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Abstract: This paper investigates the problems of stability analysis and control design for continuous-
time Lur’e systems with slope bounded nonlinearities. Starting from a stability analysis condition from
the literature, based on the real positivity and a bound to the L1 norm of a certain transfer function, new
sufficient conditions are proposed in an augmented parameter space for the simultaneous existence of a
stabilizing dynamic output-feedback controller and a Zames-Falb multiplier certifying the closed-loop
stability. The matrices of the controller realization as well as of the Zames-Falb multiplier appear affinely
in the conditions, being dealt with as optimization variables. Furthermore, no line search is required to
enforce the L1 norm constraint. An iterative algorithm is constructed to solve the problem through
semidefinite programming, providing dynamic controllers of any given order. The controller can take
into account both the output of the linear part of the system and of the nonlinearity. Numerical examples
illustrate the results.

Keywords: Continuous-time Lur’e systems, absolute stability, Zames-Falb multipliers, linear matrix
inequalities, dynamic output-feedback.

1. INTRODUCTION

Lur’e systems describe linear time-invariant plants in feedback
with a static nonlinear function. The stability analysis of these
systems can be carried out by studying properties of the in-
terconnection considering simple representations of the nonlin-
earity, as for instance with quadratic inequalities that describe
sector and slope restricted functions. Since the stability analysis
treats classes of nonlinear functions lying in a sector, it is known
as the absolute stability problem. While encompassing classes
of nonlinear functions, these stability analysis methods are
powerful since they consider the LTI system data to conclude
on stability of the interconnection.

When certified, the stability of a Lur’e system is robust since
it holds for any nonlinearites within the considered class. For
Lur’e systems the robustness is not only a rigorous mathe-
matical property for the solutions of the system, it is also of
paramount importance in practice since the nonlinear elements
in the engineering systems modeled by the interconnection are
not precisely known.
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Classical results, such as the circle and Popov criteria (Khalil,
2002), consider sector limitations, while more recent ap-
proaches also take into account slope bounded nonlinearities.
Lyapunov functions (LF) (Gonzaga et al., 2012; Park, 1997,
2002) and Zames-Falb (ZF) multipliers (Turner et al., 2009;
Ahmad et al., 2013; Haddad and Bernstein, 1994; Carrasco
et al., 2020; Turner and Drummond, 2020) can be considered
as the two main strategies to deal with absolute stability.

Multipliers are transfer functions used in loop transformations
for frequency domain stability analysis. The absolute stability
problem can be converted into the search of the so-called
ZF multipliers (Zames and Falb, 1968; O’Shea, 1967). These
multipliers have to satisfy a constraint on the L1 norm and
preserve the positive realness of the overall system (Carrasco
et al., 2016; Turner et al., 2009, 2012). The ZF multipliers are
thus certificates for stability and the problem of computing the
parameters of classes of ZF multipliers can be formulated as
semi-definite programs (Chang et al., 2012; Boyd et al., 1994;
Carrasco et al., 2020; Turner and Drummond, 2020).

For the feedback control gain synthesis, there exist some LF
based approaches for state feedback control of Lur’e sys-
tems (Castelan et al., 2008; Louis et al., 2015). On the other
hand, ZF-based conditions to handle control design prob-



lems seem more difficult to formulate. Recently, ZF multiplier
based conditions for the static output feedback stabilization of
discrete-time Lur’e systems have been proposed in Bertolin
et al. (2022). In this paper, similar conditions are proposed for
continuous-time Lur’e systems.

The aim of this paper is to propose a convex-based proce-
dure for the design of fixed-order dynamic controllers for
continuous-time Lur’e systems. Sufficient LMI conditions are
given for the absolute stability of the closed-loop Lur’e system
in terms of the existence of ZF multipliers. As an important
improvement with respect to the results in Turner et al. (2009),
any given order can be considered for the multipliers. More-
over, distinct Lyapunov matrices for the L1 and real positivity
constraints are considered (instead of a common one) and the
need of performing a scalar search is eliminated. The state-
space realization of the ZF multiplier as well as the matrices
of the dynamic controller appear in an affine manner in the
conditions. Then, using a relaxation in the stability of the linear
part of the system, an iterative algorithm is proposed, solving
a convex optimization problem at each iteration. The perfor-
mance of the method is demonstrated by means of numerical
examples borrowed from the literature.

