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Abstract

In this article, we communicate with the glimpse of the proofs of new global regular-
ity results for weak solutions to a class of problems involving fractional (p, q)-Laplacian,
denoted by (−∆)s1p + (−∆)s2q , for s2, s1 ∈ (0, 1) and 1 < p, q < ∞. We also obtain the
boundary Hölder continuity results for the weak solutions to the corresponding problems
involving at most critical growth nonlinearities. These results are almost optimal. More-
over, we establish Hopf type maximum principle and strong comparison principle. As
an application to these new results, we prove the Sobolev versus Hölder minimizer type
result, which provides the multiplicity of solutions in the spirit of seminal work [2].

Résumé

Dans cette note, nous présentons de nouveaux résultats de régularité Höldérienne
des solutions faibles d’une classe de problèmes faisant intervenir des opérateurs de dif-
fusion fractionnaire non linéaires et non homogènes de la forme (−∆)s1p + (−∆)s2q avec
s2, s1 ∈ (0, 1) et 1 < p, q < ∞. Précisément, nous obtenons des résultats de régularité
intérieure et près du bord pour les solutions faibles de ces problèmes alors que la non-
linéarité du membre de droite est de croissance critique au sens de l’injection de Sobolev.
Ce résultat étend les principaux résultats de régularité intérieure de [1] où le cas de
l’opérateur homogène (−∆)s1p est investi, améliore de façon optimale et complète ceux de
[8].

Nous établissons par ailleurs un lemme de Hopf et un principe de comparaison fort
pour cette classe de problèmes. Nous appliquons ensuite ces résultats pour démontrer la
propriété que les minimiseurs locaux de l’énergie associée dans Cα(Ω) avec α ∈ (0, s1)
sont aussi minimiseurs locaux dans W s1,p

0 (Ω) dans l’esprit de l’article pionnier [2]. Ceci
conduit à des nouveaux résultats de muliplicité de solutions pour ces problèmes non locaux
et fortement non homogènes.

Keywords : Fractional (p, q)-Laplacian, non-homogeneous nonlocal operator, Hölder conti-
nuity up to the boundary, maximum principle, strong comparison principle.
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1 Introduction

In this note we study the Hölder continuity results and maximum principle for weak solutions
to the following problem :

(−∆)s1p u+ (−∆)s2q u = f in Ω, (P)

where Ω ⊂ R
N is a bounded domain with C1,1 boundary, 2 ≤ q, p <∞, 0 < s2 ≤ s1 < 1 and

f ∈ L∞
loc(Ω). The fractional p-Laplace operator (−∆)sp is defined as

(−∆)spu(x) = 2 lim
ε→0

∫

RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy.

The leading differential operator, (−∆)s1p +(−∆)s2q , in problem (P) is known as the fractional
(p, q)-Laplacian. The operator is non-homogeneous in the sense that for any t > 0, there does
not exist any σ ∈ R such that ((−∆)s1p + (−∆)s2q )(tu) = tσ((−∆)s1p u+ (−∆)s2q u) holds for all
u ∈W s1,p(Ω) ∩W s2,q(Ω).

The regularity results and maximum principles for the equations involving the homogeneous
nonlocal operators are well known, see [1, 4, 9, 10, 12], whereas the regularity issues for the
problems involving the fractional (p, q)-Laplacian is still developing and only few continuity
results are available, see for instance, [7, 6]. The strong non-homogeneity, in this case, feature
creates an additional difficulty while handling the distance function in order to prove the
boundary behavior of the weak solutions.

