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Abstract

In this paper, we consider the homogenization of the p—Laplace equation with a periodic
coefficient that is perturbed by a local defect. This setting has been introduced in [6l [7] in
the linear setting p = 2. We construct the correctors and we derive convergence results to the
homogenized solution in the case p > 2 under the assumption that the periodic correctors are non

degenerate.
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1 Introduction

This paper is concerned with the homogenization of non-linear degenerate elliptic equations in a
periodic setting with defects. More precisely, we are interested in p—Laplacian type equations that are
defined, for some p > 2, as

—diva (g) Vue [Vu P> =f in Q

(1.1)
u. € WyP(Q)

for a fixed bounded domain @ C R?, d > 1 and f € LPI(Q). For p = 2, we recover the standard linear
conductivity equation. In (|1.1]), the scalar-valued coefficient a is assumed to be of the form

a=aP" +7, (1.2)

where aP®" is a periodic coefficient with standard coercivity and boundedness condition and @ is a
perturbation of aP°" such that a € Lq(Rd) for some 1 < g < p’%l. We assume that the coefficient a
itself is coercive and bounded and we choose A > 0 such that

Vy e RY, Al <aP(y) <A and A <a(y) <A\ (1.3)

For fixed € > 0, Problem (l.1]) is well-posed and corresponds to the Euler-Lagrange equation of the

minimization Problem )
min = a(- va—/ fv} 14
vEW P () {p/ﬂ (5) IVl 9) 14

The behaviour of (|1.1)) when € — 0 has been studied in the absence of perturbation, i.e. when a = aP*.
It corresponds to a particular case of the homogenization of the equation

—divA(=,Vu.) = f (1.5)

€
under general growth and continuity conditions for the operator A(y,&) (in our case, we have that
A(y) = aP** (y)€|€[P~2). The homogenized limit of (1.5) is derived in [17, [18]. It is proved that wu.
converges in the WP —weak topology, when ¢ — 0, to u* which is defined by the homogenized equation
{—divA*(Vu*) =f

1.6
ut e Wyt (Q), (1.6)

where, for ¢ € R%, the homogenized operator is
A0 = | A&+ )y

and the function we € W;ézr)(Q) is the corrector in the direction & given as the periodic solution (up to

an additive constant) to the equation
—divA(-, £ + Vuwg) = 0. (1.7)
The strong convergence of the gradient

Vue — Vu* — Vwygy«(./¢) = 0 in LP(Q) (1.8)

has been obtained in [13] with Vu* replaced by its discretization at small scale e, for measurability
reasons, see Section [2| below for the details. The periodic homogenization of the integral functionals
corresponding to is exposed in e.g. [9]. The stochastic case has been studied qualitatively
in [I4]. Recently, quantitative results for non-linear stochastic problems have been obtained in [16]



with optimal convergence rates for non-degenerate non-linear operators with quadratic growth, see
also [23] for the deterministic case. The case of stochastic non-degenerate operators with p—growth,
p > 2, is addressed in [12].

In this paper, we study Equation when the perturbation @ belongs to the space L(R?) for
1<¢g< % and to some Hoélder space (see Theorem below). We then derive the homogenized limit
of the sequence (u¢)->0 and we study the convergence of the two-scale expansion when we use, on
the one hand, the periodic corrector and, on the other hand, the non-periodic corrector (corresponding
respectively to the solutions of when A(y, &) = aP*" (y)E[€[P~2 and A(y, €) = a(y)€|€[P~2). We also
illustrate the quantitative convergence of the two-scale expansion in the one-dimensional setting
and prove that, in this case, using the non-periodic corrector instead of the periodic corrector in fact
improves the quality of convergence of . The main difficulty of this work is that Equation
is posed on the whole space RZ. One major tool to obtain the strong convergence in the non-
periodic case is the continuity of the application & — Vwe (see Theorem below). This will be
proved under one of the two Assumptions (A4) or (A4)’ below.

Before stating our main results, we would like to comment on the special case p = 2 for the
homogenization of Problem . This problem is very standard since the 70’s for a periodic coefficient
a, see e.g. [4] for qualitative results and [I] for quantitative results. It is worth mentioning that, in
this case, the homogenization objects such as correctors and homogenized limits are explicit and very
easy to compute. The setting — has first been introduced in [6] for ¢ = 2. It models local
defects that could appear, at the microscale, in a periodic background. The results obtained have
been generalized to the case 1 < ¢ < +oo in [7, 8] and convergence rates have been proved in [5]. In
[19], a new non-periodic setting has been introduced to model defects that are not local but rare at
infinity. We stress that, in [6, [7, 8l Bl [19], as in the present work, the macroscopic behaviour of the
oscillating solution remains the same as in the case of a periodic coefficient. This will be expressed,
for the non-linear case, in Theorem below.

The paper is organized as follows. The main results of the paper are presented in Section
We develop in Section [3] explicit calculations in the one dimensional setting and obtain convergence
results. We then turn in Section [f] to the existence of the non-periodic correctors in any dimension.
The properties of the non-periodic corrector are proved in Section We then derive qualitiative
homogenization results in Section [§] We finally prove in Section [7] a weaker continuity result for the
mapping { — Vwe that is enough to derive qualitative homogenization. We recall in Appendix @
the proof of classical results in the periodic case. Technical inequalities are gathered in Appendix [B]

2 Main results

2.1 Notations

In the whole paper, d > 1 will be the dimension of the ambient space. The standard unit cube (—3, %)d
will be denoted by @. The euclidian norm will be written | - | as well as the Lebesgue measure of a
measurable subset of R%. Let © be a bounded domain of R?. If 1 < ¢ < 400 is an exponent, we define
its conjugate by ¢’ := q/(¢—1). The euclidian open ball of R? centered in = and of radius > 0 will be
written B(x,r). If = 0, we write B, := B(0,r). We use similar notations for cubes, namely Q(z,r)
and @,. We define the mean-value operation for a measurable and integrable function u by

1
U= ——— .
][B(I,r) |B(:L'7 7A)| B(z,r)
The indicator function of a measurable set A is denoted 14.

The standard Lebesgue and Sobolev spaces are denoted by L4(2) and W14(Q2). The associated
norms are

1/q 1/q 1/q
fullriay = ([ 1) and ooy = ([ 1) ([ 1var)
Q Q Q



The space L2, (resp. WL4) denotes the set of functions that are periodic and locally belong to L?

per per
(resp. W), Theses two spaces are endowed with the norms

1/q 1/q 1/q
follzgeo = ([ o) and g = ([ i) ()
Q Q Q

q
unif

The space of uniformly L4 (resp. W9) functions is denoted by L
are endowed with the norms

(resp. Wi;fif). These spaces

Hu”LGif(]Rd) 1= sup ||U||L<1(a;+Q) and  |lul|1.a (e = SUD ||UHW1‘q(w+Q).
z€R unif veRd
For 0 < a < 1, the space C%® refers to the standard Holder space endowed with the norm
ulxr) —uly
lulleo <= flufl e + sup [ =)l
TFY |1” - yl

We define, for § > 0, the discretization operator M : LI(Q) — L7(Q) introduced in [I3] I§]. If

¢ € L1(Q), we set
Ms¢p = E 7[ 9|1 . 21
5 ( 500 ) 5(k+Q) (2.1)

keZd s.t. §(Q+k)CQ

It is clear that M; is linear and bounded over L?(2) and that Mo = ¢ in L1(Q).
—

2.2 The periodic case

We assume in this paragraph that @ = 0 in ((1.2). In this case, the corrector equation is, according

to .-1.7 :
‘ ) i per per per|p—2 __
div " (y) (£ + Vwg™)[§ + V™ [P~ = 0. (2.2)

The equation (2.2) admits a unique solution wy*" in the space W3k(Q)/R. Indeed, the weak formula-
tion of ([2.2)) is
Vo € W (Q)/R, /Q a" (y)(§ + Vag)Ig + Vug™ P72 - Ve =0, (233)

which is exactly the Euler-Lagrange equation of the minimization Problem

min {1/Qaper(y)|§+w|pdy}. (2.4)

veWE(Q)/R (P

It is easy to see that the functional appearing in Problem ([2.4)) is strictly convex, coercive and con-
tinuous with respect to Vv. Thus, (2.4) admits a minimizer w?er, the gradient of which is unique.

We impose that f, w?er = 0 so that wger is itself unique. Besides, we have the following Proposition

(see [I8| [I7, I3] or Appendix [A| below for a proof) gathering the main properties of the application
E—s Vw?er:

Proposition 2.1. Let a®® : R — R be a periodic and Lipschitz continuous coefficient satisfy-

mg .

(i) The map & — Vw?er is homogeneous in the sense that for all € € R and t € R,

Vule" = tVal®. (2.5)



(ii) There exists an ewxponent a = a(d,p,aP*") > 0 such that for all ¢ € R, Vuwg® € CO(RY).
Moreover, there exists a constant C = C(d, p,aP®") > 0 such that

IVwe™ e

unif

®1) < ClEl and  [[Vwi®|lcoamey < C€]. (2.6)

(iii) There exists a constant C = C(d, p,aP®") > 0 such that for all £&,n € RY,

er er _ _ 1
IVwg™ = Vwp®|pe  rey < C e =P + " 7T g =nl®, B:= o1 (2.7)
(iv) There exists a constant C = C(d,p,aP®") > 0 such that for all £,m € RY,
Per _ \7, per 1=y 1=9]1¢ — |7 __ P
[ V08 = Vb ey < CE + T =, ve= Lo 28)

where B is defined in (2.7) and o is given by (ii).

It is proved in [18] that u. converges weakly in WP() to u* which is defined by (1.6). Note
that ([1.6]) is well posed due to the monoticity of A* (see [I3] and [22 Corollary 8.1]). Convergence in
the L>°—norm may be obtained in the one-dimensional setting, see Section [3] below.

2.3 Results in the non-periodic case

The first result of this contribution concerns the corrector equation ([1.8) in the setting (1.1)-(1.2)). For
a fixed direction ¢ € R?, this equation, posed on the whole space RY, is

— div a(y) (€ + Vwe) | + Vwe[P72 = 0, (2.9)

where the coefficient a is of the form a := aP®* + a and aP*" is a periodic coefficient. We assume that
a and aP°" satisfy the following assumptions:

(A1) there exists A > 0 such that (1.3) is satisfied;
(A2) the coefficients a and aP*" are Lipschitz-continuous;
(A3) the perturbation @ vanishes at infinity in the sense that a € L (R%).

A few comments are in order. First, if @ satisfies a € C®!'(R?) and @ € L(R?) for some ¢ < p’
then @ satisfies (A3) by interpolation. Second, Assumption (A2) allows to ensure local regularity (see
Proposition above) of the periodic and non-periodic correctors. Finally, the assumptions of [6] in
the linear setting correspond to the case p = 2 in the assumptions (A1)-(A2)-(A3) above.

We now consider the equation (2.9)) when the coefficient a has the non-periodic structure (1.2)). For
u € L>®(RY), we define the spaces

W, = {v e Wh(RY), / |Vv’p —l—/ ’u‘p_QIva < —|—oo} and W, :=W,/R. (2.10)
Rd Rd
The space W, is endowed with the norm
p=2
[ollw, = 90l oy + |10l V] 2 g (2.11)
In the sequel, we denote undifferently functions and equivalence classes for the relation: f ~ g if and
only if f — g is almost everywhere constant. Lemma 1] below gathers some properties satisfied by

spaces of the form In order to solve , we seek for we of the form wg = w5 " + wg where
wy®" is the solution to such that JCQ wE® = 0. We transform the equation (2.9) into

— diva [\g + VR + Vg [P (€ + V™ + Vidg) — |€ + VR [P (e + prer)} =div(h), (2.12)



where
= a(& + Vwg™)|¢ + VwgT P2, (2.13)

Assumption (A3) and Proposition (ii) ensure that h € L¥' (R%)<,

Definition 2.2. We say that we € W5+vw§er is a solution in the weak sense in W§+vw§er to (2.12) if
for all w € W5+vq,,§er,

/ [\§+prer+w§|p (€ + Vwl™ + Vi) — [€ + Va [P (€ + Vu Per)} -sz—/ h- V.
R4 R4

We easily check using Appendix that each integral appearing in Definition is convergent.
Note that if wy is a solution to in the sense of Definition [2.2] n then it is a solution to in the
distribution sense but it is not clear that the converse holds true. This is true if the Welght § + prer
satisfies Assumption (A4)’ below (see also Remark [2.13)).