Notation: For a symmetric matrix, A > 0 (A < 0) means that
A is positive (negative) definite. For matrices or vectors (T )
indicates the transpose, He(A) = A+AT and diag(A1, . . . ,An)
represents the block diagonal matrix formed by the square
matrices (or elements) A1, . . . , An. The symbol ⋆ represents
a term induced by symmetry in a square matrix. The identity
and the zero matrices are denoted, respectively, by I and 0.
Throughout the text the dimensions of the matrices may be
omitted for simplicity (being inferred from the context).

2. PROBLEM DEFINITION AND PRELIMINARIES

Consider the continuous-time nonlinear Lur’e system

ẋ(t) = Ax(t)+Bφφ(z(t))+Buu(t)

z(t) =Czx(t)+Dφ φ(z(t))+Duu(t) (1)

y(t) =Cyx(t)

where x ∈R
nx is the state, φ ∈R is the nonlinear input, u ∈Rnu

is the control input, z ∈ R is the output that goes through the
nonlinearity and y∈Rny is the measured output. Matrices A, Bφ ,
Bu, Cz, Cy, Dφ and Du are real and have appropriate dimensions.

The time-invariant nonlinearity φ : R→ R, with φ(0) = 0, is
odd and verifies the slope bound condition given by

0≤
(
φ(ẑ)−φ(z)

)
/(ẑ− z)≤ Λ (2)

for all z, ẑ ∈R, ẑ 6= z, and φ(ẑ), φ(z) ∈ [0,Λ] where Λ ∈R is a
given positive scalar. Furthermore, it is assumed that the Lur’e
system satisfies the well possedness condition given by

(1+ΛDφ)> 0. (3)

The objective of this work is to design a stabilizing fixed-order
dynamic output-feedback controller for system (1) with state-
space realization given by

ẋc(t) = Acxc(t)+Bcy(t)+Bcφ φ(z(t))

u(t) =Ccx(t)+Dcy(t)+Dcφ φ(z(t))
(4)

where xc ∈ R
nc is the state and Ac, Bc, Bcφ ,Cc, Dc and Dcφ

are real matrices of appropriate dimensions. Connecting the
controller (4) with the plant (1) provides the following closed-
loop dynamics

Gcl =

{

ẋ(t) = Aclx(t)+Bclφ(z(t)),
z(t) =Cclx(t)+Dclφ(z(t)),

where x =
[
xT xT

c

]T
and

Acl =

[
A+BuDcCy BuCc

BcCy Ac

]

, Bcl =

[
Bφ +BuDcφ

Bcφ

]

,

CT
cl =

[
Cz +DuDcCy

DuCc

]

, Dcl = Dφ +DuDcφ .

(5)

The computation of the matrices of the controller can be done
based on the stability analysis of system (5), which can be
investigated through the existence of a ZF multiplier (Zames
and Falb, 1968) M(s) = 1+H(s) such that

Re{M( jω)G̃cl( jω)}> 0, ∀ω ∈ R (6)

where G̃cl( jω)= (1+ΛGcl( jω)), and H(s) is a rational strictly
proper transfer function. The state-space realization for the
multiplier M(s) is given by

ẋm(t) = Amxm(t)+Bmr(t)

ym(t) =Cmxm(t)+ r(t),
(7)

where xm ∈ R
nM , r ∈ R and ym ∈ R, with real matrices Am,Bm

and Cm of appropriate dimensions. The state space realization
of M(s)G̃cl(s), is given by

AI =

[
Acl 0

BmΛCcl Am

]

, BI =

[
Bcl

Bm(1+ΛDcl)

]

,

CI = [ΛCcl Cm] , DI = (1+ΛDcl).

The stability of the closed-loop Lur’e system (5) can be as-
sessed by searching for a ZF multiplier M(s) satisfying, simul-
taneously, two sufficient conditions. The first one is the positive
realness of M(s)G̃cl(s), as presented in (6). The second one is
to assure that ‖H(s)‖1 < 1, i.e., the L1 norm of H(s) must be
smaller than one (Turner et al., 2009). Since the computation
of the L1 norm through convex programming does not seem to
be simple, upper bounds (such as the ∗-norm) obtained by LMI
conditions combined with a scalar search can be used instead.

