
HAL Id: hal-03685057
https://hal.science/hal-03685057

Preprint submitted on 1 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sound Static Analysis of Regular Expressions for
Vulnerabilities to Denial of Service Attacks

Francesco Parolini, Antoine Miné

To cite this version:
Francesco Parolini, Antoine Miné. Sound Static Analysis of Regular Expressions for Vulnerabilities
to Denial of Service Attacks. 2022. �hal-03685057�

https://hal.science/hal-03685057
https://hal.archives-ouvertes.fr

Sound Static Analysis of Regular Expressions for
Vulnerabilities to Denial of Service Attacks

Francesco Parolini and Antoine Miné

Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{francesco.parolini, antoine.mine}@lip6.fr

Abstract. Modern programming languages often provide functions to
manipulate regular expressions in standard libraries. If they offer support
for advanced features, the matching algorithm has an exponential worst-
case time complexity: for some so-called vulnerable regular expressions,
an attacker can craft ad hoc strings to force the matcher to exhibit an
exponential behaviour and perform a Regular Expression Denial of Ser-
vice (ReDoS) attack. In this paper, we introduce a framework based on
a tree semantics to statically identify ReDoS vulnerabilities. In partic-
ular, we put forward an algorithm to extract an overapproximation of
the set of words that are dangerous for a regular expression, effectively
catching all possible attacks. We have implemented the analysis in a tool
called rat, and testing it on a dataset of 74,670 regular expressions, we
observed that in 99.47% of the instances the analysis terminates in less
than one second. We compared rat to four other ReDoS detectors, and
we found that our tool is faster, often by orders of magnitude, than most
other tools. While raising a low number of false positives, rat is the only
ReDoS detector that does not report false negatives.

Keywords: Regular Expressions · Denial of Service · Algorithmic Com-
plexity Attacks · Static Analysis · Security and Privacy.

1 Introduction

Regular expressions (regexes) are often used to verify that strings in programs
match a given pattern. Modern programming languages offer support to regexes
in standard libraries, and this encourages programmers to take advantage of
them. However, matching engines of languages such as Python, JavaScript, and
Java employ algorithms with exponential worst-case time complexity in the
length of the string. This is because advanced features such as backreferences
extend the expressiveness of regular expressions. This comes at the cost of ex-
ponential matching in the worst case, even for regexes that do not exploit such
features. An attacker can craft a string to force the matcher to exhibit the expo-
nential behaviour to perform a Regular Expression Denial of Service (ReDoS)
attack, a particular type of algorithmic complexity attack [12].

ReDoS attacks are vastly underestimated Denial of Service (DoS) attacks. In
a recent study of regexes usage, in nearly 4,000 Python projects on Github, the

2 Francesco Parolini and Antoine Miné

authors find that over 42% of them contain regexes [9], while in [30] the authors
found that 10% of the Node.js-based web services they examined are vulnera-
ble to ReDoS. In this already harsh scenario, in [17] the authors find that only
38% of the developers that they surveyed knew about the existence of ReDoS at-
tacks. Many well-known platforms observed such vulnerabilities in their systems:
among them, we find Stack Overflow [29], Cloudflare [10], and iCloud [4]. Since
it is difficult to detect ReDoS vulnerabilities with manual inspection, it is nec-
essary to automate this critical process. However, for now, there is no practical
and widely adopted solution to detect ReDoS vulnerabilities.

There are many different approaches to static semantics-based ReDoS detec-
tion [18,27,32,33], and they are all based on automata frameworks. Due to the
difficulties to precisely model matching engines with automata, static analyzers
often report both false positives and false negatives. In contrast, dynamic ap-
proaches to ReDoS detection [28] can hardly be used in practice, since performing
dynamic testing on exponential algorithms can be excessively costly.

In this paper, we put forward a novel approach to statically detect ReDoS
vulnerabilities. We get rid of the complexities to represent the behaviour of
matching engines with automata by defining a tree semantics of the matching
process. Next, we leverage it to introduce an analysis that determines whether
a regex may be vulnerable or not. In particular, the analysis returns an over-
approximation of the language of words that can cause exponential matching,
being effectively sound but not complete. Nevertheless, our experiments show
that our approach reports a low number of false positives.

In this work, we focus on the most dangerous type of ReDoS vulnerability,
namely when the matching is exponential. To successfully perform an attack
that exploits superlinear but non-exponential matching, a malicious user must be
allowed to insert very large strings. Such attacks are considerably less dangerous
than the case that we consider.

Our approach not only eliminates the complexities related to using automata,
but also opens the possibility to easily introduce optimizations. We implemented
our algorithm in a tool called rat [24], and we found it to be on average one to
two orders of magnitude faster than most existing detectors, while being proved
to be sound and raising only 50 false alarms over 74,670 regexes. Furthermore,
rat can extract the language of possibly dangerous words, being strictly more
expressive than most other tools. This expressiveness can be useful in different
scenarios: for example, existing matching engines can use our algorithm to filter-
out dangerous input strings. It is also possible to use the language of dangerous
words by combining our framework with a string analysis in order to prove the
absence of ReDoS vulnerabilities in real-world applications.

2 Background

2.1 ReDoS Vulnerabilities

The majority of programming languages that offer support for regexes in
standard libraries are vulnerable to ReDoS attacks. Among them, we find Python,

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 3

1 import re

2 email_regex = r’^([0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])*@(([0-9

a-zA-Z])+([-\w]*[0-9a-zA-Z])*\.)+[a-zA-Z]{2 ,9})$’
3 attack = ’a’ * 50

4 re.match(email_regex , attack)

Fig. 1: Python program that matches a dangerous string against a vulnerable
regex.

Java, JavaScript, PHP, and Ruby. Figure 1 shows an example of a Python pro-
gram that matches a string with a vulnerable regex that validates email ad-
dresses. The regex is taken from the Regexlib [2] database, and possibly many
programmers used it. Executing the program on a modern computer with a
4GHz Intel Core i7-4790K CPU takes more than 24 hours. In Section 4, we give
in-depth description of ReDoS vulnerabilities, but here we informally introduce
why this behaviour arises. Consider the input string a50 and the subexpression
([-.\w]*[0-9a-zA-Z])*: a can be matched in [-.\w]* or in [0-9a-zA-Z]. This
implies that in ([-.\w]*[0-9a-zA-Z])* there are four paths to match aa , eight
for aaa and in general 2n for an. Normally, the matching engine accepts the first
match, but here, as @ does not appear in the string, it exhaustively explores all
250 paths before concluding that no match is possible for a50 in the full regex.

Usually programming languages employ matching engines with exponential
worst-time complexity to support advanced features such as backreferences and
lookarounds [15,21]. We, like most other analyzers, do not support such features.
Nevertheless, our approach is sufficient to analyze the great majority of regexes
in real-world applications: in [9] the authors found that in nearly 4000 Python
projects, only 4% of the regexes use lookarounds and up to 0.4% use backref-
erences. Yet, recent surveys determined that up to the 10% of the web services
they considered present ReDoS vulnerabilities [30]. This highlights how program-
mers use vulnerable matching engines while only occasionally taking advantage
of advanced features, and motivates the need for a sound ReDoS analyzer even
limited to regular constructs.

2.2 ReDoS Detection

There are two main approaches to ReDoS detection:

1. Semantics-based static detection. There are many different approaches to
semantics-based static ReDoS detection [18,26,27,32,33], and they all rely on
automata. In those frameworks, regexes are first transformed into automata,
which are then analyzed to determine whether they are vulnerable or not.
The main problem is that transforming regexes to automata can remove or
inject vulnerabilities. This is often a source of both false positives and false
negatives. We discuss semantics-based static analyzers based on automata

4 Francesco Parolini and Antoine Miné

in detail in Section 6, and we compare them to our approach that is also
semantics-based, but operates on regexes instead of automata.

2. Dynamic detection. A dynamic analyzer generates strings that are fed to the
matching engine. Then, the tool measures the time for the matching and de-
termines whether a regex is vulnerable or not. These tools are sensibly slower
than static analyzers, because performing testing on exponential algorithms
can be excessively time-consuming. While it is possible to configure generic
fuzzers, such as SlowFuzz [25], to detect ReDoS vulnerabilities, in [28] the
authors present ReScue: a more precise gray-box approach which leverages
a genetic algorithm to efficiently generate input strings.

2.3 Regexes Basics

We now define the regexes that we use for the rest of the paper. Let Σ “

t a1, a2, . . . , an u be a finite set of symbols. A word is an element of Σ˚, while a
language is a set of words. We denote the empty word as ε and the concatenation
of two languages L1, L2 as L1L2. Let a P Σ.

R P R Regexes

R – ε | a | R1|R2 | R1¨R2 (or R1R2q | R˚
1

We assume that regexes automatically remove ε in the concatenation (this is
known as a smart-constructor [22]), so that R¨ε and ε¨R are always simplified
to R. This allows representing regexes as they are implemented in programming
languages, where ε cannot be inserted by the user in the concatenation. We
define two functions to deconstruct the concatenation of a regex R.

headpRq fi

#

headpR1q if R “ R1R2

R otherwise
tailpRq fi

#

tailpR1q¨R2 if R “ R1R2

ε otherwise

Observe that since we assume that the concatenation simplifies ε, if headpRq “ ε,
then tailpRq “ ε. We extend the regexes with the possibility to recognize the
empty language, namely the empty set of words, as follows.