In the present work, we obtain interior regularity results for local weak solutions, which im-
proves the regularity results of [7] for larger class of exponents. Our proof of the improved
local Hölder continuity result (see Theorem 2.1) relies on Moser’s iteration technique to ob-
tain suitable embedding for Besov spaces into the Hölder spaces. Here, we stress that we
do not assume any order relation on the exponents p and q. Subsequently, we establish the
asymptotic behavior of the fractional q-Laplacian ((−∆)s2q ) of the distance function ds1 near
the boundary, which in turn gives us almost optimal (and optimal in some cases, see Remark
3) boundary behavior of the weak solution. This coupled with the interior Hölder regularity
result of Theorem 2.1 provides the almost optimal Hölder continuity result. As a consequence
of this, we obtain the Hopf type maximum principle for non-negative solutions. Additionally,
under the restriction that the fractional q-Laplacian of the subsolution is bounded from be-
low, we prove a strong comparison principle. In the last section, as an application to these
results, we obtain the multiplicity results for problem involving the subcritical nonlinearity
by establishing Sobolev versus Hölder type minimization result for nonlinearities with atmost
critical growth. Complete proofs of the regularity main results and other applications (in
particular to singular problems) can be found in [7].

2 Preliminaries and main results

We denote [t]p−1 := |t|p−2t, for all p > 1 and t ∈ R. For (ℓ, s) ∈ {(p, s1), (q, s2)} and for
S1 × S2 ⊂ R

N × R
N , we set

Aℓ(u, v, S1 × S2) =

∫

S1×S2

[u(x)− u(y)]ℓ−1(v(x)− v(y))

|x− y|N+ℓs
dxdy.
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We define the distance function as d(x) := dist(x,RN \Ω) and a neighborhood of the boundary
as Ω̺ := {x ∈ Ω : d(x) < ̺}, for ̺ > 0.
We will follow the notation p∗s1 := Np/(N − ps1) if N > ps1, otherwise an arbitrarily large
number.

2.1 Function Spaces

For E ⊂ R
N , p ∈ [1,∞) and s ∈ (0, 1), the fractional Sobolev space W s,p(E) is defined as

W s,p(E) :=
{
u ∈ Lp(E) : [u]W s,p(E) <∞

}

endowed with the norm ‖u‖W s,p(E) := ‖u‖Lp(E) + [u]W s,p(E), where

[u]W s,p(E) :=

(∫

E

∫

E

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)1/p

.

For any (proper) subset E of RN , we have

W s,p
0 (E) := {u ∈W s,p(RN ) : u = 0 in R

N \E}

which is a uniformly convex Banach space when equipped with the norm [·]W s,p(RN ) (hereafter,
it will be denoted by ‖ · ‖W s,p

0 (E)). Next, we define

W(E) :=W s1,p(E) ∩W s2,q(E)

equipped with the norm ‖ · ‖W(E) := ‖ · ‖W s1,p(E) + ‖ · ‖W s2,q(E). The space W0(E) is defined
analogously. We say that u ∈ Wloc(E) if u ∈ W(E′), for all E′ ⋐ E. Note that for 1 < q ≤
p <∞, 0 < s2 < s1 < 1 and the domain E with Lipschitz boundary, W s1,p

0 (E) coincides with
the space Xp,s1 , as defined in [8]. Indeed, from [8, Lemma 2.1], we have

‖u‖W s2,q
0 (E) ≤ C‖u‖W s1,p

0 (E), for all u ∈W s1,p
0 (E),

for some C = C(|E|, N, p, q, s1, s2) > 0. Additionally, we define

W̃ s,p(Ω) :=

{
u ∈ Lp

loc(R
N ) : ∃Ω′

⋑ Ω s.t. u ∈W s,p(Ω′),

∫

RN

|u(x)|p−1

(1 + |x|)N+ps
dx <∞

}
.

Definition 1. Let u : RN → R be a measurable function and 0 < m,α < ∞. We define the
tail space and the nonlocal tail, respectively, as below :

Lm
α (RN ) =

{
u ∈ Lm

loc(R
N ) :

∫

RN

|u(x)|mdx

(1 + |x|)N+α
<∞

}
, Tm,α(u;x0, R) =

(
Rα

∫

BR(x0)c

|u(y)|mdy

|x0 − y|N+α

) 1
m

.

Set Tm,α(u;R) = Tm,α(u; 0, R). We will follow the notation Tp−1(u;x,R) := Tp−1,s1p(u;x,R)
and Tq−1(u;x,R) := Tq−1,s2q(u;x,R), unless otherwise stated.
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2.2 Statements of main results

In this subsection, we state our main results. We start with the definition of local weak
solution.

