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Abstract: We propose a method for the stability analysis of linear hybrid systems with periodic
jumps. The method relies on the solution to polynomial inequalities based on the Handelman
decomposition. Compared to existing approaches, such as sum-of-squares (SoS) and Polya’s
theorem, the proposed method reduces the computation time to obtain stability certificates.
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1. INTRODUCTION

Hybrid Dynamical Systems allow to model systems com-
posed of continuous-time processes interconnected to
discrete-time digital devices. The additional complexity
introduced by combining continuous and discrete-time dy-
namics requires the development of mathematical tools for
the stability analysis to go beyond the analysis of purely
continuous- or discrete-time systems Goebel et al. (2009,
2012); Cox et al. (2012). The particular case studied in this
paper is the class of linear hybrid systems with periodic
jumps.

A Lyapunov-based approach for stability of linear hybrid
systems with periodic jumps is to impose the decrease of
the Lyapunov function after the continuous-time dynamics
(flows) followed by the the discrete-time evolution (jumps).
This approach allows us to formulate stability analysis
and the design of stabilizing periodic control laws based
on the solution to differential matrix inequalities, as illus-
trated in Galeani et al. (2015). When using a polynomial
parametrization of the functions in the differential matrix
inequalities these inequalities become polynomial matrix
inequalities which are required to be non-negative in a
compact interval.

In a different context, the stability of nonlinear polynomial
systems can be carried out by searching polynomial Lya-
punov functions. The existence of these polynomial func-
tions is a necessary and sufficient condition for local sta-
bility (over bounded sets) of exponentially stable systems,
Peet (2009). Handelman’s theorem introduced by Handel-
man et al. (1988) has been used as an alternative to assess
the non-negativity of polynomial expressions. Handelman
decomposition exploits the fact that positive polynomials

can be recast in linear combinations of elements from its
corresponding Handelman basis. Some works exploiting
this decomposition in Kamyar et al. (2014); Briat (2013);
Sassi et al. (2015) illustrate the possibility of using Han-
delman theorem for the stability analysis of linear and
nonlinear systems as well as to compute inner estimates
to regions of attraction. Moreover, Polya’s theorem can
be exploited to analyze the non-negativity of polynomi-
als Kamyar et al. (2013); Kamyar and Peet (2013). How-
ever, as Kamyar et al. (2014) points out, the growth of
the associated optimization problems on the parameters
of the polynomial can prevent the application of these
methods. Indeed, to construct a polynomial Lyapunov
function given by a polynomial of degree six for a system
composed of ten variables, the Polya’s theorem approach
requires to set up a semidefinite programming with ≈ 108

variables and ≈ 105 constrains.

In this paper, we search for polynomial parametrization on
Handelman’s bases, Polya’s theorem and Sum-of-Squares
decompositions, to conclude about the non-negativity of a
polynomial parametrization of differential matrix inequal-
ities.

The paper is structured as follows. After some preliminar-
ies on definitions and notations related to the Handelman
decomposition that are established in Section 2, the stabil-
ity analysis of linear hybrid systems with periodic jumps is
addressed in Section 3 through Lyapunov-based stability
conditions recast in terms of differential matrix inequal-
ities. Numerical examples are provided in Section 4 to
illustrate the potential of the proposed approach. Finally,
some conclusions and potential future work are drawn in
Section 5.



Notation: The identity matrix of dimension n is In and
the the matrix of zeros of dimension n ×m is 0n×m. The
set symmetric and positive definite matrices is denoted by
Sn≻0. Periodic linear hybrid systems solutions are piecewise
absolutely continuous functions X (., .) that are almost
everywhere differentiable and satisfy a differential equa-
tion (flow dynamics) Ẋ = f(X ) when (t, k) ∈ T is such
that t ∈ (kτ, (k + 1)τ), and satisfy a difference equation
(jump dynamics) X+ = g(X ) when (t, k) ∈ T is such that
t = (k + 1)τ . For brevity, the notation x[k], x<k> may be
adopted in place of x(kτ, k) and x((k + 1)τ, k) to refer to
the value at the beginning and at the end, respectively, of
the kth flow time interval.