For this purpose, consider a linear continuous-time system
S with a state space realization given by (A,B,C,D). The
following lemmas provide LMI conditions for positive realness
and an upper bound (i.e., the *-norm) to the L1 norm.

Lemma 1. (Real positivity (Sun et al., 1994)). System S is sta-
ble and positive real if and only if there exists a positive definite
matrix P = PT , such that

[
AT P+PA PB−CT

⋆ −D−DT

]

< 0. (8)

Lemma 2. (*-norm (Abedor et al., 1996)). Consider system S

with D = 0. Let α ∈ (0,κ), κ =−2maxi(Re(λi(A)), be a given
scalar and W =W T > 0 the solution of the convex optimization
problem

min
W

tr(W ), AW +WAT +αW +α−1BBT < 0. (9)

Then, system S is asymptotically stable with norm L1

bounded by γ , solution of the convex problem (note that W is a
known matrix, solution of (9))

min γ, γW−1 >CTC. (10)

The conditions of Lemma 2 are solved in two steps, each one
based on LMIs, but note that (9) is only an LMI if the value of
α is fixed. Usually, a line search on α ∈ (0,κ) is performed to
compute the smallest value of γ limiting the L1 norm.

The Finsler’s Lemma (de Oliveira and Skelton, 2001), repro-
duced below, is important for the derivation of the proposed
conditions.



Lemma 3. (Finsler’s lemma). Consider matrices Q ∈ R
ℓ×ℓ and

B ∈Rm×ℓ, with rank(B)< ℓ and BB⊥ = 0. Then, the follow-
ing conditions are equivalent:

i) BT
⊥QB⊥ < 0;

ii) ∃X ∈ R
ℓ×m such that Q+X B+B

T
X

T < 0.

3. MAIN RESULTS

Next theorem presents the main contribution of this paper, that
is, LMI conditions assuring the closed-loop stability of the
Lur’e system Gcl through the existence of a ZF multiplier.

Theorem 1. Let the matrices Y i, X i, i = 1, . . . ,4, with Y 4 and
X4 of full rank and the nonnegative integers nM and nc be
given. If there exist matrices Yi, Xi i = 1, . . . ,4, Am, Bm, Cm,
Ac, Bc, Bcφ , Cc, Dc, Dcφ , positive definite matrices P = PT

and S = ST , and positive scalars α and γ ≤ 1 such that

[

S CT
m

⋆ γI

]

> 0, Q1 +He

(





Y1

Y2

Y3

Y4






︸ ︷︷ ︸

Y

[
Y 1 Y 2 Y 3 Y 4

]

︸ ︷︷ ︸

Y

)

< 0, (11)

Q2 +He

(





X1

X2

X3

X4






︸ ︷︷ ︸

X

[
X1 X2 X3 X4

]

︸ ︷︷ ︸

X

)

< 0, (12)

where Ãm = Am + 1
2
αI,

Q1 =






0 S 0 ÃT
m

⋆ 0 0 −I

⋆ ⋆ −αI −BT
m

⋆ ⋆ ⋆ 0




 , Q2 =






0 P −CT
I AT

I
⋆ 0 0 −I

⋆ ⋆ −2DI BT
I

⋆ ⋆ ⋆ 0






are verified, then M(s) is a Zames-Falb multiplier (with real-
ization given by Am, Bm and Cm) certifying the stability of the
closed-loop system Gcl .

Proof. Observing that the second inequality in (11) is in the
form ii) of Lemma 3, one has the following equivalent condition

[
0 S 0
⋆ 0 0
⋆ ⋆ −αI

]

+He

(





(Y
−1
4 Y 1)

T

(Y
−1
4 Y 2)

T

(Y
−1
4 Y 3)

T










AT
m + 1

2
αI

−I

−BT
m





T )

< 0, (13)

where

Y⊥ =

[
I

−Y
−1
4 Y 1 −Y

−1
4 Y 2 −Y

−1
4 Y 3

]

has been used as a basis for the null space of Y (observe that Y 4

is full rank by hypothesis).

