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Univ. Littoral Côte d’Opale, LISIC – UR 4491, F-62219 Longuenesse, France

ABSTRACT

In this paper, we propose a new endmember estimation
method for snapshot spectral imaging (SSI) systems using
Fabry-Perot filters. Indeed, such systems only provide a part
of the spectral content of a classical multi- or hyperspectral
camera and restoring the full hyperspectral datacube from
an SSI matrix is named “demosaicing”. However, it was re-
cently shown that a joint unmixing and demosaicing method
allowed a much better unmixing performance than a two-
stage approach consisting of a demosaicing step followed
by an unmixing one. In this paper, we propose a new ap-
proach to estimate endmembers from the SSI image without
requiring a demosaicing step. It inverts the Fabry-Perot filters
and extends the “pure pixel” framework to the SSI sensor
patch level, that we name the “pure patch” assumption. Our
experiments show that our proposed scheme significantly
outperforms state-of-the-art methods in terms of endmember
estimation accuracy.

Index Terms— Snapshot Spectral Imaging, Endmem-
ber Identification, Fabry-Perot Filter Inversion, Rank-one
Approximation, Pure Patch Assumption

1. INTRODUCTION

An essential issue that hyperspectral imaging (HSI) sen-
sors have to handle is how to collect the four-dimensional
HSI data—i.e., two spatial, one spectral, and one temporal
dimensions—utilizing a single detector, i.e., a 1D-array or
2D-plane detectors. Thus, different strategies in HSI ac-
quisition designs have emerged from the disparity between
detector demands and available dimensionality, leading to
spatial, spectral, and frame scanning architectures [1]. Re-
gardless of the approach, the main potential of all the methods
is acquiring images with a high spectral, spatial, and tempo-
ral resolution. However, a shared characteristic among all
scenarios is the need for repetitive scanning of the scene
and the acquisition of many exposures (frames) to capture
the complete spatio-spectral resolution data cube. More-
over, the need for miniaturization of the imaging systems
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implies that novel designs should seek to be without mechan-
ical parts—such as moving mirrors—since they increase the
complexity of the designs. Therefore, a new generation of
HSI imaging architectures—known under the name Snapshot
Spectral Imaging (SSI)—has been proposed to overcome
the previously mentioned issues [2]. Among the recent
strategies which emerged, compressive coded-aperture SSI
(CASSI) systems [3] and SSI cameras using Fabry-Perot fil-
ters (FPfs) [4] only provide a 2-D image which is obtained
from the 3-D HS data. With both cameras, a post-processing
technique known as “demosaicing” must be applied to esti-
mate the full HS data cube. However, the proposed methods
significantly differ with respect to the chosen sensing tech-
nology. In this paper, we focus on the cameras using FPfs.

Traditional demosaicing methods use spatial and/or spec-
tral correlation and are based on Weighted Bilinear inter-
polation (WB) [5], Binary Tree-Based Generic Demosaic-
ing (BTES) [6], Iterative Spectral Difference (ItSD) [7], a
pseudo-panchromatic image (PPID) [8], structural and adap-
tive nonlocal optimization (SaND) [9], and graph-regularized
low-rank matrix completion (GRMR) [10]. More recently,
deep learning methods have been proposed [11–14].

Once the 3-D HS image has been restored from the 2-
D SSI one, we can apply any postprocessing technique of
interest. In particular, extracting the spectral signatures of
all the materials—aka endmembers—which are present in an
observed scene is a very classical problem known as unmix-
ing. Specifically, popular unmixing methods assume that for
each endmember, there is at least one spatial pixel which con-
tains the correspondent material only, such that the observed
spectrum is equal to the endmember. The most widely used
algorithms are the vertex component analysis (VCA) [15], N-
FINDR [16], the pixel purity index (PPI), and the sequential
maximum angle convex cone (SMACC) [1].

However, according to the authors in [10], performing
classification after demosaicing SSI images provides a poor
classification performance. Furthermore, in [17], we found
that a two-stage strategy—which consists of first demosaic-
ing an SSI image and then unmixing it—was much less ac-
curate than jointly demosaicing and unmixing the same SSI
data. In particular, we showed that our proposed approach—
which was solving a low-rank matrix completion problem
using a locally-rank-1 weighted nonnegative matrix factor-



Fig. 1. Spectral response of the 25 spectral filters of the 5× 5
mosaic Photon Focus SSI camera in the 400–1000 nm range.

ization framework and which is named K-means patch-based
weighted non-negative matrix factorization (KPWNMF)—
was providing much better estimates of the endmembers
than the two-stage approaches while still providing a slightly
better demosaicing performance.