R P RK Empty Regexes

R – ε | a | R1|R2 | R1¨R2 | R˚
1 | K

Observe that R Ă RK. Let a P Σ. The language recognized by a regex R P RK is
defined as follows.

LpKq fi H Lpaq fi tau LpR1R2q fi LpR1qLpR2q

Lpεq fi tεu LpR1|R2q fi LpR1q Y LpR2q LpR˚
1 q fi

ď

iě0

LpR1qi

If LpR1q “ LpR2q we write R1 “L R2. Furthermore, the union, intersection
and complement operations on regexes have respectively type RK ˆ RK Ñ RK,
RK ˆ RK Ñ RK and RK Ñ RK. We denote them by R1 Yr R2, R1 Xr R2 and R1

r
.

Observe that if R1,R2 P R, then R1 Yr R2 P R.

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 5

Algorithm 1: Matching algorithm pseudocode.

1 function Match pR : R, w : Σ˚, C : ℘pRqq Ñ bool
2 if R P C then
3 return false
4 switch xheadpRq, tailpRqy do
5 case xε, εy do
6 return w “ ε
7 case xa,R1y do
8 if w “ aw1 then return MatchpR1, w1,Hq

9 else return false

10 case xR1|R2,R3y do
11 return MatchpR1R3, w, Cq _ MatchpR2R3, w, Cq

12 case xR˚
1 ,R2y do

13 return MatchpR1R
˚
1R2, w, C Y tR˚

1R2uq _MatchpR2, w, Cq

2.4 Regex Matching

In this section, we provide the pseudocode of the matching procedure. While
it is simple and concise, it models the concrete behaviour of realistic matching
engines. The pseudocode ignores details specific to a particular implementation,
giving a high-level description of the procedure. Our algorithm is a trivial adap-
tation of the one presented in [7], which models Java’s matching engine. Classic
textbooks about regexes confirm that matching engines in standard libraries
employ a trivial backtracking procedure for the matching [15,21].

In Algorithm 1, we present the matching procedure. The logic operators are
short-circuit: as soon as the input word is matched, the unexplored branches of
the regex are not considered. The behaviour of function Match depends on the
first constructor in the concatenation of the regex, and the remaining portion
can possibly be ε. The algorithm is rather trivial, but it models two important
aspects of matching engines. First, it implements a prioritization mechanism
that: (1) tries to expand the left branch before the right branch in alternatives;
(2) tries to match as many characters as possible in the body of the stars.
Second, the algorithm prevents infinite ε-matching loops. Consider pε|aq˚: if we
remove line 3, the procedure keeps expanding the body of the star forever, never
consuming any character of the input string. To prevent this, when a star is
expanded, it is inserted in C, that is the set of stars that cannot be expanded
again. Initially, C must be instantiated to the empty set. The stars are removed
from C only when at least one character is matched. Observe that usually in
matching engines the match is successful even if just a prefix of the word matches
the regex: we can model this behaviour by appending Σ˚ at the end of regexes.

3 Semantics

In this section, we first define a small-step operational semantics as a transition
relation between the configurations of the matching engine. We then use it to put

6 Francesco Parolini and Antoine Miné

forward a tree semantics that precisely describes the steps performed during the
matching. Lastly, we use the semantics to formally define ReDoS vulnerabilities.

We extend R to represent when a star has been expanded and not a single
character has been matched yet. The syntax of a regex R P RT is given by the
following grammar.

R P RT Transitional Regexes

R – ε | a | R1|R2 | R1¨R2 | R˚
1 | R˚

1

It differs from traditional regexes for the closed star, namely R˚. It is a star that
cannot be expanded again in order to prevent infinite ε-matching loops. We will
formalize this concept with the transition relation. The closed stars avoid the
necessity to keep a separate set of expressions (C in Algorithm 1) during the
matching: the information is implicitly included in the regex.

We call a pair in RT ˆ Σ˚ fi S a state, and it describes the configuration
of the matching engine. The first component is the regex that the matcher is
expanding, and the second is the suffix of the input word that still has to be
matched. We define the function r : RT Ñ R to transform the closed stars back
into regular stars as follows.

rpεq fi ε rpR1|R2q fi rpR1q|rpR2q rpR˚
1 q fi rpR1q˚

rpaq fi a rpR1R2q fi rpR1qrpR2q rpR˚
1 q fi rpR1q˚

We then define the set of actions as A fi t h,i,⊛,l uYt oa | a P Σ u. Let a P Σ
and w P Σ˚. We can finally define the transition relation between states. It is
not deterministic, but sequences of actions will be ordered later in this section.

xa, awy
oa

ÝÑxε, wy xaR1, awy
oa

ÝÑxrpR1q, wy

xR1|R2, wy
h

ÝÑxR1, wy xpR1|R2qR3, wy
h

ÝÑxR1R3, wy

xR1|R2, wy
i

ÝÑxR2, wy xpR1|R2qR3, wy
i

ÝÑxR2R3, wy

xR˚
1 , wy

⊛
ÝÑxR1R

˚
1 , wy xR˚

1R2, wy
⊛

ÝÑxR1R
˚
1R2, wy

xR˚
1 , wy

l
ÝÑxε, wy xR˚

1R2, wy
l

ÝÑxR2, wy

The transition relation describes all possible choices of the matching engine
according to the state. Observe that with the ⊛ action the star becomes ˚, and
it cannot be expanded again until a character is matched. In fact, the transition
relation is not defined for R˚. After consuming a character of the input word,
we apply the function r to mark all stars as expandable.

We now leverage the transition relation to define a tree semantics for the
matching procedure. Figure 2.(a)to (d) represent the steps to obtain the semantic
matching tree that we define in this section for the initial state xa˚, ay. We begin
by defining the set of execution traces for xR0, w0y P S.

TpxR0, w0yq fi t xR0, w0y
A1

ÝÑxR1, w1y
A2

ÝÑ ¨ ¨ ¨
An
ÝÑxRn, wny |

@i P r0, n ´ 1s : Ai P A and xRi, wiy
Ai`1
ÝÑxRi`1, wi`1y u

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 7

t xa˚, ay, xa˚, ay
⊛

ÝÑxaa˚, ay,

xa˚, ay
⊛

ÝÑxaa˚, ay
oa

ÝÑxa˚, εy,

xa˚, ay
⊛

ÝÑxaa˚, ay
oa

ÝÑxa˚, εy
l

ÝÑxε, εy,

xa˚, ay
⊛

ÝÑxaa˚, ay
oa

ÝÑxa˚, εy
⊛

ÝÑxaa˚, εy,

xa˚, ay
l

ÝÑxε, ay u

(a) Tpxa˚, ayq

t xa˚, ay
⊛

ÝÑxaa˚, ay
oa

ÝÑxa˚, εy
l

ÝÑxε, εy,

xa˚, ay
⊛

ÝÑxaa˚, ay
oa

ÝÑxa˚, εy
⊛

ÝÑxaa˚, εy,

xa˚, ay
l

ÝÑxε, ay u

(b) Tcpxa˚, ayq

xa˚, ay
⊛

ÝÑxaa˚, ay
oa

ÝÑxa˚, εy
⊛

ÝÑxaa˚, εy,

xa˚, ay
⊛

ÝÑxaa˚, ay
oa

ÝÑxa˚, εy
l

ÝÑxε, εy,

xa˚, ay
l

ÝÑxε, ay

(c) pOĎ ˝ Tcqpxa˚, ayq

xa˚, ay
⊛

ÝÑxaa˚, ay
oa

ÝÑxa˚, εy
⊛

ÝÑxaa˚, εy,

xa˚, ay
⊛

ÝÑxaa˚, ay
oa

ÝÑxa˚, εy
l

ÝÑxε, εy

(d) pFε ˝ OĎ ˝ Tcqpxa˚, ayq

Fig. 2

We denote the last state of a trace t as ℓptq and we define the set of com-
plete execution traces as TcpxR, wyq fi t t P TpxR, wyq | ℓptqÛ u. Observe that
TcpxR, wyq represents all possible executions of the matching engine from xR, wy

up to a state in which it is not possible to continue. We say that two traces are
part of the same matching run if they have the same initial state. To build the
matching tree, we need to order the traces from the first that will be explored
to the last. Let t1, t2 be two complete execution traces in the same matching
run, and let xR1, w1y be the last state in the longest common prefix between t1
and t2. We impose a lexical order Ď such that t1 Ď t2 iff the action chosen by t1
after xR1, w1y is either h or ⊛. Let T be a set of complete execution traces such
that all of them are part of the same matching run. We denote with OĎpT q the
sequence of traces in T ordered by Ď.

Observe that pOĎ ˝ TcqpxR, wyq corresponds to the ordered sequence of all
complete execution traces. During the concrete execution, some of them will
never be explored, because as soon as the state xε, εy is found, the procedure
terminates. We want to remove from pOĎ ˝ TcqpxR, wyq those traces that appear
after xε, εy. Let S “ t1, t2, . . . , tn be a sequence of complete execution traces.
We denote by FεpSq the sequence t1, t2, . . . , tk such that tk is the first trace for
which it holds that ℓptkq “ xε, εy. If there is no such trace, then k “ n (i.e., there
is an exhaustive exploration of all traces before failing).

