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Abstract

Global energy transformation, urban growth and the increasing share of electric-
ity in energy consumption stimulate the development of electrical distribution
systems. In most cases, the structure of distribution networks has been the
result of progressive decisions limited by technical, socio-economic and spatial
constraints. These decisions are taken with the help of dedicated tools that fail
in grasping in a simple way the connections between the structural choices and
the achieved performances. To improve planning process, a new approach is
proposed which is based on multifractality to connect the distribution system’s
network structure and steady-state properties. The structure of distribution
grids is modeled by coupling a Diffusion-Limited-Aggregation approach and a
binomial multiplicative process. The multifractal spectrum of the synthesized
grids is calculated from a power flow and shows how the structural parameter-
s are linked to the steady-state values (voltages and losses). The results are
compared to realistic test cases. The article finally concludes on the interest of
multifractality to grade distribution grids and the advantages of fractal archi-
tectures for future power networks.

Keywords: Distribution networks, Power flow, Voltage, Losses, Fractal
geometry, Graph theory, Principal component analysis

1. Introduction

Power networks are central for electricity distribution. 97 % of the world
population lives at less than 10 km of a medium power line [1]. In Europe, the
distribution lines lenght is 13 times the distance to Moon and back. According to
IEA world energy investment report 2020, the annual investment in distribution5
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networks is around USD 200 billions and represents two-thirds of the global
investment in power networks. The share of the distribution network cost in
the household customer bill is already around 30 % in European countries [2].
This pivotal role of distribution networks is increasing with the transformation
of the energy system to reduce the greenhouse gas emission and the massive10

integration of renewable, storage and smart technologies. The planning and
operation of distribution networks should be rethought to cope with the new
challenges related to this profound change of the energy system.

Limited investment capabilities, low operation cost, power quality, reliabil-
ity are challenges which were already addressed by planning and operation of15

distribution networks. But with the increasing share of dispersed renewable en-
ergy sources, the planners and operators face new issues [3, 4]. The consumers
become prosumers, providing energy to the electrical system, and local energy
communities emerge where members take collective actions, e.g. distributed
generation. Hence, electrical distribution networks must evolve to cope with20

the bidirectionnal flows of powers. Extreme events or conflicts also brought the
attention to resiliency and how to take advantage of decentralization of ener-
gy sources and microgrids to ensure resilient operation of distribution networks
[5, 6].

The electrical properties of distribution grids and how they enable flow of25

energy with low voltage drops, reduced losses and high reliabiliy, arise from
their structure. In most cases, the shape of distribution networks has been the
result of progressive decisions limited by technical, socio-economic and spatial
constraints [7, 8]. The decisions are taken with the help of dedicated tools that
are specialized in detailed representation of power systems for simulation and30

optimization [9, 10]. These tools fail in grasping in a simple way the connections
between the structural choices and the achieved performances. Our main goal is
thus to provide a method to understand how the distribution system’s electrical
properties emerge from the way the distribution networks are shaped [11]. In
this paper, we propose a two-point approach. A Diffusion-Limited-Aggregation35

technique is used to model how distribution networks’ structures are shaped. A
multifractal formalism is adopted to characterize the links between the shaped
structures and the steady-state properties of the networks.

Fractality is a well-known approach used for natural or artificial complex
systems. It is intended to study the global features of their geometrical arrange-40

ment without paying much attention to the detailed description of the structure
[12]. It allows investigating a system across scales unlike other approaches which
focus on particular scales. In 1985, Frisch and Parisi proposed a generalization
of fractality. They qualify of "multifractal" the distribution of singularities in
turbulence [13]. Since then, multifractality has been applied in numerous fields,45

especially for investigating urban forms and networks [14, 15]. In this paper,
the multifractal formalism is proposed to characterize the singularities in the
nodal voltage profiles of distribution networks.

There are few realistic and available data to perform extensive investigations
of the links between the structure of networks and their performances. Most of50

the open-source data are often aggregated values on generation and loads and
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the diversity of available structural data for distribution power grids is limited.
Therefore, this paper proposes an original approach to model in a very simple
way the network topology and generate synthetic but realistic distribution grids.
It is inspired by Diffusion-Limited Aggregation approach (DLA). DLA is used to55

study growth phenomena of random structures [16]. It has already been adopted
to model growth of urban fabrics [17]. Electrical distribution networks topolo-
gies depend on the space distribution of builidings and streets map. Therefore,
DLA may also be a good candidate to mimic networks structure. Another mo-
tivation is the apparent self-similarity in the branching process of distribution60

grids as observed in DLA clusters [16]. The growth modeling is completed by a
binomial multiplicative cascade process to model the distribution of loads in the
grid. The synthesized networks are multifractally and electrically characterized
and the results are correlated with the DLA and binomial process parameters
to link the structural and electrical properties of distribution power grids.65

To the best of our knowledge, our paper brings two main contributions. It is
the first-ever application of multifractal formalism to the steady-state analysis of
electrical networks. The other very rare applications are about the classification
of time signals [18, 19] or load forecasting [20]. Our DLA-inspired framework
used to generate synthetic data is also an answer to a mathematical research70

priority for the future power grids listed by the National Academies of Sciences,
Engineering, and Medicine [21].