In this work, we propose a novel approach to estimate
endmembers from the SSI image. It significantly differs
from [17] for the following reasons. Firstly, instead of a
low-rank matrix completion framework, we here propose to
invert the Fabry-Perot filters to recover the spectral content
from “patches” of the SSI image. Then, we relax the abun-
dance sparsity assumption needed in [17]: we here assume
that the previously recovered spectra may be seen as linear
mixtures of the endmembers and that some of the patches
only contained one material, i.e., we extend the “pure pixel”
idea to the patch level. The VCA algorithm is then used to
derive the final endmembers, while the abundances can then
be estimated using the method in [17]1.

The remainder of the paper is organized as follows. We
introduce the SSI camera and the problem we aim to solve
in Section 2. Then, section 3 presents our proposed method,
whose performance is investigated in Section 4. We lastly
conclude and introduce future work direction in Section 5.

2. PROBLEM STATEMENT

This section defines the SSI acquisition system and the
problem we aim to solve. The SSI camera acquires a two-
dimensional image of m× n pixels for each exposure, where
m and n are the numbers of horizontal and vertical pixels,
respectively. Moreover, the camera is assumed to observe k
spectral bands. In practice, the considered SSI technology is
based on a mosaic of FPfs which consist of

√
k×
√
k patches

1This is the reason why we only focus on the endmember estimation in
this paper.

which are repeated along the sensor surface2. In the ideal
scenario, an FPf allows the light from a minimal spectral
range to propagate to a sensor and stops the light outside this
range. However, these filters present additional harmonics
around each wavelength of interest in the real implementa-
tion, as shown in Fig. 1. Fortunately, these filters are known
and provided by the camera manufacturer [4].

In the remainder of this section, we focus on a single patch
of FPfs. Denoting yi(λi) the i-th SSI pixel of the considered
patch—assumed to theoretically observe the spectral informa-
tion at λi nm—we get:

yi(λi) =

k∑
j=1

hi(λj) · xi(λj) + ωi, (1)

where hi(λ) is the FPf associated with Pixel i, xi(λ) is the
plain spectrum to be observed on Pixel i, and ωi is some ad-
ditive noise. Moreover, assuming a linear mixture model, the
observed spectrum can be written as a mixture of endmem-
bers, i.e.,

xi(λ) =

p∑
l=1

gilfl(λ), (2)

where p is the number of endmembers present in the observed
scene, fl(λ) denotes the l-th endmember, and gil its associ-
ated abundance proportion in Pixel i with

∀l = 1, . . . , p, 0 ≤ gil ≤ 1 and
p∑

l=1

gil = 1. (3)

In this paper, we aim to estimate the p endmembers fl(λ)
from the SSI image using Eqs. (1) and (2).

3. PROPOSED METHOD

We now introduce our proposed method. First of all, let us
emphasize the fact that inverting the k FPfs hi(λ) in Eq. (1)
is ill-posed. In order to estimate the endmembers, we need
to add additional assumptions. We first assume that in some
patches, the matrix X which is defined over the considered
patch as

X ,

 x1(λ1) . . . x1(λk)
...

...
xk(λ1) . . . xk(λk)

 (4)

is approximately rank-1, i.e., ∀j = 1, . . . , k, for any given
indices i0 and i1, xi0(λj) ≈ xi1(λj). Such an assumption is
valid for miniaturized SSI systems which can be quite close
to the area they tend to observe. For the sake of readability,
we drop the indices and reduce the matrixX to a single vector
x = [x(λ1), . . . , x(λk)]. Denoting T the transposition,

y , [y1(λ1), . . . , yk(λk)]
T , (5)

2Typical values of k are 16 or 25, such that the patch is of size 4 × 4 or
5× 5, respectively. Moreover, m and n are both proportional to

√
k.



the vector of the k observed pixels in a patch, ω , [ω1, . . . , ωk]
T

the associated vector of additive noise, and

H ,

 h1(λ1) . . . h1(λk)
...

