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Analytical method for the evaluation of singular integrals arising

from boundary element method in electromagnetism

Soumaya Oueslati ∗, Imen Balloumi †, Christian Daveau ‡, and Abdessatar Khelifi §

Abstract

In the framework solving electromagnetic scattering problems with a Leontovich impedance boundary
condition (LIBC), the numerical resolution requires the evaluation of singular integrals appearing in the
discretization of the variational formulation. Our main interest is to pricisely evaluate these integrals.
Thus, we propose an analytic method to approximate it. The performance of this method will be
evaluated by calculating the radar cross section (RCS). Then, we compare RCS to the Mie series solution
for the unit sphere in various configurations.
Key words: Maxwell equations, boundary integral equations, singular integral, homogeneous functions.
AMS Subject Classification:

1 Introduction
Integral equation methods are an alternative for solving linear partial differential equations. It consists in trans-
forming the partial differential equation posed in a domain, into an integral equation posed on the boundary. It
is in particular a method adapted for diffraction problems that are posed in an unbounded domain (see [6] [3])
and for which the consideration of the radiation condition is essential in order to insure a unique solution. We
are interested in solving time-harmonic scattering problem by the integral method and we will take the constant
impedance condition, known as standard or Leontovich impedence boundary condition (LIBC) [14]. This ap-
proximation does not depend on incident angle at all. It has been extensively used to simplify the formulation
involved in the solution of complicated electromagnetic scattering problems. It was recognized that this type of
boundary condition can be advantageously used to get a more tractable problem in numerous complex situations
of electromagnetic scattering computations (see for example [1] [7] [8]). Once the boundary problem has been
converted into a boundary integral equation, it is necessary to discretize the boundary of the domain using plan
polygons. Here we deal with plan triangles and Rao-Wilton-Glisson basis functions.

In this paper, we are particularly interested in the singular integrals resulting from the discretization of the
variationnel problem of Maxwell 3-D equation. This singular character of the integrand makes the precise eval-
uation of these integrals difficult. It has been the subject of a large number of publications. M. Lenoire and N.
Salles have developed in [11] [12] a new approach to evaluate singular integrals. It allows to evaluate analytically
and with great precision, singular integrals in the variational case. We adopt the same approach to evaluate a
singular integral coming from a double layer operator.

To better understand this singular integrand problem, in the variational case, it should be noted that the
domain of integration for these integrals with ”problem”, is the product of two elements of the mesh, precisely the
product of two triangles. When the two triangles are distant, it is possible to evaluate the integral with standard
numerical integration methods. But, when the intersection of the two triangles is not empty(adjacent triangles
and triangles with a common vertex), it require separate treatment and this is a field of research still very active.
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The approach developed in this work, makes it possible to reduce a 4-D integral to a linear combination of
mono-dimensional integrals whose integrand is regular. It is then possible to numerically evaluate these 1-D in-
tegrals, but also explicitly. This method relies on several formulae that make it possible to reduce the dimension
of the integration domain from n to n− 1. So, repeating the same process, three times using these formulas, we
obtain regular 1-D integrals. These reduction formulae are based on the homogeneity of the integrand; therefore,
there are two conditions to check. The integrand must be homogeneous and we must use flat polygons to discretize
the boundary of the domain in order to maintain the homogeneity of the integrand during the successive stages
of the reduction process.

2 Scattering problem
We consider the scattering problem of electromagnetic waves (E,H) by a perfect conducting body with a complex
coating. We refer by Ω− to the region of space embodying the scatterer, with a Lipschitz-continuous boundary
denoted by Γ and we refer by n is the exterior unit normal to Γ, pointing to the exterior. Waves propagation
medium is characterized by two physical quantities ϵ (electrical permittivity) and µ (magnetic permeability). The
propagation of this wave is described in Ω+ = R3\Ω− by the following Maxwell equations:

(1)

{
rotE+ iωµH = 0,
rotH− iωϵE = 0.

In order to ensure a unique solution of boundary value problem, it is necessary to apply the following boundary
condition

(2) Etg − Z(n×H) = 0 on Γ.

Where Z is the impedance operator that depends on incident angle, subscript tg denotes tangent component on
the surface defined as:

Etg = n× (E× n).