The paper is organized as follows. In a first section, the multifractal analysis
of the electrical variables in a distribution power grid is introduced. The paper
focuses on the values of the nodal voltages that are crucial for a proper operation75

of the distribution grids. These values are obtained by a power flow calculation
[22]. The second section shows a first application of the proposed multifractal
formalism to a toy network built according to a binomial multiplicative cascade
process. Theoretical results on the multifractal spectrum are available for this
toy network and they are compared with the numerical values provided by our80

multifractal approach for validation purposes. Then, multifractal spectrum of
three realistic distribution test networks are calculated and investigated. The
data of the realistic cases are available in [23, 24, 25]. A fourth section is dedicat-
ed to the modeling and synthesis of realistic distribution networks by DLA and
their multifractal analysis. A principal component analysis is performed to show85

the links between the structural parameters, the electrical performances and the
multifractal spectrum. The last section concludes the paper by a discussion on
the main achievements.

2. Multifractal spectrum of voltages

The power flows in network branches cause variations of node voltages. To90

ensure a high quality of power delivered to users and safe operation of connect-
ed devices, electrical installation shall comply standards that specify voltage
ranges. Typical limits are ±10% around the nominal value. For verifying stan-
dard compliance, the magnitude of nodal voltages is computed by a power flow
calculation [22].95
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A multiscale view of voltage values can be achieved by multifractality. Mul-
tifractals are a generalization of fractals when a single dimension cannot char-
acterize the scaling behavior and a collection of generalized dimensions is used
to describe the multifractal object and its scaling properties. The generalized
dimensions are calculated from the q-th moments of the observed values on the100

investigated object.
The box counting method provides a way to compute these moments. The

object is covered by boxes of size r and the number of elements in each non
empty boxes is counted [26]. Moments can also be measured by correlation
method, an easy-to-implement technique counting the number of points of the105

object located in a ball of radius r centered on the object.
Correlation methods were first introduced by Grassberger and Procaccia in

1983 to characterize attractors [27, 28, 29]. For a series xi of observations, the
correlation measure C(r) is defined by [27, 30]:

C(r) = lim
n→∞

1

n2
{number of pairs (xi, xj)with |xi − xj |〈r} (1)

n is the number of observed points and r is the ball radius. In practice, the110

counting is done over a finite number N of observed points. It is repeated for
various centers, the center is itself excluded from the counting and an average
over the centers is finally done [26]. This method was generalized to higher
order q of correlation integrals Cq(r) to compute multifractal spectrum [31]:

Cq(r) =

 1

N

∑
i∈N

 1

N − 1

∑
j∈N 6=i

Θ(r − |xi − xj |)

q−1


1
q−1

(2)

N is the node set of size N . Θ is the Heaviside function.115

The finite number of the observed points, the finite size, the borders of the
studied object and the discretization of the measure are the main limitations
of the correlation approach [26]. Most of these limitations are overcome by
considering a large enough value of N and measuring the dimension over an
adequate range between the smallest inter point gaps and the maximal radius120

of the object.
A straightforward adaptation of the correlation method for the measure of

the multifractal spectrum of geometrical objects was proposed by Tel and Vicsek
in 1989 [32]. It relies on the measure of the mass of the object within a ball of
radius r centered on it. For an accurate determination, the measure is repeated125

and averaged over different centers, randomly distributed on the object. This
method was in turn adapted to complex networks in 2005 and edge-weighted
networks in 2015, respectively [33, 34]. The edge weights are used to measure
the radius of the correlation ball. Inside each ball, the number of nodes is then
counted. For multifractal characterization of networks, correlation measure is130

better adapted than box counting. The latter requires small box sizes to cover
sparse areas of the network (e.g. termination lines) and that leads to an over
exagerated total number of boxes to cover the whole grid [35]. Contrary to box
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counting method, every correlation ball is centered on the network. So, there is
no ball with too few points and the results are less sensitive to sparsity.135

We propose a modified definition of the correlation measure for the charac-
terization of nodal voltages in power networks. Our definition takes into account
edges weights (line impedance values) and nodes weights (nodal voltage magni-
tudes). And to count the mass of the object, the weights are summed instead of
the number of nodes. The definition of the q-th correlation measure expressed140

by equation (2) is then modified. It is now given by:

〈µ〉q =

{
1

N

∑
i∈N

ωv,i [µi(r)]
q−1

} 1
q−1

(3)

N is the node set of size N . ωv,i is the weight of node i. It is equal to
the nodal value normalized by the sum of all nodal values of the network. The
measure µi is defined by the sum of the values ωv,j of the nodes j located within
a circle of radius r centered at the node i:145

µi(r) =
1

N − 1

∑
j∈N 6=i

ωv,jΘ(r − di,j) (4)

di,j is related to the weighted distance between the nodes i and j. It is
defined by the shortest path length between the nodes of the weighted graph.
The edge weights of the graph are equal to the line impedance values. Θ is the
Heaviside function.

The q-th generalized dimension is then given by [31]:150

Dq = lim
r→0

ln〈µ〉q(r)
ln(r)

(5)

The exponents q determine the resolution level. For large q, the high mea-
sured values are stressed whereas for low q small values are privileged.

Instead of computing the generalized dimensions, the Legendre transform
(α, f) of (q, (q − 1)Dq) can be used to multifractally characterize an object. α
gives the local regularity of the measures. According to the Hölder condition,155

the measures are locally singular in the points where α < 1. Otherwise, they are
locally constant. f(α) is the dimension of the set where are sitting the measures
with the same singularity strenght α [36]. The number of boxes n(r, α) for which
the measure scales with an exponent α is therefore such that n(r, α) ∼ r−f(α).
The determination of the singularity spectrum f(α) follows an approach inpired160

by [37] and is shown in Appendix A. Its implementation is straightforward and
based on the power flow results and the distances between nodes of the network.