Theorem 2.3 (Existence of the non-periodic correctors). Assume that the coefficient a = aP* +a

satisfies Assumptions (A1)-(A2)-(A3). Then, for all & € R?, there exists a unique solution we to
. 1,1 d _ — —~ . . .

equation (2.9) such that we € W, (RY), we = wi™ +we, where we € Weywwper is solution in the weak

sense in W€+Vw§er to (2.12))-(2.13)).

In view of Theorem we denote in the sequel wg € Weiy,per the unique function such that

/ wg = 0. The function w v 4 we is a solution to and wg solves (2.12)-(2.13) in the sense of
Deﬁmtlon 232l We also define

w€ - wg + ’U) € Wper (Q) + WE+VU)§“' (214)

The analogous properties of those given in Proposition are given in Theorem below for the
non-linear correctors we, § € R?. In order to obtain continuity results for the application & — Vwe,
we need the following assumption:

(A4) There exists ¢ > 0 independent of £ € R? such that [£ + Vwy| > c[¢] on Q.

We comment in Subsection on this assumption. We are able to prove the following Theorem.

Theorem 2.4. Let a := aP*" + a be a non-periodic coefficient satisfying Assumptions (A1)-(A2)-
(A3). For £ € RY, let we be defined by ([2.14).

(i) The map & — Vwe is homogeneous in the sense that for all § € R? and t € R,

th§ = tig. (215)

(i) There exists a constant C = C(d,p,a) > 0 and an exponent o = a(d, p,a) > 0 such that for all
£ e RY, Vwe € Lumf( 4, Vwe € CO%(R?) and, moreover, we have the estimates

IVwellrr . ey < ClEl - and  [[Vwelleo.orey < CIE]- (2.16)

unif

(iii) Assume that Assumption (A4) is satisfied. Then there exists a constant C = C(d,p,a,c) > 0
independent of & and 1 such that, for all £&,m € R?,

V@ — V| oy < C (Ifll_ﬁ + In\l_ﬁ) E—nl’, B= 1 min(l,p—2).  (2.17)

where 7y is given by (2.8)).



(iv) Assume that Assumption (A4) is satisfied. Then there exists a constant C = C(d,p,a,c) > 0
and an exponent y > 0 both independent of & and 1 such that, for all £,n € RY,

IVwe = Vg ooy < € (1177 + Il =7) 1§ =l (2.18)

An important tool to obtain Theorem (iii) is the following Theorem:

Theorem 2.5. Let a := aP® +a be a non-periodic coefficient such that (A1)-(A2)-(A3)-(A4) are
satisfied. For all £ € RY, we have that Vuwg € LP (RY) and the estimate

Vel o ray < CIE] (2.19)
holds true where C = C(d,p,a,c) > 0 is a constant independent of €.

Remark 2.6. Note that, under Assumption (A4), the non-periodic part Vwe of the corrector has the
same integrability as the defect a at infinity. This is reminiscent of the linear case p = 2, see [7].

Using Theorem we can prove qualitative results concerning the homogenization of (|1.1)) in the
non-periodic setting.

Theorem 2.7. Let Q be a bounded smooth domain, f € L (Q), a := aP* + @ be a scalar-valued
coefficient satisfying Assumptions (A1)-(A2)-(A8). For e > 0, let u. € Wy (Q) be the solution
to (L.1).

(i) We have that u. — u* weakly in WHP(Q) and u. = u* strongly in LP(Q), where u* solves
- e—

€
Problem (1.6|) and

VEERY,  a*(€) = /Q aP (y) (€ + Vwg™) € + Vg™ P2 dy. (2.20)

Besides, we have the L' (Q)—weak convergence a(./e)Vue|Vue|[P~2 _— a*(Vu*).
e—

(i) Assume that (A4) is satisfied. Then, we have the strong convergence

—Vu — (= ; P
Vu, — Vu* — Vwyr, vy (6) E_}—SO in  LP(Q), (2.21)

where M. is defined by (2.1)).

(ii) We have the strong convergence
Ve — Vu* — Vuwhe's,. (é) —0 in LP(Q), (2.22)

e—0

where M. is defined by (2.1)).

We stress that, instead of assuming (A4), Theorem can be proved under the assumption that the

mapping

Rd - Lﬁnzf (Rd)

D, : (2.23)
Er— ng

is continuous. This continuity can be obtained under the following Assumption (A4)’ which is clearly

weaker than Assumption (A4):

(A4)’ For ¢ € RY, there exists a constant C > 0 that may depend on ¢ and Vg
such that the following weighted Poincaré-Wirtinger inequality holds true: there exists
Tmin > 0 such that for all R > r,,;, and w € H! (Q \ Ql/g),

er p=2 er p—2
||§+Vw§ (R[> (w—]{m w> < Of|l€ + Vb (R Vwll 2@y - (2:24)
1/2

L2(Q\Q1/2)




We comment in Subsection on Assumption (A4)’ and we will provide a sufficient condition on
€+ Vuwp™ so that ( is satisfied. We are able to prove the following Theorem:

Theorem 2.8. Assume that (A1)-(A2)-(A3)-(A4)’ are satisfied. Then the mapping ®, defined
by (2.23)) is continuous. Hence the conclusion of Theorem holds true.

We close this section by mentioning that the results of Theorem [2.7] can be improved in the one-
dimensional setting. We devote Section [3] to convergence results in this particular case.

Remark 2.9. To prove Theorems and Assumption (A4)’ can further be weakened into the
following one: the set of smooth functions with compact support over R?, denoted by C§°(R?), is dense
n W§+Vw1£aer. We show in Lemma W (see Appendiz(B|) that, as pointed out in [27], the density result

is implied by Assumption (A4)’. Note that, under Assumption (A4)’, we can easily prove (by density)
that (2.12)—(2.13) admits a unique solution in the distribution sense in W§+Vw1§vcr.

Remark 2.10. The method of proof of this paper allows to build the non-periodic correctors for a
defect a that belongs to the dual space of W§+Vw§er, see Lemma (ii). This is in particular the case
ifa € L2(R?). We are however not able to show that the non-periodic corrector satisfies Vwe € L?(RY)
but only that Vwg € L*(|€ + legcr\p72d/\), see Remark below. More generally, building the non-

periodic correctors for a defect a € L**° N C%Y(R?) is a challenging problem that we are unable to
address for now. In the linear setting p = 2, this was achieved in [§] by studying the continuity from
Li(R?) to LY(RY) for q > 2 of the Riesz operator associated to the coefficient a.

[e] o [e]
Remark 2.11. The space W£+Vw§er is in general different from the space WP 0\ HY(R?), where WP

and H'(R?) are the standard homogeneous Sobolev spaces, unless & + nger does not vanish. Assume
that there exists xo € Q) such that & + prer(xo) = 0. We can assume by invariance translation that
xo = 0. Ouwing to Pmposztwn 1| (i), we have that | + prcr( )| < Clz|* in Q. Let ¢ € D(Q) be
such that ¢ =1 on B(0,1/4). We define ¥ := 3 ) 74\ 0y \kl‘”” o(|k|” (- — k)), where §,v > 0 will be
chosen later. We have

1 T HV(bHI]ip(Q)
IVl g = 2 W/ L [Velkr e = 5 —rres (2.25)
kEZI\{0} L) kezd\ {0}
Besides, we have that
2 1 v er —2
V9 agesvupaan = > T [ (VO I+ Vug @)
¢ keZa {0} k=@
2.26
< CIVol2 229
- Z |k|al/(p—2)+du+26 !
kezZ4\{0}
Finally,
. B 1 La? = IVolZ: () 59
v ||L2(Rd = Z k25 /s Vo (lk|"z)|” = Z o[ dvi25 (2.27)
kez\{0} kI Q kezd\{0}
We fizv € (d+2’ 1) ando € (max{ (= V), d(i=v) QQV(p 2)}, d(l;j)) so that VU € LQ(\§+ngcr|p72d)\)ﬂ

LP(RY) and V¥ ¢ L*(RY). Note that VU € C%%/V(RY) so that this counter-exzample is consistent with
the result of Theorem[2.]] (ii) since § < v.



2.4 Comments on the Assumptions

On Assumption (A4). Assumption (A4) is quite restrictive but is known to be true in dimension 1.
Besides, it is proved in [I1, Lemma 2, p. 404] that it is also satisfied in dimension d = 2.

We show here that Assumption (A4) is satisfied for laminate materials (in any dimension). Suppose
that aP®*(z) = ag(z1) where ag : R — R is a periodic function. Let £ # 0. In this case, the periodic
per per

corrector wg" is a function of the first variable i.e. w;" (z) = w(x1) and (2.2) becomes

du? du?\” i
— L g (swdwf) (m“’f) +@+ord | =0 (228)
1 X1

d.’El

If there exists i > 2 such that §; # 0, then [{ + Vw™| > [§] > 0. In the other cases, {; = 0 for i > 2,
thus & # 0 and (2.28)) reduces to:

d dwg
- dil‘l aO(xl) <£1 + dx1>

0 —
There exists a constant C(£) such that (& + %)P 1_ C(€)/ag(x1), where 221 := sgn(z)|z|P~1. If

C(&) =0, then wg(zl) = —¢&x1 which contradicts the periodicity of wg. In any cases, we have shown
that | + Vwy™| > 0. We then prove easily that this implies (A4).

dw? P2
&+ =

= 0. 2.2
e (2.29)

On Assumption (A4)’. This Assumption is satisfied in dimension d = 1,2 because (A4) is satisfied.
For higher dimensions, we provide here a sufficient condition implying (A4)’:

Lemma 2.12 (see [10] and [26]). Assume that d > 2 and that | + Vwi®™[*7? € LY2(Q), then (A4)’
1s satisfied.

Proof. We refer to [10, Lemma 8§]. O

If we assume that {{ + Vw{® = 0} is a finite number of points (in the case d > 2) and that all
critical points have finite order, denoting by m the maximum order of the corresponding zero points,
we have that [€ + Vwy™[*77 € LY2(Q) if and only if m%(p —2) < d i.e. p <2+ 2/m. Thus, in this
case, Assumption (A4)’ can be replaced by assuming that p < 2+ 2/m. Note also that if £ + Vw?er
vanishes at order m along a line (or a curve) in dimension d, then [£ + leger\z*p ~ |z|™2=P) which

is L¥%(Q) if and only if ¢m(p—2) <d—1ie p<2+ %.

Remark 2.13. The Assumption (A4)’ is used in the proof of Lemma which allows to pass from so-
lutions in the distribution sense to solutions in the sense of Deﬁnitionfor PDEs of the form .
We then take advantage of Lemma[7.]in the proof of Theorem[2.8 by working locally in a concentration-
compactness method.

2.5 Extension to other non-linear operators

We have limited the presentation of the results to the simplest operator in order to avoid some
technicalities and the use of abstract existence Theorems for non-linear PDEs. However, the result
of this paper extends to more general operators. We explain below the type of problems that we can
address with the technique developed in this work.