Condition (13) is again in form ii) of Lemma 3 with B1 =[
Am + 1

2
αI −I −Bm

]
. Adopting the following basis for the null

space of B1

B1⊥ =





I 0

Am + 1
2
αI −Bm

0 I



 ,

then condition (13) is equivalent to
[

SAm +AT
mS+αS −SBm

⋆ −αI

]

< 0, (14)

which applying the Schur complement and a congruence trans-
formation using the inverse of matrix S, yields

AmS−1 + S−1AT
m +αS−1 +α−1BmBT

m < 0,

which is equivalent to (9) with W = S−1. Moreover, the first
inequality in (11) also assures (10) and, as γ ≤ 1, matrices Am,
Bm and Cm are the state-space realization of the ZF multiplier
with L1 norm bounded by one.

Since X4 is full rank by assumption, consider

B2⊥ =

[
I

−X
−1
4 X1 −X

−1
4 X2 −X

−1
4 X3

]

as basis for the null space of X , that is, XB2⊥ = 0. Using
Lemma 3 (Finsler), condition (12) is equivalent to BT

2⊥Q2B2⊥<
0, that can be rewritten as





0 P −CT
I

⋆ 0 0
⋆ ⋆ −2DI



+He

(





(X
−1
4 X1)

T

(X
−1
4 X2)

T

(X
−1
4 X3)

T










AT
I
−I

BT
I





T )

< 0. (15)

The above inequality is, again, in the form ii) of Lemma 3.
Computing a basis for the null space of [AI −I BI], with some
manipulation, one gets a condition that is equivalent to (8),
proving the stability of the Lur’e system in closed-loop.

The conditions of Theorem 1 have some appealing aspects:
first, differently of Lemma 2, α appears affinely in condi-
tion (11), and, therefore, it is not necessary to perform one-
dimensional searches (α is an optimization variable). Note that
as Am is an optimization variable, it is not possible to establish
a value for κ (and consequently a bound for α) in Lemma 2.
This is certainly an issue for the approaches that perform a
linear search on α , as in Turner et al. (2009) and Carrasco
et al. (2012). On the other hand, Theorem 1, as in Turner and
Drummond (2020), does not present this inconvenient. The sec-
ond and more important advantage is the fact that the matrices
of the closed-loop system appear affinely in the conditions.
Consequently, the matrices of the dynamic controller can also
be dealt with as optimization variables (no need of change of
variables, as usual in the literature). Note that the order of the
controller can be arbitrarily chosen and particular structures for
the matrices, as in the case of decentralized control, can be
imposed straightforwardly.

On the other hand, Theorem 1 has an adverse characteristic. The
proposed conditions are LMIs only if the initialization matrices
Yi and Xi are given and Bm is fixed. This last problem disappears
if Du = 0 or if a realization differently from (7) is adopted
for the multiplier. For instance, a controllable canonical form

with Bm = [0 · · · 1]
T

. Regarding the first issue, the following
theorem establishes one possible initialization through the in-
troduction of a relaxation scalar parameter r.

Theorem 2. Let Y = [I I 0 − I], X = [I νI 0 − I], with 0 < ν <
4(1+ΛDφ)(B

T
φ Bφ )

−1, and

Acl = Acl− rI, Am = Am− rI (16)

where r is a positive scalar. Then, the conditions of Theorem 1
with Acl , Am as (16) always present a feasible solution with a
finite value of r.

Proof. First, fixing Y1 =Y2 =−
1
2
rI, Y3 = 0, Y4 =

1
2
rI and S= rI

in condition (11) and applying a Schur complement, one has
[

αI BT
m

⋆ −r−1((Am + α
2

I)(AT
m + α

2
I)+ I)+ 2I

]

> 0.

Considering r sufficiently large, Bm = 0 one has αI > 0, which
is always true. Similarly, the choice Cm = 0 simplifies the first
condition in (11) to diag(rI,γI)> 0, which is always verified.



Finally, considering X1 = −X4 = − 1
2
rI, X2 = − ν

2
rI (ν > 0),

X3 = 0, and also P = νrI, one has (after a Schur complement)
[

2DI−
1
r
CIC

T
I −BT

I + 1
r
CIA

T
I

⋆ − 1
r
(AIA

T
I + 1

ν2 I)+ 2
ν I

]

> 0.