Let S be a sequence of complete execution traces such that all of them are
part of the same matching run. We denote by . pSq the tree obtained by merging
the common prefixes in S.

8 Francesco Parolini and Antoine Miné

xa˚, ay

xaa˚, ay

xa˚, εy

xaa˚, εy xε, εy

Fig. 3: Representation of Ja˚Kpaq

Definition 1 (Matching Tree Semantics). Let R P RT and w P Σ˚. The
matching tree semantics of R with respect to w is given by the following tree.

JRKpwq fi p. ˝Fε ˝ OĎ ˝ TcqpxR, wyq

Figure 3 represents Ja˚Kpaq. One can reconstruct the steps carried out by the
matching engine by doing a depth-first left-to-right traversal of the semantic
tree. We denote the number of nodes in a tree t with |t| and its set of leaves as
lvsptq. We define the language recognized by R P RT as LpRq fi tw P Σ˚ | xε, εy P

lvspJRKpwqq u. We now give the definition of ReDoS vulnerability, using the one
that firstly appeared in [32], but adapted to our semantics.

Definition 2 (ReDoS Vulnerability). Let R P R and n P N. We define
MRpnq fi maxt |JRKpwq| | w P Σ˚, |w| ď n u. We say that R has a ReDoS
vulnerability iff MR P Ωp2nq.

4 Detection of ReDoS Vulnerabilities

In this section, we describe a framework to statically detect exponential ReDoS
vulnerabilities. The analysis we propose derives from a regex an overapproxi-
mation of the set of dangerous words, namely those that can possibly cause an
exponential ReDoS attack. The analysis is sound but not complete: any true
vulnerability will be reported, but the algorithm can occasionally raise false
positives (i.e., harmless regexes can be considered dangerous). Nevertheless, as
discussed in Section 5, our experiments show that in practice our approach is
precise and reports only 50 false positives over 74,670 regexes.

Intuitively, there is an exponential ReDoS vulnerability in a star if it is pos-
sible to match a word with at least two different traces. Consider pa|aq˚: a is
matched in two traces by expanding the left or the right branch of the alterna-
tive. This implies that there are four traces to match aa, eight for aaa and in
general 2n for an. Nevertheless, Jpa|aq˚Kpanq is not an exponential tree, because
the match succeeds after expanding the left branch of the alternative n times.
By appending a character that makes the match fail after an, an attacker can
force the matching engine to explore all traces, effectively performing a ReDoS
attack. This is the reason why |Jpa|aq˚Kpanbq| “ Θp2nq.

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 9

Algorithm 2: Regex representation of M2.

1 function M2pR : Rq Ñ RK

2 return M2-recpR,Hq

3 function M2-recpR : RT , E : ℘pRT
qq Ñ RK

4 if R P E then
5 return K

6 switch xheadpRq, tailpRqy do

7 case xε, εy _ xR˚
1 ,R2y do

8 return K

9 case xa,R1y do
10 return a¨M2-recprpR1q, Eq

11 case xR1|R2,R3y do
12 inter Ð R1R3 X

r

�ε
R2R3

13 l Ð M2-recpR1R3, Eq

14 r Ð M2-recpR2R3, Eq

15 return inter Y
r l Y

r r

16 case xR˚
1 ,R2y do

17 inter Ð R1R
˚
1R2 X

r

�ε
R2

18 l Ð M2-recpR1R
˚
1R2, E Y tRuq

19 r Ð R˚
1 ¨M2-recpR2, Eq

20 return inter Y
r l Y

r r

First, we define a function M2 to extract the set of words that are matched
in at least two traces in a regex R.

M2pRq fi tw P Σ` | Dt1, t2 P TcpxR, wyq : t1 ‰ t2 and ℓpt1q “ ℓpt2q “ xε, εy u

In the analysis, we use M2, and since it is a possibly infinite language we need
an algorithm to compute a finite representation of it. The function M2 in Algo-
rithm 2 returns a regular expression R1 P RK such that LpR1q “ M2pRq. The
correctness is proved in Appendix A. In Algorithm 2, we compute the intersec-
tion of two regexes R1,R2 P RT that does not include ε, and we denote it by
R1Xr

�ε
R2. In Appendix B we give a trivial procedure to compute this intersection.

The intuition behind M2 is that a word is matched in two different traces if
the two branches of a choice1 recognize some common words, that is, they have
a nonempty intersection. Algorithm 2 recursively explores all regexes that can
be reached from the initial one with the transition relation. When it encounters
a choice, it returns the intersection of the two possible branches: the words in it
are those that are matched in two different traces. Observe that since the words
in M2pRq are nonempty, we compute the intersections with Xr

�ε
.

To ensure termination, we keep track of which stars have already been ex-
panded with the parameter E. When a regex in which the first construct is a star

1 By choice we mean taking the left/right branch of an alternative or expanding/not
expanding a star.

10 Francesco Parolini and Antoine Miné

is encountered for the second time, the function returns K. This guarantees that
any star will be expanded exactly once. Observe that the closed stars and the
parameter E serve different purposes: the first guarantees termination during
the concrete execution to avoid infinite ε-matching loops; the second guarantees
termination of the M2-rec function.

Example 1. Consider M2ppa|aq˚q, that initially invokes M2-recppa|aq˚,Hq. First,
pa|aqpa|aq˚ Xr

�ε
ε “L K is returned; then, the recursive call M2-recpε,Hq imme-

diately terminates and returns K as well. The most interesting recursive call
is M2-recppa|aqpa|aq˚, tpa|aq˚uq, where the first construct in the concatenation
is an alternative. The function computes and returns the nonempty intersection
apa|aq˚Xr

�ε
apa|aq˚ “L a`. Next, the algorithm invokes M2-recpapa|aq˚, tpa|aq˚uq,

which then calls M2-recprppa|aq˚q, tpa|aq˚uq. Since rppa|aq˚q “ pa|aq˚ and pa|aq˚

is in E, the algorithm terminates at line 5. To summarize, M2ppa|aq˚q recognizes
the language a`, which is exactly M2ppa|aq˚q.

To understand how we take advantage of M2, consider a regex R˚ such that
M2pR˚q ‰L H. In this case, the set of words that are matched with at least
two traces in R˚ is not empty. Let w P LpM2pR˚qq. Since from R˚ there are two
traces to match w, then there are four traces to match w2, eight for w3, and in
general 2n for wn. Furthermore, for all n ě 1, wn P LpM2pR˚qq. This implies
that the words in M2pR˚q are possibly matched in an exponential number of
traces. To have an exponential matching tree, all of them must be explored. Let
S P R, and consider the case in which wn is matched with R˚S. By concatenating
wn with a suffix s that causes the match to fail, it is possible to force the pro-
cedure to exhaustively explore all traces, effectively resulting in an exponential
matching tree. The language of suffixes that make the match fail is the language
of words not accepted by R˚S, namely R˚S

r
. This is the key insight of our anal-

ysis, namely that M2pR˚q¨R˚S
r
accepts an overapproximation of the language

of words dangerous for R˚S that can cause exponential matching in R˚.
With this intuition, we define the analysis E : R ˆ R ˆ R Ñ RK such that

EpR,P, Sq recognizes an overapproximation of the set of words dangerous for the
regex P¨R¨S that can cause exponential matching in R.

EpR,P, Sq fi

$

’

’

’

&

’

’

’

%

K if R “ ε or R “ a

EpR1,P, Sq Yr EpR2,P, Sq if R “ R1|R2

EpR1,P,R2¨Sq Yr EpR2,P¨R1, Sq if R “ R1R2

P¨R˚
1 ¨M2pR˚

1 q¨R˚
1 ¨S

r
Yr EpR1,P¨R˚

1 ,R
˚
1 ¨Sq if R “ R˚

1

Initially, the analysis must be invoked as EpR, ε, εq. It recursively explores R,
accumulating the prefixes and the suffixes of the portion that it is considering
in P and S. When E encounters a star, in addition to calling E recursively on
the regex under the star, it also returns P¨R˚

1 ¨M2pR˚
1 q¨R˚

1S
r
. As discussed pre-

viously, M2pR˚
1 qR˚

1S
r
recognizes an overapproximation of the language of words

dangerous for R˚
1S that can cause exponential matching in R˚

1 . The first con-
struct P¨R˚

1 in the expression accepts the language of words that the analysis

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 11

determined to be a prefix of R˚
1S. Later in this section, we prove that the words

in EpR, ε, εq are a sound overapproximation of the words that are dangerous for
R, and we also provide an example where the analysis loses precision.

We can perform an emptiness check on EpR, ε, εq to determine if there are
dangerous words. If the language is empty, then R is not vulnerable; otherwise,
we have a sound overapproximation of the words that can lead to ReDoS attacks.

Example 2. Consider Eppa|aq˚, ε, εq.

Eppa|aq˚, ε, εq “ pa|aq˚¨M2ppa|aq˚q¨pa|aq˚
r

Yr Epa|a, pa|aq˚, pa|aq˚q

“L pa|aq˚a`pa|aq˚
r

Yr K

“L a`¨a˚
r

In this case, the analysis determined that pa|aq˚ is vulnerable to arbitrary large
sequences of as that are followed by any nonempty word not composed of as
only. Observe that, effectively, |Jpa|aq˚Kpanbq| “ Θp2nq.