Definition 2 (Local weak solution). A function u ∈ Wloc(Ω)∩L
p−1
s1p (R

N )∩Lq−1
s2q (R

N ) is said
to be a local weak solution of problem (P) if

Ap(u, φ,R
N × R

N ) +Aq(u, φ,R
N × R

N ) =

∫

Ω
fφdx,

for all φ ∈ W(Ω) with compact support contained in Ω.

Our first main theorem is the following higher local Hölder continuity result.

Theorem 2.1. Suppose that (q− p+2)s2 < 2. Let u ∈ Wloc(Ω)∩L
p−1
s1p (R

N )∩Lq−1
s2q (R

N ) be a
locally bounded local weak solution to problem (P). Then, for every σ ∈ (0,Θ), u ∈ C0,σ

loc (Ω),
where

Θ ≡ Θ(p, s1, q, s2) =

{
min{1, ps1/(p − 1)} if qs2 < ps1 + 2(1 − s1),

min{1, qs2/(q − 1)} if ps1 < qs2.

Moreover, for B2R̄0
(x0) ⋐ Ω with R̄0 ∈ (0, 1), there holds

[u]Cσ(BR̄0/2
(x0)) ≤ C

(
K2(u)(‖u‖W s1,p(BR̄0

(x0)) + 1)
)j∞

where C = C(N, s1, p, s2, q, σ) > 0 is a constant and K2 is given by

K2 = 1 + Tp−1(u;x0, R̄0)
p−1 + Tq−1(u;x0, R̄0)

q−1 + ‖u‖
(ℓ1+j∞)(ℓ1−1)

ℓ1−2

L∞(BR̄0
(x0))

+ ‖u‖q−1
L∞(BR0)

+ ‖f‖L∞(BR̄0
(x0))

with ℓ1 = max{p, q} and j∞ ∈ N depends only on N,σ and (p, s1) or (q, s2).

Remark 1. We remark that for 1 < q ≤ p < ∞, the conclusion of Theorem 2.1 holds for
some σ < min{ ps1

p−1 ,
qs2
q−1}. See Theorem 2.1 and Corollary 2.1 of [6] for details.

Next, we have the following global Hölder continuity result.

Theorem 2.2. Suppose that (q − p+ 2)s2 < 2. Let u ∈ W0(Ω) be a solution to problem (P)
with f ∈ L∞(Ω). Then, for every σ ∈ (0, s1), u ∈ C0,σ(Ω). Moreover,

‖u‖Cσ(Ω) ≤ C, (2.1)

where C = C(Ω, N, p, s1, q, s2, σ, ‖f‖L∞(Ω)) > 0 is a constant (which depends as a non-
decreasing function of ‖f‖L∞(Ω)).

Corollary 2.3. Suppose that 2 ≤ q ≤ p <∞. Let u ∈W s1,p
0 (Ω) be a solution to problem (P)

with f(x) := f(x, u), a Carathéodory function satisfying |f(x, t)| ≤ C0(1 + |t|p
∗

s1
−1), where

C0 > 0 is a constant. Then, u ∈ C0,σ(Ω), for all σ ∈ (0, s1), and (2.1) holds.

Now, we mention our strong comparison theorem.

Theorem 2.4 (Strong Comparison principle). Suppose that 1 < q ≤ p < ∞. Let u, v ∈
W s1,p

0 (Ω) ∩ C(Ω) be such that 0 < v ≤ u in Ω with u 6≡ v, and for some K,K1 > 0, the
following holds :

(−∆)s1p v + (−∆)s2q v ≤ (−∆)s1p u+ (−∆)s2q u ≤ K and (−∆)s2q v ≥ −K1, weakly in Ω.

Then u > v in Ω. Moreover, for s1 6= q′s2,
u−v
ds1 ≥ C > 0 in Ω.
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3 Hölder regularity results

We first recall some boundedness results.