Considering r sufficiently large, Bcφ = 0 and Dcφ = 0 leads to

diag
([2(1+ΛDφ) −BT

φ

⋆ 2
ν

]

,
2

ν
,

2

ν

)

> 0

The two lower diagonal elements are verified (since ν > 0)
and, from the first block, with a Schur complement, one has
4(1 + ΛDφ )− νBT

φ Bφ > 0 that, with (1 + ΛDφ ) > 0 due to

assumption (3), is satisfied with 0< ν < 4(1+ΛDφ)(B
T
φ Bφ )

−1.

The scalar r introduced by Theorem 2 can be seen as a relax-
ation factor in matrices Acl and Am, ensuring that the conditions
of Theorem 1 always produce a feasible solution if the initial-
izations indicated by Theorem 2 are adopted. Furthermore, as
r appears affinely in the condition, it can be minimized as an
objective function. Clearly, for the stabilization of the original
Lur’e system (1) a solution with r = 0 must be obtained. If this
is not the case, the conditions of Theorem 1 can be tested again
with the new initial conditions Y = Y T and X = XT . This is
possible because conditions (11) and (12) have the structure
Q + He(X B) < 0. Thus, as He(X B) = He(BT X T ), the
choice B = X T guarantees a feasible solution in the next
evaluation, assuring a value of r equal or smaller than the
previous one. This motivates the iterative procedure described
in Algorithm 1. The parameter itmax sets a stop criterion and Y
and X are the initial matrices as given in Theorem 1. The value
of r is minimized at each iteration (denoted rk) and if rk ≤ 0
then the closed-loop stability of the Lur’e system is certified
and a dynamic stabilizing controller is provided. Otherwise,
nothing can be concluded. Note that there is no guarantee that
the algorithm converges to a negative or null value of r. The
convergence depends on the initial choices of Y and X .

Algorithm 1: Iterative procedure for control design.

Input parameters: itmax, Y = [Y 1 Y 2 Y 3 Y 4] and
X = [X1 X2 X3 X4], k← 0;

Make the changes of variables as in (16);
while k < itmax do

k = k+ 1;
minimize rk subject to (11) and (12);
if rk ≤ 0 then

return rk and the matrices of (4);
end

Y = Y T , X = XT ;

end

Note that when Algorithm 1 terminates with success (i.e.,
r ≤ 0), the closed-loop dynamic matrices Acl and Am have all
eigenvalues placed at the left-hand side of r, what is enough to
assure stability, as demonstrated next.

Theorem 3. If the conditions of Theorem 1, with Acl and Am as
in (16), are feasible for some r̂ < 0, then the conditions (14)
and (8) remains feasible for any r > r̂.

Proof. Consider that the conditions of Theorem 1 are verified,
with Acl − r̂I and Am− r̂I, for a given r̂. Then the conditions
(14) and (8), with Acl and Am given in (16), are also verified, as
presented bellow, respectively,

[

AT
mS+ SAm+αS SBm

⋆ −αI

]

− r̂

[
2S 0
⋆ 0

]

< 0,

[

AT
I P+PAI PBI−CT

I
⋆ −2DI

]

− r̂

[
2P 0
⋆ 0

]

< 0.

Clearly, the conditions are also verified for any r > r̂.

The result of Theorem 3 assures that a controller and a multi-
plier computed through Algorithm 1 with a negative value of r
also assures the stability of the original closed-loop system.

4. INCREASING THE ORDER OF THE CONTROLLER

An important feature when designing controllers of a given
order is to guarantee that the increase of the order cannot
provide worse results (in terms of some criterion). For instance,
if for a given order nc, Algorithm 1 assures closed-loop stability
for a certain slope limit, then the order nc+1 should provide an
equal or better slope bound. As presented, Algorithm 1 does not
have this property.