The following soundness theorem provides a strong guarantee that if the
analysis of R returns an empty regex, then the size of any matching tree is at most
polynomial in the length of the input word. The proof is given in Appendix C.

Theorem 1 (Soundness). Let R P R.

EpR, ε, εq “L K ùñ Dk P N : @w P Σ˚ : |JRKpwq| “ Op|w|kq

Some patterns in regexes can cause a loss of precision in the analysis. Consider
as example Σ˚|pa|aq˚ and observe how the matching procedure never explores
the right (dangerous) branch of the outermost alternative. However, since the
analysis does not consider the order in which the branches are explored (they
are merged with Yr), EpΣ˚|pa|aq˚, ε, εq returns the language a`a˚

r
. While our

analysis is not complete, our experiments show that over 74,670 regexes taken
from real-world use cases, this happens only in 50 instances. This shows that
patterns that can make our analysis lose precision rarely occur in practice.

The fact that the analysis returns the language of dangerous words can be
useful in different scenarios. For example, it is possible to use our algorithm in a
matching engine that tries to match a word only if it is not in the attack language
of the input regex. The analysis we put forward can also be integrated with a
static analyzer for high-level programming languages: by paring our framework
with a sound string analysis, it should be possible to prove the absence of ReDoS
vulnerabilities in real-world applications. This is left as future work.

Observe that even though we do not directly support lookaround assertions,
it is possible to run the analysis multiple times on each assertion in a regex.
In fact, if none of them is dangerous (i.e., they have empty attack languages),
then the initial regex is safe. We also believe that it is possible to automatically
overapproximate regexes with backreferences in a sound way (for instance, sub-
stituting (a)*\1 with a*a*) to analyze them with our framework, and we would
like to explore such extensions in future work.

12 Francesco Parolini and Antoine Miné

Table 1: Attributes of the detectors.
Type Sound Complete Language Deterministic

rat static ✓ ✗ ✓ ✓

ReScue [28] dynamic ✗ ✓ ✗ ✗

rexploiter [33] static ✗ ✗ ✓ ✓

rsa [32] static ✓ ✗ ✗ ✓

rsa-full [32] static ✓ ✓ ✗ ✓

rxxr2 [27] static ✗ ✗ ✗ ✓

5 Experimental Evaluation

To assess the usefulness of the analysis we put forward, we implemented it in the
rat [24] tool (ReDoS Abstract Tester, which is publicly available on Github)
in less than 5000 lines of OCaml code, and we compared it to four other de-
tectors. In our experiments, we wanted to evaluate how rat behaves in terms
of precision and performance compared to others. We ran our experiments on a
server with 128GB of RAM, with 48 Intel Xeon CPUs E5-2650 v4 @ 2.20GHz
and Ubuntu 18.04.5 LTS. We considered the dataset used in [28], composed of:
p1q 2,992 patterns from the Regexlib platform [2]; p2q 12,499 patterns from the
Snort platform [3]; p3q 13,597 patterns extracted from 3,898 Python projects on
Github in [9]. To them, we added 63,352 regexes extracted from modules in the
pypi package manager [1] by Davis et al. [14]. From the dataset, we removed
the regexes that were not properly sanitized (e.g., that contained non-printable
characters) and we removed duplicates, obtaining 74,670 regexes. To the best
of our knowledge, it is the first time that such a large dataset of regexes taken
from real-world programs is used to compare the precision and performance of
ReDoS-detection tools.

In what follows, we say that a detector is sound if it identifies as vulnerable
all the truly vulnerable regexes, and we say that it is complete if all the regexes
it identifies as vulnerable are truly vulnerable. Sound detectors forbid false neg-
atives and complete detectors forbid false positives. The tools we compared rat

to are ReScue [28], rexploiter [33], rsa [32] and rxxr2 [27]. In particular, rsa
allows the user to improve the precision of the analysis (at the cost of sacrificing
some performance) with the “full” mode, that makes it the only sound and com-
plete tool. The only dynamic detector we compare to is ReScue, that due to its
nature never raises false positives. On the other hand, since it relies on a genetic
algorithm that generates the input strings with random mutations, the analysis
is not deterministic. In Section 6, we discuss the details of each approach, and
in Table 1 we summarize the characteristics of the tools. While attributes re-
ported in Table 1 summarize the expected behaviour, we found that in practice
some detectors do not match the underlying theoretical results. If a detector can
extract the language of dangerous words (opposed to a single exploit string) we
mark the Language column with ✓.

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 13

Table 2: Evaluation results.
OK FP FN OOT RTE SKIP TIME

rat 67,049 50 0 181 0 7,390 1:58:29
rxxr2 60,792 94 7 11 0 13,766 0:09:37
ReScue 33,541 0 43 32,200 0 8,886 325:54:19
rsa 57,243 190 1 817 242 16,177 19:58:32
rsa-full 54,823 134 1 3,174 399 16,139 39:11:21
rexploiter 53,929 31 180 327 0 20,203 9:42:47

Precision Comparison. We use the evaluation technique used in [28], which,
to the best of our knowledge, is the only article that compares the precision of
ReDoS detectors. We analyze each regex with the detectors setting an individual
timeout of 30 seconds, and then we compare the results. If any tool can craft an
exploit string of length lesser or equal to 128 characters that makes the Java 8
matching engine perform more than 1010 matching steps, we consider the regex
to be vulnerable. During our tests, we observed that for the specific matching
engine we consider, for strings of length at most 128 characters, 1010 matching
steps are a sound threshold to clearly distinguish between exponential and non-
exponential matching. We cross-reference the results of five different tools (some
of which are, at least theoretically, sound) by concretely testing exploit strings on
a real-world matching engine, so that we infer with high confidence the number
of false positives and false negatives. We classified as vulnerable 313 regexes.

In Table 2, we report the results. The columns correspond to: number of
correctly classified regexes (OK); false positives (FN); false negatives (FN);
out of time (OOT); runtime errors (RTE); skipped (SKIP) (i.e., not parsed);
total runtime displayed as H:MM:SS (TIME).

Compared to other static analyzers, rat reports a relatively low number
of false positives: 50 over the 67,280 regexes that it parses. The only static
analyzer that reports fewer false positives than rat is rexploiter, that on the
other hand reports 180 false negatives and skips 20,203 regexes. Interestingly,
we observed that in practice rat is the only detector that does not report false
negatives. This matches our theoretical results, and it gives empirical evidence
that our framework performs a sound analysis. We also observe that rat is the
detector that parses the highest number of regexes: even more than ReScue,
which indeed supports advanced features. This is due to the fact that ReScue

does not support some regular patterns such as named capturing groups with
the syntax (?P<name>pattern), that indeed rat can analyze.

Performance Comparison. In case a detector runs out of time for a few
regexes, the total runtime in Table 2 grows sharply, not representing precisely
the average performance of the tool. For this reason, we use survival plots to
compare more faithfully the performance of the detectors. On such plot, the y-
axis represents the time in milliseconds, and the x-axis is the number of regexes
such that each one can be analyzed under the specified time, while the remaining

14 Francesco Parolini and Antoine Miné

10-3

10-2

10-1

100

101

102

103

104

 0 10000 20000 30000 40000 50000 60000 70000

T
im

e
 (

m
s
)

Solved Instances

rat
rescue

rexploiter
rsa

rsa-full
rxxr2

Fig. 4: Survival plot with a logarithmic y axis and linear x axis.

regexes either take longer to analyze or cannot be analyzed by the corresponding
detector. No plot for x-axis and detector d means that for 74, 670´x regexes d
did not successfully complete the analysis (i.e., it either ran out of time or it
had a parse/runtime error). The plot highlights the relative performance of each
tool and how many regexes can be individually analyzed under a time threshold.
The survival plot of our experiments is depicted in Figure 4.

Our experiments showed that rat is able to analyze 66,924 regexes over the
67,280 that it parses in less than one second each („ 99.47%). As expected,
ReScue is, due to its dynamic nature, significantly slower than static analyzers.
After it, we find the cluster composed of rsa, rsa-full and rexploiter. Our
detector is on average one to two orders of magnitude faster than them for
corresponding points on abscissa x. While rxxr2 is generally faster than rat, we
remark that rat is performing a strictly more expressive analysis by returning
the language of dangerous words. Furthermore, according to Table 2, rxxr2 is
not performing a sound analysis either. We also remark that rat analyzes 6,376
more regexes than rxxr2.

Discussion. We observed that in practice rat is one to two orders of magnitude
faster than most detectors, raises a relatively low number of false positives, and
it is the only analyzer that does not report false negatives. The approach based
on semantic trees significantly improved the analysis’ design and the easiness to
reason about ReDoS vulnerabilities. It also allowed us to ignore the complexities
related to transforming regexes into automata, that for some tools are sources of
unsoundness and incompleteness. To the best of our knowledge, our analysis for
ReDoS vulnerabilities is the first that operates directly on regexes without having
to resort to automata. Regexes also make it easy to implement many performance
optimizations. We integrated in rat two major performance improvements.

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 15

– Character Classes Representation. Character classes are features commonly
used by programmers. For example, \d is a shortcut for 0|1| . . . |9. We ex-
tend the regexes to recognize sets of characters instead of simple characters.
With a slight adjustment to our implementation, regexes containing char-
acter classes considerably decreased their size. For example, 0| . . . |9 has 19
constructs, while t 0, . . . , 9 u is a regex with a single character set construct.

