cov_k_a = (k_a.T @ k_a) / (N - 1)
cov_k_b = (k_b.T @ k_b) / (N - 1)
cov_loss = torch.logsumexp(cut_out_diag(cov_k_a/tau),1).

mean()/2 +
torch.logsumexp(cut_out_diag(cov_k_b/tau),1).

mean()/2

# loss
loss = lambda * sim_loss + mu * std_loss + nu * cov_loss

# optimization step
loss.backward()
optimizer.step()
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