Generally, we take the constant impedance operator, known as standard or Leontovich impedance boundary
conditions Z = const [15, 16, 17].
We should notice that asymptotic behavior of the fields (E,H) is depicted by the Silver-Müller radiation condition:

(3) lim
r→∞

r(E× nr +H) = 0.

where r = |x| and nr =
x

|x|
, x ∈ R3. We introduce current densities J and M on the boundary Γ as follows

M = E× n , J = n×H.

We determine total electromagnetic fields (E,H) in Ω+ as:

(4)

{
E = Einc +Esc in Ω+,

H = Hinc +Hsc in Ω+.

Subscripts inc and sc characterize incident and scattered fields, respectively. Afterwards, using the Stratton-Chu
formulation we can give the variational formulation of the problem. For all Ψ = (ΨJ ,ΨM ), find (J,M) such that:

(5) < Z0(B − S)J,ΨJ > + < (P +Q)M,ΨJ >=< Einc,ΨJ >,

(6) − < (P +Q)J,ΨM > + <
1

Z0
(B − S)M,ΨM >=< Hinc,ΨM > .

Where

(7) ⟨(B − S)ϕ,ψ⟩ = i

∫∫
Γ
kGϕ ·ψ −

1

k
G∇y · ϕ∇x ·ψ dydx,

(8) ⟨(P +Q)ϕ,ψ⟩ =
1

2

∫
Γ
ψ · (n× ϕ) dx+

∫∫
Γ
(ψ × ϕ) · ∇xG dydx,

(9) ⟨ϕ,ψ⟩ =
∫
Γ
A ·ψ dx,

with G(x, y) =
e−ik∥x−y∥

4π∥x− y∥
is the Green kernel in three dimensions.

For a numerical resolution of the problem we will adopt the finite element method of boundary. We assume that
the initial boundary problem is defined in a 3-D domain. The boundary Γ of the domain is therefore a surface
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and can be discretized using triangles. We approach the surface of the obstacle by a surface Γh composed of finite
number of two dimensional elements. These elements are triangular facets denoted by Ti for i = 1 to NT :

Γh =

NT∪
i=1

Ti.

We will call it an initial mesh (or original mesh).We denote by Ne the total number of edges of the mesh component
Γh. The discretization of unknowns J and M should verify a condition - flow conservation of these currents. One
way to ensure this is to use the basis functions of Rao-Wilton-Glisson introduced below.
We introduce local numbering of a triangle T . The vertices (aTj )j=1,3 are arranged in clockwise order. Triangle

edges are numbered so that the edge T ′
j connects vertices aTj and aTj+1.

Moreover, we give an orientation νn to each edge n. Consider the two triangles sharing this edge. We note T+
n the

triangle so that the direction of the edge n coincides with the forward direction (locally defined) of this triangle.
For the other triangle, which we will denote T−

n , the direction of the edge coincides with the indirect sense.
Each basis function is associated with an edge and ensures the conservation of flux through this edge. If we

denote |T | the area of a triangle T , the nth basis function is defined as follows:

Definition 2.1. If n is the ith local edge of triangle T+
n and the jth of triangle T−

n then

(10) fn(x) =


ln

2|T+
n |

(x− a+i−1) if x ∈ T+
n

ln
2|T−

n |
(a−j−1 − x) if x ∈ T−

n

0 if x /∈ T+
n ∪ T−

n

The density is proportional to ∇Γ · fn, where

(11) ∇Γ · fn(x) =


+ ln

|T+
n |

on T+
n

− ln
|T−

n |
on T−

n

0 elsewhere.

We decompose the electric and magnetic currents:

J(y) =

Ne∑
i=1

Jifi(y), M(y) =

Ne∑
i=1

Mifi(y).

Considering to these assumptions we are looking for approximated solution of the problem (5-6). We introduce
the following system

(12) Ah(Uh,Ψh) =

Ne∑
i=1

< Einc, fi > +

Ne∑
i=1

< Hinc, fi >,

where

Ah(Uh,Ψh) =

Ne∑
i,j=1

< Z0(B − S)fj , fi > Jj + Z−1
0

Ne∑
i,j=1

< (B − S)fj , fi > Mj

+

Ne∑
i,j=1

< Qfj , fi > Mj −
Ne∑
i,j=1

< Qfj , fi > Jj +
a0

2

Ne∑
i,j=1

< fj , fi > Jj +
1

2a0

Ne∑
i,j=1

< fj , fi > Mj .