Proposition 3.1 (Local boundedness). Suppose 1 < q ≤ p < ∞. Let u ∈ W s1,p
loc (Ω) ∩

Lp−1
s1p (R

N ) ∩ Lq−1
s2q (R

N ) be a local weak solution to the problem (P). Then, u ∈ L∞
loc(Ω), and

the following holds

‖u‖L∞(Br/2(x0)) ≤ C

(
−

∫

Br

|u|pdx

)1/p

+ Tp−1(u;x0,
r

2
) + Tq−1(u;x0,

r

2
)
q−1
p−1 + ‖f‖

1/(p−1)
L∞(Br)

+ 1,

where C(N, p, q, s1) > 0 is a constant.

Proceeding similar to [3, Theorem 3.3] and noticing that the terms corresponding to the
fractional q-Laplacian will be non-negative (using the similar inequality, as in the fractional
p-Laplacian, for different Gβ in there), we can prove the following boundedness property.

Theorem 3.2. Let 1 < q ≤ p < ∞. Let u ∈ W s1,p
0 (Ω) be a weak solution to problem (P)

with f(x) := f(x, u) satisfying |f(x, t)| ≤ C0(1+ |t|p
∗

s1
−1), for all t ∈ R and a.e. x ∈ Ω, where

C0 > 0 is a constant. Then, u ∈ L∞(Ω).

Remark 2. We remark that, as in [3, Remark 3.4], the quantity ‖u‖L∞(Ω) depends only on

the constants C0, N , p, s1, ‖u‖W s1,p
0 (Ω) and the constant M > 0 satisfying

∫
{|u|≥M} |u|

p∗s1 < ǫ,

for given ǫ ∈ (0, 1).

Corollary 3.3. Suppose that 1 < q ≤ p < ∞. Let uε ∈ W s1,p
0 (Ω), for ε ∈ (0, 1), be the

family of weak solution to problem (P) with fǫ(x) := fǫ(x, uǫ) satisfying |fǫ(x, t)| ≤ C0(1 +
|t|p

∗

s1
−1), for all t ∈ R and a.e. x ∈ Ω, where C0 is independent of ǫ. Assume that the

sequence {‖uε‖W s1,p
0 (Ω)}ε is bounded and uε → u0 in Lp∗s1 (Ω), as ε → 0. Then the sequence

{‖uε‖L∞(Ω)}ε is also bounded.

3.1 Interior regularity

Let u : RN → R be a measurable function and h ∈ R
N , then we define

uh(x) = u(x+ h), δhu(x) = uh(x)− u(x), δ2hu(x) = δh(δhu(x)) = u2h(x) + u(x)− 2uh(x).

For 1 ≤ m <∞ and u ∈ Lm(RN ), we set

[u]
Bβ,m
∞ (RN )

:= sup
|h|>0

∥∥∥∥
δ2hu

|h|β

∥∥∥∥
Lm(RN )

for β ∈ (0, 2).

Now, we prove our improved interior Hölder regularity result for local weak solutions.
Sketch of the proof of Theorem 2.1 : We first consider the case σ ∈ (0, s1). For qs2 <
ps1 + 2(1− s1), we claim that, for every 4h0 < R ≤ R0 − 5h0, there holds :

sup
0<|h|<h0

∥∥∥∥
δ2hu

|h|s1

∥∥∥∥
m+1

Lm+1(BR−4h0
)

≤ CK2(u,m)
(

sup
0<|h|<h0

∥∥∥∥
δ2hu

|h|s1

∥∥∥∥
m

Lm(BR+4h0
)

+ 1
)
, (3.1)

where m ≥ p, h0 = R0/10, C = C(N,h0, p,m, s1) > 0 (which depends inversely on h0) and

K2(u,m,R0) := 1 + Tp−1(u;R0)
p−1 + Tq−1(u;R0)

q−1 + ‖u‖
m(p−1)

p−2

L∞(BR0)
+ ‖u‖q−1

L∞(BR0)
+ ‖f‖L∞(BR0 )