2. PRELIMINARIES

In this section, we give conditions to check the non-
negativity of a polynomial. These conditions will be in-
strumental in the stability conditions of next section.
Definition 1. (Scalar Polynomial): A scalar and mono-
variable polynomial p : R → R of degree n is defined by

p(θ) = pnθ
n + pn−1θ

n−1 + . . .+ p1θ + p0,

where pi for all i = 1, . . . , n correspond to the polynomial
coefficients. A polynomial p(θ) is said to be strictly positive
within an interval I = {θ ∈ R : θ ∈ [0, 1]}, if p(θ) > 0 for
all θ ∈ I.
Definition 2. (Convex Polytope, Grünbaum et al. (1997))
An n-dimensional convex polytope P ∈ Rn composed of a
set of K vertices V := {vj ∈ R, j = 1, . . . ,K} is defined by

P := {θ ∈ R : θ =

K∑
j=1

βjvj ,

K∑
j=1

βj = 1, ∀j = 1, . . . ,K}.

The interval I is an convex polytope and it can be
expressed as

P := {θ ∈ R : e⊤i θ + fi ≥ 0, ∀ i = 1, 2}, (1)

with e1 = 1, f1 = 0, e2 = −1 and f2 = 1 being affine
coefficients of the convex polytope P defined within I.
Definition 3. (Handelman basis) The Handelman basis of
degree dm associated to the convex polytope in (1) is
defined by

B(P, dm) :={ρ(θ) : ρ(θ) =
2∏

j=1

(e⊤j θ + fj)
αj ,

α = (α1, α2) ∈ N2, |α|1 ≤ dm},
={1, θ, (1− θ), θ2, θ(1− θ), (1− θ)2, . . . , (1− θ)dm , θdm}.

From the above definitions, we formulate conditions for the
non-negativity in a polytope P of a polynomial expressed
in terms of the Handelman basis associated to P.

2.1 Handelman Decomposition

The following theorem exploits the Handelman basis to
provide a condition for the non-negativity of a polynomial
in a set P.
Theorem 1. Assume that a polynomial p(θ) : R → R is
strictly positive on the convex set (1), that is, p(θ) >
0,∀θ ∈ P. There exists a degree dm, and a set of coef-
ficients cl ∈ R≥0, such that p is expressed as

p(θ) :=

M∑
l=1

cl

K∏
j=1

(e⊤j θ + fj)
αj ,

where M corresponds to the number of elements in
B(P, dm).

From the above theorem, we can conclude that if a given
polynomial p(θ) is strictly positive on the set P, it can
be decomposed as a sum of non-negative polynomials
on P multiplied by non-negative coefficients. Given a
polynomial expressed, or decomposed, in the Handelman
basis of a polytope P with non-negative coefficients, it
is clear that the polynomial is non-negative in P. See
Handelman et al. (1988) for more details on the proofs
of Theorem 1.
Remark 1. The existence of Handelman decomposition is
only guaranteed if the polynomial is strictly positive on P.

⋆

Example 1 (Scalar Polynomial) Consider the following
strictly positive polynomial in a single varaible p1(θ) : R →
R,

p1(θ) = 2θ2 − 1

4
θ + 1,

where θ ∈ P = [0, 1]. The polynomial p1(θ) can be
decomposed into the following polynomial expression in
terms of the Handelman basis

p1(θ) = c1 + c2θ + c3(1− θ) + . . .+ cM (1− θ)dm .

We then look for conditions on the coefficients cl for the
non-negativity of the polynomial following the conditions
of Theorem 1, obtained from the identity

c1 + c2θ + c3(1− θ) + . . .+ cM (1− θ)dm = 2θ2 − 1

4
θ + 1,

The coefficients of the decomposition can then be com-
puted by solving the corresponding system of linear equa-
tions with non-negativity constraints on the coefficients cl.
For the case dm = 3, we obtain

c2 − c3 + 2c5 + c8 − 3c9 + c10 = −1

4
,

c4 + c5 + c7 − 2c8 + 3c9 − c10 = 2,

c1 + c3 + c6 + c9 = 1,

c6 − c7 − c8 − c9 = 0.