3. Singularity spectrum of a binomial electrical network

The multifractal spectrum of a toy network is first investigated to illustrate
and validate our approach. The structure of the network is a path. It has165
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N = 2n + 1 nodes. The line impedances are all equal to 1
2n . Every node

i, except the source one s, is loaded. The load power value Pi result from a
binomial multiplicative cascade such that:

Pi = pkibin(1− pbin)n−ki∀i ∈ {0, 1, ..., 2n − 1} (6)
ki is the number of 0 in the binary fraction representation of i

n . If p is 0.5,
all the loads are equal. If p is lower than 0.5, the loads are more concentrated at170

the termination nodes of the line, whereas for higher value than 0.5, the loads
are situated closer to the source.

The source node balances the total load power and is given by:

Ps = −
2n−1∑
i=0

Pi (7)

This toy network has the same multifractal properties as the binomial mul-
tiplicative cascade. If the nodes with the same ki are gathered into sets, for an175

infinite number of points, the fractal dimension of these sets can be theoretically
determined and is given by [38]:

f(ξ) = −ξ ln(ξ) + (1− ξ) ln(1− ξ)
ln 2

(8)

With: ξ = ki
n .

The points belonging to the same set have an identical singularity strength
expressed by:180

α(ξ) = −ξ ln(p) + (1− ξ) ln(1− p)
ln 2

(9)

This theoretical spectrum f(α) is the multifractal spectrum of the distribu-
tion of the nodal load powers.

The theoretical spectrum of the nodal voltages is derived from a linear ap-
proximation of the power flow equations of the network. Let consider a network
with N nodes. The non linear power flow equations are expressed by [22]:185

Ii =
Pi − jQi
V ∗i

(10)

Ii and Vi are the current and voltage at node i ∈ N = {1, 2, ..., N}. Pi and
Qi are the nodal active and reactive power values respectively. They correspond
to the power delivered by the generators or consumed by the loads connected
at each node [22].

The node voltages are defined by:190

Vi = |Vi|ejφi (11)

The node currents are linked to the voltages by the bus admittance matrix
Y such that:

Ii =

n∑
j=1

YijVj (12)
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The bus admittance matrix elements are given by:

Yij = Gij + jBij (13)

Gij , respectively Bij is the inverse value of the line resistance Rij , respec-
tively line reactance Xij , between the nodes i and j. The value is zero if there195

is no line.
It comes:

Pi = Vi

N∑
j=1

(Gij |Vj |cos(φij) +Bij |Vj |sin(φij))

Qi = Vi

N∑
j=1

(Gij |Vj |sin(φij)−Bij |Vj |cos(φij))

(14)

Where φij = φi − φj
In most cases, these equations are numerically solved by iterative methods

such as Gauss-Seider or Newton-Raphon.200

For power systems operating near nominal conditions, the calculation of the
nodal voltages is performed thanks to a linear approximation of the equations.
Power flow linear equations are expressed by [22]:

P = −LV (15)

P is the vector of nodal active powers. V is the vector of nodal voltages and
L is the DC bus admittance matrix. The complete derivation of this equation205

and the definition of L are given in Appendix B.
L is similar to the Laplacian matrix of the graph describing the grid. It is

a singular matrix and the computation of the voltages from the powers is not
straightforward. An option is to use the eigenvalues and eigenvectors of L [39].
For a path graph of N nodes, the eigenvalues and eigenvectors are noted λk and210

Ψk for k ∈ {0, 1, ..., N − 1}. Their expressions are [40]:

λk = 1− cos(πk
N

)

Ψk,i = cos(
πki

N
− πk

2N
) for i ∈ {1, 2, ..., N}

(16)

Ψk,i is the i-th entry of the eigenvector Ψk.
The nodal powers are expressed in the eigenbasis by:

Pi =

N−1∑
k=0

pkΨk,i (17)

The derivation of the nodal voltages is straightforward and yields [41]:

Vi =

N−1∑
k=0

pk
λk

Ψk,i (18)
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From equations (3) and (4), the q-th correlation measure of the node voltages215

is defined by taking ωv,i = Vi and it comes:

〈µ〉q =

 1

N

∑
i∈N

Vi

 1

N − 1

∑
j∈N 6=i

VjΘ(r − di,j)

q−1


1
q−1

(19)

Using the spectral decomposition of the nodal voltages and the analytic
expression of the eigenvalues and eigenvectors of a path graph, the q-th measure
is calculated and results in a unit value for all the generalized dimensions as
shown in Appendix B. This means that despite the inhomogeneous distribution220

of load powers along the line, the distribution of voltages is more homogeneous
and scales linearly.

Using the implementation introduced in Appendix C, the multifractal spec-
tra of the nodal powers and voltages are calculated numerically and compared
with their theoretical expressions in figure 1. As expected, they are closed.225

Inaccuracies are caused by several factors. At small r, the statistics are gen-
erally too poor to be considered and when the maximal radius of the network
is reached, the correlation measure saturates to 1. The range of observation is
therefore limited and yields approximate values of scaling exponents. Another
factor is related to the lacunar structure of the measure when high negative230

orders are considered. In [26], the lacunarities are cited as sources of errors for
the estimation of the fractal dimensions because they cause intrinsic oscillations
of the correlation integral. This explains why the accuracy drops more toward-
s the right-hand side of the power spectrum where the correlation integral is
dominated by the inverse of the lowest values of measures concentrated on very235

few nodes. This is less visible on voltage spectrum because the voltage values
are more homogeneous.