.
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Indeed, for 2 ≤ q ≤ p <∞, (3.1) is proved in [7, Proposition 3.9]. For the other case, we set
S1 = {(x, y) ∈ BR × BR : |x − y| ≤ 1} and S2 = (BR × BR) \ S1. Then, the proof, in this
case, runs similarly by noting the following (using the same notations of the Proposition),
(∫∫

S1

+

∫∫

S2

)
|u(x)− u(y)|q−2

|x− y|N+qs2

∣∣η
p
2 (x)− η

p
2 (y)

∣∣2 |δhu(x)|
β+1

|h|1+νβ
dxdy

≤ C‖u‖q−p+1
L∞(BR0

)

∫∫

S1

|u(x)− u(y)|p−2

|x− y|N+ps1+α−2

|δhu(x)|
β

|h|1+νβ
dxdy + C‖u‖q−1

L∞(BR0
)

∫

BR

|δhu(x)|
β

|h|1+νβ
dx

≤ CK2(u)[u]
m

W
s1(p−2−ǫ)

p−2 ,m
(BR+h0

)

+ CK2(u)
( ∫

BR

|δhu(x)|
βm

m−p+2

|h|
(1+νβ)m
m−p+2

dx+ 1
)

where we have used Hölder’s and Young’s inequality together with the fact that qs2 ≤ ps1+α
with α < 2(1− s1) and ǫ ∈ (0, 2−α

s1
− 2). Thus, Ĩ11(q) (hence I11(q)) is estimated as similar to

Ĩ11(p). Set

s1 − σ >
N

p+ i∞
, h0 =

R̄0

64i∞
for some i∞ ∈ N

and define the following sequences

mi = p+ i, Ri =
7R̄0

8
− 4(2i + 1)h0 for all i = 0, . . . , i∞.

We take ψ ∈ C∞
c (B(5R̄0)/8) such that

0 ≤ ψ ≤ 1, ψ = 1 in BR̄0/2, |∇ψ| and |∇2ψ| ≤ C.

Using the discrete Leibniz rule on δ2h, we obtain

[uψ]
B
s1,mi∞
∞ (RN )

≤ C
[

sup
0<|h|<h0

∥∥∥∥
δ2hu

|h|s1

∥∥∥∥
Lmi∞ (B(3R̄0)/4

)

+ ‖u‖Lmi∞ (B(3R̄0)/4
)

]
.

The first term of the right hand side on the above expression is estimated on account of (3.1).
Therefore, employing the embedding result of the Besov spaces into the Hölder spaces, we get
that u ∈ C0,σ

loc (Ω), for all σ ∈ (0, s1). For the case 2 ≤ p < q and ps1 < qs2, we proceed exactly
as above by interchanging the role of (p, s1) with (q, s2) and the corresponding spaces. In this
case, Ĩ11(p) is estimated as above by choosing ǫ > 0 such that ǫ < 2

s2
− q + p− 2.

The higher regularity result follows by using the above almost s1 (or s2)-Hölder continuity
result and proceeding on the similar lines of the proof of [1, Theorem 5.2] (with minor modi-
fication as in the proof above). �

3.2 Boundary regularity and maximum principle

In this subsection, we prove the boundary behavior of the weak solutions. For α, ρ > 0 and
κ ≥ 0, we set

de(x) =





d(x) if x ∈ Ω,

−d(x) if x ∈ (Ωc)ρ,

−ρ otherwise,

wρ(x) =

{
(de(x) + κ1/α)α+ if x ∈ Ω ∪ (Ωc)ρ,

0 otherwise,

where (Ωc)ρ := {x ∈ Ωc : dist(x, ∂Ω) < ρ}.
Sketch of the proof of Theorem 2.2 : We proceed as below.
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(a) By flattening the boundary ∂Ω and using suitable C1,1(RN ,RN ) diffeoemorphisms,
we prove that : there exist κ1, ̺1 > 0 such that for all κ ∈ [0, κ1) and ̺ ∈ (0, ̺1),

(−∆)s1p wρ

{
≥ C1(d+ κ1/α)−(ps1−α(p−1)) for all α ∈ (0, s1),

= h for all α ∈ [s1, 1) with α 6= p′s1
weakly in Ω̺,

where C1 > 0 is a constant and h ∈ L∞(Ω̺1) (both are independent of κ ∈ (0, 1)).