– Symbolic Operations. In our analysis, we perform a large number of inter-
section and complement operations. Instead of running the algorithm to
compute them, we extend again the regexes to support symbolic intersection
and symbolic complement. When a complement or an intersection must be
computed, we simply add its symbolic representation to the result.

6 Related Work

Wüstholz et al. [33] put forward an analysis based on automata to detect ReDoS
vulnerabilities, and they implement it the rexploiter tool. Their approach is
the closest to ours, since they can as well extract the language of dangerous
words. However, the analysis is not sound nor complete, because transforming a
regex into an automaton can introduce or remove vulnerabilities. For example,
applying Glushkov’s construction [16] to the vulnerable regex pa˚q˚ we obtain
a non-vulnerable automaton (with respect to [33, Defn. 3]). Since they do not
define an algorithm to transform regexes into automata that preserves vulnera-
bilities, the analysis can report both false positives and false negatives, and our
experiments confirmed this.

The rxxr2 tool is a static analyzer for exponential ReDoS vulnerabilities
that infers exploit strings [27]. It is the successor of rxxr [18], that turned out
to be unsound. Introducing a novel approach based on NFAs with prioritized
transitions, rxxr2 infers strings that can be pumped and lead to exponential
matching. While the algorithm is sound and complete with respect to automata,
transforming regexes to automata can introduce or remove vulnerabilities. Sim-
ilarly to rexploiter, they assume that the input regex has been converted into
an automaton following one of the standard constructions, so that the analysis
is actually neither sound nor complete.

The framework of prioritized NFAs (pNFAs) [7,8] has been leveraged by Wei-
deman et al. [32] to build the rsa (RegexStaticAnalysis) static analyzer. The
authors introduce an algorithm to translate regexes into automata that preserves
the ReDoS vulnearbilities. The automata are analyzed with the framework de-
scribed in [5] to determine the degree of ambiguity [31], which allows inferring
whether there are ReDoS vulnerabilities or not. The full mode performs a sound
and complete analysis, while the simple mode is only sound, but it usually runs
faster. We observe that while the analysis is complete, it is strictly less expres-
sive than ours. In fact, their framework cannot be used to extract the attack
language for a regular expression, but only a finite number of exploit strings.
For this reason, the two approaches are suitable for different uses: tools that
need the specification of dangerous words, such as static analyzers, cannot rely

16 Francesco Parolini and Antoine Miné

on rsa to extract it. Furthermore, our algorithm performs a single emptyness
check of the attack language, while their analysis performs a universality check
for each state of the automaton, resulting in a strictly higher complexity. Our
experiments confirm that our analysis has a substantial performance advantage
over the one proposed in [32].

A radically different approach to ReDoS detection is dynamic analysis. The
ReScue tool [28] leverages a genetic algorithm to efficiently generate potentially
dangerous words, that are then matched by the Java matching engine to deter-
mine if they are truly dangerous. For this reason, the tool cannot report false
positives. On the other hand, there is no guarantee about the absence of false
negatives. The gray-box approach makes it easy to support a wide variety of
advanced features, but it has the disadvantage to be several orders of magnitude
slower than static analyzers. The analysis is not deterministic, and due to its
dynamic nature it is not expressive enough to compute the attack language.

Recently, many techniques have been proposed to mitigate ReDoS attacks.
Cody-Kenny et al. [11] use genetic programming to substitute vulnerable regexes
with safe ones. Li et al. [19] and Pan et al. [23] put forward techniques for auto-
matic regex repair based on examples. In [13] the authors introduce a matching
algorithm that leverages selective memoization to mitigate ReDoS attacks while
supporting advanced regex features. Sophisticated techniques based on GPU
matching [20,34] and state-merging algorithms [6] have also been proposed to
speedup the matching.

7 Conclusions

In this paper, we defined a tree semantics for regular expression matching, which
we leveraged to design a sound static analysis that detects ReDoS vulnerabilities.
To the best of our knowledge, our ReDoS detection framework is the first one that
operates directly on regexes without having to resort to automata. This allowed
us to easily reason about the concrete behaviour of complex matching engines,
and it opened the possibility to integrate significant performance optimizations.

We implemented our analysis in the rat tool, and to assess the effectiveness
of our technique, we compared it to four other detectors. We found rat to be
on average one to two orders of magnitude faster than most tools, while giving
strong guarantees about the soundness of the analysis. While raising a relatively
low the number of false positives, rat is the only ReDoS detector that did not
report false negatives.

In future work, would we would like to extend our analysis to support ad-
vanced features such as backreferences and lookarounds. We believe that it is
possible to automatically overapproximate those features with regular constructs
in a sound way. Another interesting extension of this paper would be to integrate
our framework in a static analyzer for high-level languages such as Python. We
believe that by pairing rat with a string analysis, it is possible to prove the
absence of ReDoS vulnerabilities in real-world applications.

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 17

References

1. The pypi packet manager. https://pypi.org/
2. The regexlib database. https://regexlib.com/
3. The snort database. http://www.snort.org/
4. National vulnerability database: CVE-2020-3899 (2020), https://nvd.nist.gov/

vuln/detail/CVE-2020-3899
5. Allauzen, C., Mohri, M., Rastogi, A.: General algorithms for testing the ambiguity

of finite automata and the double-tape ambiguity of finite-state transducers. In-
ternational Journal of Foundations of Computer Science 22(04), 883–904 (2011).
https://doi.org/10.1142/s0129054111008477

6. Becchi, M., Cadambi, S.: Memory-efficient regular expression search
using state merging. In: Joint Conference of the IEEE Computer
and Communications Societies, INFOCOM. pp. 1064–1072 (2007).
https://doi.org/10.1109/INFCOM.2007.128

7. Berglund, M., Drewes, F., van der Merwe, B.: Analyzing catastrophic back-
tracking behavior in practical regular expression matching 151, 109–123 (2014).
https://doi.org/10.4204/EPTCS.151.7

8. Berglund, M., van der Merwe, B.: On the semantics of regular expres-
sion parsing in the wild. Theoretical Computer Science 679, 69–82 (2017).
https://doi.org/10.1016/j.tcs.2016.09.006

9. Chapman, C., Stolee, K.T.: Exploring regular expression usage and context in
Python. In: International Symposium on Software Testing and Analysis, ISSTA.
pp. 282–293. ACM (2016). https://doi.org/10.1145/2931037.2931073

10. Cloudflare: Cloudflare’s outage postmortem - july 2, 2019. https://blog.cloudflare.
com/details-of-the-cloudflare-outage-on-july-2-2019/ (2019)

11. Cody-Kenny, B., Fenton, M., Ronayne, A., Considine, E., McGuire, T., O’Neill,
M.: A search for improved performance in regular expressions. In: Genetic
and Evolutionary Computation Conference, GECCO. pp. 1280–1287 (2017).
https://doi.org/10.1145/3071178.3071196

12. Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complex-
ity attacks. In: USENIX Security Symposium. USENIX Association (2003).
https://doi.org/10.1007/11506881 10

13. Davis, J.C., Servant, F., Lee, D.: Using selective memoization to defeat
regular expression denial of service (ReDoS). In: IEEE Symposium on Se-
curity and Privacy (SP). pp. 543–559. IEEE Computer Society (2021).
https://doi.org/10.1109/SP40001.2021.00032

14. Davis, J.C., Coghlan, C.A., Servant, F., Lee, D.: The impact of regular expression
denial of service (ReDoS) in practice: an empirical study at the ecosystem scale.
In: ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE. pp.
246–256. ACM (2018). https://doi.org/10.1145/3236024.3236027

15. Friedl, J.E.F.: Mastering regular expressions - understand your data and be
more productive: for Perl, PHP, Java, .NET, Ruby, and more (3. ed.). O’Reilly
(2006), https://www.oreilly.com/library/view/mastering-regular-expressions/
0596528124/

16. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Surveys
16(5), 1 (1961)

17. IV, L.G.M., Donohue, J., Davis, J.C., Lee, D., Servant, F.: Regexes are hard:
Decision-making, difficulties, and risks in programming regular expressions. In:

https://pypi.org/
https://regexlib.com/
http://www.snort.org/
https://nvd.nist.gov/vuln/detail/CVE-2020-3899
https://nvd.nist.gov/vuln/detail/CVE-2020-3899
https://doi.org/10.1142/s0129054111008477
https://doi.org/10.1109/INFCOM.2007.128
https://doi.org/10.4204/EPTCS.151.7
https://doi.org/10.1016/j.tcs.2016.09.006
https://doi.org/10.1145/2931037.2931073
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://doi.org/10.1145/3071178.3071196
https://doi.org/10.1007/11506881_10
https://doi.org/10.1109/SP40001.2021.00032
https://doi.org/10.1145/3236024.3236027
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/

18 Francesco Parolini and Antoine Miné

International Conference on Automated Software Engineering, ASE. pp. 415–426.
IEEE (2019). https://doi.org/10.1109/ASE.2019.00047

18. Kirrage, J., Rathnayake, A., Thielecke, H.: Static analysis for regular expression
denial-of-service attacks. In: International Conference of Network and System Se-
curity, NSS. Lecture Notes in Computer Science, vol. 7873, pp. 135–148. Springer
(2013). https://doi.org/10.1007/978-3-642-38631-2 11