4. Investigation of realistic test cases

Real distribution networks are more complex than path graphs. They are
tree graphs and their line impedances are not identical. Three realistic medium240

voltage networks are investigated. The 69-bus case is derived from a part of
PG&E distribution system used for delivering power to Northern and Central
California [23]. The 85-bus test network is a rural distribution feeder [24]. The
141-bus network is a part of the distribution system of the metropolitan area of
Caracas-Venezuela [25]. Their base values are shown in table 1. Their diagram245

and voltage profile are shown in figure 2. Some power flow results are given in
table 2. The voltage values slightly decrease along the binomial network because
of the voltage drops caused by the power flows in the branches. The voltage
drops are larger for the realistic test cases than the binomial network. The
main reasons are the differences in network geometries, line impedances and250

nodal distributions of loads active powers. But there is no obvious link between
the shape of the networks and their voltages as shown in figure 2. Networks

8



Figure 1: Multifractal spectra of the binomial network (pbinomial = 0.7 - n = 7)- The
theoretical spectrum of the nodal powers is calculated by equations (8) and (9). The theoretical
spectrum of the voltages is reduced to the (1, 1) point. The practical determination of the
spectra from the multifractal measures is done using equations (A.9) and (A.10). For the
power spectrum, ωv,i = Pi. ωv,i = Vi for the voltage spectrum. Error bars delimit the
95% confidence interval of the f(α) values identified by linear regression of the correlation
measures.

electrical data are also compared in figure 3. Load power values are of the same
order even if realistic values show more variations than the binomial network
due to the connection of few industrial loads to the network. The 69 and 85-bus255

networks are more impedant than the binomial and the 141-bus case, meaning
that the median value of their impedances are higher. In addition, these values
are more widely distributed. The median values of X/R ratio between reactance
X and resistance R of every lines are between 0.5 and 1 which are reasonable
values for distribution power grids. From power flow results shown in table260

2, the 85-bus network appears to be the worst case with the lowest minimal
voltage value and the highest amount of losses despite of a low average nodal
power. Again, there is no clear link between the network data and the power
flow results.

Another view on the power flow results is offered by the multifractal spectra265

as shown in figure 4. Some metrics to characterize the spectra are defined. f(α0)
defines the maximum of the spectrum and is equal to the fractal dimension D0

of the support. ws is the width of the spectrum defined by ws = α−2 − α2.
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Table 1: Test cases base values - In the per unit (p.u.) system, the system quantites are
normalized and expressed as a fraction of a defined base value [22]. The base power Sb is
chosen as the value of the apparent power of the substation that feeds the network. The
base voltage Vb is chosen as the nominal rated voltage of the system. The base impedance is

defined by Zb =
V 2
b

Sb
. For the binomial network, p = 0.7 and n = 7.

Binomial case case 69 case 85 case 141
Number of nodes 129 69 85 141
Base voltage Vb (kV) 1 0.91 0.87 0.93
Base power Sb (MVA) 10 10 1 10
Base impedance Zb (Ω) 10 10 1 10

Figure 2: Nodal voltage magnitudes |Vi| in per unit value (p.u.) of the test cases - The values
are computed from power flow equations (14). They are normalized by the base voltage value
Vb of each network. The source nodes are noted S.

as quantifies the skewness. It is given by as = f(α−2) − f(α2). ds gives the
depth of the spectrum defined by ds = f(α−2)+f(α2)

2 − f(α0). Their values are270

given in table 3 together with some graph metrics. The networks lying down
a 2-dimension support, their fractal dimension D0 is between 1 and 2. The
reference binomial network has a unit dimension and is monofractal (spectral
width, depth and asymmetry are almost 0). The fractal dimensions of the
realistic cases are higher than 1. This is a consequence of their ramifications.275
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Figure 3: Comparison of electrical data of the test cases- Power panel gives the box plot
of nodal active power data. Impedance panel gives Z =

√
R2 +X2 with R and X the line

resistance and reactance respectively. Impedance value is normalized by the network’s base
impedance value Zb. Boxes are delimited by the first and third quartiles. The median is
shown by an horizontal line in the boxes. Whiskers extend from the 5th to 95th percentile
and fliers points are located outside the whiskers. For the binomial network, pbinomial = 0.7
and n = 7.

The 69 and 85-bus networks show a wide spectral distribution. This may be
caused by the dispersed distribution of their impedance values as shown in figure
3. The spectra of cases 69 and 141 are almost symmetric. The case 85 is right-
skewed (as < 0) suggesting that the highest voltages are lying on a support
with a dimension higher than the lowest values. The average node degree is280

near 2 which is an expected value for radial distribution networks [42]. The
average node eccentricity gives an idea of the radius of the networks. Their
graph density is near 0 meaning that they are very sparse.