The above set of equations and the non-negativity of
cl,∀l = 1, . . . , 10 are taken as constraints of a linear
programming (LP). The LP is then solved by standard LP
solvers (e.g. Gurobi Optimization, LLC (2021), MOSEK
ApS (2019), Cplex (2009)). We illustrate solutions of the
corresponding LPs of the above example in Table 1 for
different values of the degree dm obtained with MOSEK
ApS (2019).

Example 2 (Polynomial Matrix) Consider a polynomial
symmetric matrix F1 : R → S2×2

F1(θ) =

[
3 + 3θ θ − 1
θ − 1 2

]
.



Table 1. Handelman coefficients cl for different
values of maximum polynomial degree dm.

dm c1 c2 c3 c5 c6 c7 c10 c14 c19
2 0 0.75 1.00 2.00 0 0 0 0 0
3 0.88 0 0.13 0 0.13 1.88 0 0 0
4 0.67 1.08 0 0 0.33 0 1.00 0.33 0
5 0.67 1.08 0 0 0 0.33 0 1.00 0.33

To test whether F1(θ) > 0, ∀θ ∈ I by using the Theorem 1,
we express the positive definiteness of the matrix F1(θ) by
the equivalent condition fp(θ, x1, x2) > 0 ∀x ∈ R2 \ {0},
∀θ ∈ I with

fp(θ, x1, x2) =

[
x1

x2

]⊤ [
3 + 3θ θ − 1
θ − 1 2

] [
x1

x2

]
= 3x2

1(1 + θ) + 2x2x1(θ − 1) + 2x2
2. (3)

Since the above expression is homogeneous on x, it suffices
to verify fp(θ, x1, x2) > 0 ∀x ∈ {x ∈ R2 : |xj | ≤ 1 ∀i =
1, 2}, which is a set containing the unit ball. Therefore, by
using Theorem 1, the positive-definiteness of the F1(θ) on
the polytope (1), can be concluded through the verification
of the positivity of fp(θ, x1, x2) on the following convex
polytope

Pm = {(θ, x1, x2) ∈ R3 : θ ≥ 0, θ − 1 ≥ 0,

− 1 < x1 < 1, −1 < x2 < 1}.

By constructing a Handelman basis for the polytope Pm,
we can proceed as in the previous example to obtain a Han-
delman decomposition to fp(θ, x1, x2) via the solution of
an LP. However, we can notice that to recast a polynomial
matrix of dimension m in terms of a scalar expression,
is necessary to add m auxiliary variables, increasing the
complexity and solving time of the corresponding LP and
making the approach impracticable for a high-dimensional
polynomial matrices.

To avoid the increase of the number of variables describing
the polynomial, we can formulate the Handelman decom-
position by solving a semidefinite programming (SDP), as
detailed in the following theorem.
Theorem 2. Assume that a polynomial symmetric matrix
F (θ) ∈ Sn×n is positive definite on the convex set (1), that
is F (θ) ≻ 0,∀θ ∈ P. There exists a degree dm, and a set
of positive definite matrices Cl ∈ Sn≥0, such that F (θ) can
be expressed as

F (θ) =

M∑
l=1

Cl

K∏
j=1

(e⊤j θ + fj)
αj .

where M corresponds to the number of elements in
B(P, dm).

See Handelman et al. (1988) for more details on Handel-
man decomposition.

Example 2 cont. (Polynomial Matrix) By exploiting the
Theorem 2 it is possible to find positive definite matrices
Cl ∈ S2≻0 for l = 1, . . . ,M , such that F1(θ) is decomposed
into the following expression,

F1(θ) =

[
1.4417 −0.3769
−0.3769 0.6085

]
︸ ︷︷ ︸

C1

+

[
3.1257 0.2391
0.2391 0.7100

]
︸ ︷︷ ︸

C2

θ

+

[
0.8688 −0.3788
−0.3788 0.7426

]
︸ ︷︷ ︸

C3

(1− θ) +

[
0.6896 −0.2443
−0.2443 0.6489

]
︸ ︷︷ ︸

C4

(θ − 1)2

+

[
1.4326 0.1377
0.1377 0.6815

]
︸ ︷︷ ︸

C5

θ2 +

[
2.1222 −0.1066
−0.1066 1.3303

]
︸ ︷︷ ︸

C6

θ(1− θ),

for dm = 2. Where the matrices Cl were obtained by
solving the associated SDP with MOSEK ApS (2019).