...
hk(λ1) . . . hk(λk)

 (6)

the matrix of FPfs, we get

y = H · xT + ω. (7)

Our approach thus reads as follows. For each patch, we first
aim to recover a tentative spectrum x from Eq. (7). In prac-
tice, as the matrixH can be ill-conditionned3, we aim to solve
a penalized optimization problem, i.e.,

min
x≥0

1

2
‖y −H · xT ‖22 +

α

2
‖D · xT ‖22, (8)

where D is the square matrix accounting for the discrete
derivative of the spectrum x, and α stands for the penal-
ization term. Eq (8) is a quadratic problem which can be
rewritten as [18]

min
x≥0

1

2

∥∥∥∥( y
0

)
−
(

H√
αD

)
· xT

∥∥∥∥2
2

. (9)

In practice, the error value ‖y −H · x̂‖2—where x̂ is the es-
timated spectrum obtained from Eqs. (8) or (9)—provides a
measure of rank-one approximation. Indeed, if in Eq. (7) the
content of X cannot be approximated by a single vector, then
‖y − H · x̂‖2 will be high. On the contrary, it will be low if
the rank-one approximation is a valid assumption. By only
keeping the estimated vectors linked with the lowest errors—
say q vectors—we get a q × k data matrix X where the FPf
effects are removed. Let us recall that these q vectors are as-
sociated with q patches which are approximately rank-1. In
practice, such a situation may be met if (i) only one endmem-
ber is active over the patch, or (ii) the abundance proportions
are constant over the patch. The first scenario may be seen as
a patch extension of the “pure pixel assumption” [1]—that we
call “pure patch assumption”—while the second means that
several endmembers are present in similar proportions over
the patch.

Denoting G and F the q × k and k × k matrices of abun-
dances and endmembers associated with the q rank-1 patches,
we get a simple linear mixing relationship

X ≈ G · F. (10)

In this paper, we further assume that at least one pure patch
exists for each endmember to estimate. This means that
Eq. (10) can be solved by any unmixing method using the
pure patch assumption. In order to show the proof of concept,

3For example, the 5 × 5 filter matrix H using real FPfs in [10] has two
rows which are almost null.

we use VCA [15]. Algorithm 1 shows the whole structure of
the approach, named FPVCA for Filter Patch-based VCA.

At this stage, let us stress again that due to the fact that
a miniaturized SSI camera may be placed very close to an
area to observe, the rank-1 and the pure patch assumptions are
not very constraining. Moreover, we would like to emphasize
the differences between this method and the one we proposed
in [17]: our previous work was using a weighted matrix fac-
torization framework, which significantly differs from the fil-
ter inversion strategy used in this paper. Moreover, contrary
to [17], we do not assume all the rank-one patches to be pure.

Algorithm 1 Filter Patch-based Vertex Component Analysis
Input:
the SSI matrix
p the number of endmembers
H the harmonics matrix
α the regularization parameter
Output:
F the estimated endmember matrix
Processing:

1: for r = 1 to nb patches do
2: Let y

r
the SSI vector linked to Patch r

3: Estimate x using Eq (9)
4: if ‖y

r
−Hx‖2 is “low-enough” then

5: Add x as a new line of X
6: end if
7: end for
8: F = VCA(X, p)

4. EXPERIMENTS AND RESULTS

Experiments are conducted using SSI simulations on the
spheric image, which is generated using the HYDRA tool-
box [19]. It has 128×128 pixels with three endmembers, i.e.,
water, concrete, and metal. The image satisfies abundance
sum-to-one and abundance non-negativity constraints. More-
over, for each endmember, we generate one spatial area where
only this one is present, so that the pure patch assumption is
satisfied. We consider 4× 4 and 5× 5 spectral filter patterns
for ideal filters—where Eq. (1) reduces to yi(λi) = x(λi)

4—
and real FPfs—whose responses are provided by IMEC and
used in [10]—and we randomly select either k = 16 or 25
spectral bands out of the available ones. Lastly, we only keep
for generating X the vectors x such that the rank-one approx-
imation error ‖y −Hx‖2 is below or equal to the average of
these errors computed over all the patches.

We compare the performance achieved by our proposed
FPVCA method with our previously proposed KPWNMF
approach [17] and five 2-step demosaicing-then-unmixing

4In that case, it is not possible to solve Eq. (8). We just generate x by
replicating the SSI values and we set ‖y −Hx‖2 = 0.



0 0.2 0.4 0.6 0.8 1
0

6

12

18

24

α

M
R

SA

1 5 10 15 20 25
0

0.1

0.2

0.3

0.4

Wavelength Index

E
nd

m
em

be
ra

m
pl

itu
de

Theo. Endmember 1 Est. Endmember 1
Theo. Endmember 2 Est. Endmember 2
Theo. Endmember 3 Est. Endmember 3

0 10 20 30 40 50

10

20

30

40

SNR [dB]

SI
R

[d
B

]

GRMR BTES
WB PPID
ItSD FPVCA

KPWNMF

Fig. 2. Left: Influence of the regularization parameter α on the reached MRSA value. Center: Estimated spectra in case of real
filter of size 5× 5. Right: SIRs obtained with the 5× 5 real filter with respect to additive noise.

methods. For the latter, we consider five state-of-the-art de-
mosaicing methods—i.e., GRMR [10], BTES [6], WB [5],
PPID [8], and ItSD [7]—while in the second step, we ex-
tract the endmembers in the restored datacube using the VCA
algorithm. As a consequence, all the considered methods
should take advantage of the presence of pure pixels.