While the classical graph metrics tend to stress the linear structure of the
networks (nodes degree near 2, sparse networks, radius that are roughly in-285

creasing with the number of nodes), the multifractal characterization give a
completely different view. But, to this point of the study, it fails to capture in
a simple manner how structural parameters influence the voltage distribution-
s. In particular, there is no obvious relation between power flow values, graph
metrics and multifractal values.290
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Table 2: Power flow results - Min V is the per unit value of the minimal nodal voltage
normalized by the network’s base voltage Vb. Losses is the sum of the active losses in power
lines normalized by the total load power. For the binomial network, p = 0.7 and n = 7.

Binom. 69 85 141
Total load power (MW) 5 3.8 2.6 11.9
Min V (p.u.) 0.98 0.91 0.87 0.93
Losses (p.u.) 0.04 0.06 0.12 0.05
Average nodal power (MW) 0.039 0.055 0.03 0.084

Table 3: Network metrics - D0, ws, as and ds are multifractal metrics. Other variables are
graph metrics. The average degree is the average number of branches per node. The node
eccentricity is defined as the maximum distance from one node to all others. The density
is the ratio of the number of graph branches over the maximum possible number. For the
binomial network, p = 0.7 and n = 7.

Binomial case Case 69 Case 85 Case 141
Fractal dimension D0 u 1 1.27 1.68 1.26
Spectral width ws u 0 2.33 1.04 0.44
Spectral asymmetry as u 0 -0.04 -0.28 -0.08
Spectral depth ds u 0 -0.73 -0.43 -0.21
Average node degree 1.98 1.97 1.98 1.99
Average node eccentricity 96 25.9 20.7 32.8
Graph density 0.016 0.029 0.024 0.014

5. Diffusion-limited aggregation grid expansion

To further determine the links between the structure of the networks and
their steady-state values, a set of synthetic networks expanded by Diffusion-
Limited Aggregation (DLA) is investigated. Hence, the objective is to determine
how the parameters that control the DLA process and therefore the network295

structure determine the multifractal spectrum and the electrical properties.
Diffusion-Limited Aggregation is a process where diffusing particles aggre-

gate to a cluster [16]. In 2-dimension, a seed is first placed on the space. Then a
particle is placed on a random position and moves randomly until it aggregates
to the seed. The process is then repeated with a new particle until it aggregates300

to the seed or the previous particle, and so on. It results from this process a
random tree structure that has been widely used as a model for studying mech-
anisms of electrodeposition, dielectric breakdown, etc. In [43], a DLA growth
process is conducted on a r-ary tree meaning that the DLA tree structure is
constrained to be of r-ary type. In addition, the attachment probability p of the305

diffusing particle to a node located at the distance d to the root is such that:

pDLA ∼ (αDLA)d (20)

This enables to control the shape of the tree. If the probability decreases with
the distance (αDLA > 1), the height of the tree is logaritmically varying with
the number of generations whereas it increases linearly when the probability
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Figure 4: Singularity spectrum of the nodal voltages for the realistic test cases - The mul-
tifractal spectrum of the nodal voltages is computed by equations (A.9) and (A.10) for q
between −2 and 2.

increases with the distance (αDLA < 1). In other words, the growth is more310

likely near the root or at the tips of the tree, resulting in different forms of the
tree. The same method is used to synthesize the distribution grids.

To perform power flow calculations, some loads are distributed over the
nodes. Following the toy network logic, their power values are randomly created
by a binomial multiplicative cascade (see equation 6). This enables to control315

the distribution of the loads values. The nodes being numbered from the root,
the binomial probability pbin determines if loads are concentrated around the
root node of the network or more likely connected at the termination nodes.
The rank n of the cascade is such that 2n + 1 is the closest as possible of the
actual number of nodes of the synthesized network.320

The line reactance and resistance values are log-normally distributed. The
log-normal distribution is chosen because of its asymmetry with a small pro-
portion of high values. The mean of the line resistances values is 1

2n and the
X/R ratio is equal to 0.5 to be consistent with the values observed for the real-
istic networks in figure 3. The dispersion of the line values is controlled by the325

standard deviation σ.
To study the links between the structure, the steady-state values and the

multifractal spectrum, a population of 2500 networks with 65 nodes is synthe-
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Figure 5: Example of networks given by a DLA-inspired growth method - The number of
nodes is 65. The binomial probability is pbinomial = 0.3. Two extreme values of the growing
parameter αDLA are shown. On the left panel, the network is almost a path graph with very
few bifurcations whereas on the right panel, the network is very ramified. In both cases, the
loads are more concentrated at the end nodes of the network.

sized following our DLA approach. The networks are grown such that the nodes
degree does not exceed 3 because the average degree is around 2 for realistic330

grids as previously seen in table 3. Two examples of synthesized structures are
shown in figure 5. To be compared with realistic data, the sum of the load power
values given by the multiplicative cascade has been normalized to be equal to
the sum of the load power values of the 69-bus test case. The base power is also
the same as the 69-bus one.335

For every network, the observed variables are the total losses, the minimal
node voltage, the fractal dimension D0, the spectral width ws, depth ds and
asymmetry as.

A Principal Component Analysis (PCA) is used to reduce the dimensionality
of the synthesized multivariate data set and get a better interpretation of the340

variance. A first step in PCA is to calculate the percentage of variance explained
by the components. This shows that two dimensions are enough to explain 90
% of the data variations. With three dimensions, almost 100 % is explained.
To better understand the meaning of the PCA components, figure 6 gives the
correlation values of the variables with the three first components.345
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Figure 6: Correlation of the variables with the three first PCA components - The size of the
circles is related to the absolute value of correlation. Their color is associated to the signed
values.