Further, for all κ > 0 and α ∈ (0, s1), wρ ∈ W̃ s1,p(Ω̺1), and for k = 0, wρ ∈ W̃ s1,p(Ω̺1),
whenever α > s1 − 1/p.

(b) For Γ > 1, max{s1 − 1/p, s2 − 1/q} < α < s1 and ̺ > 0 (sufficiently small), we have,
weakly in Ω̺,

(−∆)s1p (Γdα) + (−∆)s2q (Γdα) ≥ C5Γ
p−1d−(ps1−α(p−1)) − Γq−1‖h‖L∞(Ω̺)

≥ C6Γ
p−1d−(ps1−α(p−1)).

Then, employing the weak comparison principle in Ω̺, for suitable Γ, we get that
u ≤ Γdα in Ω. Subsequently, we perform a similar process for −u also.

(c) The proof of the Hölder continuity can be completed by taking into account Theorem
2.1 and the boundary behavior presented in Step (b). �

Remark 3. We remark that in Theorem 2.2, the choice of σ can be optimal (that is, σ = s1)
for the case s1 = s2 or s1 > q′s2. Indeed, for s1 = s2, we can show that the barrier function
as constructed in [9, Lemma 4.3] satisfies (−∆)s1q w ≥ 0 weakly in Br(eN ) \ B1. Thus, for
appropriate choice of Γ > 1, the Step (b) above can be improved. Similar arguments apply to
the case s1 > q′s2 with a careful reading of the proof of [7, Lemma 3.12].

Proof of Corollary 2.3 : When f(x) := f(x, u), on account of Theorem 3.2 and Remark 2,
we observe that

|f(x, u)| ≤ C0(1 + |u|p
∗

s1
−1) ≤ C0(1 + ‖u‖

p∗s1−1

L∞(Ω)) =: K > 0.

Thus, the required result, in this case, follows from Theorem 2.2. �

Next we state our strong maximum principle. The proof is contained in [6] and done by
proving that continuous weak super-solutions are viscosity super-solutions.

Theorem 3.4. Suppose that 1 < q ≤ p <∞. Let g ∈ C(R)∩BVloc(R) and let u ∈W s1,p
0 (Ω)∩

C(Ω) be such that

(−∆)s1p u+ (−∆)s2q u+ g(u) ≥ g(0) weakly in Ω.

Further, assume that u 6≡ 0 with u ≥ 0 in Ω. Then, there exists c1 > 0 such that u ≥
c1dist(·, ∂Ω)

s1 in Ω.

Sketch of the proof of Theorem 2.4 : By continuity and the fact that u 6≡ v, we can find
x0 ∈ Ω, ρ, ǫ > 0 such that Bρ(x0) ⊂ Ω and

sup
Bρ(x0)

v < inf
Bρ(x0)

u− ǫ/2. (3.2)
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For Γ > 1 and for all x ∈ R
N , we define

wΓ(x) =

{
Γv(x) if x ∈ Bc

ρ/2(x0)

u(x) if x ∈ Bρ/2(x0).

Taking into account the nonlocal super-position principle [8, Lemma 2.5], we have, weakly
in Ω \Bρ(x0),

(−∆)s1p wΓ + (−∆)s2q wΓ ≤ (−∆)s1p u+ (−∆)s2q u+ (Γp−1 − 1)K + (Γp−1 − Γq−1)K1 − C1ǫ
p−1 − C2ǫ

q−1.

We can choose Γ > 1 (close to 1) to employ the weak comparison principle ([8, Proposition
2.6]), consequently, we get wΓ ≤ u in Ω. Hence, using (3.2) and Theorem 3.4, we obtain

u ≥ Γv > v in Ω, and u−v
ds1 ≥ (Γ−1)v

ds1 ≥ C > 0 in Ω. �

4 Applications

We consider the problem (P) with the choice f(x) := f(x, u), where f : Ω × R → R is a
Carathéodory function satisfying the following :

(A1) |f(x, t)| ≤ C0(1 + |t|r−1), for a.a. x ∈ Ω and all t ∈ R, where C0 > 0 is a constant
and r ∈ (1, p∗s1 ].