The first direct extension concerns the equivalent of ([1.1)) when a is a matrix-valued coefficient.
This corresponds to the following non-linear operator:

a(y,€) == (A(W)E, €T Ay)é, yeR?, ¢eRY, (2.30)



where A is of the form A = AP* + A. We assume that the matrix AP is periodic and that A and
AP°T are symmetric and positive definite, that is,

IN>0, VyeR, AP < (AW)E 6 < AEP and ATHEP < (APT(y)E,€) < A€

The perturbation A satisfies A € LP' N CO1(R?)?x4, The periodic correctors can be defined thanks to
variational techniques by considering the minimization problem

min {1 /Q <A(y)(§ + Vwg™), €+ Vw?er>p/2} .

wpeteen(Q) | p

The non-periodic equation corresponding to ([2.12)) is

— div [a(, € + Vi + ViTg) — ol € + VuE™)| = div(n), (2.31)
where
hi=aP (-, & + Vwg™) — a(-, § + Vwi™), (2.32)

where aPe (-, €) := (APeT()€,£) 7 APer(.)€. Tt is easily proved that f € LP (R%)? and that the method
of proof of Section [4 extends to this case by studying the functional

/2 /2
Fe(v) = % /R {{A@ €+ Vup + 90,64 VarT 4+ 90)" = (A@)E+ VupT), €+ o)’

— plA() (€ + Vul™), € + Vuwl™) =" A(y)(€ + V™) - Vv}dy + /R BV

Note that the inequalities given in Appendix [B|are valid for the matrix model (2.30). Concerning the
continuity results for the application & — Vg, the results proved in sections [5] §|and still hold
true.

The second less direct extension corresponds to non-variational operators, that is, PDEs that
cannot be written as a minimization problem. We consider operators a(y, £) that satisfy the following
properties:

(1) for all ¢ € R, a(-, &) is a measurable function and & — a(y, -) for fixed y € R? is of class C!(R?)
and of class C2(R?\ {0}).

(2) the application ¢ — a(y, &) is homogeneous i.e. a(y,t&) = tP~La(y, &) for t € R and y,¢ € R%.
We also assume that a(-,€) is a uniformly in £ Lipschitz continuous function: there exists A > 0
such that

Vy, y/ S Rda Vf S Rd: |a(y7§) - a’(y,7§>| S )‘|y - y/||§|p*1'
Vy,y €RY, VEERY, |0ca(y,€) — dealy’, €)| < Ay — y/I|€[" 2.

(3) we have that a(y,&) = aP(y,&) + a(y, &) where aP®"(-,£) is a periodic function satisfying the
same homogeneity and regularity properties as a. We assume that the perturbation @ satisfies:

b e L'NL¥(RY), VEeRY, WyeR?! [|a(y,)] <)~ and |dea(y,s)| < b(y)lgP2.
(4) There exists A > 0 such that
{a(y, &) —a(y, &)} {6 - = X (|EP 2+ 1€ P72) |6 - €',
{aP(y, &) —aP" (y, &)} - {€ = €T > AT ([P 2+ [E1P2) € = €

and
la(y, &) —aly, &) < A([EP2+1E1P72) 1€ = ¢
P (y, &) — aP (y, &) < A ([P 2+ [€'[P2) 1€ = €.
We also assume that

sup sup ‘8?@(3/,5)’ <A (2.33)
y€ERT [¢]=1

10



We define the operator

i
Wg+vw§e" — (Wg+vwg“>
A W§+Vw§e" — R (2.34)

Vo Vhi—s [ (€ + VwP™ + Vo) — a(-, € + pref)} - Vh.
R4

We can show that A is hemicontinuous, bounded, coercive and strictly monotone. By [22] Corol-
lary 8.1], the PDE A(Vv) = F, where F := div a(-, { + Vwg™"), admits a unique solution in Wesguper.

The results of Section [7] which are sufficient to prove the qualititative homogenization of Sectlon 6]
(which is in fact the main result of this paper), only use the PDE and are thus directly generalized.
The results of Section [5| can be proved using the PDE instead of the minimization problem .
These extensions are detailed in [25] Chapter 5].

Remark 2.14. A simple example of a non-variational operator satisfting the above assumptions is

a(y, &) = A(y)& |E]"™ % where A is a positive deﬁmte and bounded symmetric matriz that can be written
under the form A = AP + A where A € LP' N COYHR)4*4 We check that a is not variational:
assume by contradiction that there exists a function F : R? x RY — R such that a(y,&) = 0¢F(y,€).
In particular, thanks to Schwartz Theorem, we should have that for alli,j € {1,...,d},

e, [aly, €)i] = 0O, [a(y, €);]-
Expanding each term gives, for € #0,
AL DIEP2 + (0= 2) [A)E], &1E1P* = AG,DIEP + (= 2) [A(y)€]; &ilgP
In particular, for all € # 0 and (i,j) € {1,...,d}?,
[A(y)E]; & = [Ay)E]; &
This shows that A is a scalar matriz i.e. proportional to the identity.

Remark 2.15. Assumption (2.33)) is only needed in the proofs of Theorem and Theorem . Note
also that, together with homogeneity, this Assumption implies that for all 6 > 0,

sup sup |85a v, f)‘ < A6P73,
y€ER |£|=

3 The one-dimensional setting

We consider the homogenization of (|1.1)) in the one-dimensional case. This equation reads as:

{—@UQMWW”Y—f

ue(—1) = ue(3) = 0 3

where a is of the form a = aP*"+a with a € LqOCO *(R), 1 < ¢ < 400 and a satisfies Assumption (A1).

In this section, we assume that f € L¥' (— 2, 2) Direct computations show that

¢:<;12%fm4% ray= [ 1 (32)

1
2
where 27T := sgn(m)|x|ﬁ for x € R. The constant C. is such that
% —F+ C 1/(p—1)
—0. (3.3)
Ca(fe)

_1
2

11



We note that the function F' is bounded and thus the sequence (C.)c~¢ is bounded. Passing to the
limit € — 0 in (3.2)) and (3.3)), we get that ue — u* in Wl’p(—%, %) and C. — C*, where
e—0 e—0

_ «\ 1/(p—1) i
(u*>’=(F+C> : / (—F+C)Vmh =g,

a* 1
2

and the homogenized coefficient is defined by

a® = (Lp — weaklim a(;) p—1

e—0 £
We easily show with the ingredients used in Remark [3.2] below that

—(p-1)

The corrector equations (2.9) and (2.12)-(2-13) in the direction £ € R are easy to solve (see Remark [3.2]
below):
* *

§+wg=§<‘2>w and §+(w}g“)’:§<“ ) (3.4)

aper

Let R, := ue — (u*) —wqy=) (./€). be the remainder between u. and its two scale expansion. When u*
is regular enough, we have that

R = (uz) = (W) (1 +w'(.fe)) — ew(./e)(u”)"
— /(=1 _ (= *)1/(p—1)
= O et 2w @9

—i(ul)

where w := w;. We concentrate in the sequel on the first term of , the second one being related to
the regularity of u* on the one hand (which is not related to homogenization) and to the sublinearity
of w on the other hand. We prove briefly that w is sublinear: indeed, we can write w’ = (wP®) + w’
where, due to Remark below, w’ € LY(R%). By Holder (or Morrey) inequality, we get immediately
that w is sublinear. Since wP®" is periodic and bounded, it is in particular also sublinear. This proves
that w is sublinear. We use Lemma stated in Appendix |B|to obtain the bound

lul — (uw*)' (1 +w'(.[e))] < \|C. — C*|/ P~ — 0 uniformly. (3.6)
e—

We have obtained the L> —strong convergence of (ul)’ to zero when we use the non-periodic corrector.
Let us now introduce the ”periodic” remainder R which is defined by RP" := u, —u* —ew! .\, (./¢€).
e € (u*)
We have that
—F4C)Ye=1)  (—F 4 Ccr)Y/ 1)
pery/ __ ( £ _ per *\//
(B = /o arer(Jey/en - Tewl (/e
1 1
(./e)/(=1) — gper( /e)1/(p—1)

(3.7)
T ewb® (fe) (u").

g

— (ul)/+(_F+C*)l/(p—1) -

12



The first term tends uniformly to zero while the second one does not tend to zero in L unless a = 0
or C* = 0. Indeed, testing (3.7) at the microscale gives:

1 1
(Je)/e=1) aper(,/g)l/(pm} (ex)

(~F+CYo | > e(p. )| = Flex) + C*[/" V().

—c(p,A)|C* M/ (P=D]a(x)[£0
e—0

This shows that the convergence of the remainder deteriorates when using wger instead of we. We
close this section by commenting on the integrability of the correctors in the particular 1D setting.
We show in Remark that, in this case, the exponent given by Theorem is optimal for q = p/,
see also Remark 2.6

Remark 3.1. Suppose that a € LI(R?) N C%*(R?), 1 < q < 4+o0. An eaplicit calculation shows that

— er er a p+1
7 =~ (4 ) + (g + ) (1-2) 7 (3.5
and [€ + (wg™")'| > cl¢|. Since a(x) — 0, we have that
|| —>+o00
— 1 a(§+ (wg™))
We :vﬁrloo _p —1 a ’

Thus @g/ € L1(RY), that is @g' has the same integrability as a and this exponent is optimal.

Remark 3.2. We show below that there exists a unique solution we to (2.9) that is sublinear at infinity.
This justifies, in dimension one, to search we under the form w?er + wg where ﬂ}g/ € LP(R).

Assume that we is a sublinear solution to (3.4)). Then, there exists a constant C' such that §+w’§ =
(C/a)l/(p_l). We have by sublinearity that

¢= lim 4 (+w})= lim (C>p = C7 lim (l)p .
0

T—+00 0 T— 00 a T——+00 0 a

However, by Lemma[B.3, we have that

s\ o \E| e far T = (@) T v
FO7 )7 f o o framn
0 a 0 aper 0 ar—1t (aper>pf1 0

where Cst. denotes a constant depending only on p and A. Since a € L (R?), we get by Hélder

inequality that
T
1
][ la|]>=T — 0.
0 Tr——+00

1 1 1
T /1\pP1 T 1 p—1 1 p—1
lim () = lim < > = ()
=400 [ a z—+o0 [ aPer a*

and gives that C = £|E|P~2a*. This shows that wg is necessarily of the form (3.4).

This shows that

Numerical experiments. We have implemented for p = 3 the solution to (1.1]) in the 1D setting
for f(z) = 2z and
a(y) == aP* (y) + a(y) = 2 + cos(2my) + 10e~ 1!

on the domain Q := (—%, %) The boundary conditions are homogeneous Dirichlet conditions i.e.
1

us(—3) = u:(3) = 0. The coefficient a satisfies of course Assumptions (A1)-(A3). The results are

13



plotted on Figure We comment on these results. We have plotted for different values of ¢ the
function u. (which is labeled as ’exact solution’), the periodic two scale approximation (u*)" +
(wPrY'(./e)(u*)" (which is labeled as 'periodic two-scale approx.’) and the non-periodic two scale
approximation (u*)’+w’(./e)(u*)" (which is labeled as 'non-periodic two-scale approx.’). Tables]]
and [2] give numerical values for the periodic and non-periodic remainders in L? and L® —norm for
different values of €. We see that on Figure|[l] qualitatively, the non-periodic two-scale approximation
fits efficiently the exact solution for each chosen value of €. The periodic two-scale approximation
corresponds to the exact solution far from the defect, which, as ¢ — 0, concentrates aroung the
origin. We notice that the non-periodic corrector is useful to reconstruct the oscillations of the exact
solution locally around the defect. Tables [l and |2| express the same idea: the L°°—norms of the
periodic remainders remain unchanged as ¢ decreases whereas those of the non-periodic remainder
decrase with . For the L?—norm, which is weaker than the L°—norm, both norms decrease as
e gets closer to zero although the nonperiodic approximation is more accurate than the periodic
approximation. This means that, depending on the precision we want (and also on the regularity on
f and a), we may use the periodic corrector, which is much easier to compute, or the non-periodic
corrector, if we seek for a fine approximation of the exact solution. This can also be seen theoretically
since R — R, = ew'(./e)(u*) and, for all ¢ < p,

H5@I(~/5)(U*)/||Lq(o71) < ng/p”(U*)/”LOO(O,l)”{‘V/HLP(]R)-

In any case, we get that RP" — R, — 0 in L?—norm, ¢ < p but not in L>*°—norm. Another way

e—0
to reformulate the preceding remark is the following: the non-periodic corrector provides a better
approximation at the microscale.

4 Existence of the non-periodic correctors:

rem 2.3

€ [ £22°" || L [ Fe] £
0.1 0.156 0.109
0.05 0.163 0.137
0.01 0.170 0.0657
0.005 0.170 0.0288
0.001 0.170 0.0245
0.0005 0.171 0.0136

Table 1: Numerical errors for different values of € in L°°—norm.