αDLA, multifractal metrics, eccentricity and power flow values have strong
correlations with the first principal component. The explained variance by the
first component being near 71%, the variations of the network performances and
multifractal spectrum are predominantly determined by the growing parameter
αDLA. Note that the width and depth of the spectrum are very correlated. A350

wide spectrum shall therefore be deep.
The spectral depth, width and asymmetry are also correlated with the second

axis as is the standard deviation of the impedance values σ. Their variations
are thus influenced by the dispersion of the impedance values around their
mean. The impact on the total losses and minimal voltage is found but limited.355

According to the explained variance, near 20% of the variations of the network’s
variables are driven by this second component.

The third component is the only one with a meaningful correlation with the
binomial probability pbinomial. The asymmetry as is also correlated with this
axis. So, the more the loads are located around the end nodes of the network360

giving more losses and voltage drops, the more left-skewed is the spectrum
(as > 0). But this is only a correction of the influence of αDLA which determines
mostly the shape of the spectrum. Only 8% of the variations of the networks’
variables are explained by this component.
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The projections of the data onto the spaces constituted by the three first365

components are shown in figures 7 and 8. The biplots display at the same
time the component scores (the position of each sample in the 2D-space) and
the variable loadings (how variables correlate with components). Two nearby
points represent two similar networks. The distribution of the points along with
the first axis clearly shows that the networks grown with a small αDLA are more370

elongated, have more losses and smaller voltage values. On the other hand, the
networks grown with a large value of αDLA result in fingered smaller networks,
lesser losses and higher voltage values. Looking at variations along the second
and third axis in figure 8, some previous tendencies may be reinforced by the
dispersion of the line impedances values measured by σ. A high dispersion tends375

to give networks with more losses and voltage drops and a larger, deeper, more
right-skewed network. A distribution of the loads towards the terminations
of the network may explain an increase of the voltage drops, losses and left-
skewness of the spectrum.

The three realistic cases are reported on both biplots. They are close to380

networks with a small growing parameter, indicating a linear structure. The
cases 69 and 85 are noticeably located in the upper part of the second axis
because of the large dispersion of their impedances values. The case 141 is a
rather big network and its loads are more concentrated around the source as
shown by its location in the lower part of the third axis.385

6. Discussion and conclusion

Distribution networks are operated radially in normal conditions to supply
power to all the loads. Radial topologies are optimal because they minimize
the lenght of feeders and they require simple coordination scheme of protection
devices. It can be noticed that they lack of redundant paths and normally open390

switches are added at the termination of the feeders so that he network can
then be reconfigured by closing switches when a fault appears in the system
and continue to deliver power to all the loads in the system [44, 45]. Spatial
constraints are enforced on the position of the feeders when the distribution
networks are planned [8, 46]. Feeders should follow the roads map. This prevents395

unrealistic design with feeders passing across or below the buildings. This gives
very linear systems in rural area and the networks are more ramified in urban
area. So, there is a strong coupling between the roads and the structure of
the network [47] and coupled modeling of power networks and transportation
systems is an emerging field [48].400

We have proposed in this a paper a simple way to model and synthetize
radial distribution networks. The synthetic grids are realistic networks that can
be used to study the topological properties, how they are the results of design
choices and how they drive the electrical properties [49].

Our method combines a DLA method to describe the grid expansion and a405

binomial multiplicative cascade to model the loads. This combination results
in a rich variety of distribution grids. For low values of αDLA, linear rural
networks can be shaped. More ramified networks, closer to urban systems, are
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Figure 7: Biplot of 1st and 2nd principal components - The explained variance for each com-
ponent is given between brackets. The expansion of the synthetized network is performed with
a growing parameter αDLA randomly chosen between 0.3 and 1.7. The load distribution is
controlled by the binomial probability pbinomial between 0.3 and 0.7. The standard deviation
σ of the line parameters values is randomly chosen between 0.05 and 0.5.

also possible for intermediate values around the unit. For large values, it is
even possible to shape cluster tree networks where clusters of nodes develop410

around the peripheral nodes. These networks could be suitable for community
grids [50]. Community grids are consumer-centric microgrids where renewable
energy sources and loads are located in the same area and connected together
[51, 52]. They can be clusters of consumers in rural area where there is still
no electrification or new home communities where many building are equipped415

with renewable energy sources and provide energy to the neighboring loads [53].
According to PCA’s explained variance, the geometrical structure of the net-

work is the main driver of the electrical properties and the values of impedances
and loads have only a marginal impact on the network’s voltage profile and to-
tal losses. Indeed, the loadings values on the second and third axis are smaller,420

meaning lesser variations of the variables with the corresponding components.
Therefore, for power engineers and planners, a particular attention shall be first
paid to the shape of the network in order to avoid violations of the normative
voltage constraints and unexpected losses [54]. And corrective actions provided
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Figure 8: Biplot of 2nd and 3rd principal components

by variation of nodal powers (loads management or control of dispersed sources)425

will only have a marginal effect [9].
It has also been shown that distribution electrical networks are sparse tree-

like networks with some self-similar branching that fall under the scope of mul-
tifractal studies. Multifractality is a way to classify power grids. It gives a set
of parameters that can be used to perform clustering of networks as in [55].430