19. Li, Y., Xu, Z., Cao, J., Chen, H., Ge, T., Cheung, S., Zhao, H.:
Flashregex: Deducing anti-redos regexes from examples. In: International Con-
ference on Automated Software Engineering, ASE 2020. pp. 659–671 (2020).
https://doi.org/10.1145/3324884.3416556

20. Lin, C., Liu, C., Chang, S.: Accelerating regular expression matching using hierar-
chical parallel machines on GPU. In: Global Communications Conference, GLOBE-
COM. pp. 1–5 (2011). https://doi.org/10.1109/GLOCOM.2011.6133663

21. López, F., Romero, V.: Mastering Python Regular Expressions.
Packt Publishing Ltd (2014), https://www.packtpub.com/product/
mastering-python-regular-expressions/9781783283156

22. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives re-
examined. Journal of Functional Programming 19(2), 173–190 (2009).
https://doi.org/10.1017/s0956796808007090

23. Pan, R., Hu, Q., Xu, G., D’Antoni, L.: Automatic repair of regular expressions.
Proceedings of the ACM on Programming Languages 3(OOPSLA), 139:1–139:29
(2019). https://doi.org/10.1145/3360565

24. Parolini, F., Miné, A.: rat - ReDoS Abstract Tester (2022), https://github.com/
parof/rat

25. Petsios, T., Zhao, J., Keromytis, A.D., Jana, S.: Slowfuzz: Automated domain-
independent detection of algorithmic complexity vulnerabilities. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. pp. 2155–2168.
ACM (2017). https://doi.org/10.1145/3133956.3134073

26. Rathnayake, A.: Semantics, analysis and security of backtracking regular ex-
pression matchers. Ph.D. thesis, University of Birmingham, UK (2015), http:
//etheses.bham.ac.uk/6011/

27. Rathnayake, A., Thielecke, H.: Static analysis for regular expression exponential
runtime via substructural logics. CoRR abs/1405.7058 (2014)

28. Shen, Y., Jiang, Y., Xu, C., Yu, P., Ma, X., Lu, J.: Rescue: crafting regular expres-
sion dos attacks. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France, September
3-7, 2018. pp. 225–235. ACM (2018). https://doi.org/10.1145/3238147.3238159

29. Stack Overflow: Stack Overflow’s Outage Postmortem - July 20, 2016. https://
stackstatus.net/post/147710624694/outage-postmortem-july-20-2016 (2016)

30. Staicu, C.A., Pradel, M.: Freezing the web: A study of redos vulnerabilities in
javascript-based web servers. In: 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018. pp. 361–376 (2018),
https://www.usenix.org/conference/usenixsecurity18/presentation/staicu

31. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor-
ertical Computer Science 88(2), 325–349 (1991). https://doi.org/10.1016/0304-
3975(91)90381-B

32. Weideman, N., van der Merwe, B., Berglund, M., Watson, B.W.: Analyzing match-
ing time behavior of backtracking regular expression matchers by using ambi-
guity of NFA. In: Implementation and Application of Automata - 21st Interna-

https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1007/978-3-642-38631-2_11
https://doi.org/10.1145/3324884.3416556
https://doi.org/10.1109/GLOCOM.2011.6133663
https://www.packtpub.com/product/mastering-python-regular-expressions/9781783283156
https://www.packtpub.com/product/mastering-python-regular-expressions/9781783283156
https://doi.org/10.1017/s0956796808007090
https://doi.org/10.1145/3360565
https://github.com/parof/rat
https://github.com/parof/rat
https://doi.org/10.1145/3133956.3134073
http://etheses.bham.ac.uk/6011/
http://etheses.bham.ac.uk/6011/
https://doi.org/10.1145/3238147.3238159
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://www.usenix.org/conference/usenixsecurity18/presentation/staicu
https://doi.org/10.1016/0304-3975(91)90381-B
https://doi.org/10.1016/0304-3975(91)90381-B

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 19

tional Conference, CIAA 2016, Seoul, South Korea, July 19-22, 2016, Proceed-
ings. Lecture Notes in Computer Science, vol. 9705, pp. 322–334. Springer (2016).
https://doi.org/10.1007/978-3-319-40946-7 27

33. Wüstholz, V., Olivo, O., Heule, M.J.H., Dillig, I.: Static detection of dos vulnera-
bilities in programs that use regular expressions. In: Legay, A., Margaria, T. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 23rd Interna-
tional Conference, TACAS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10206, pp.
3–20 (2017). https://doi.org/10.1007/978-3-662-54580-5 1

34. Yu, X., Becchi, M.: GPU acceleration of regular expression matching for large
datasets: exploring the implementation space. In: Computing Frontiers Conference,
CF. pp. 18:1–18:10 (2013). https://doi.org/10.1145/2482767.2482791

A Proof of Correctness of M2 (See page 9)

Before proving the correctness of M2 we need some preliminary definitions. Let
R1,R2 P RT, w1, w2 P Σ˚. If Dt P TpxR1, w1w2yq such that xR2, w2y “ ℓptq, then
we write xR1, w1w2yÝÑ˚xR2, w2y. We need to define when a regex R P RT is
valid, namely when it is possible to obtain it by following a series of transitions
from an initial regex in R. We say that R P RT is valid iff DR1 P R, w1, w2 P Σ˚

such that xR1, w1w2yÝÑ˚xR, w2y. Consider as example ab˚: there is no regex in
R that can produce a concatenated with b˚, so that ab˚ is not valid.

Let S be a nonempty set of regular expressions such that @R1,R2 P S if
R1 ‰ R2, then |R1| ‰ |R2| (where |R| is the number of constructors in the
regex). We extract the longest element of S with the function L : ℘pRTq Ñ RT

defined as LpSq fi argmaxRPS |R|. Let R1 P RT,R “ R1 ¨ ¨ ¨Rn P RT where for all
i P r1 . . . ns, Ri is not a concatenation. We define a function to determine whether
a regex is a suffix of another modulo ˚. suff : RT ˆ RT Ñ bool is defined as
suffpR1,R1 ¨ ¨ ¨Rnq “ true iff Dj P r1 . . . ns such that rpR1q “ rpRj`1 . . .Rnq. For
example, suffpa˚a, aa˚aq “ true. We say that a set S is a valid set of expansion
of nested stars if: (1) @R P S, DR1,R2 P RT such that R “ R˚

1R2; (2) @R1,R2 P S
such that R1 ‰ R2 it holds |R1| ‰ |R2|; (3) @R P SztLpSqu : suffpR,LpSqq. An
example of a valid set of expansion of nested stars is t pa˚q˚, a˚pa˚q˚ u.

Then, we give the precondition for M2-recpR, Eq.

1. R is valid;
2. E is a valid set of expansion of nested stars;
3. @Ri P E it holds that suffpRi,Rq.

The second and the third conditions together imply that if R P E, then R “

LpEq. Observe that the precondition trivially holds for M2-recpR,Hq if R P R.
Let R1,R2 P RT. If R1 “ R2, then we defineMR2

2 : R Ñ Σ˚ asMR2
2 pR1q fi H.

If R1 ‰ R2, M
R2
2 pR1q is defined as follows.

MR2
2 pR1q fi tw1w2 | w1 P Σ`, w2 P Σ˚, Dt1, t2 P TpxR1, w1w2yq :

t1 ‰ t2 ^ ℓpt1q “ ℓpt2q “ xR2, w2y ^ w2 P LpR2q u

https://doi.org/10.1007/978-3-319-40946-7_27
https://doi.org/10.1007/978-3-662-54580-5_1
https://doi.org/10.1145/2482767.2482791

20 Francesco Parolini and Antoine Miné

We can now give the postcondition for M2-recpR, Eq.

– If E “ H, then LpM2-recpR, Eqq “ M2pRq;

– If E ‰ H, then M
LpEq

2 pRq Ď LpM2-recpR, Eqq Ď M2pRq.

The second case in the postcondition corresponds to when the algorithm is ex-
ploring the body of a star. In this case, the function returns an overapproxima-
tion of the words that have a nonempty prefix that is matched in at least two
different traces and can then reach LpEq.

We define the set of reachable regexes rch : RT Ñ ℘pRTq as rchpRq fi tR1 P

RT | Dw1, w2 P Σ˚, Dt P TpxR, w1w2yq : ℓptq “ xR1, w2y u.

Given the call M2-recpR, Eq, we can associate to it the set of pairs ApR, Eq

such that for each xR1, E1y P ApR, Eq it holds (1) M2-recpR1, E1q is called in
a subcall of M2-recpR, Eq; (2) the control flow reaches line 6. It can be proved
that for each R P RT, E P ℘pRTq that respect the precondition, it holds that
xR, Ey R ApR, Eq, namely the configuration xR, Ey will never be expanded again
in any subcall of M2-recpR, Eq. This is because the algorithm keeps track, with
the formal parameter E, of stars that have already been analyzed, and as soon as
a regex that has a star as the first construct in the concatenation is encountered
for the second time, the function terminates at line 5, never reaching line 6.

Furthermore, we observe that ApR, Eq is a finite set. This is because for
each xR1, E1y P ApR, Eq it holds that R1 P rchpRq (since the algorithm explores
all regexes that can be expanded during the concrete execution), and rchpRq is
finite. The finiteness of ApR, Eq and the fact that xR, Ey R ApR, Eq imply the
termination of the algorithm.