(A2) For a.a. x ∈ Ω, f(x, t)t ≤ 0, for all t ∈ [−ς, ς] (ς > 0) and f(x, t)t ≥ −c1t
p (c1 > 0)

for all t ∈ R.
(A3) For F (x, t) :=

∫ t
0 f(x, τ)dτ , lim|t|→∞

F (x,t)
|t|p = ∞ uniformly for a.a. x ∈ Ω.

(A4) Let r ∈ (p, p∗s1), there exists ν ∈
(
(r − p)max{N/(ps1), 1}, p

∗
s1

)
such that

lim
|t|→∞

f(x, t)t− pF (x, t)

|t|ν
> 0 uniformly a.e. x ∈ Ω.

One example for f satisfying (A1)-(A4) is given by f(x, u) = −c1|t|
p−2t+ |t|r−2t. The Euler

functional J : W s1,p
0 (Ω) → R associated to problem (P) is given by

J (u) =
1

p
‖u‖p

W
s1,p
0 (Ω)

+
1

q
‖u‖q

W
s2,q
0 (Ω)

−

∫

Ω
F (x, u)dx.

First we prove the following Sobolev versus Hölder minimizer result.

Theorem 4.1. Suppose that 2 ≤ q ≤ p < ∞ and (A1) holds. Let u0 ∈ W s,p
0 (Ω), then for all

α ∈ (0, s1), the following are equivalent

(i) there exists σ > 0 such that J (u0 + v) ≥ J (u0) for all v ∈W s1,p
0 (Ω), ‖v‖W s1,p

0 (Ω) ≤ σ,

(ii) there exists ω > 0 such that J (u0 + v) ≥ J (u0) for all v ∈ W s1,p
0 (Ω) ∩ C0,α(Ω) with

‖v‖Cα(Ω) ≤ ω.

Proof. From (ii) and the density argument, we get that 〈J ′(u0), φ〉 = 0 for all φ ∈W s1,p
0 (Ω).

Consequently, Theorem 2.2 implies that u0 ∈ C0,α(Ω). To prove (i), on the contrary assume
that there exists ũn ∈ W s1,p

0 (Ω) such that ũn → u0 in W s1,p
0 (Ω) and J (ũn) < J (u0) for all

n ∈ N. Set

K(v) =
1

p∗s1

∫

Ω
|v|p

∗

s1 , εn := K(ũn − u0) and Sn := {u ∈W s1,p
0 (Ω) : K(u− u0) ≤ εn}.
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By the continuous embedding W s1,p
0 (Ω) →֒ Lp∗s1 (Ω), we see that εn → 0 and hence Sn is a

closed convex subset of W s1,p
0 (Ω). Next, for all t ∈ R and k > 0, set [t]k = sign(t)min{|t|, k}

and fk(x, t) := f(x, [t]k) with Fk(x, t) :=
∫ t
0 fk(x, τ)dτ . Then, on account of the Lebesgue

dominated convergence theorem, for fixed n ∈ N and σn ∈ (0,J (u0) − J (ũn)), there exists
kn > ‖u0‖L∞(Ω) + 1 such that

∣∣∣
∫

Ω
Fn(x, ũn)dx−

∫

Ω
F (x, ũn)dx

∣∣∣ < σn,

where Fn = Fkn . Furthermore, we define

Jn(u) =
1

p
‖u‖p

W
s1,p
0 (Ω)

+
1

q
‖u‖q

W
s2,q
0 (Ω)

−

∫

Ω
Fn(x, u) dx.