To summarize, the fractal dimension gives an idea of the morphology of the
network (with values between 1 and 2). Fractal dimensions were already used as
a topological indicator [42]. They were compared with real data collected in Chi-
na and other indicators such as node degree, network length, branching rate.
But their values were not able to give a correct discrimination of topological435

properties of urban and suburban networks. To further investigate the fractal
nature of distribution grids, an analogy was also done with a dielectric break-
down model in [56]. This is a mathematical model associated with the physical
process of dielectric breakdown. It is closed to the diffusion-limited aggregation
approach. This model was used to generate fractal electricity networks. Con-440

trary to our approach, the load generation scheme was very basic, the same value
being chosen for every loaded buses. The performances of the fractal networks
were compared with real networks and confirm the fractal nature of real power
distribution networks. No conclusion was drawn on the correlation between the
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fractal dimension and the electrical properties of the synthetic networks.445

For networks with nearby shapes and undiscriminating values of fractal di-
mension, the width of the multifractal spectrum may give an additional in-
dication of the dispersion of the impedance values around their mean and the
spectral asymmetry is a metric of the loads distribution for very similar network-
s. The multifractal variables are also correlated with the network eccentricity,450

losses and minimal voltages. The multifractal spectrum therefore gives a way
of finely grading the networks by linking together their structure and electrical
properties.

From this multifractal perspective, the best networks should have high frac-
tal dimensions and low spectral asymmetry, depth and width, meaning ramified455

and compact network with a concentration of the high loads around the source
node and homogeneous values of impedances. Some good candidates to in-
vestigate could be monofractal trees. Fractal patterns were already assessed for
control architecture of power systems [57, 58]. Their introduction was motivated
by the hierarchical structure of power systems from High Voltage to Low Volt-460

age levels, the agile operation and easy reconfiguration or separation of the grid
parts offered by the fractal geometry. In this approach, the control architecture
is recursively built, every control level being self-similar. Only the parameters
change depending on the voltage level that is controlled. This facilitates for the
power engineers the description and the design of the power system.465

Beyond control architecture, we propose that the power grid itself be fractal.
This would be consistent with some previously published results on the interests
of fractality for shaping cities [59]. Using fractal geometry turned out to be a
promising approach for designing sustainable cities. It allows the development
of green corridors penetrating urban areas and scaling down from large-scale470

green areas down to smaller ones. This helps saving biodiversity, providing ac-
cessibility to leisure areas and improving local climate by avoiding heat islands.
At the same time, the fractal logic is used to plan a hierarchical system of ur-
ban centers of different size and functions. At local levels, shops for daily needs
are present everywhere. Rarely frequented facilities are offered only at global475

levels. This provides proximity with shops and services proportional to their
visit rate. Trip lengths and thus energy consumption and pollution are then
reduced. Because roads map and distribution power grids are closely related,
the fractal geometry is also used to design the electrical network with the same
advantages of hierarchization and subsidiarity of power delivery. The distribu-480

tion grid presents autonomous local levels where the loads are balanced by the
production of renewable energy resources. They will however be linked hierar-
chically to higher levels to prevent any failure or large disturbance. So, fractal
structures appears as optimal solutions for providing services over a wide range
of scales at the lowest cost. The same observation was made in natural systems,485

e.g. the transportation network of nutrients in leaves or the river basins [60].
To conclude, even if this is still a long-term perspective, a plausible way to

think the future of electrical energy grids is fractal and despite their apparent
complexity, fractal geometry might be a right answer for energy networks.
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Appendix A. Multifractal measures for power grids490

To define the multifractal measures, an underlying graph G of a power grid
is defined as G = (N , E, ωE) where N is the vertex set of size N , E is the
edge set of size M along with the functions ωv : N → R and ωe : E → R+ for
the node and edge weights. The vertices are the grid nodes and the edges are
the power lines. The node weights are equal to the nodal values (being voltage495

magnitude or power) normalized by the sum of all nodal values of the network.
These values are the results of the solving of the power flow equations (14). The
edge weights are the line impedances values.

The measure µi is defined by the sum of the values ωv,j of the nodes j
located within a cluster of radius r centered at the node i (see equation 4). The500

correlation integral is then given by:

〈µ〉 =
1

N

∑
i∈N

ωv,iµi(r)

=
1

N

∑
i∈N

ωv,i
1

N − 1

∑
j∈N 6=i

ωv,jΘ(r − di,j)
(A.1)

The number of nodes of power grids being small, every nodes are taken as
center. If this is too costful, it is obviously possible to limit the measure to a
set of points randomly chosen in the network.

The q-th measure is defined for any q ∈ N∗ − {1} by:505

〈µ〉q =

 1

N

∑
i∈N

ωv,i

 1

N − 1

∑
j∈N 6=i

ωv,jΘ(r − di,j)

q−1


1
q−1

(A.2)

For q = 1, it is given by:

〈µ〉1 = lim
q→1
〈µq〉 = exp

[∑
i∈N

ωv,i ln(µi(r))

]
(A.3)

Let us define:

τ(q) = (q − 1)Dq = lim
r→0

ln〈µb〉q(r)
ln(r)

(A.4)

The Legendre transformation of (q, τ) is (α, f) such that:

τ(q) = −f(α(q)) + qα(q) (A.5)

q =
df(α)

dα

∣∣∣∣
α=α(q)

(A.6)
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α(q) =
dτ(q)

dq
(A.7)

Instead of using q and τ(q), the practical determination of the spectrum from
the multifractal measures uses the equations A.5 and A.7 [37]. If we define:510

νi(q, r) = N
[µi(r)]

q−1∑
j∈N ωv,j [µj(r)]

q−1 (A.8)

Then:

α(q) = lim
r→0

1

ln(r)

1

N

∑
i∈N

ωv,iνi(q, r) ln(µi(r)) (A.9)

And:

f(α(q)) = lim
r→0

1

ln(r)

1

N

∑
i∈N

ωv,iνi(q, r) ln (νi(q, r)µi(r)) (A.10)

Appendix B. Theoretical voltage spectrum of the binomial network

For linear approximation of the power flow equations (14), we assume that
the binomial network is only resistive (Bij ≈ 0), the normalized voltage values515

are all near 1 (|Vi| ≈ 1) and the phase differences between nodes are small (φij ≈
0). It means that the binomial network behaves as a DC resistive network.