We can now prove by induction on ApR, Eq that the precondition implies the
postcondition for M2-recpR, Eq.

Proof. If ApR, Eq “ H, then there won’t be any subcalls to M2-rec. There are
three possible cases.

1. xheadpRq, tailpRqy “ xε, εy. Then, the execution reaches line 8 and K is re-
turned, since no word in Σ` is matched in two different traces from ε.

2. xheadpRq, tailpRqy “ xR˚
1 ,R2y. Then, similarly to the previous case, the exe-

cution reaches line 8 and K is returned, since no word can be matched if the
first constructor in the concatenation is ˚.

3. R P E. Then, by the second and third conditions in the precondition it must
be that R “ LpEq. By definition, MR

2 pRq “ H, and we conclude by observing
that we correctly return K at line 5.

If ApR, Eq ‰ H, then we are in the inductive case and there are subcalls to
M2-rec. We consider two different scenarios: p1q E “ H and p2q E ‰ H. If
E “ H we consider again three different cases that depend on R.

1. xheadpRq, tailpRqy “ xa,R1y. In this case we return a¨M2-recprpR1q,Hq.
Since the precondition is satisfied for M2-recpaR1,Hq, it is satisfied also for

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 21

M2-recprpR1q,Hq. Furthermore, since xrpR1q,Hy R AprpR1q,Hq, we have
AprpR1q,Hq Ă ApaR1,Hq. We can then apply the inductive hypothesis:

Lpa¨M2-recprpR1q,Hqq “ LpaqM2prpR1qq (inductive hypothesis)

“ M2pa¨rpR1qq

“ M2paR1q

(@w P Σ˚ : Tpxa¨rpR1q, wyq “ TpxaR1, wyq)

2. xheadpRq, tailpRqy “ xR1|R2,R3y. The first action is a choice. We can di-
vide M2ppR1|R2qR3q in three subsets: p1q those words matched by both
branches of the current choice, namely LpR1R3 Xr

�ε
R2R3q; p2q those words

that are matched in at least two different traces after taking the left branch,
namely M2pR1R3q; p3q those words that are matched in at least two dif-
ferent traces after taking the right branch, namely M2pR2R3q. Similarly
to the previous case, the precondition in each subcall is satisfied. Further-
more,ApR1R3,Hq Ă AppR1|R2qR3,Hq andApR2R3,Hq Ă AppR1|R2qR3,Hq

hold. We can then apply the inductive hypothesis: LpM2-recpR1R3,Hqq “

M2pR1R3q and LpM2-recpR2R3,Hqq “ M2pR2R3q hold. Observing that we
return pR1R3 Xr

�ε
R2R3q Yr M2-recpR1R2,Hq Yr M2-recpR2R2,Hq, we can

conclude:

LpM2-recppR1|R2qR3,Hqq

“ LppR1R3 Xr

�ε
R2R3q Yr M2-recpR1R3,Hq Yr M2-recpR2R3,Hqq

“ LpR1R3 Xr

�ε
R2R3q Y M2pR1R3q Y M2pR2R3q (inductive hypothesis)

“ M2ppR1|R2qR3q

3. xheadpRq, tailpRqy “ xR˚
1 ,R2y. Then the first action is a choice. Similarly to

the previous case, we can divide M2pR˚
1R2q in three subsets: p1q the words

matched by both branches of the current choice (that is to expand the star
or not), namely LpR1R

˚
1R2Xr

�ε
R2q; p2q the words that are matched in at least

two different traces in the body of the star and that can reach R˚
1R2, namely

M
R˚

1 R2

2 pR1R
˚
1R2q; p3q the words that are matched in at least two different

traces in R2, namely M2pR2q. Observe that the words in M2pR2q have as pre-
fix language all the words that can be matched in R˚

1 , so that the last set ac-
tually is LpR˚

1 qM2pR2q. If the precondition holds for M2-recpR˚
1R2,Hq, then

it holds for the subcalls. Furthermore, ApR1R
˚
1R2, tR˚

1R2uq Ă ApR˚
1R2,Hq

and ApR2,Hq Ă ApR˚
1R2,Hq, so that by inductive hypothesis we have:

LpR˚
1 ¨M2-recpR2,Hqq “ LpR˚

1 qM2pR2q

M
R˚

1 R2

2 pR1R
˚
1R2q Ď LpM2-recpR1R

˚
1R2, tR˚

1R2uqq Ď M2pR1R
˚
1R2q

22 Francesco Parolini and Antoine Miné

Observing that we return pR1R
˚
1R2 Xr

�ε
R2q Yr M2-recpR1R

˚
1R2, tR˚

1R2uq Yr

R˚
1 ¨M2-recpR2,Hq, we can conclude:

M2pR˚
1R2q

“ LpR1R
˚
1R2 Xr

�ε
R2q Y M

R˚
1 R2

2 pR1R
˚
1R2q Y LpR˚

1 qM2pR2q

Ď LppR1R
˚
1R2 Xr

�ε
R2q Yr M2-recpR1R

˚
1R2, tR˚

1R2uq Yr R˚
1 ¨M2-recpR2,Hqq

(inductive hypothesis)

Ď LpR1R
˚
1R2 Xr

�ε
R2q Y M2pR1R

˚
1R2q Y LpR˚

1 qM2pR2q

(inductive hypothesis)

“ M2pR˚
1R2q (M

R˚
1 R2

2 pR1R
˚
1R2q Ď M2pR1R

˚
1R2q Ď M2pR˚

1R2q)

So that LppR1R
˚
1R2Xr

�ε
R2qYrM2-recpR1R

˚
1R2, tR˚

1R2uqYrR˚
1 ¨M2-recpR2,Hqq

equals M2pR˚
1R2q.

We then consider the other case, namely E ‰ H. There are three cases,
depending on R.

1. xheadpRq, tailpRqy “ xa,R1y. In this case we return a¨M2-recprpR1q, Eq. By
the fact that the precondition is satisfied for M2-recpR, Eq, it is satisfied also
for M2-recprpR1q, Eq. Furthermore, we have AprpR1q, Eq Ă ApaR1, Eq. We
can then apply the inductive hypothesis and obtain:

M
LpEq

2 paR1q “ M
LpEq

2 pa¨rpR1qq

(@w P Σ˚ : TpxaR1, wyq “ Tpxa¨rpR1q, wyq)

“ LpaqM
LpEq

2 prpR1qq

Ď Lpa¨M2-recprpR1q, Eqq (inductive hypothesis)

Ď LpaqM2prpR1qq (inductive hypothesis)

“ M2pa¨rpR1qq

“ M2paR1q (@w P Σ˚ : Tpxa¨rpR1q, wyq “ TpxaR1, wyq)

2. xheadpRq, tailpRqy “ xR1|R2,R3y. The first action is a choice. We can di-

vide M
LpEq

2 ppR1|R2qR3q in three subsets: p1q the words in M
LpEq

2 pR1R3q;

p2q the words in M
LpEq

2 pR2R3q; p3q the words w1w2 with w1 P Σ`, w2 P Σ˚

such that xR1R3, w1w2yÝÑ˚xLpEq, w2y, xR2R3, w1w2yÝÑ˚xLpEq, w2y and
w2 P LpLpEqq. This set corresponds to those words that have a nonempty
prefix that can be matched by both branches of the alternative and can reach
LpEq. Let I be this set: observe that it is a subset of LpR1R3 Xr

�ε
R2R3q. The

precondition in each subcall is satisfied, ApR1R3, Eq Ă AppR1|R2qR3, Eq and
ApR2R3, Eq Ă AppR1|R2qR3, Eq hold. We can then apply the inductive hy-
pothesis and, observing that we return pR1R3Xr

�ε
R2R3qYrM2-recpR1R3, EqYr

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 23

M2-recpR2R3, Eq, we obtain:

M
LpEq

2 ppR1|R2qR3q

“ I Y M
LpEq

2 pR1R3q Y M
LpEq

2 pR2R3q

Ď LppR1R3 Xr

�ε
R2R3q Yr M2-recpR1R3, Eq Yr M2-recpR2R3, Eqq

(inductive hypothesis and I Ď LpR1R3 Xr

�ε
R2R3q)

Ď LppR1R3 Xr

�ε
R2R3qq Y M2pR1R3q Y M2pR2R3q (inductive hypothesis)

“ M2ppR1|R2qR3q (analogous to subcase pR1|R2qR3 if E “ H)

3. xheadpRq, tailpRqy “ xR˚
1 ,R2y. The first action in this case is a choice.