€ 72| 2 ([ Re |2
0.1 6.39 3.85
0.05 5.01 3.16
0.01 2.13 0.740
0.005 1.47 0.331
0.001 0.654 0.108
0.0005 0.46 0.0461

Table 2: Numerical errors for different values of ¢ in L2—norm.

We start this section with some preliminary results:

Lemma 4.1. Let £ € R? and W£+nger be defined by (2.10]).

14
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epsilon=0.1 epsilon=0.05

0.3 0.3
0.2 4 0.2 1
0.1 0.1
0.0 0.0 4
0.1 -0.11
-0.2 §
—-0.2 1
—— non-periodic two-scale approx -0.3 4 —— non-periodic two-scale approx
—0.37 —— periodic two-scale approx. —— periodic two-scale approx.
—— exact solution 044 —— exact solution
T T T T T T T T T T
—-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
epsilon=0.01 epsilon=0.005
0.3 0.3 4
0.2 0.2
0.1 0.1+
0.0 0.0 A
—-0.1 0.1 A
-0.2 -0.2 A
-0.3 o -0.3 4 —
—— non-periodic two-scale approx —— non-periodic two-scale approx
—— periodic two-scale approx. —— periodic two-scale approx.
—0.4 1 —— exact solution —0.4 1 —— exact solution
T T T T T T T T T T
—-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
epsilon=0.001

—— non-periodic two-scale approx
—— periodic two-scale approx.
— exact solution

-02

Figure 1: Numerical simulation in the particular 1D case.

(i) The space W€+vw§per is a Banach space.

(i) Its topological dual space is

: rip ' r =2
{—dw(g), 9=g1+ gl + V™ [P=2, g1 e LP (R, 921§ + Vwy® |%2 €L2(Rd)}.

(iii) Each bounded sequence in W£+nger admits a weakly converging subsequence.
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Proof. We refer to [25, Chapter 5] for the proof of this elementary Lemma. O

We now fix £ € R%, h e LP' (RY)?, a coefficient a satisfying Assumptions (A1)-(A2)-(A3). We
introduce the functional F¢ defined by

1

Fe(v) == 5[1@ agg+vw§per(Vv) + /Rd h-Vuv, (4.1)

where the function g¢ is defined ny (B.4):

ge(x) = | + x| — [€]P — pg|¢[P~2 - a.

Since g¢(z) > 0 over RY, we immediately have that F; is defined over

V= {v e WhRY), Voe L”(]Rd)} /R (4.2)

loc

and takes its values in R U {+o00}. Note that since F¢(v) only depends on Vv, F¢ is well-defined on
the space of equivalence classes V. For R > 0, we define the mapping

V—R
1

’u»—>7/ ag§+Vw§er(Vv)+/ h - V.
P JBg R

We gather in Lemmas [4.2] and [£.3] below the key properties satisfied by the functional Fr.

Ff (4.3)

Lemma 4.2. Let £ € R?, h e L¥ (RN, F¢ be defined by (A1) over V and the space W§+vw§>er be
defined by ([2.10)).

(i) There exist two constants ¢,C > 0 such that for allv € W§+vw2er,

e[t 4101y ] < R0 < 14101

nge,} . (4.4)

+vwlgel'
In particular, Fe(v) is finite if and only if v € W§+vw§er,

(i1) The function Fe is convex over V and strictly convex over W§+Vw§e"-

Proof of Lemma[/.3 The point (i) is a simple application of (B.5). Let v € W§+Vw1§er, we have thanks
to (B.5|) together with Holder inequality that

=17l Lo @y V]| o (e + C/\’l/ [Vol? + |€ + Vwp™ P72 Vo|? < Fe(v)
]Rd
(4.5)
< Al e ey VOl 2o (Ray + CA/d [VolP + € + Vwg™ P2Vl
R

Easy computations allow to deduce that
1

117l

Fe(v) < T (R4)

+(2C\ + 1)||vy|§v

E+Vuwg®”

This proves the right-most inequality of (4.4]) after changing the constant C. For the left-most in-
equality, we write that, by Young inequality

A / et
_ p - P -1 per|p—2 2
2C||h||Lp,(]Rd) + > /Rd [VolP + eX /]Rd 1€ + Vwg™ P77 Vo|* < Fe(v).
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We deduce the lower bound

- 2 P per | p—2 2
510l e 1< [ V0P [ fe+ VTP

Thus,

et et
~ (G + T )+ STl e < Fel0)

+nger —
After changing the constant ¢, we get (4.4). This proves (i).
The point (ii) follows readily from the strict convexity of the application z — |z[P. O

Lemma 4.3. Let £ € R, h e L (R4, F¢ be defined by (4.1) over V and the space Wf+v per be
defined by (2.10) - Then the application Fy is Fréchet- dzﬁerentmble over W5+vu,per, Its dzjj‘erentml 18
given, for v € W§+Vw§” by

Fl(v) - u:= /]R { [(5 + V™ + Vo)[¢ + Val™ + Vol ™% — (€ + Vul®)|¢ + ngefy”‘ﬂ + h} V.

(4.6)
Proof of Lemma[].3 We fix v € We vurer and u € We gy per. We have that
1
Fe(v+u) - Fe(v) = = / 0 [gesvup (Vo + V) = gerupr (V)| + [ B Vu  (47)
P Jra ¢ ¢ R

We note that

Je+vwpe (Vv + Vu) - Je+vuwper (Vo)
|§ + Vwg™ + Vo + Vu|p ¢+ Vg™ + Vv|p = p(§ + Vg™ + V)€ + V™ + Vo|P~2 . Vu

+p (6 + Vb + Vo)l + Tu™ + Vol — (¢ + Vup™)[¢ + Vo™ P72 - Vu

= A+B,
(4.8)

where
= |64+ Vi + Vu+ Vaul” - [§+ VwE® + Vo|” —p(€ + Vwp™ + Vo)|§ + Vul™ + Vo’ - Vu (4.9)
and
B = «547Vufm47Vvﬂf4*Vqu4vaW 2 (E4*VUPM)K4*VH€MVF2)~VU. (4.10)
We note that, using the definition of g ,
A= gerupiva(Tu) < C{|Vul” + [¢ + Vuf™ + Vo 2| Vul* |,

where we have used the right-most part of inequality (B.5)). Thus, applying the inequality (b;+bg)P~2 <
C(p) (b2 + b572) for by, by > 0, we get that

Al <C {\wp 1€+ VaP PVl + |Vv|p_2|Vu\2} . (4.11)
We now note that, due to Holder inequality and the fact that

BG-)-5 = B

17



we obtain

1-2/p 2/p
/wp—?w?g(/ |W|p) (/ |w|p) . (4.12)
R4 R4 Rd

Gathering ([4.11)), (#.12) and recalling the definition (2.11]), we have proved that A € L'(R?) and that

J I [ S (113)

where the constant C' does not depend on u. We now turn to estimating B, see (4.10). Using (B.3),
Cauchy-Schwarz inequality and Young inequality, we have that

Bl <C [|§+prer+vmp 2 4 [€ + Vab |- 2} Vo] |Vl

(4.14)
< C [l6 + VO P2 Vol + [ + Vw2 Vul + Vol + [Tul?] .
This proves that B € L'(R?) and that
L1815 ol g+ Bl g+ W0l g+ Bl ] 019)

where the constant C is independent of v and u. We can now conclude the proof of Lemma

using (4.7)) and the notations (4.9) and (4.10), we have that

1 1
P JRra R4 D Jra
Defining

1
:f/ B+/ h-Vu
D JRrd R4

= / ((5 + Vwg™ + V)€ + Vwg™ + VolP~2 — (€ + Vwg™)|€ + Vwp™ [P~ 2) -Vu+ / h-Vu
R4

]R'i
and noting that, thanks to (4.15), L, is a bounded linear form on W, +Vwper, We have, gathering (4.16)
and (4.13)) together,

Fe(o-410) = Fe(0) = Lufu) = Oua (il e )
'(Ug
Lemma [£:3] is proved. U
Proof of Theorem [2.3 We prove below that, for h € L (R%)%, the PDE

— diva [\§+prer+Vw5]” (€ + VwP™ + Vi) — |€ + V[P (€ + Y Per)} = div(h), (4.17)

admits a unique solution we € W§+vw2er in the weak sense (see Definition . Theorem ﬁ is then

proved by defining
h=a(€ + Vwg™)[§ + Vwg™ P -2, (4.18)

Because of Proposition [2.1](ii) and Assumptions (A2)-(A3), it is clear that h € L¥' (R%)<. Since (&.17)
is solvable for this choice of h, Theorem [2.3]is proved.

We are thus left to study the PDE (4.17)) for an abstract right-hand side h € 2 (R, With
Lemma [4.2] Lemma and Lemma we prove in a standard way that Problem (4.17) admits a
unique solution. Indeed, let us consider the minimization Problem:

min Fe(v). (4.19)

UGWE+Vw§
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This Problem admits a unique solution. The existence is guaranteed by the following procedure: let
(Un)nen C W§+Vw§°r be a minimizing sequence. Then, by the left-hand estimate of (4.4), we have

that the sequence (U"”W§+v per> is bounded (see (2.11)) for the definition of || - ||w. . _ per). By
e neN

§+V’w5
Lemma (iil), we get that the sequence (v, )nen weakly converges, up to a subsequence, to some v
in We VWP when n — +00. Since by Lemma (ii) and Lemma F¢ is convex and continuous

over We +VWE it is in particular weakly lower semi-continuous. Thus

Fe(v) < liminf Fe(v,) = w inf  Fp.

n—-+oo §+vwger

This concludes the existence of a solution to . The uniqueness is given by the strict convexity
of F¢, see Lemma (ii). We finally note that the convexity of F¢ together with its differentiability
ensure that being a solution to Problem is equivalent to solve the PDE , since is
exactly the weak form of in the sense of Definition Theorem is proved. O

5 Properties of the non-periodic correctors: proof of Theo-

rem [2.4]

5.1 A useful Lemma

We begin by introducing the following function: for all £, € R?, the function Ge¢.y is defined over
R? x R¢ by

X+Y
2

P
GgAXAﬂ:M+XW+m+YWk+ n+ S| 5 (Elel T =) (X -Y). (5.1)

p‘ X+Y

The following Lemma gives a lower bound for G¢ , that will allow to prove Theorem (ii).

Lemma 5.1. Suppose that 2 < p < 3. For all 6 > 0, there exist constants v, = v(p) > 0 and
cp = c(p) > 0 such that for all X,Y € R%, for all € € R?\ B(0,8) and n € B(&,6/2), we have that

Gen(X,Y) 2| X =YP = {[E =P 2X = Y|+ 6" Ple =l X + Y[} X -Y].  (5.2)

Suppose that p > 3. There exist constants v, = v(p) > 0 and ¢, = c(p) > 0 such that for all X,Y € R?
and all £,m € R?,

Gen(X,Y) 29X - Y

5.3
= {|€ = nPPX = Y[+ |6 = llX + VP72 + (|E] + [n))PPlE = ml| X + Y[} X — Y. >

Proof of Lemma[5.1. We first give the proof of Estimate (5.2]). We have that £ # 0 and n # 0. For
all X,Y € R%, we define Z := £ EY and T := X—;Y Inequality (5.2)) is equivalent to the following
inequality: for any Z,T € R¢,
E+T+ZIP+[n+T = ZIP=[§+ TP = [n+ TP —p(&lef—* —nin’~*) - Z
> |27 — ey {|€ = nP72|Z] + 67 3|¢ — | T} | Z).