Therefore, the only variables are the voltages and the active powers. They
are linked by:

Pi =

N∑
j=1

BijVj (B.1)

Under a matrix form, this relation is written:520

P = −LV (B.2)

L is the so-called DC bus admittance matrix.
The q-th correlation measure of the voltage distribution is given by equation

(19). Assuming a large number of nodes, a continuous approximation of this
measure is considered. It means that over the path length, being normalized
to 1, the double discrete sum is approximated by a double integral. At every525

position x ∈ [0, 1] on the path, the voltage magnitude is noted Vx. Hence:

〈µ〉q−1q ∼
∫ 1

0

Vy

[∫ 1

0

VxΘ(r − |x− y|)dx
]q−1

dy (B.3)
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Using equations (16) and (18), the double integral is written:

〈µ〉q−1q ∼
N−1∑
k′=0

pk′

λk′

∫ 1

0

cos(πk′x− πk′

2N
)

[
N−1∑
k=0

pk
λk
I(r, y)

]q−1
dy

(B.4)

With:

I(r, y) =

∫ y

0

cos(πkx− πk

2N
)Θ(r − y + x)dx

+

∫ 1

y

cos(πkx− πk

2N
)Θ(r − x+ y)dx

(B.5)

Θ(z) = 1 if z > 0. Thus Θ(r − y + x) = 1 if x > y − r and Θ(r − y + x) = 1
if x < y+ r. Otherwise, it is 0. This results in four cases as shown in table B.4.530

Table B.4: Expressions of I(r, y)
case y interval I(r, y)

1 y − r < 0 and y + r < 1
∫ y
0
cos(πkx− πk

2N )dx+
∫ y+r
y

cos(πkx− πk
2N )dx

= 1
πk

[
sin(πk(y + r)− πk

2N ) + sin( πk2N )
]

2 y − r < 0 and y + r > 1
∫ y
0
cos(πkx− πk

2N )dx+
∫ 1

y
cos(πkx− πk

2N )dx

= 1
πk

[
sin(πk − πk

2N ) + sin( πk2N )
]

3 y − r > 0 and y + r < 1
∫ y
y−r cos(πkx−

πk
2N )dx+

∫ y+r
y

cos(πkx− πk
2N )dx

= 1
πk

[
sin(πk(y + r)− πk

2N )− sin(πk(y − r)− πk
2N )

]
4 y − r > 0 and y + r > 1

∫ y
y−r cos(πkx−

πk
2N )dx+

∫ 1

y
cos(πkx− πk

2N )dx

= 1
πk

[
sin(πk − πk

2N )− sin(πk(y − r)− πk
2N )

]
The following integral is then calculated:

J(r) =

∫ 1

0

cos(πk′y − πk′

2N
)

[
N−1∑
k=0

pk
λk
I(r, y)

]q−1
dy (B.6)

In this integral, the expression of I(r, y) depends on the relative position of
y, r and 1/2. It is known from equation (5) that only the limit of the correlation
integral when r tends to 0 matters. Hence, the calculation of J(r) is reduced to
case 3 in table B.4. In addition, r tending to zero, the sinus function may be535
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approximated by its argument. It results:

〈µ〉q−1q ∼ rq−1
N−1∑
k′=0

pk′

λk′

∫ 1

0

cos(πk′y − πk′

2N
)

[
N−1∑
k=0

pk
λk

2

πk
cos(πky − πk

2N
)

]q−1
dy

(B.7)

Thus, in any case, 〈µ〉q−1q is proportional to rq−1. So whatever is the distri-
bution of the loads, the generalized dimensions defined by equation 5 are equal
to Dq = 1 for any q.

Following Legendre transformation equations (A.5), (A.6) and (A.7), it comes:540

τ(q) = q − 1 (B.8)

α(q) = 1 (B.9)

f(α) = 1 (B.10)

The theoretical spectrum of the voltages is reduced to a single point (1, 1).

Appendix C. Implementation545

The solving of power flow equations (14) is done using a Python package
called Pypower.

A Python code has been developed to implement the correlation method for
nodal weighted networks. A graph traversal procedure is used to calculate corre-
lation measures. The correlation radius is calculated from inter-node distances550

that are taken equal to line impedance values. Depending on which values are
measured, nodes weights are either taken equal to nodal powers or voltages. For
computing the slopes of the log-log variations of the correlation measures, the
linear regression package Linregress of Python is used.

The Diffusion-Limited-Aggregation process on a tree has also been imple-555

mented under Python and the Scikit-Learn machine learning library has been
used for PCA analysis.

The realistic test case data are publicly available. They come from [23, 24,
25].
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