2.2 Sum-of-Squares (SoS) Decomposition

The sum-of-squares approach replaces conditions for a
polynomial to be non-negative by the sufficient condition
that the polynomial is decomposed into a sum of squared
polynomials.
Theorem 3. (Sum-of-Squares decomposition) A polyno-
mial p(θ) : R → R is a sum-of-squares of polynomials
if and only if there exist a positive semidefinite matrix G,
called Gram matrix, such that,

p(θ) = z(θ)⊤Gz(θ),

where z(θ) = [1, θ, . . . , θdm ] is the vector of monomials of
degree up to dm.

Therefore, if we can find a vector of monomials z(θ) and a
positive semidefinite matrix G, the non-negativity of p(θ)
is guaranteed.

For the examples in the previous section, the scalar poly-
nomial p1(θ) can be decomposed as a sum-of-squares as
follows

p1(θ) =

[
1
θ

]⊤ [
1 −0.125

−0.125 2

] [
1
θ

]
= p211(θ) + p212(θ),

with p11(θ) = 0.9987 − 0.05183θ and p12(θ) = 1.4133θ −
0.05183. Also, the expression (3) related to the polynomial
matrix F1(θ) can be lower bounded as fp(θ, x1, x2) ≥
x⊤Flb(θ)x. The eigenvalues λ1 and λ2 of Flb(θ) are illus-
trated in Figure 1.

It thus appears evident that the polynomial p1(θ) is not
negative and the polynomial matrix F1(θ) is positive
semidefinite within the interval θ ∈ [0, 1]. See (Parrilo,
2000, Section 4.2) for more details on sum-of-squares
programming.

In the rest of the paper, we look for a local certificate of
the non-negativity of a polynomial p(θ) by searching for an
SoS decomposition in the interval I by verifying whether

p(θ)− (1− θ)θg(θ), (4)
is an SoS polynomial with g(θ) an SoS polynomial. If there
exists an SoS decomposition of p(θ) − (1 − θ)θg(θ), it
is immediate that p(θ) is not negative for all θ ∈ [0, 1],
namely, the set where (1− θ)θ ≥ 0.

2.3 Polya’s Theorem

Polya’s theorem, allows to check whether a polynomial
p(θ) is non-negative as follows.
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Fig. 1. Eigenvalues of the lower bound matrix Flb(θ) within
the interval θ ∈ [0, 1].

Theorem 4. If a polynomial p : RN → R is positive for all
θ ∈ {θ ∈ RN | θi ≥ 0,

∑N
i=1 θi = 1}, then there exists an

integer dm, such that all coefficients of the polynomial
(θ1 + θ2 + . . .+ θN )

dm p(θ)

are strictly positive.

We refer the reader to Pólya et al. (1934) for the proofs of
Theorem 4.

Since, in this paper, we study scalar polynomials in the
interval θ ∈ [0, 1] on variable θ, we shall introduce two
variables θ1 and θ2, thus N = 2 to describe the set [0, 1]
as above. Namely we use {(θ1, θ2) ∈ R2 | θ1 ≥ 0, θ2 ≥
0, θ1 = 1 − θ2} and set θ = θ1 to limit its value to the
interval [0, 1]. This way, the conditions for the positivity
of the scalar example given by p1(θ) above are that all the
coefficients of the polynomial

p̄1(θ) = (θ1 + θ2)
dm(2θ21 −

1

4
θ1 + 1), (5)

are positive for some integer dm. For the matrix example
above we generalize Polya’s theorem to the verification of
the positive semi-definiteness of all matrices multiplying
the monomials in the polynomial matrix expression

F̄1(θ) = (θ1 + θ2)
dmF1(θ1)

= (θ1 + θ2)
dm

[
3 + 3θ1 θ1 − 1
θ1 − 1 2

]
for some degree dm.