From the structure of the function Fn, it is clear that there exists a minimizer un ∈ Sn for
Jn. Moreover, by the choice of σn and kn, we see that

Jn(un) ≤ Jn(ũn) ≤ J (ũn) + σn < J (u0) = Jn(u0). (4.1)

It is clear that Jn is Gǎteaux differentiable at un. Therefore, there exists µn ≤ 0 such that

(Pn)

{
(−∆)s1p un + (−∆)s2q un = fn(x, un) + µn|un − u0|

p∗s1−2(un − u0) in Ω,

un = 0 in R
N \Ω.

If infn µn := l > −∞, then from the fact that u0 ∈ L∞(Ω), we have

|fn(x, un) + µn|un − u0|
p∗s1−2(un − u0)| ≤ C(1 + |un|

p∗s1−1).

If infn µn := −∞, there exists M > 0 (independent of n) such that

fn(x, t) + µn|t− u0(x)|
p∗s1−2(t− u0(x)) < 0 for a.a. x ∈ Ω, and all t ∈ (M,∞).

This implies that un ≤ M for all n ∈ N. Further, since J ′(u0) = 0, we take w = |un −
u0|

κ−1(un − u0) as a test function and using [11, Lemma 2.3] (consequently, the difference of
terms involving Aq, below, is non-negative), we have

(Cκp−1)−1‖(un − u0)
p−1+κ

p ‖p
W

s1,p

0 (Ω)
≤ Ap(un, [un − u0]

κ)−Ap(u0, [un − u0]
κ)

+Aq(un, [un − u0]
κ)− Aq(un, [un − u0]

κ)

=

∫

Ω

(fn(x, un)− f(x, u0))[un − u0]
κ + µn

∫

Ω

|un − u0|
p∗

s1
−1+κ.

Noting the uniform bound ‖un‖L∞(Ω) ≤ M and using Hölder’s inequality, and subsequently
passing to the limit κ→ ∞, we obtain

−µn‖un − u0‖
p∗s1−1

L∞(Ω) ≤ C

where C > 0 is a constant independent of n. Thus, in all the cases, we obtain

|fn(x, un) + µn|un − u0|
p∗s1−2(un − u0)| ≤ C(1 + |un|

p∗s1−1) for all n ∈ N.

Moreover, from the construction of un, it is clear that {‖un‖W s1,p
0 (Ω)}n remains bounded. Then,

applying Corollary 3.3, we have ‖un‖L∞(Ω) ≤ C, where C > 0 is a constant independent of n.
Consequently, from Corollary 2.3, we deduce that ‖un‖Cα(Ω) ≤ C, for some positive constant

C independent of n, and all α ∈ (0, s1). Therefore, by Arzela-Ascoli’s theorem, un → u0 in
C0,α(Ω), for all α < s1. Thus, for sufficiently large n, we have ‖un − u0‖Cα(Ω) ≤ ω, and since

un is uniformly bounded in L∞(Ω), Jn(un) = J (un), for sufficiently large n. This along with
(4.1) contradicts the fact that u0 is a minimizer for J in W s1,p

0 (Ω) ∩ C0,α(Ω).
The proof of the other implication is standard. �
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Theorem 4.2. Suppose that 2 ≤ q ≤ p < ∞. Then, there exist at least three non-trivial
solutions u ∈ W s1,p

0 (Ω) ∩ C0,α(Ω), for all α ∈ (0, s1), to problem (P) with f(x) := f(x, u)
satisfying (A1)-(A4). Moreover, if u is non-negative and s1 6= q′s2, then u ≥ cds1 in Ω.

Sketch of the Proof : We consider the truncation of the nonlinear term as f±(x, t) =
f(x,±t±) with F±(x, t) :=

∫ t
0 f±(x, τ)dτ and the corresponding Euler functionals as J±. By

using Theorem 4.1, we can prove that 0 is a local minimizer for J+ in W s1,p
0 (Ω) topology and

it satisfies the mountain pass geometry. Thus, we obtain a positive solution u+ to problem
(P). Similar procedure yields a negative solution u−. Subsequently, by using topological tools
(such as critical groups and Morse theory, see [5] for the linear operator case), we establish a
third solution of undetermined sign nature. �
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