We prove (5.4) for any Z,T € RY. We fix T € R? and we introduce the function
., (2) =€+ T+ 2P +In+T = Z) — |2,

where v, > 0 is to be chosen later. Since p > 2, the function ®., is of class C?. Besides, denoting by I
the identity matrix, we have that

NZ)=plE+ T+ ZP P I+pp -2+ Z+ TP E+Z+T)@E+Z+T) +pln+T — ZP*1
+p=2)In+T = ZP+T=2)@(n+T = Z) = 3p| 2P~ 1 = pp(p = 2)| 2P Z @ Z.
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Thus, for all h € R?,

O (Z)(h,h) > pl&¢ + T + ZIP2|h|* + pln + T — ZIP 2 |h|* = vpp|ZIP72|h)* — vpp(p — 2)|Z1P~H(Z - h)?

>pllE+T+ZP 2 +In+T—ZPP> =50 — 1| ZP?] |n]*.
(5.5)
‘We next note that

p—2

o |1 1 o 1 _
22 = |S(Z+E+T) + 5(Z =0 =T) + 50— &)

(5.6)
<CE)(E+T+ZP >+ In+T—-ZP >+ |E—nP7?),

where we have used the triangle inequality together with the fact that for all m > 1 and p > 2, there
exists a constant C'(p, m) such that

Var, o 2 0, (a1 4+ an)’ "2 < Clp,m) (a4 al?).

Estimate (5.6)) together with inequality (5.5)) give that
VheRY, & (Z)(h,h) > —pl¢ —n[*~?|h|?

for
1

-1
The function ®, + £|¢ —n[P~2| - |* is convex, hence
VZER, ®,(2)+ ¢l 2] > 8,,(0) + VS, (0) - Z
We have thus proved that
,,(2) 2§+ TP +In+ TP +p[(+DNg+ TP = (n+ T)ln+ TP%] - 2 = Ljg — 7~ 22,
This proves estimate if T =0. If T # 0, it remains to prove that
[(E+D)E+TP™2 — (n+T)ln+ TP = E[EP~2 +ninP~2] < ¢,6"2[¢ —n||T. (5.7)
We want to apply the mean-value inequality to the function U defined by
Ur(z) = |z + TPz + T) — |22, € [&,n] R\ B(0,6/2),
which is differentiable over RY. We have that
Ui(z) = (Jz+ TP 2= [zP" )1+ (e+T) @ (z+ Tz + TP —z @ z|zP~*).
We now note that there exists a constant C,, > 0 such that for all z € R%\ B(0,4/2),
||+ TP~ — [alP=2] < Cp {" T + " (T} (5-8)

and

@+ T)@ @+ +TP* —z@alefP~| < C, {6°7°|T| + |=|P%IT} . (5.9)
Noting that |z[P~3 < (3)P73|6[P~3 since p < 3, we have proved (5.7). The proof of Lemma is
completed up to the justification of (5.8)-(5.9).

Proof of (5.8) and (5.9). We concentrate on the first inequality: assume first that [7| > J|z| > 1|6],
then
||z + TP~ — [2P72| < Cp|T|P~2 < Cpo?*|T)|. (5.10)
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We now treat the case |T'| < %|z|. In particular ‘%’ < 1 and thus

2+ T2 — Jefr 2| = P2 ||+ S P2 |

o] Ja] ]

since the function y — |\%| + y|pi2 is regular on B(0, %) with derivative uniformly bounded in =z.
Estimate (5.9) is proved the same way. We have concluded the proof.

Proof of (5.3)). We assume that p > 3. With the above variables T' and Z, (5.3)) is equivalent to
proving that for all Z, T, ¢ and n € R?, the following inequality holds true:

o T s
< Cplaf? 2|m|:CpITllxlp 5 (511)

E+T+ZP+In+T = ZPP — |+ TP — [n+ TP — pElEP> = ninP—2) - Z

P p—2 p—2 p—3 <5'12)
> Yl ZIP = cp {1€ = 0P 2|21 + 1€ = nl| TP~ + (1€] + [n)P =2 1€ — 0l T} 1 Z].
Applying the same method as for the proof of (5.2]), we only have to prove that
[(E+D)E+TIP™? — (n+ D)y + TP~ = €772 +nlnP 2| (5.13)

< ep {I€ = nll TP~ + (Il + [mP~?lg = nlIT]} -

We once again appeal to the mean-value inequality on Up, noticing that, in this case, see (5.10))
and (5.11)), we have for all z € RY,

(W (2)] < Cp {|T1P72 + [2P2| T} < Cp {|TIP2 + (1] + )P °| 71}, @ € [€,m). (5.14)
Note that, contrary to the case p < 3, estimate ([5.14)) does not depend on §. This gives (5.13) and

finally . O
5.2 Proof of Theorem 2.5

We start this section with a Remark:

Remark 5.2. The proofs of Theorem[2.4] (i) and[2.4] (ii) below do not use Theorem[2.5, Consequently,
we may use freely the results of Theorem[2.]) (i) and[2.]) (ii) in the following proof.

Proof of Theorem[2.5. By homogeneity, we can prove Theorem.for all ¢ € R? such that [¢] = 1. We
fix such a £ € R%. By (A4), there exists a constant ¢ > 0 independent of ¢ such that |¢ + Vuw®| > c.
In the proof, we introduce the notations

CPer = ﬂlp €+ V" |[L=(q) and Cu = ‘SFp [Vwe || Los me), (5.15)

where these quantities are well-defined owing to Proposition (ii) and Theorem [2.4] (ii). We use the
following Taylor inequality (5.16) for the function y — (£ + prer +y) ¢+ prer + y}p_Q which is
of class C? over B(0,3c/4). For all y € RY, we have, using also when |y| > 0/2

(€ + V™ +y) ¢ + V™ +y[" " — (€ + Vup™)|¢ + V[

— {16+ Vg P21+ (p — 2)[€ + Vg™ [P~ (E + V™) @ (€ + Vwg™) }y‘
2 per|p—2 p—1 (5.16)
< C(p, c)|y| 1{\y\§c/2} +C(p) |§+V’LU | |y| + |y| 1{\y|2c/2}

< C(p, Oyl L1y <es2y + Cl, c>{<cssr>”|y|2 T y|max<2’pl>}1{|yzc/2}

< C(pye, CE) (Jyf? + ymxo~D),
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By (5.16) applied with y = Vwg, we can write

(€ + Vb + Viig) |¢ + Vu + Vg = (€ + Vup™)|¢ + Vu |

. (b7
= [I€+ Vg PP+ (p = 2)I€ + Vg™ [P E + V™) @ (€ + Vug™) | Vg + ge(Vie),
where, using (5.15)),
|gE(V{U\g)| < C(p,c, ngf,Coo)NﬂTEP, (5'18)
Thus, collecting (5.17) and (4.17), we get that Vg solves
—div a[|¢ + V™[ T+ (p = 2)[€ + Ve P E + Vag®) @ (€ + V™) Vg (519)
= div(h) + div(age (Vwe))
in the distribution sense. Equation (5.19) is of the form
— div (A¢ Vwg) = div(h) + div(age (Vwg)), (5.20)
where
Aci=a (|g + VP P21 4 (p — 2)J6 + Val P4 + Vul®) @ (€ + vwg“)) . (5.21)

We may write that A¢ = A7” + Ag, where

AR 1= 0 (I + VP P2+ (p = 2)J€ + VTP + Vud™) @ (€ + Vul™))
and

A¢ = |6+ VP P+ (p - 2l + Va P THE + Vud™) @ (€ + V™) ).

The matrix Ager is symmetric, periodic, Holder continuous, bounded and coercive while the matrix
ZE e [P 0 L>°(R4)%*d by Assumption (A3), in particular EEVLAUZ e LP N L>°(R%)% due to Proposi-

tion (ii) and Theorem (ii). We write equation (5.20) as
—div (Agef vag) = div(h + age(Vidg) + A¢Ve). (5.22)

We have that h € L' N1 L°(R%) and, thanks to the estimate (5.18) and the fact that Vg € LP(R%),
that age(Vwe) € LP/2 N L= (R). Thus

— ) 4
h+ agE(V’LAUE) + AEV@E c (Lmax(;n ,p/2) N L>® (Rd))

Applying [3, Theorem p. 247] and [2, Theorem A] to (5.22) gives Ve € L™*#'2/2)(RY) with the
estimate

”VwNE”LmaX(P’vP/?)(Rd) < C(dvpa ) Oggr> a)Hh + age (vaE) + AﬁvafHLmaX(P’mﬂ)(Rd)

< C(d,p, () ngr’ COO: /\) (Ha”LmaX(P’,p/?)(Rd) (ngr)p_l + || |V1f1}\g|2|

15.18))

[max(p’,p/2) (Rd)

@] psccor 72 () (OB 2 Ve || oo )
S C(||E||LP'(Rd)7 Aa dap7 @, C, Cgsra CO(H Cp)7

(5.23)
where C), = supj¢|—y [Vwel| Lo ray- If p” > p/2, Theorem is proved. Otherwise, Vwe € LP/?(R%)?
and we iterate the argument. We have, thanks to (5.18)), that

N , d
B+ age (Vi) + A Vit € (Lm0 n/ 0 [=(RY))
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thus by [3], we get that Vg € L@ 2/ (R4)? and we can prove, similarly to (5.23) that
‘|V@||LmﬂX(P',P/4)(Rd) S C(”aHLP' (R%)> /\7 dapa a, C, Ccp:oer’ Coo, Cp)7 (524)

where the constant on the right-hand side of is potentially greater than the one on the right-
hand side of but the dependance on the data remains the same. If p’ > p/4, the Theorem is
proved. Otherwise, we iterate similarly. The procedure ends at step k for which p/2* < p/: we thus
obtain that Vg € L” (R%)? and that there exists a constant Cipar := C(@, A, d, p, a, ¢, CE", Cn, Cyp)
such that

||V&’v£||m’(Rd) < Crinal-

Theorem is proved. O

5.3 Proof of Theorem 2.4

Proof of (i). This is due to Proposition (1), to the form of the PDE (2.12)-(2.13) defining Vwe
and the fact that this PDE is uniquely solvable in the sense of Definition 2.2] Note that we use that

for ¢ % O, Wg_;'_vwlge‘” = th_;’_vwi’;r.

Proof of (4i). This result is proved in [24, Lemma 2.2] but we reproduce the proof here for the
sake of completeness. Let £ € R%. By Definition with V¢ = Vg, the inequality (B.1), Holder
inequality together with (4.18]), we have

C/Rd IVwel” < || fll 2o mey IVWel Lo ray < 1@l Lo ey 1€ + Vg™ i:ol(Q)HV@v&HLP(Rd)- (5.25)

Thus, by Proposition (ii) and (5.25), we obtain the first estimate of (2.16]).

We show that there exists o > 0 independent of ¢ such that Vwe € C%%(R?). We introduce
the function wg := & - © 4+ wg, then Vwg solves the standard homogeneous p—Laplace equation with
varying coefficient a. Applying [2I, Theorem 1], we get that Vg is continuous over R?. Besides, by
[21, Theorem 4], there exists a constant ¢ > 1 and a radius r > 0 depending only on d, p, A and the
Lipschitz constant of a, denoted ar;, such that for all z € R,

1/p’ 1/p
Vg (z)] < ¢ <][ |vu;5|P’> <ec (f wg) : (5.26)
B(x,r) B(=z,r)

Due to the form of Vg, see also (2.14)) and the first estimate of (2.16[), we have that
Vg ()] < clé] + er™ P Vg 1o ray < O(dsp, A, arip) €] (5.27)

In particular, proves that Vwg is bounded and that ||[Vwe||po@ey < C(d,p, A arip)lé]- By
Assumption (A2), the non-linear operator a(y,z) = a(y)z|z[P72 falls into the scope of [15]. Let
z € R? up to subtracting of we(z), we have by (5.27) that |[wg| < C(d,p, A\, arip)|é| on B(z,2).
Thus, applying [15, Theorem 2], there exist e > 0 and Cp > 0 depending only on A, ar:p,p,d, p, and
C(d,p, X\, arip)|¢| such that Vwg € CO(B(x,1)) and

[Vwe]co.a(B(z,1)) < Co- (5.28)

To specify the dependence of Cy in &, we first take [£] = 1 and we then apply the homogeneity,
Theorem (i). This gives that Cy = Co(p,d, A, arip)|€é| and concludes the proof of (ii), gathering

(5.27) and (5.28) and the fact that

[Vwellcoaray < [€] + [[VWe]|co.e (ra).-
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Proof of (iii). We assume that 2 < p < 3. Let us fix £ € R? such that |¢| = 1. In the proof, ¢ > 0
will denote a universal constant given by (A4). We consider n € R? such that & # 7. In the sequel,
we fix &y € (0,1) such that C(1 +2'77)8] + dp < ¢/2, where C and 7 are given by (2.8).