Since the basis function fi is defined on two triangles, namely adjacent to the ith edge , T+
i and T−

i . The same

for the basis function fj , they are defined on two triangles, T+
j and T−

j .
We define the matrix elements

(B − S)i,j = i

∫
T+
i ∪T−

i

∫
T+
j ∪T−

j

kG(x, y)fj(y) · fi(x)−
1

k
G(x, y)(∇Γ · fi(x))(∇Γ · fj(y)) dxdy.

Analogically

Qi,j = −i
∫
T+
i ∪T−

i

∫
T+
j ∪T−

j

[fi(x)× fj(y)] · ∇Γ ·G(x, y) dydx.

with G(x, y) =
e−ik∥x−y∥

4π∥x− y∥
= −

1

4π∥x− y∥
+H(∥x− y∥) is the Green kernel in three dimensions and

∇xG(x, y) = −
(1 + ik|x− y|)
4π|x− y|3

e−ik|x−y|(x− y) = −
(x− y)

4π∥x− y∥3
−
k2(x− y)

8π∥x− y∥
− (x− y)R(∥x− y∥).

where H and R are regular analytic functions.

We then, notice that there are singular terms that appear. The regular integrals Ri,j can be calculated
numerically with the usual known methods such as the Gauss method.
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We denote by S the triangle T+
i and by T the triangle T+

j . We evaluate the operators Qi,j and (B − S)i,j on
S × T and it will be the same for other combinations of triangles..
On each triangle, the current is written as a linear combination of three RWG basis functions associated to three
edges of a triangle. Now we come to the integrals developed in this paper. So we have to evaluate three type of
singular integrals

(13) Di,j =

∫
S×T

(x− ai) ·
(x− y)

||x− y||ξ+1
× (y − bj) dxdy; i, j = 1, 2, 3; ξ = 0, 2

(14) Si,j =

∫
S×T

(x− ai) · (y − bj)

||x− y||
dxdy; i, j = 1, 2, 3.

(15) Mi,j =

∫
S×T

1

||x− y||
dxdy; i, j = 1, 2, 3.

In this work, we adopt a purely analytic method for the evaluation of the singular integrals. It was developed
in [11] [12]. In these works, the term (15) was be evaluated and studied theoretically.

3 Definitions Tools and Notations
We present some notations and we give tools that we will need in our calculation.

3.1 Notations
Let the triangles S and T be defined (respectively) by its vertices ai and bj , i, j = 1, 2, 3 and its sides αi respectively
βj , i, j = 1, 2, 3 such as αi and βj are opposed to ai respectively bj (see Figure 1). We introduce |αi| and |βj |
the length of the side αi respectively βj . Let α⃗i and β⃗j be the vectors (ai+2 − ai+1) = (a+i − a−i ) respectively

(bi+2 − bi+1) = (b+i − b−i ) (see Figure 2). We denote by λi and ϑj the outside normal vector to αi respectively
βj .

Figure 1: Definition of Triangle S Figure 2: Orientation of the triangle S

Note pi(x) the orthogonal projection (see Figure 3) of a point x on the side αi of the triangle S and gi(x) =
||x− pi(x)|| the distance from x to the support of αi. When x = ai, we note that pi = pi(ai) and that gi = gi(ai)
is the length of the height (see Figure 4). We will also use the distance signed from a point to the support of αi
which involves the normal outgoing to the triangle on αi. This distance is defined by γi = (pi(x) − x|λ⃗i) (see
Figure 5).

Figure 3: Projection Figure 4: Projections and distances

We use notations for the triangle T similar to those introduced for the triangle S. The orthogonal projection of
y on the support of βj , similar to pi(x), is denoted by qj(y) and the distance from y to the support of βj is denoted

by dj(y) = ||y− qj(y)||. We define the signed distance δj(y) from y to the support of βj by δj(y) = (qj(y)−y|ϑ⃗j).
Finally, dj = dj(bj) is the equivalent of gi, namely the length of the height from bj to βj .