3. PROBLEM STATEMENT

In this section, a class of linear hybrid systems with peri-
odic time domains is introduced, and its stability analysis
is formulated through differential matrix inequalities based
upon Lyapunov-based conditions detailed in Goebel et al.
(2012); Cox et al. (2012); Galeani et al. (2015).

3.1 Linear Hybrid Systems with periodic jumps

Consider a particular class of linear hybrid systems with all
solutions defined on the same periodic hybrid time domain
given by

T := {(t, k) : t ∈ [kτ, (k + 1)τ ], k ∈ N},
with τ > 0 given and t denoting the current value
of continuous-time and k the number of jumps already
produced.

Consider the linear hybrid system, defined by

ẋ = Ax(t, k) +BuF , (6a)
x+ = Ex<k> + FuJ , (6b)

where x ∈ Rn corresponds to the state of the linear
hybrid system (6). Moreover, A ∈ Rn×n, E ∈ Rn×n, with
uF ∈ Rmc denoting the continuous-time control input and
uJ ∈ Rmd representing the an impulsive control input.

From the theory of linear hybrid systems formulated in
Goebel et al. (2012) (see Chapter 3), the stability con-
ditions for the origin of the system can be established
by a Lyapunov function V (x) : Rn → R≥0 satisfying
positivity constraints and the decrease along the trajec-
tories of the system. In addition, in the hybrid context
imposing decrease of V (x) with respect to the flow dy-
namics (6a) as well as the jump dynamics (6b) with the
same time-invariant quadratic function V (x) = x⊤Px,
leads in general to restrictive constraints, as detailed in
(Zaccarian et al., 2011, Section 4). In the following, the
stability properties of system (6) are studied as time-
invariant quadratic Lyapunov functions defined for the
equivalent discrete-time system.

3.2 Stability Analysis

As detailed in Galeani et al. (2015) the stability analysis of
(6) can be characterised by the variation of V (x) = x⊤Px
over one period, that is

∆τ (V (x)) =

∫ (k+1)τ

kτ

V̇ (x)dξ︸ ︷︷ ︸
∆c(V (x))

+x⊤
[k+1] − x⊤

⟨k⟩Px⟨k⟩︸ ︷︷ ︸
∆d(V (x))

, (7)

where ∆c(V (x)) and ∆d(V (x)) correspond to the variation
of V (x) over the continuous-time dynamics and after a
jump, respectively. Moreover, setting θ = ξτ , the expres-
sion (7) can be re-written as follows

∆τ (V (x)) =

∫ 1

0

2x⊤τP ẋ+ x⊤
[k+1]Px[k+1] − x⊤

⟨k⟩Px⟨k⟩dθ.

thus transforming the integral into the interval [0, 1] and
assuming uF = uJ = 0, we have the following theorem.
Theorem 5. (Stability Analysis, Galeani et al. (2015))
Consider the linear hybrid system (6) its origin is asymp-
totically stable if there exists a quadratic Lyapunov func-
tion V (x) = x⊤Px with P ∈ Sn×n

>0 , matrix-valued func-
tions R(θ), H(θ) : [0, 1] → Sn×n and a matrix W ∈ Rn×n,
such that

d

dθ
R(θ) +R⊤(θ)A+A⊤R(θ) ≤ −ϵIn×n, (8a)[
R(0) R(0)E

E⊤R(0) −R(1)

]
≤ 0n×n, (8b)

hold for all θ ∈ [0, 1], with R(θ) = P +H(θ), W = P and
H(0) = 0.

See Galeani et al. (2015)([Propositions 2.1 and 3.1] and
the references therein) for more details on the proof of
Theorem 5. With the above theorem, the conditions for
stability of linear hybrid systems with periodic jumps are
expressed as the set of inequalities.



A solution to (8), namely matrices P and H can be
obtained by imposing these matrices to be polynomials
and by further imposing the inequalities to be strict. The
resulting polynomial inequality can then be solved by
computing the coefficients of a Handelman decomposition,
following Theorem 2. It is important to notice that to
exploit Theorem 2 we impose strict inequality to (8).
Remark 2. Note that the computation of V (x) = x⊤Px
detailed in this section can also be addressed by solving
the equation E⊤eA

⊤τPeAτE−P +Q = 0, where Q is any
positive definite matrix. However, the formulation using
inequalities makes it possible to cope with uncertainties,
as for instance, modeled by polytopes.