We can divide the set M
LpEq

2 pR˚
1R2q in three subsets: p1q the words in

M
LpEYtR˚

1 R2uq

2 pR1R
˚
1R2q; p2q the words in M

LpEq

2 pR2q (they have as prefix
language all the words that can be matched in R˚

1 , so that actually the set

corresponds to LpR˚
1 qM

LpEq

2 pR2q); p3q the words w1w2 with w1 P Σ`, w2 P

Σ˚ such that xR1R
˚
1R2, w1w2yÝÑ˚xLpEq, w2y, xR2, w1w2yÝÑ˚xLpEq, w2y

and w2 P LpLpEqq. This set corresponds to those words that have a nonempty
prefix that can be matched by both the expansion of the star and R2, and can
then reach LpEq. Let I be this set: observe that it is a subset of LpR1R

˚
1R2Xr

�ε
R2q. The precondition in each subcall is satisfied, ApR1R

˚
1R2, EYtR˚

1R2uq Ă

ApR˚
1R2, Eq and ApR2, Eq Ă ApR˚

1R2, Eq hold. We can then apply the
inductive hypothesis and, observing that we return pR1R

˚
1R2 Xr

�ε
R2q Yr

M2-recpR1R
˚
1R2, E Y tR˚

1R2uq Yr R˚
1 ¨M2-recpR2, Eq, we obtain:

M
LpEq

2 pR˚
1R2q

“ I Y M
LpEYtR˚

1 R2uq

2 pR1R
˚
1R2q Y LpR˚

1 qM
LpEq

2 pR2q

Ď LppR1R
˚
1R2 Xr

�ε
R2q Yr M2-recpR1R

˚
1R2, E Y tR˚

1R2uq Yr R˚
1 ¨M2-recpR2, Eqq

(inductive hypothesis and I Ď LpR1R
˚
1R2 Xr

�ε
R2q)

Ď LpR1R
˚
1R2 Xr

�ε
R2q Y M2pR1R

˚
1R2q Y M2pR2q (inductive hypothesis)

“ M2pR˚
1R2q (analogous to subcase R “ R˚

1R2 if E “ H)

B Algorithm to compute Xr

�ε

We give function non-eps-inter in Algorithm 3 to compute the intersection of
two regexes in RT without ε. The intuition is that the function non-eps-langpRq

computes a regex R
�ε
such that LpR

�ε
q “ LpRqztεu, and then the intersection of

the two non-epsilon languages is computed using Xr.

C Proof of Theorem 1 (See page 11)

Before proving the soundness of the exponential analysis, we need some prelim-
inary definitions and results. First, if @w P Σ˚ : |JRKpwq| “ Op|w|q we simply

24 Francesco Parolini and Antoine Miné

Algorithm 3: Algorithm that computes Xr

�ε
.

1 function non-eps-interpR1 : RT ,R2 : RT
q Ñ RK

2 return non-eps-langpR1q X
r non-eps-langpR2q

3 function non-eps-langpR : RT
q Ñ RK

4 switch xheadpRq, tailpRqy do

5 case xε, εy _ xR˚
1 ,R2y do

6 return K

7 case xa,R1y do
8 return a¨prpR1qq

9 case xR1|R2,R3y do
10 return non-eps-langpR1R3q Y

r non-eps-langpR2R3q

11 case xR˚
1 ,R2y do

12 return non-eps-langpR1R
˚
1R2q Y

r non-eps-langpR2q

write linpRq. We define the frontier of a state f : S Ñ S˚ as fpxR, awyq fi

xrpR1q, wy, . . . , xrpRnq, wy, where JaR1Kpawq, . . . , JaRnKpawq is the possibly empty
ordered sequence of subtrees of JRKpawq such that the next action is matching
the first character a. For example, fpxpa|aq˚, abyq “ xpa|aq˚, by, xpa|aq˚, by. The
frontier of the empty word is fpxR, εyq fi H. We abuse the notation and we gen-
eralize the frontier to sequences of states: fpxR1, wy, . . . , xRn, wyq is the ordered
concatenation of fpxR1, wyq, . . . , fpxRn, wyq.

Observe that the height of the matching tree has as upper bound the length
of the input string. The following lemma formalizes this intuition.

Lemma 1. Let R P RT, w P Σ˚ and h be the height of JRKpwq. Then, h “

Op|w|q.

Proof. Let m be the least integer such that fmpxR, wyq is empty. Since the
number of nodes between the frontiers does not depend on the length of the
input word but only on the regex, h “ Θpmq. Observe that the words in the
states of fnpxR, wyq have |w| ´n characters. By defintion of f , when n “ |w| the
next frontier must be empty. This implies that m cannot be greater than |w|, so
that h “ Op|w|q.

The previous lemma implies that exponential ReDoS vulnerabilities arise
when the width of a semantic tree can grow exponentially.

We recall from Appendix A the definition of reachable regexes rch : RT Ñ

℘pRTq, defined as rchpRq fi tR1 P RT | Dw1, w2 P Σ˚, Dt P TpxR, w1w2yq : ℓptq “

xR1, w2y u. The following result formalizes the intuition that if there are no words
that can be matched in two different traces, the match is linear in the worst case.

Lemma 2. Let R P RT.

M2pRq “ H ùñ linpRq

Proof. Intuitively, if there is no word that is matched in two different traces, there
is no ambiguity and the matching is linear in the worst case. More formally, we

Static Analysis of Regular Expressions for Vulnerabilities to DoS Attacks 25

prove that @w P Σ˚ : |JRKpwq| “ Op|w|q. Consider the portion of the semantic
tree from the root xR, wy to the nodes in fpxR, wyq. Observe that those are the
only nodes that possibly have subtrees: all the others are either internal nodes
to the portion that we are considering or do not have children. Observe also that
the number of nodes between the root and the frontier does not depend on |w|,
but just on R and the first character of w, if there is any.

We observe that the number of nodes in fpxR, wyq is bounded by | rchpRq|,
since there is at most one occurrence of any regex R1 P rchpRq in fpxR, wyq.
This is because if there were two occurrences of any R1 P rchpRq, this would
violate the hypothesis M2pRq “ H: there would be two different traces to match
the first character of w. Furthermore, for the same reason it holds that for each
i P r1 . . . |w|s:

|f ipxR, wyq| ď | rchpRq|

We also observe that the number of nodes between one frontier and the next does
not depend on |w|. Since by Lemma 1 the height of a semantic tree is always
linear in the length of the word, we conclude that |JRKpwq| “ Op|w| ¨ | rchpRq|q.

Let R P R, then we define S : R Ñ N as

SpRq fi

$

’

&

’

%

0 if R “ a or R “ ε

SpR1q ` SpR2q if R “ R1R2 or R “ R1|R2

1 ` SpR1q if R “ R˚
1

We can finally prove the soundness of the exponential analysis. Let R P R.

EpR, ε, εq “L K ùñ @w P Σ˚ : |JRKpwq| “ Op|w|SpRqq

Proof. We prove the theorem by induction on SpRq. The base case is SpRq “ 0,
namely in R there are no stars. We observe that stars are the only constructors
that allow matching an arbitrary number of character, which implies that the
size of each matching tree is bounded by a constant that does not depend on
the input word, namely @w P Σ˚ : |JRKpwq| “ Op1q. This can be seen as a
consequence that LpRq is finite.

The inductive case is SpRq ě 1. The only case that we consider is when
headpRq “ R˚

1 and tailpRq “ R2. All other cases can be reduced to this: regex
constructors that are not stars can match only a constant number of character
before reaching a star. Observe that by definition of E, EpR˚

1R2, ε, εq “L K

implies EpR2,R
˚
1 , εq “L K. Since the prefixes do not change the emptiness of

the result, EpR2, ε, εq “L K. By observing that SpR2q ă SpR˚
1R2q, we can apply

the inductive hypothesis and obtaint that @w P Σ˚ : |JR2Kpwq| “ Op|w|SpR2qq “

Op|w|SpR˚
1 R2q´1q. Therefore, for all w P Σ˚, if w1 is a suffix of w, all subtrees

JR2Kpw1q of JRKpwq have size at most superlinear in |w1|, which implies that the
size is at most superlinear in |w|. Since EpR˚

1R2, ε, εq “L K, then M2pR˚
1 q “L K.

By Lemma 2 we can observe that matching any word in R˚
1 is at most linear in

the length of the input word. Let w P Σ˚. In JR˚
1R2Kpwq there are at most |w|

nodes of type xR2, w
1y after matching any prefix of w in R˚

1 , namely at most one

26 Francesco Parolini and Antoine Miné

for any prefix of w. This is because M2pR˚
1 q “L K implies that it is not possible

to have two different traces that match any prefix of w. These observations imply
that the matching tree can be decomposed in the part in which R˚

1 is expanded
(which is linear), and at most |w| subtrees in which R2 is expanded. All those

subtress have size Op|w|SpR˚
1 R2q´1q. Therefore, we obtain:

|JR˚
1R2Kpwq| “ Op|w|q `

|w|
ÿ

i“1

Op|w|SpR˚
1 R2q´1q

(linpR˚
1 q and @w1 suffix of w : |JR2Kpw1q| “ Op|w|SpR˚

1 R2q´1q)

“ Op|w|q ` |w|Op|w|SpR˚
1 R2q´1q

“ Op|w|SpR˚
1 R2qq

This proves the theorem. Observe that EpR˚
1 , ε,R2q “L K can be caused not

only by M2pR˚
1 q “L K, but also by R˚

1R2
r

“L K. The only language that has as
complement the empty language is Σ˚, which implies that LpR˚

1R2q “ Σ˚. This
case is then analogous to the previous one, because even though there might be
an exponential number of traces to match a word in R˚

1 , only one is actually
expanded since R˚

1R2 accepts any word. In this case, there exists no suffix that
can make the match fail and trigger the exhaustive exploration of the set of
traces.

	Sound Static Analysis of Regular Expressions for Vulnerabilities to Denial of Service Attacks