On side α (resp β) the abscissa s (resp t) is defined with respect to an origin oα (resp oβ) and a unitary

direction vector α⃗
|α| (resp β⃗

|β| ).

The abscissas of the ends a± and b± are respectively denoted by s± and t±.

sk = (ak − o|
α⃗

|α|
) tl = (bl − o|

β⃗

|β|
).
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Figure 5: Distances signees

3.2 Reduction process
The reduction process is based on several simplification formulas presented in section . These formulas reduce the
size of the domain integration. They can be used when the integrand is homogeneous, or positively homogeneous.

Definition 3.1. A function is said to be homogeneous of degree q, or q-homogeneous, with respect to the variable
z

(16) f(λz) = λqf(z).

Definition 3.2. A function is said to be q-homogeneous with parameter if it is an homogeneous function with
respect to a pair of variables (z, h), where z is the integration variable and h a real parameter

(17) f(λz, λh) = λqf(z, h).

Theorem 1. Let f : Ω ⊂ Rn → R a positively homogeneous function of degree q with q + n ̸= 0

(18)

∫
Ω
f(z)dz =

1

q + n

∫
∂Ω

(−→z |−→ν )f(z) dsz ,

where −→ν is the exterior normal to ∂Ω and (−→z |−→ν ) is the scalar inner product between z and −→ν .

Theorem 2. Let g : Ω ⊂ Rn × R → R, be a homogeneous function of degree q, referred to as a homogeneous
function with parameter. Then, provided that

(19) (
h

h0
)q+n

∫
Ω
g(z, h0)dsz −→ 0 quand h0 −→ sgn(h)∞,

we get

(20)

∫
Ω
g(z, h)dz =

∫
∂Ω

(−→z | −→ν )F (z, h) dsz ,

where F (z, h) = hq+n
∫ sgn(h)∞
h

g(z,u)

uq+n+1 du.

Theorem 3. Let f : Ω ⊂ Rn → R a positively homogeneous function of degree q with q = −n. We introduce an
arbitrary homogeneous positive function θ : Ω → R of degree p > 0. Then we have

(21)

∫
Ω
f(z)dz =

1

p

∫
∂Ω

(−→z |−→ν )f(z)ln(θ(z)) dsz .

These formulae were proved in ([11]).
In the following we present a method for the explicit evaluation of singular integrals. It is built on a recursive

reduction of a 4-dimension integral into a linear combination of (m-1)-dimensional integrals. It leads to a linear
combination of 1-dimensional regular integrals. The method we have used requires to distinguish between several
geometric configurations and bases to the choice of the origin during the steps of reduction of the dimension of
the integration domain. This technique is assured the homogeneity of the singular part of the Green function.

3.3 Application of the reduction formula
We propose to evaluate the integral

(22) I(x, y) =

∫
S×βj

x− y

||x− y||3
dx dy,

where S is a triangle, x a point in the triangle S, βj is a segment in the same plan as S and y is a point in βj . Let

b+j = bj+1 and b−j = bj+2 be the two extremities of β. The reduction process can be applied, provided that one

takes some common point to βj and S as origin, so that the function f(z) = x−y
||x−y||3 is homogeneous on S × βj

with q = 2, n = 3. The origin can be taken anywhere on the support of βj , but a wise choice is to choose one of
the ends of βj as origin. Indeed, some of the distances being canceled, one will have a simplification. We choose
for origin the point b−. Formula (18) provides

(23) I(x, y) =
1

5

∫
∂(S×βj)

((x, y)|−→ν )
x− y

||x− y||3
∂(x, y),

where ν is the outward normal at the border of the edge of S × βj and ∂(x, y) is the surface element along
∂(S × βj). We have ∂(S × βj) = (∂S × βj) ∪ (S × ∂βj).

((x, y)|−→ν )
b+j ×S = |βj |; ((x, y)|−→ν )|αi×βj = γi(b

−
j )

where |βj | denotes the length of the segment βj . Then, we get

(24) I(x, y) =
|βj |
5

∫
S

x− b+j

||x− b+j ||3
dsx +

3∑
i=1

γi(b
−
j )

5

∫
∂(αi×βj)

x− y

||x− y||3
dsx dsy .