Case 1. We assume that [€ — 5| > dg. Then, thanks to Theorem [2.4] (ii), we have that
|V — V| zoesy < Cp + Gyl (5.29)

We now note that for all 0 < B <1,

c 5 5,C 5 5.
(%)Iﬁ—n\ﬁ(lﬂnl) S25(7’31’)I£—77I"(1+Inl1 o)y if nl <2
Cp + Cplnl < % 9o (5.30)

C,CB) |l - 117+ n*?) < C,e@)le - nfP @+ F) i ] > 2,

where we used that the function z ‘171‘51(% is bounded on [2, +oo[. Thus
Vg — Vi || o ey < C(do, B, Cp)l€ = nlP (1 + =), (5.31)
This gives (2.17)).
Case 2. We assume that [ — | < §. Then, by the choice of ; and Proposition [2.1] (iv), we have that
T T c T
e + Vg — {n+ Vi }| w g < 5 and &+ VurT| > c. (5.32)

Recalling the notation (4.1)), we have that

_ _ Vi + Vi, Ve + Va,
Fe(Vig) + Fy (Vi) < F (52"> +F, (52’7

) < o0, (5.33)

where we have used that & # 7, F, admits a unique minimizer for z € R% and Vwg € L2?(RY),
Vuw, € L*(R%). We recall that

FE(Vv) := / ag.+vwre (Vo) —|—/ f-Vu, zeRY Ve LP(RY) (5.34)
Br R
and that R — FZ(Vv) is a non-decreasing function. Thus, for R large enough, we have the inequality
N _ Vwe + Vu, Vwe + Vuw,
Ff(Vwg) + F (Vwy) — FE (52") —-Fy (52"> <0. (5.35)

We now use Lemma applied with § = ¢. Taking into account (5.32)), this gives
Gf—&-nger,n—i-wa,er(vwg?v@) > 7P|va§ - V@:ﬂp - C;D{|§ + vwé)er - (77 + vwger)|p—2”v@-§' — Vﬂm

+ 3 + Vol — (n+ Vab®)||Vig + W;I}IWE V@)

(5.36)
For all R > 0, we can integrate ([5.36]) over the ball Bg. Using the notation (5.34)) and the form of the

map G¢ ,(X,Y), see (5.1), this yields

_ _ Vwe + Vwy,, Vwe + Vwy,, 1 — _
P + ey - g (YY) g (VNI L ) (v - v
> [ avaz-val - [ ofler vup - o+ VP2V - va)

Br Br

e+ Vub — (54 Vub) [V + vm}mz v,
(5.37)
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where h, = a(z + Vwb)|z + VwP®|P~2 for z € RY. For R large enough, we get because of (5.35) that

]_ —_— —~— — — er er _
3 /Rd(hgfhn)-(ngwan) 271,/ a|Vw57an|pfcp/ {|§+pr — (n+ Vwp)P 2.

BR BR
[V = VT + e+ Vug — (+ V)|V + VT |97 - |

(5.38)
Letting R — 400 in (5.38) and using Theorem we get by the monotone convergence Theorem
that

1 v _ v e er er —
-5 [ e~ (VT = V@) 2, [ (V- VP e, [ fle+ vupT -+ Tupp
R4 R R4
Vs — Viy| + P~ 3|§+VwP“—(n+wger)||vag+va;7}|mg—va;7.

Thus, applying the Holder inequality, Proposition (iv) and Theorem under the form
IV || o gy < Cl2l, 2 €RY,

we get

|19 = 9T < ([l € - 19T - VT s+

{1 =0 4 =30l — "}V - Ty 10 )
Thus

Vg — V|l qa) < Cl€ —n[7P72),
This gives (2.17) when || = 1. The case |£| # 1 is treated by homogeneity.

Gathering Case 1 and Case 2, we have proved Theorem (iii) for p € [2,3). The proof of the
case p > 3 is performed using the same method and ([5.3)).

Remark 5.3. As suggested by (5.3 . the assumptions of Theorem-(m) may be weakened whenp > 3.
In this case, it is sufficient to assume, mstead of (A4), that Vg € LY (RY) | that Vw, € L (RY)
and that we have an estimate of the form (2

Proof of (iv). It is analogous to the proof of Proposition (iv).

6 Qualitative Homogenization: proof of Theorem

The proof of Theorem is an adaptation of [I8] and [I3, Theorem 2.1] to the present setting. We
start with the following central Lemma:

Lemma 6.1. For & € RY, let us write Vg the solution to (2.12))-(2.13) given by Theorem. Assume
that the application

RY — L} (R
(6.1)
& — Vue
is continuous. Then for all ¥ € LP(Q)4,
—_— * p
limsup/ ’Vstg,(—)‘ =0. (6.2)
e—0 Q £
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Proof of Lemma 6.1 We first show the following assertion:
Vo > 07 JA > 03 V‘IE| > Aa Vf € Rd7 HV@HLP(JL—FQ) < 6|£‘ (63)

By contradiction, if (6.3) does not hold, there exists § > 0 and two sequences (x,)nen C R? and

(§n)nen C R? such that |z,| — 400 and |[Vwe, ||1r(z,+0) = 6/ By Theorem (i), we
n—-+0o

can assume that |¢,] = 1. Thus, up to a subsequence, &, —+> ¢. However, by (6.1), for all n

large enough, we have that ||[Vwe, — Vwel 1 (2, +0) < §/2. Thus, for n large enough, we have that

Vel Lr (2, +0) > 6/2. Since |z,| 7, oo this contradicts that Vwe € LP(R?). Thus (6.3) is
n—-+0oo
satisfied.

We now turn to the proof of (6.2)). By an immediate application of the Jensen inequality, we have

that
VB € NU {+0o0}, > Tk < / P, wk ;:][ U, (6.4)
[k|<B, e(Q+k)CQ QNBs (0,eB) e(Q+k)

where B, (z,7) denotes the ball centered in x and of radius r > 0 for the |- |, —norm on R Let § > 0
and A be given by (6.3). We have that

.p o
Rl VI ML

keZd, e(Q+k)CQ

< ¥ sd/+k}V@\p+ 3 ad/wyv%g P

lk|<A, e(Q+k)co  “@ |k|>A, e(Q+k)CQ (6.5)
< _cC > e wkP 4 o7 > e wkp
€3).e19 |k|<A, e(Q+k)CQ |k|>A, e(Q+k)CQ

< C/ |\I/|p+5”/ ||P.
Boo (0,6 A)NQ Q

By the dominated convergence Theorem, we have that

1imsup/ ’VwM (] < 5?/ P, (6.6)
e—0 5
Since is true for all § > 0, we haved proved (6.2)). O

We now state the analogous of [13] Lemma 3.5] to the present non-periodic setting. Before that,
we introduce for &,y € R? the notations

PPy, €) ==+ Vw™ (y) and  p(y,§) =+ Vwe(y) = pP(y, §) + V(). (6.7)

Lemma 6.2. Assume that the Assumptions of Lemmal[6.1] are satisfied. Let U € LP(Q?) and ® € LP(12)
such that ® = Z;n:l njla, where U;nzl Q; cCQ, QN =0 fork# ¢ and |0Q,| =0 for j € {1,m}.
Then there exists a constant C > 0 independent of €, ¥ and ® such that

tim sup [[p(-/&, Me¥) = p(-/2, ®)| gy < C {1 55Gey + 120 EnGoy 17— B0y (68)
€

where B is given by Proposition[2.1] (iii).
Proof of Lemma[6.3 We first notice that

/Q’V%(é)‘p = é/@ Vi, () "< gdZ/ Vi@, |" — 0 (6.9)
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With the notations (6.7]), we have, applying [I3] Lemma 3.5], that

lim sup Hp(-/e, M. U) —p(./e, @)”LP(Q) < limsup prer(-/g, M.U) — pP (. /e, <I>)HLP(Q)
e—0 e—0

<RHS of
+nmsgp{||vw€\p<./e>||” + V@ (/)| oy }
E—r

=0 by Lemma and
O

With these tools, we can prove Theorem The first point (i) is not detailed here since it is
mainly a rewriting of [I8]. Note that for this point, the continuity of £ — Vwg is not neeeded. The
only result on the non-periodic correctors Vwe, £ € R? that is used is Theorem (ii). The proof
of Theorem (ii) follows the proof of [I3| Theorem 2.1]. In the following, we sketch the proof of
Theorem ) by insisting on the points that differ from [I3]. The proof of Theorem (iii) follows
from Theorem (ii) together with Lemma

Sketch of proof of Theorem (ii). Since M.Vu* converges to Vu* when e — 0 in LP(Q), it is
sufficient to show, using the notation (6.7) that

R, :=Vu. —p(./e, M:Vu") = 0 in LP(Q). (6.10)

During the proof, we introduce a step function ® as in Lemmasatisfying [Vu* — @[ 1ry < d. By
monotonicity of the p—Laplace operator, see (B.1)), and Assumption (A1), we have that

710”Rs||1£p(9)
< / (a(./e)|Vue[P~*Vue. — a(./e)|p(./e, McVu*)[P~?p(. /e, M.V u*), Vu. — p(./e, McVu*))
Q
=A. - B. - C: + D,

(6.11)
where

A ::/Qa(./s)|VuE\p, B. ::/Qa(./EHVuE\p_QVuE-p(./E,MEVu*)
Ce ::/Qa(./a)|p(./5,]\4&-Vu*)|p_2p(./5,M&-Vu*)-Vu‘E and D, ::/Qa(./e)|p(./s,M5Vu*)|p.

The term A, is obviously treated by the LP—weak convergence u, = u*:
e—

AE:/quE HO/fu —/ u*) - Vu*. (6.12)

We study the term B. when M. Vu* is replaced by ®. This gives:
[ a2V pl /e 0) = 3 [ al /DI 2V a2 ).
Q — Jo,
J=17°%

We then apply the standard div-curl Lemma, keeping in mind that a(./€)|Vu.|P~2Vu. converges
L? (Q)—weakly to a (Vu ) when ¢ — 0, that p(./e,n;) converges LP—weakly to 7; and that, thanks
to Theorem . (it), a(./e)|Vue|P~2Vu, - p(./e,n;) is bounded in L¥' (€2), uniformly with respect to e.