As another contribution of the paper, a new initialization is
proposed for Theorem 1 when searching for a controller of
order nc, whenever a solution of order nc− 1 is available. For
this, consider the parallel connection between two controllers
(i.e., both receive as inputs y and φ from the system and provide
the sum of the two control signals as output), where the first
one is a known controller of order nc that assures a certain
slope Λ for the closed-loop system. The strategy relies on fixing
the structure of the second controller (of order p) such that
the synthesis condition of Theorem 1, feasible for nc, remains
feasible for nc + p. For instance, consider Ac =−Ip, and all the
other matrices equal to zero for the second controller, producing
the following closed-loop matrices associated to the resulting
controller of order nc + p

Ãcl =

[
−I 0
0 Acl

]

, B̃cl =

[
0

Bcl

]

, C̃T
cl =

[
0

CT
cl

]

, D̃cl = Dcl ,

ÃI =

[
−I 0
0 AI

]

, B̃I =

[
0
BI

]

, C̃T
I =

[
0

CT
I

]T

, D̃I = DI. (17)

The next theorem shows that condition (15), feasible whenever
a solution has been obtained from Theorem 1, can be made
feasible with the matrices in (17) and particular choices of
the decision variables of Theorem 1. This is the first step to
construct a feasible solution to Theorem 1 for nc + p.

Theorem 4. Let the matrices Acl , Bcl , Ccl , Dcl , Am, Bm and Cm

(also AI , BI, CI and DI) and scalar α be solutions of Theorem 1
with order nc. Then, the following LMI





0 P̃ −C̃T
I

⋆ 0 0

⋆ ⋆ −(D̃T
I + D̃I)



+He

(



X̃T
1

X̃T
2

X̃T
3








ÃI

T

−I

B̃T
I





T )

< 0, (18)

is guaranteedly feasible with a controller of order nc + p with
the closed-loop matrices ÃI , B̃I, C̃I and D̃I given in (17).

Proof. Condition (18) is nothing but condition (15), which
is feasible whenever Theorem 1 has a solution. Consider the
choices

P̃ =

[
β I 0
0 P

]

, X̃1 =

[
χ1I 0
0 X1

]

, X̃2 =

[
χ2I 0
0 X2

]

, X̃3 = [0 X3] .

where P, X1, X2 and X3 are solutions of Theorem 1 for order nc

and β , χ1 and χ2 are scalars. Applying congruence transforma-
tions in (18) to interchange columns and rows, one has

diag(Ω,Ξ)+ diag(ϒY ,ϒX )< 0 (19)



with

Ω =





0 P −CT
I

⋆ 0 0
⋆ ⋆ −2DI



 , Ξ =

[
0 β I
⋆ 0

]

, ϒX =

[
−2χ1I −χ1I− χ2I

⋆ −2χ2I

]

,

ϒX =





AT
I XT

1 +X1AI −X1 +AT
I XT

2 X1BI +AIX
T
3

⋆ −X2−XT
2 X2BI−XT

3

⋆ ⋆ X3BI +BT
I XT

3



 ,

As can be seen, condition (19) has a block diagonal struc-
ture, being feasible if the diagonal blocks are feasible, that
is Ω+ ϒY < 0 (feasible by hypothesis, from the existence of
a controller of order nc) and Ξ + ϒX < 0 that, considering
χ1 = χ2 = β/2, leads to diag(−β I,−β I)< 0, verified ∀β > 0.

The results of Theorem 4 allow to compute a feasible solution
for condition (15) constructed in terms of a known controller of
order nc increased of p units. As a consequence, following the
proof of Theorem 1, the choice

X = [X̃T − I] (20)

guarantees that condition (12) is feasible where X̃ is a solution
for (15). Note that the increase of the order of the controller
does not affect the LMIs (11). Thus, Y can be considered as Y T ,
solution associated to the order nc.

As a final remark in the search for dynamic controllers using
Algorithm 1, it must be noted that the relaxation AI−rI tends to
provide an undesirable effect in the matrices of the controller,
that is, Ac diagonal and Bcy = Bcφ = Cc = 0 for nc > 0. Al-
though this phenomenon is not an issue in principle, it has been
observed in the numerical experiments that the results tend to
be conservative. The same behavior can be noted in the ma-
trices of the multiplier. To remedy this problem, the following
representation for the augmented state vector is proposed

[
x̂
x̂c

x̂m

]

=

[
Inx 0 0
R1 −Inc 0
R2 0 −InM

][
x
xc

xm

]

(21)

R1 =
[
Inc 0nc×(nx−nc)

]
, R2 =

[
InM

0nM×(nx−nM)

]
.