So we get a linear combinaison of 2-D integrals.
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4 Calculation of the singular integral in the forme double
layer operator
Before explicitly evaluating the integral defined in (13), we will rewrite the RWG basis functions as a combination
of the barycentric basis functions which allowed to transform the integral into integrals simpler to study. We
introduce the basis functions ϕi and ϕj associated with the vertices of the triangle S respectively T . We use their
properties (see appendix 6.1) above to determine θ, κ, ζ, ρ, η and µ verifying

(25)
(x− ai) = θϕi(x) + κϕi+1(x) + ζϕi+2(x),
(y − bj) = ρψj(y) + ηψj+1(y) + µψj+2(y).

We obtain

(26)
(x− ai) = (ai+1 − ai)ϕi+1(x) + (ai+2 − ai)ϕi+2(x),
(y − bj) = (aj+1 − aj)ψj+1(y) + (aj+2 − aj)ψj+2(y).

We are interested in calculating the singular integral (13). Using the basis functions as defined in (26), this
integral becomes

(27)

Di,j =
∫
S×T (κ× η) · (ϕi+1(x)ψj+1(y))

(x−y)
||x−y||ξ+1 dxdy

+
∫
S×T (κ× µ) · (ϕi+1(x)ψj+2(y))

(x−y)
||x−y||ξ+1 dxdy

+
∫
S×T (ζ × η) · (ϕi+2(x)ψj+1(y))

(x−y)
||x−y||ξ+1 dxdy

+
∫
S×T (ζ × µ) · (ϕi+2(x)ψj+2(y))

(x−y)
||x−y||ξ+1 dxdy.

So we have to evaluate four integrals of the same type:

(28) J i,j =

∫
S×T

(ϕi(x)ψj(y))
(x− y)

||x− y||ξ+1
dxdy; ξ = 0, 2; i, j = 1, 2, 3.

There is two different geometric configurations. Here, we deal with the case of adjacent triangles. We detail the
formula for the evaluation of the expressions (28). In the case triangles have a common vertex, there no real
additional difficulty. We can apply the same techniques.

Since the basis functions is affine, the integrant is no longer homogeneous, so we are led to decompose these
into a linear part and a constant part by making a change of origin:

(29)
ϕi(x) = 1 + (

−−−→
o− ai|−→ei ) + (

−−−→
x− o|−→ei ) = ϕi(o) + (x|−→ei ); i = 1, 2, 3,

ψj(y) = 1 + (
−−−→
o− bj |

−→
lj ) + (

−−−→
y − o|

−→
lj ) = ψj(o) + (y|

−→
lj ); j = 1, 2, 3.

where o is the new origin, x = x − o and y = y − o. More generally, we note α and S the segment α and the

triangle S after this change of origin. According to 29 we constate that the integrals J i,j must be decomposed
into four integrals whose integrands are homogeneous J i,j

(30)
J i,j =

∫
S×T

(x|−→ei)(y|
−→
lj )(x−y)

||x−y||1+ξ dxdy + ϕi(o)
∫
S×T

(x|−→ei)(y|
−→
lj )(x−y)

||x−y||1+ξ dxdy

+ψj(o)
∫
S×T

(x|−→ei)(x−y)
||x−y||1+ξ dxdy + ψj(o)ϕi(o)

∫
S×T

(x−y)
||x−y||1+ξ dxdy.

Once this decomposition has taken place, we obtain homogeneous integrands we can then apply the reduction
method intermediate of the formulas (18), (20) or (21).

4.1 Three-dimensional reduction
We are dealing with the case of triangles with an edge in common, so there are two common vertices. For the first
reduction, we take for origin one of the common vertices o = ai = bj . Let ai+1 = bj+1 be the second common
vertex and a1+2 ,bj+2 be the remaining vertices. We propose to calculate the integral (28). It will be wise to
choose the vertex ai = bj , as origin o. In this case the basis functions are written

(31) ϕi(x) = 1 + (x|−→ei ), ψj(y) = 1 + (y|
−→
lj )

The four integrands are homogeneous of degrees q = 1− ξ, q = 2− ξ, q = 1− ξ and q = −ξ with n = 4. We apply
the formula (18), it gives the following result

J i,j =
3∑
i=1

γi(ai)

5− ξ

∫
αi×T

(y|
−→
lj )(x− y)

||x− y||1+ξ
dsxdy +

3∑
j=1

δj(bj)