Thus,
i/ a(./e)|Vue|P "2V, - p(./e,n;) —>Z/ “(Vu*) - —/Qa*(Vu*)~<I>
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In view of Lemma we obtain that

lim sup ‘BE - / a*(Vu™) - @‘ =0(0%), (6.13)
e—0 Q
where the O is independent of §. The term C. is also treated by replacing M. Vu* by ® and using the
div-curl Lemma. Noticing that a(./)p(./e,n;)|p(./e,n;)[P~2 — a*(n;) in LP (Q), we obtain that

E—r

lim sup ‘C’s - / a*(®) - Vu*| = 0(57). (6.14)
Q

e—0

We introduce DP" := [, aP"(./e) [p***(./e, M-Vu*)[". By [13, Step 1, pp.1161-1162], we have that

D" — [ a*(Vu™) - Vu". (6.15)
e—=0 Jq

Besides, since |[z[P — [y[P| < C(|z[P~" + [y[P~)|z — y| for all z,y € R%, we get
D= D2 < [ ) Ip(Z M)

. . 1 . 1 (616)
+cAwwgﬂ(w;MwwW*+Wﬂ;Mme*ww@§;gw

We show that each term of the RHS of (6.16)) vanishes as ¢ — 0. We use Theorem (ii) and (6.4)
with B = 400, which imply that there exists a constant C' > 0 independent of ¢ such that

/Q [p(2 M) [+ 97 (2 M) < OV . (6.17)

With the Holder inequality and Lemma we prove that the second term of the RHS of ((6.16]) tends
to zero as € —» 0. As for the first term, we write that

JREEITE MVuV<0/! (= +c/\ Ml 4:5) (.9

e © Gz @) 121} gy + Clall oy | (2, M V) )2, (6.18)
=0(ed/P")

where we used that @ € L>°(R?) and the bound |p(y, &)| < C|¢| where C' > 0 is independent of y and
&. Collecting (6.15)), (6.16)), (6.18) and Lemma6.2] we have proved that

lim sup = 0(67). (6.19)

D, - / a*(Vu*) - Vu*
e—0 Q

Finally, collecting (6.12)), (6.13)), (6.14])), (6.19) and (6.11]), we obtain that

lim sup ||RE||ZEP(Q) < / la*(Vu*) - (Vu* — @) +/ |(a*(Vu*) — a*(®)) - Vu*| + O(6P). (6.20)
e—0 Q Q
Using the following property of a*, see [13] Remark 1.3],
" () = a*(@)]] 0 < CLIVE 1520 + 191552 ]IV = @]l oo,

we conclude that limsup,_,, ||R€||’£p(ﬂ) = O(6”) where the O is independent of §. Since this is true
for all 6 > 0, we conclude that || R.||1»(q) = 0.
E—r

Remark 6.3. Using the same strategy as above, it is straightforward to show that Theorem [2.7 holds
with the operator M. replaced by M., 0 < v < 1. In this case, the continuity of the application
& = Vg is not needed and we only use that Vwg € LP(R?).
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7 Continuity of { — Vw,: proof of Theorem

7.1 Preliminary Lemmas
We begin this section with the following lemma that defines weak solution of PDEs of the form (7.1)):

Lemma 7.1. Let £ € RY, a coefficient a satisfying Assumption (A1) and h € L (R, Assume that
Assumption (A4)’ is satisfied. Let v € Wvagcr be solution in the distribution sense to the following
PDE:

—div a[(g + Vg™ + V)€ + Vwg™ + VoP7% — (€ 4+ V™) + Vwp™[P~?] = div(h).  (7.1)
Then Vv solves in the weak sense of Definition .' for all w € W§+Vw§er,

/ al(E+ Vw®™ + V)€ + Vg™ + VoP=2 — (€ + V™) €+ Vup™ P2 - Vw = — | h-Vuw. (7.2)
R4 Rd

Proof of Lemma[7.1, We define u := £ + ng “ in the proof. We fix w € W,. In the following, x
will denote a smooth and compactly supported function with support in Q(0,1) such that x = 1 in
Q(0,3). We fix R > 0 and we introduce the function

() )

By the Poincaré-Wirtinger inequality, we have that &y € VVO1 P(QRr). By (B.3)), we have the bound

a|(u+ Vo)|u+ VolP~2 — ululP~2| < AC[Ju + V[P~ + [ufP~2] Vol

7.3
< AC(p) [|ulP~2[Vo| + [VoP~ T, (73

where we have used the inequality (by + bo)?~2 < C(p)(b?> + b5™?) for by,by > 0. Thus, since
Vo e LP(Qr) and p = p'(p — 1),

div a [(u+ Vo)|u+ VolP~2 —ululP~2] € W (Qg) and div(h) € WHF(QpR).

Consequently, we can test ([7.1) against @z and obtain, after expanding V&g,

-2 _ —21. ("
/QRa[(u—l—Vv)|u—|—Vv|p ulu|P?] X(R) Vw
v [ af Vot Vol —ufup?) (w -f w) (g)= @9
R Jar Qr\@ry> R

@y [ (o) )

We now recall the following Poincaré-Wirtinger inequality:

< CR||vaLp(QR\QR/2) (75)
LP(Qr\QRr/2)

w —f w
Qr\QRr/2

which is simply a rescaled version of the L inequality on Q\Q1 /2. Besides, thanks to Assumption (A4)’
(and its rescaled version), we have that

|u|pz;2 w —][ w
Qr\QRr/2

p_2
< OR” |u| = vw||L2(QR\QR/2)'

L2(Qr\QRry/2)
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This yields, together with (7.3), Holder inequality and the inclusion supp(Vx) C Qg \ Qr/2, that

‘/ a[(u+ Vo)|u+ VolP~? —ufuP~?] - (w—][ w | Vx (—) '
Qr\@r/2 Qr\Qn/2 R

-1

P 7.6
LP(Qr\QRr/2) HVU}HLP(QR\QR/Z) ( )

< AOR||Vx|Loo{HWH

p—2
[Tl Vo

‘|u\y2;2 Vw‘

(Qr\QR/2) L2(Qr\Qr/2) }

and

< CRIVX|z=lPll oo (@@ IVWILr@r\@ry2)- (77)

Lo (o) )

Collecting (7.4), (7.6) and (7.7) and recalling that v, w € W, we have that

R—+oco

/ X (E) {a[(u+ Vv)lu+ VoP~? —ulu[P7?] + A} - Vw| — 0. (7.8)
Rd
On the other hand, by the dominated convergence Theorem, again since v, w € W,,, we have that

/ X (E) {a[(u+ Vv)lu+ Vo[P~? —ululP7?] + h} - Vw
R (7.9)
— {a[(u+ Vo)lu+ VolP~? —ululP~?] + h} - Vw.
R—+o00 Jrd
Thus (7.2)) is satisfied. O
The next lemma allows to pass to the limit in PDEs of the form ([7.1)).

Lemma 7.2. Let (Vo )nen € LORN, (an)nen € L®RY), (hp)nen € LP (RD? and (v,)nen C V
(see (4.2)), such that v, € Wy, for alln € N. We assume that, for all n € N:

1. The coefficient a,, satisfies Assumption (A1) with A uniformly bounded in n.

2. The function Vv, is solution, in the distribution sense, to
—div ay [(Vén + V)|V + Vo, P72 = V6, |V, |[P2] = div(hn). (7.10)
We also assume the following convergences:

(i) Vo — V¢ in L=°(RY);

n—-+oo
(ii) an W @ in L5 (RY);
(i11) Vuy, - Vv in LP(RY) and |V, |"z Vo, - V| “2" Vo in L2(R?) which v € Wve;
(iv) ho 2 h i LV (R) with h € LV (RY).

Then Vo, Y Vo in LY (R?) and Vv is solution in the distribution sense to
n—-+0oo

—div a [(Vé + Vv)|Vo + VolP~ — Vo |Ve|P~?] = div(h). (7.11)
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Remark 7.3. If all other assumptions are satisfied, the assumption |V¢n|¥V0n — |V¢|prQVU
in L?>(R%) can be weakened in |V¢n|%V1}n is L?—weakly convergent. Indeed, following the proof
of Lemma (m), we can prove that if Vv, — Vv in LP(RY), V¢, — Vé in L®(R?) and
|V¢)n\pz;2an is L?—weakly convergent, then \V¢n|L52an — |V¢|pr2Vv in L2(RY). In particu-
lar, we have that v € Wy.

Proof of Lemma[7.34 We fix two bounded smooth domains B, B’ such that B CC B’. Let x € D(B’)
such that x =1 on B and 0 < y < 1 in B’. We introduce the function

U, = {¢n+vn—(v+¢)—]{gl [¢n+vn—(U+¢)]}X€Wol’p(31)~

=0,

We immediately check that, up to extracting a subsequence, we have by the Rellich compactness
Theorem and (i), (iii) that

¥l — 0in LP(B') and V¥, — 0in LP(B). (7.12)
n—-4oo n—+4oo
Thus,
¥, — 0in LP(B)) and V¥, — 0in LP(B'). (7.13)
n—-+oo n—-+oo

Since VU,, € VVO1 P(B'), we can test ¥,, against (7.10). We re-organize the terms and get that
/ (Vb + Vo) [Vén + VonlP™2 - (Vép + Vo, — Vo — Vo)x

= —/ a(Vy, + Vu,) |V, + Vou,|P~2- \II}LVX + / (a — an) (Vo + Vu,) |V + an\p_Q -V,

’

[ hovu, + / [V P2V, - VU,
B’ B’

=—-A,+B,—C,+ D,.
(7.14)
We study each term separetely. The term A,, vanishes when n — 400 since

[(Vén + Vo) [Von + Vo P72 < Cp[[Ven P~ + Vo, [P,

which is bounded in L¥' (B’), uniformly with respect to n by (i) and (iii) and (7.12). The term B,
vanishes as n — 400 by ([7.13)) and since, by (%), (i) and (i4):

(a — an)(Vdn + V,)|Vn + Vo, P2 —».0in LY (B).
The term C,, vanishes by (7.13) and the L{ .—strong convergence of the sequence (hy)nen. The term

D,, vanishes by (7.13)) and the convergence of a,|V¢,|[P~2V¢, to a|V¢|P~2V¢ in L>°(B’). We have
proved that

/ a(Von + V) |Vén + Vo |P~2 - (Vo + Vu, — Vo — Vu)y AT 0. (7.15)
However, since (V¢ + Vv)|V¢ + Vo[P~2 € L (B') and because of (7.12) and (i), we also have that
n——+00

/ W(V6 + Vo) |V + VoIP~2 - (Vo + Vo — Vé — Vo)y —> 0. (7.16)

The difference between (7.15]) and (7.16) gives that

/ a[(Von + V)|V, + Vo, [P72 — (Vo + Vv)|Vé + Vo|P 2] - (Véy, + Vo, — Vo — Vo) = 0.

(7.17)

31



Using (7.17)), (B.1]), that x > 0 and x =1 in B, we get

/|V¢n—|—an—V¢—V1}|p — 0. (7.18)
B

n—-+o0o

By (i), we obtain that Vv, — Vw in LP(B) up to a subsequence. We easily show that the

n—-+o0o
convergence in fact holds for the whole sequence. We consequently get the L
since B is arbitrary.

We now pass to the limit n — +o0 in (7.10). Let ¥ € D(R?), we test (7.10) against ¥. By (iv), it
is clear that

p

P (R%)—convergence

/hn-w — / h-VU. (7.19)
R4 R4

n—-+oo

Besides, by (B-3), (i), (i) and the L} (RY)—convergence of Vv, we have that

an{(V(z)n + vvn)‘vﬁbn + vvn|p72 - V¢n|v¢n|p72}

o a{(Vo+ Vo) Vo+ Vo 2 = VoIV in LD (RY).
This shows that
/}Rd a{(Ve+ Vv)|Ve+ Vo|P™2 = V¢|Ve[P 2} - VI = — /R h-VU,
and concludes the proof of the Lemma O

7.2 Proof of Theorem [2.8

Let (£2)nen C R? such that &, —+> ¢ for ¢ € RY. We aim at showing that Vg, —+> Vwe in
n—-—+0o0 n—-+0oo
LP

P +(R%). By Proposition [2.1] (iii), it is sufficient to show that Vg, = Vwg in LY (R?).
n—-+oo

unif

Step 1. We have that Vwg, — Vuwg in LP(R?). Indeed, by (B:I), (B:2) and the form of h,
— n—

+oo
see (2.13)), we have the following a priori estimate: there exists a constant C' = C(d, p, a, aP®*) > 0 such
that for all n € N,

En+vw

1T v, e < C1E0l + 160]"72). (7.20)

In particular, there exists v € V (see (4.2)) for the definition of V) and w € L?(R?) such that

— . p(mpd per | E22 — —— N : 2/md
Vg, Bl Vo in LP(RY) and (&, + Vg '| 2 Vg, WS Win L*(RY). (7.21)
Taking into account Remark we have that v € We,v,per and
per| 22—y per 22 . 2 md
&0 + VWi |2 Vg, e €+ V™= Vo in L*(RY).

We apply Lemma [7.2] with

ap = a, Up = ﬂ)\&“:

¢n:§n'x+w§srv ¢:§'$+w?er

hy = al&n + Vwgs P2 (6 + Vwg™),  h=alé + Vug™[P=2(¢ + Vuwg™).