To assess the performance of the tested methods, we com-
pare the quality of the restored spectra using the Signal-to-
Interference Ratio (SIR, reported in dB) and Mean-Removed
Spectral Angle (MRSA) computed over the rows of F . The
MRSA measures how close two endmembers are (neglecting
scaling and translation) [20]. We first investigate the influ-
ence of α on the estimation of the endmembers. The left plot
of Fig. 2 shows the MRSA with respect to the value of α in
the case of a 5× 5 filter. We see that a small value of α (typ-
ically, 0.001 ≤ α ≤ 0.02) allows a much lower MRSA than
no regularization (α = 0). Then, when α gets higher, the
error is increased. In the remainder of the tests, we set this
parameter to α = 0.005.

Table 1 provides the average SIR and MRSA of the esti-
mated spectra achieved by the various methods in noiseless
mixtures. This table shows that the unmixing performance
obtained with our proposed FPVCA method is always much
better than the other methods. This is probably because all
the tested 2-stages approaches introduce some datacube esti-
mation errors that affect the quality of the estimated spectra.
Moreover, the performance of our previously proposed KP-
WNMF approach is slightly better than the SotA other meth-
ods but still much lower than FPVCA. This may be due to the
fact that the abundance sparsity assumption in [17]—i.e., all
the rank-one patches are pure patches—is not necessarily sat-
isfied in these simulations. Still, KPWNMF assumes all the
vectors in X to be close to the true endmembers and estimates
the latter using K-means. Such a clustering algorithm may
be affected by the spectra obtained from non-pure patches,
which lowers the KPWNMF performance.

Please also note the drop of SIR in the case of 5 × 5
real filters. While our proposed FPVCA approach still out-

Table 1. Average SIR and MRSA (into brackets) values for
the considered experiment. In bold: the best values

4 x 4 patch 5 x 5 patch
Ideal Filter Real Filter Ideal Filter Real Filter

GMRM 61.6 (4.0) 56.7 (4.8) 10.2 (4.0) 11.5 (3.6)
BTES 58.2 (4.4) 55.5 (4.9) 9.5 (4.4) 9.7 (4.5)
WB 61.4 (3.8) 57.7 (4.9) 11.7 (3.8) 12.2 (3.9)
PPID 73.1 (2.3) 63 (3.7) 28 (2.3) 16.3 (4.2)
ItSD 61.2 (4.8) 58.6 (4.6) 14.6 (4.8) 14.8 (4.8)
KPWNMF 77.8 (2.2) 64.3 (4.8) 31.8 (2.2) 19.2 (4.0)
FPVCA 253.0 (0) 253.0 (0.0) 246.0 (0.0) 67.4 (0.8)

performs the other methods, its performance decrease is due
to the fact that H is severely ill-conditioned. The proposed
Tikhonov regularization serves to correct the effect of the ma-
trix H . Furthermore, the angle between the estimated spectra
and the real one is small, and they tend to be almost identical,
as shown in the central plot of Fig. 2.

Lastly, the influence of additive noise is shown on the
right plot of Fig. 2, for the 5 × 5 real filter. All the tested
methods are rather stable to the additive noise but the reached
performance is lower than in the noiseless case. Still, our
proposed FPVCA approach significantly outperforms all the
tested methods, which shows the relevance of our work.

5. CONCLUSION AND DISCUSSION

In this paper, we proposed a new method for estimating end-
members from SSI images. It works on an SSI patch level and
it mainly consists of finding rank-one patches and of restor-
ing the spectral content from the latter. Then, any unmixing
method assuming pure pixels—e.g., VCA—can be applied to
the collected data. The proposed method significantly out-
performs all the tested 2-stage approaches—which consist of
applying any demosaicing method to restore the original dat-
acube, and then of applying the same unmixing method as our
proposed approach—but also a specific joint unmixing and



demosaicing method that we previously proposed. In future
work, we aim to investigate the use of our proposed method
on real SSI data. We will also investigate its demosaicing
performance. We further aim to extend it to the case when the
FPfs are not constant over the sensor surface [18] and when
some endmember spectral variability is met in the acquisition
process.
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