⋆

4. NUMERICAL EXAMPLES

Numerical examples illustrate the proposed strategy to
solve the matrix inequalities (8). The computation time
to obtain the Handelman decomposition that gives the
quadratic Lyapunov function is compared against the sum-
of-squares programming and Polya’s theorem results. For
this numerical example, the toolbox CVX, Grant and Boyd
(2014), and SOSTOOLS, Papachristodoulou et al. (2021),
along with the solver SeDuMi Sturm (1999) were used
to generate the results presented below with tolerances
ϵ = 10−6.

For this purpose, consider a linear hybrid system with
periodic jumps given by

ẋ =

[
−1 0
0 1

]
x(t, k) +

[
1
0

]
uF , (9a)

x+ =

[
2 0

1
1

2

]
x⟨k⟩, (9b)

uF = [−44.57 −30.05]x(t, k), (9c)
where x ∈ R2 and a stabilizing control uF is given by the
above expression.

It appears evident that, in open-loop, x1 is continuous-
time exponentially stable and discrete-time unstable,
whereas x2 is flow unstable and jump exponentially stable.
Using the stabilizing continuous-time control law uF , we
obtain the converging time histories of the system states,
as illustrated in Figure 2.

Figure 3 shows the comparison between the time required
to solve polynomial relaxations of the differential ma-
trix inequalities in (8) for each approach: the green line
concerns the results obtained by using the Handelman
decomposition, whereas the blue and red line correspond
to the solving time needed if we exploit the sum-of-squares
and Polya’s approaches, respectively. This figure illustrates
the impact of increasing the maximum polynomial degree
dm on the solving time of the corresponding semidefi-
nite programming for each method. We can note that
by using the sum-of-squares and Polya’s approaches, the
computation time required to solve the inequalities (8) is
considerably larger than the time required by the Han-
delman decomposition for the same maximum polynomial
degree. The improvement in solving time is even more
relevant when a higher maximum polynomial degree dm
is considered. Moreover, Figure 4 compares the Lyapunov
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Fig. 2. Time histories of the state of system (9) in closed-
loop with the proposed stabilizing controller uF .

function V (x) = x⊤Px as a function of time obtained
for each one of those approaches pointing out that the
solutions do not coincide, and that the monotonic decay
of such solutions happens after a pair of a flow and a jump.
All computations were performed on a DELL L8TQN4S
laptop with Intel 2.7 GHz i7-7500U CPU and 16 GB RAM.
Overall, the average improvement in solving time using
Handelman decomposition rather than sum-of-squares and
Polya’s theorem was ≈ 79.79% and ≈ 52.58%, respectively.
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Fig. 3. Comparison between the solving time needed to
solve (8) by using Handelman decomposition, sum-
of-squares and Polya’s theorem considering different
values of dm.

5. CONCLUSIONS AND FUTURE WORK

The stability analysis of linear hybrid systems with pe-
riodic jumps was considered. By exploiting the fact that
non-negativity analysis of polynomials can be recast in
terms of Handelman decomposition, a method was pro-
posed to solve the differential matrix inequalities related
to the stability analysis of such linear hybrid systems. Nu-
merical examples illustrate the potential of the proposed
method, showing a considerable reduction in computation
time compared to other approaches allowing to verify
polynomial non-negativity. The potential of the proposed
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Fig. 4. Comparison between the Lyapunov functions ob-
tained to solve (8) by using Handelman decomposi-
tion, sum-of-squares and Polya’s theorem considering
dm = 2.

method should be fully exploited for systems of larger
dimension for which existing methods, such as Polya’s
theorem in Kamyar et al. (2013) and sum-of-squares pro-
gramming in Powers (2011), are still of limited application.

REFERENCES

Briat, C. (2013). Robust stability and stabilization of
uncertain linear positive systems via integral linear con-
straints: L1-gain and L2-gain characterization. Interna-
tional Journal of Robust and Nonlinear Control, 23(17),
1932–1954.