5. EXAMPLES

Numerical examples are presented to illustrate the performance
of the proposed conditions. For analysis purposes, the technique
presented in Algorithm 1 (named Alg1) with itmax = 50 and
ν =DI(B

T
φ Bφ )

−1 is compared with time and frequency domain-

based approaches. Note that, although based on the conditions
from Turner et al. (2009), Alg1 can possibly provide better
analysis results than Turner et al. (2009) in the case of full order
multipliers because Theorem 1 uses two distinct matrices, one
to cope with the positive realness (P) and one to address the
bound on the L1 norm (S). For each model, the aim is to find
the maximum value of Λ such that the system is stable, and this
search is performed by a bisection procedure with precision
given by 10−3, in systems 1 to 4, and for 5 and 6 by 10−4.
Regarding the order of the ZF multiplier, nM = nx has been fixed
in all tests, for simplicity, but note that the proposed approach
can deal with any given order nM. Whenever Du 6= 0, a control-
lable canonical form realization is chosen for the ZF multiplier.
The implementation of the methods (Turner et al., 2009, 2012;
Carrasco et al., 2014) follows the steps: i- A bisection is used to
find the maximum value of Λ, considering 100 equally spaced
points for α ∈ [0,100]. ii- For the value of α that provided the
best Λ in previous step (denoted by α⋆), a new bisection is
performed, this time considering 2000 equally spaced points in

the interval α ∈ [0.75α⋆,1.25α⋆], that is, in the neighborhood
of α⋆. The analysis conditions from Turner and Drummond
(2020), based on externally positive ZF multipliers (i.e., do not
require linear searches) are included in the comparisons. The
LMIs are programmed with the parser Yalmip (Löfberg, 2004)
and solved using Mosek (Andersen and Andersen, 2000) (ver-
sion 9.2.47) in a computer equipped with a Core i7 processor,
running Windows 11, Matlab 9.10 (R2021a) 64 bits.

Analysis: In this experiment the six systems investigated in
Turner et al. (2009) are tested. The objective is to compute the
maximum Λ such that the systems remain stable. For this pur-
pose, Alg1 is compared with other methods from the literature:
the Lur’e-Postnikov-type of function proposed by Park (2002)
(Par02), Circle approach, Popov (Park, 1997), causal (Turner
et al., 2009, 2012) (TKP09,TKP12) and anticausal (Carrasco
et al., 2014) (C14) ZF multipliers, and also Turner and Drum-
mond (2020). The results are presented in Table 1 where the
sub indices c and ac associated to Alg1 indicate causal and
anticausal multipliers (since the conditions of Theorem 1 only
hold for causal multipliers, the anticausal ones are obtained
through the transformation indicated in Carrasco et al. (2012)).

As can be seen, Alg1 provided slope values equal to (or lesser
than) the ones computed through the other methods. Note
that the algorithm could be initialized taking into account, for
instance, a ZF multiplier provided by any other method, and
then iterate in the search for larger slope values. Regarding
only the ZF approaches (Turner et al., 2009, 2012; Carrasco
et al., 2014), note that Alg1, although iterative, does not require
a line search on α , which can be advantageous in terms of
computational time. Overall, the results obtained by Alg1 can
be considered good since the main interest is not to perform
stability analysis, but control synthesis, as investigated in the
next experiment.

Control Design: In this experiment, Alg1 is used to com-
pute dynamic output feedback controllers for the six systems
of Turner et al. (2009) considering BT

u = [1 . . . 1], Du = 1 and
canonical realizations for the transfer functions associated to
the ZF multipliers.

The strategy is to start with the initial condition given in
Theorem 2 with ν = DI(B

T
φ Bφ )

−1, for nc = 0 (static output

feedback control), and and then to use the result of Theorem 4
with p = 1 and X given in (20), to design controllers with
nc = 1, 2. The results (in terms of maximum values obtained for
Λ) are shown in Table 1. As can be seen, the controllers provide
larger bounds for Λ (when compared with the ones obtained in
the stability analysis) and, as nc increases, the results cannot be
worse (as assured by the conditions of Theorem 4 and the initial
condition given in (20)). The similarity transformation in (21)
plays an important role when searching for dynamic controllers
that provide better results in terms of Λ.