The required convergences follow from ([7.21) and Proposition (i) and (iv). We get that Vwg,
converges when n — +oo to Vv in L (R?) and that Vv solves (2.12)) in the distribution sense.

loc

Thus, Vo solves (2.12) in the weak sense in W, +VwEeT (see Definition [2.2) by Lemma with h
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given by (2.13)). In addition, by Theorem E the solution of this PDE is unique in W§+Vuz§”- Thus
Vv = Vwe and this concludes Step 1 since the sequence (Vwe, )nen has one possible limit.

Step 2. Suppose by contradiction that Vg, does not converge to Vg in L2 (R?) when n — +o0.
Then there exists § > 0, a subsequence of (£,),en that we de not relabel and a sequence (z,,)nen such

that

Vn € N, ||Vﬂf§: - V’lfl\)g”Lp(B(xml)) > 4. (722)

Up to another extraction, we can suppose that z,, —+> z in T?, where T? denotes the d—dimensional
n—r+0o0o

torus. Since by Step 1, we know that Vwg, —+> Vwg in LY
n—-+oo

P (R?), we necessarily have that, up to

extracting a subsequence, |z, - +00 in R%. We introduce the shifted functions
n—-—+0oo

—~ —

wh =we, (-+x,) and w2 = we(-+ zp), (7.23)
/g =& v +wg (+x,) and 5% =& r+w™ (4 wy). (7.24)

In particular, ((7.22) gives
VneN, [[Vw)-— vw%”Lp(B(O’l)) > 6. (7.25)

We show in the sequel that, up to a subsequence, for i = 1,2,

loc

Vwi — Voiin IP (RY) and Vol =0 ae. (7.26)
n—-4o0o

In particular, passing to the limit n — +oo in (7.25)) will lead to a contradiction.
Step 3. Proof of (7.26]). We prove (7.26]) for ¢ = 1, the proof is standard for ¢ = 2. We have that

Vw] solves in the distribution sense the PDE
—diva(-+2,) (V0L + V) [V} + Vol =2 = VoL VoL"2] = div (a(- + 2,)VOLIVELP ) (7.27)
and that QI}EL € Wwﬁ. Since

o A

we get because of (7.20)) that the sequences (HVILZHLP(W))%N and (|HV(?>\}L|1%2V@||L2(REL))”€N are
uniformly bounded in n. Thus, up to extracting a subsequence,

Vwl — Vol in IP(RY) and Vwl|[VeL|® — w!in L2(RY). (7.28)
n n—+oo

—+o0

We may apply Lemma [7.2] with
an = a’(' + In)v VQSTL = V‘E}\u
Vo, =Vl and by, = a(- + 2,) VoL VL P2,
We check the required convergences.

(i) We have that VL converges in L=(R%) to Vol : 2 —> §-x+Vwi™ (-+z). Indeed, by periodicity,
it is enough to check that V@ — Vgﬁ in Q. Forally € Q,

—+00
IVOL(y) — VoL ()| < [ — &l + [Vl (2, +y) — VP (@ + y)| + [V (z + y) — Vwl™ (@ + )|
<|én — €|+ Clénllzn — I + {1 + 111} En — €]

where we used Proposition (ii) together with Proposition (iv) in the last inequality and
| - |7 denotes the euclidian norm on T¢. This proves the result by convergence of the sequences

(§n)nen and (75 )nen-
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(i) We have a,, = a®*"(- + x,,) + a(- + x,,). Since z, Lt in T¢, we have by Assumption (A2)
n—-+oo

that aP**(- + x,,) = aP (- + z) in L*°(Q). Let B be a bounded domain, then since a €
n—-+0oo

CooNLP'(RY), we have @ — 0. Thus a(- + z,) - 0 in L°°(B) and finally a,, converges
n——+0oo

|z]|—+o0
locally uniformly to @ := aP®"(- + ) when n — +oo.

(iii) This is (7.28).

(iv) By the same argument as in (ii), we have that h, - 0 in Lfolc
n—-+00

(RY).

We have proved that, up to exacting a subsequence, Vwl — Vol in LP (R?) where ol e

n—-4o0o loc

W£+vw§er(.+w) solves in the distribution sense the PDE

~div P (- + @) | (€ + VW (- + &) + Vol ) ¢ + Vu} (- + ) + Vol |7
— (& + V(- + @))€+ Vab (- +2)["7F] =0,

Introducing V= Al(~ — ), we get that Vie W5+vw2er and that VV1 solves in the distribution sense
the PDE

— diva®* [(€ + Vw® + VVI)|¢ + Vul™ + VVIP=2 — (¢ + Vul™)|¢ + VP[P~ = 0. (7.29)
Applying Lemma to (7.29) with w := Vi gives now

/ A (- + ) {(g + VR + VV)E + V™ + VVLP2 — (¢ + Vul™)e + ngewp*?] YV =0.
Rd

Applying (B.1)) allows to conclude that VV1 = 0 in R? and thus Vol = 0. This proves ([7.26]) and
concludes the proof of Theorem [2.8
Remark 7.4. From the above theorem, we can deduce that

R — L®(RY)
§ — Vg

18 continuous.

The continuity of & = Vwi™ is due to Proposz'tion (iv). We prove that & — Vwg is continuous

for the L>=(R?) topology. By contradiction, suppose that there exists € € R%, two sequences (£,)nen C
R? and (2, )neny C R? and a § > 0 such that &, —+> & and
n—-+0oo

vneN, |Vuwg, (z,) — Vwe(z,)| > 0.

By Theorem[2.4) (ii), there exists n independent of n such that

vneN, Vye B(zn,n), |Vwe,(y)— Ve(y)| >

N S,

Thus, for alln € N,
IVwe, — Viellz g > [B(0,1)]'7on™? > 0.

which is a contradiction with Theorem [2.8.
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A Proof of Proposition

Proof of (i). This point is obvious by the form of and the uniqueness of wy™ in W:2(Q)/R.

per

Proof of (ii). The first estimate follows for example from ([2.4]) and in particular:

1 er 1 er
1 / P () + Vb < / PP,
Q pPJq

p

together with (A1). The proof of the second estimate is exactly the same as the one of Theorem [2.4]
(ii) (see Subsection 5.3 E ) with a replaced by aP** and wg replaced by wg®".

Proof of (iii). Let &1,& € R Applying (2.3)) with ¢ = weT —wg with § = &, = 1,2 and making
the difference between the two expressions gives:

/ aPr{ (& + Vg™ )6 + Vg™ P2 = (& + Vwg) ) [éo + Vug P72} - {Vwp” — Vwp™} = 0. (A1)
Q
Thus, adding the term
/ P {(€1 + Vw6 + VP2 = (& + V") g2 + Vup P2} {6 -6} =0 (A2)
Q

in the left and right-hand side of (A.1)), applying (B.1) on the left-hand side and (B.3)) on the right-hand
side provides

/ €+ Tl — (& + V)"

< C/ (|6 + Vwge |~ 24 &2 + Vuwp " e + Vg™ — (&2 + Vg [6 — &

We apply the Holder inequality on the right-hand side with exponents p/(p — 2), p and p find, us-

ing ([2.16)):
1-1/p
(/ &1+ V™ — (& + Vul)[” ) < Cflaf= +laP7?] & — &l.
This yields (2.16) by taking the 1/(p — 1)—th power of the above inequality.

Proof of (iv). We argue by contradiction. Suppose that there exist three sequences (z,,)nen C @,
(€3)nen C R? and (1,)neny C R? such that for all n € N, |,| =1, 0 < [£, — 1, < % and

Nn > nlgn - 77n|’y-

‘pref n) — VP (z,,)

By Proposition [2.1] (ii), we have for n large enough that

er er n
Vy € B(xn,0n), |Vw§" (y) — ngn (y)| > §|£n — Nl (A.3)
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where 6, := |&, — 1|7/ Integrating (A.3) over B(x,,d,), we get that
P
Vb = Tuwber [, g = 1Bl (5) 60 = mal"10% = Cr¥ln — € 0 4/2) = Cr¥lgy — 7. (A4)

However, by (2.16)), | Vg™ — prerHLp(Q < C|én — nn|PP. This is a contradiction with ( when

taking n — +oo. We have proved (2.8) for [¢| = 1 and |[¢ — 5| < 1. The other cases are treated by
homogeneity and with the help of (2.16) as in ([5.30)).

B Some technical inequalities

We gather in this subsection some useful inequalities. We first have

(@|z|P72 = ylylP?) - (w —y) > clz — ylP, (B.1)
@|z|P72 —ylylP?) - (@ —y) = c[lzP2 + P |z — g, (B.2)
|~T/|96|]”72 —yly[P? < C [lzP7 + |y|P 2] o — yl. (B.3)

In the above inequalities (B.1| -, c and C' refer to universal constants that only depend on p. For
a proof of these 1nequaht1es we refer to [20]. For &,z € RY, we introduce the function

ge(x) = |€ +afP — |7 — pele[P~2 - a. (B-4)
We have the following lemma:

Lemma B.1. There exist two constants c¢,C > 0 depending only on p such that

V& x e RY cf|zPEP2 + |2)P] < ge(x) < C [|=)?)¢P2 + |2P] - (B.5)

Proof. This proof is elementary and will be omitted here. O

Lemma B.2. There exists a constant C > 0 such that for all x,h € R,

(z + h)V/ =1 — g1/ (=D)| < o|p|1/(0=1), (B.6)

Proof. This proof is elementary and will be omitted here. O
Lemma B.3. Assume that Hypothesis (A4)’ is satisfied. Then C3°(R?) is dense in Wevuper

Proof of Lemma[B.3 Let v € W g,per and € > 0. There exists R = R(e) > 1 such that

e+ vure vy

c . B.7
L2(@3,) + ||VU||LP(QR/2) <e (B.7)

Let xr be a cut-off function such that xg = 1 in Qr/2 and x = 0 in Q§R/4- We have that |xgr| +
R|Vxr| < C where C depends only on the dimension d (and in partiuclar not on R). We introduce

wWRr = |V —][ V| XR,
Qr\QR/2

We have immediately that wg is compactly supported in Qg and that wg € I/VO1 P(QRr). Thus there
exists a function ® € C5°(Qg) such that

dp
lwr — ‘I)”WLP(QR) <eR7P2  (<¢). (B.8)
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We extend ® by zero outside Q. By Holder inequality, we have that
lwr — ®ll s 0y < < (B.9)

We next show that
[v =@l vuper < C(& d, p, @, Cpoinc)e, (B.10)

where Cpoinc denotes the maxmimum between the LP Poincaré-Wirtinger constant on @\ Q1 /2 and the
weighted L? Poincaré-Wirtinger constant, given by Assumption (A4)’, on Q \ Q, /2. By the triangle
inequality, we have that

lv — <I>||W£+vw§er <lv-— wR||W5+Vw§,er + ||lwr — ®||W£+vwger . (B.11)

We study separately each term of (B.11]). By Proposition (iv), (B.8) and , we have that

r =2
lwn = @lwesvups = [Vwn = Vol + [IE + Vo™= (Vwn - Vo))

L2(Qr)
p—2 er p=2
< llwr = Bl + CIEIT lwr = @l g < (Cdp, @))% +1)e.

As for the first term of (B.11)), we write that

1
Vv —Vwrp =Vv(l—xg)+ = (v—][ v) Vx(./R)
R Qr\QRr/2

Thus, applying the LP Poincaré-Wirtinger inequality, we have that

Vo — VwRHLzo(JRd) < ||VU||LP(Q;/2) + Cpoine HV’UHLP(QR\QR/Q) " (14 Cpoinc)e. (B.12)

p—

As for the L? (|§ + nger|T2d)\> norm, we use Assumption (A4)’ to obtain that

er p_2
||VU—VwR||L p=2 )S HI£+Vw§ |2 Vv’

2 (|§+Vw§er| 7 dx

L*(Q%)5)
p—2
| 2

(B.13)

+ C’poinc S (1 + C’poinc) €.

per
€ + Vwy

L2(Qr\QRry/2)
Gathering together (B.11)), (B.12]) and (B.13)), we get (B.10]) and conclude the proof of the Lemma. O
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