Cox, N., Marconi, L., and Teel, A.R. (2012). Hybrid
internal models for robust spline tracking. 2012 IEEE
51st IEEE Conference on Decision and Control (CDC),
4877–4882.

Cplex, I.I. (2009). V12. 1: User’s manual for cplex.
International Business Machines Corporation, 46(53),
157.

Galeani, S., Sassano, M., and Valmorbida, G. (2015). Re-
laxed stabilizability conditions for hybrid linear systems
on periodic time domains. 2015 54th IEEE Conference
on Decision and Control (CDC), 2859–2864.

Goebel, R., Sanfelice, R.G., and Teel, A. (2012). Hybrid
dynamical systems: Modeling, stability, and robustness.
Princeton University Press, NJ.

Goebel, R., Sanfelice, R.G., and Teel, A.R. (2009). Hybrid
dynamical systems. IEEE Control Systems Magazine,
29(2), 28–93.

Grant, M. and Boyd, S. (2014). CVX: MATLAB Soft-
ware for Disciplined Convex Programming, version 2.1.
http://cvxr.com/cvx.

Grünbaum, B., Klee, V., Perles, M.A., and Shephard, G.C.
(1997). Convex Polytopes. Springer.

Gurobi Optimization, LLC (2021). Gurobi Optimizer
Reference Manual. URL https://www.gurobi.com.

Handelman, D. et al. (1988). Representing polynomials by
positive linear functions on compact convex polyhedra.
Pac. J. Math, 132(1), 35–62.

Kamyar, R., Murti, C., and Peet, M.M. (2014). Construct-
ing Piecewise-Polynomial Lyapunov Functions for Local
Stability of Nonlinear Systems Using Handelman’s The-
orem. 53rd IEEE Conference on Decision and Control,
5481–5487.

Kamyar, R. and Peet, M.M. (2013). Decentralized Polya’s
algorithm for stability analysis of large-scale nonlinear
systems. 52nd IEEE Conference on Decision and Con-
trol, 5858–5863.

Kamyar, R., Peet, M.M., and Peet, Y. (2013). Solving
Large-Scale Robust Stability Problems by Exploiting
the Parallel Structure of Polya’s Theorem. IEEE Trans-
actions on Automatic Control, 58(8), 1931–1947.

MOSEK ApS (2019). The MOSEK optimization toolbox
for MATLAB manual. Version 9.0.

Papachristodoulou, A., Anderson, J., Valmorbida, G., Pra-
jna, S., Seiler, P., Parrilo, P.A., Peet, M.M., and Jagt,
D. (2021). SOSTOOLS: Sum of squares optimization
toolbox for MATLAB.

Parrilo, P.A. (2000). Structured semidefinite programs
and semialgebraic geometry methods in robustness and
optimization. Ph.D. thesis, California Institute of Tech-
nology, Pasadena, CA.

Peet, M.M. (2009). Exponentially stable nonlinear systems
have polynomial lyapunov functions on bounded re-
gions. IEEE Transactions on Automatic Control, 54(5),
979–987.

Powers, V. (2011). Positive polynomials and sums of
squares: Theory and practice. Real Algebraic Geometry,
78–149.

Pólya, G., Hardy, G., and Littlewood, J.E. (1934). In-
equalities. Cambridge University Press.

Sassi, B., Amin, M., Sankaranarayanan, Sriram, Xin, C.,
and Ábrahám Erika (2015). Linear relaxations of poly-
nomial positivity for polynomial Lyapunov function syn-
thesis. IMA Journal of Mathematical Control and In-
formation, 33(3), 723–756.

Sturm, J.F. (1999). Using SeDuMi 1.02, a MATLAB
toolbox for optimization over symmetric cones. Opti-
mization methods and software, 11(1-4), 625–653.

Zaccarian, L., Nesic, D., and Teel, A. (2011). Analyti-
cal and numerical Lyapunov functions for SISO linear
control systems with first-order reset elements. Interna-
tional Journal of Robust and Nonlinear Control, 21(10),
1134–1158.