6. CONCLUSIONS

LMI-based conditions for fixed order dynamic output-feedback
control of continuous-time Lur’e systems with slope bounded
nonlinearities certified through ZF multipliers were presented.
As illustrated by the numerical examples, the control law can
take into account both the measured output of the linear part
and the output of the nonlinearity, providing larger values for
the slope bound of the allowable nonlinearities. The proposed
method eliminated the scalar search usually needed to assure



Table 1. Maximum Λ obtained by Alg1 using causal (cs) or anticausal (ac) multipliers, circle, Popov,
Par02, TKP09, TKP12, C14 and TD20 in stability analysis and in control design (by Alg1 with
nc = (0,1,2)). The symbol ’–’ is used for no feasible solution and 100+ means that values of Λ larger

than 100 have been obtained. The mean time (s) for each analysis method is given in the last row.

Analysis Control

System Circle Popov TKP09 TKP12 Par02 C14 TD20 Alg1cs Alg1acs Alg1

1 1.243 1.763 2.428 3.274 4.589 4.021 3.3050 2.628 4.589 (100+, 100+, 100+)

2 0.764 1.082 1.089 1.089 1.089 1.089 1.089 1.089 1.075 (1.111, 1.839, 2.765)

3 0.326 0.384 0.706 0.760 0.788 1.025 1.232 0.402 0.322 (1.612, 3.939, 5.772)

4 0.308 0.364 0.853 1.079 0.708 0.674 0.976 0.285 0.283 (1.022, 2.643, 5.349)

5 – 0.001 0.001 0.003 0.001 0.0008 0.001 – – (–, 9.537, 12.146)

6 – 0.001 0.0008 0.003 0.001 0.001 – – – (–, 6.149, 7.194)

0.17 0.19 77.91 183.93 0.12 69.61 0.12 22.27 22.02

L1 norm bounds, dealing with conditions that are affine on the
variables of interest (matrices of the dynamic controller and of
the ZF multipliers). Future work on this research topic would
be the inclusion of Popov multipliers and performance indices
(such as the L2 gain) in the conditions for control design.
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Löfberg, J. (2004). YALMIP: A toolbox for modeling and
optimization in MATLAB. In Proc. 2004 IEEE Int. Symp. on
Comput. Aided Control Syst. Des., 284–289. Taipei, Taiwan.
http://yalmip.github.io.

Louis, J., Jungers, M., and Daafouz, J. (2015). Sufficient LMI
stability conditions for Lur’e type systems governed by a
control law designed on their Euler approximate model. Int.
J. Control, 88(9), 1841–1850.

O’Shea, R. (1967). An improved frequency time domain
stability criterion for autonomous continuous systems. IEEE
Trans. Autom. Control, 12(6), 725–731.

Park, P. (1997). A revisited Popov criterion for nonlinear Lur’e
systems with sector-restrictions. Int. J. Control, 68(3), 461–
469.

Park, P. (2002). Stability criteria of sector- and slope-restricted
Lur’e systems. IEEE Trans. Autom. Control, 47(2), 308–313.

Sun, W., Khargonekar, P.P., and Shim, D. (1994). Solution
to the positive real control problem for linear time-invariant
systems. IEEE Trans. Autom. Control, 39, 2034–2046.

Turner, M.C. and Drummond, R. (2020). Analysis of systems
with slope restricted nonlinearities using externally positive
Zames–Falb multipliers. IEEE Trans. Autom. Control, 65(4),
1660–1667.

Turner, M.C., Kerr, M., and Postlethwaite, I. (2009). On
the existence of stable, causal multipliers for systems with
slope-restricted nonlinearities. IEEE Trans. Autom. Control,
54(11), 2697–2702.

Turner, M.C., Kerr, M., and Postlethwaite, I. (2012). Authors
reply to “Comments on ‘On the existence of stable, causal
multipliers for systems with slope-restricted nonlinearities’
”. IEEE Trans. Autom. Control, 57(9), 2428–2430.

Zames, G. and Falb, P.L. (1968). Stability conditions for
systems with monotone and slope-restricted nonlinearities.
SIAM J. Control, 6(1), 89–108.