5− ξ

∫
S×βj

(y|
−→
lj )(x− y)

||x− y||1+ξ
dxdsy

+
3∑
i=1

γi(ai)

6− ξ

∫
αi×T

(x|−→ei )(y|
−→
lj )(x− y)

||x− y||1+ξ
dsxdy +

3∑
j=1

δj(bj)

6− ξ

∫
S×βj

(x|−→ei )(y|
−→
lj )(x− y)

||x− y||1+ξ
dxdsy

+
3∑
i=1

γi(ai)

5− ξ

∫
αi×T

(x|−→ei )(x− y)

||x− y||1+ξ
dsxdy +

3∑
j=1

δj(bj)

5− ξ

∫
S×βj

(x|−→ei )(x− y)

||x− y||1+ξ
dxdsy
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(32) +
3∑
i=1

γi(ai)

4− ξ

∫
αi×T

x− y

||x− y||1+ξ
dsxdy +

3∑
j=1

δj(bj)

4− ξ

∫
S×βj

x− y

||x− y||1+ξ
dxdsy .

where γi(x) and δj(y) are the signed distances respectively of x to the support of αi and of y in support of βj
(see Figure 4).
In particular γi(x) = 0 for all x belongs to the support of αi. γi(ai) = gi and δj(bj) = dj are the lengths of the
height from the vertex ai or bj to the support of αi (respectively βj). However the formula is simplified and we
get

(33)

J i,j = gi
5−ξ

∫
αi×T

(y|
−→
lj )(x−y)

||x−y||1+ξ dsxdy +
dj
5−ξ

∫
S×βj

(y|
−→
lj )(x−y)

||x−y||1+ξ dxdsy

+ gi
6−ξ

∫
αi×T

(x|−→ei)(y|
−→
lj )(x−y)

||x−y||1+ξ dsxdy +
dj
6−ξ

∫
S×βj

(x|−→ei)(y|
−→
lj )(x−y)

||x−y||1+ξ dxdsy

+ gi
5−ξ

∫
αi×T

(x|−→ei)(x−y)
||x−y||1+ξ dsxdy +

dj
5−ξ

∫
S×βj

(x|−→ei)(x−y)
||x−y||1+ξ dxdsy

+ gi
4−ξ

∫
αi×T

x−y
||x−y||1+ξ dsxdy +

dj
4−ξ

∫
S×βj

x−y
||x−y||1+ξ dxdsy .

We express the results in terms of ϕi and ψj in order to benefit the best of the properties (94) of the basic
functions.

(x|−→ei ) = ϕi(x)− 1, (y|
−→
lj ) = ψj(y)− 1

we obtain

J i,j = gi
5−ξ

∫
αi×T

ψj(y)(x−y)
||x−y||1+ξ dsxdy −

gi
5−ξ

∫
αi×T

(x−y)
||x−y||1+ξ dsxdy

+
dj
5−ξ

∫
S×βj

ψj(y)(x−y)
||x−y||1+ξ dxdsy − dj

5−ξ
∫
S×βj

(x−y)
||x−y||1+ξ dxdsy + gi

6−ξ
∫
αi×T

ϕi(x)ψ(y)(x−y)
||x−y||1+ξ dsxdy

− gi
6−ξ

∫
αi×T

ϕi(x)(x−y)
||x−y||1+ξ dsxdy −

gi
6−ξ

∫
αi×T

ψj(y)(x−y)
||x−y||1+ξ dsxdy +

gi
6−ξ

∫
αi×T

(x−y)
||x−y||1+ξ dsxdy

+
dj
6−ξ

∫
S×βj

ϕi(x)ψ(y)(x−y)
||x−y||1+ξ dxdsy − dj

6−ξ
∫
S×βj

ϕi(x)(x−y)
||x−y||1+ξ dxdsy − dj

6−ξ
∫
S×βj

ψj(y)(x−y)
||x−y||1+ξ dxdsy

+
dj
6−ξ

∫
S×βj

(x−y)
||x−y||1+ξ dxdsy + gi

5−ξ
∫
αi×T

ϕi(x)(x−y)
||x−y||1+ξ dsxdy −

gi
5−ξ

∫
αi×T

(x−y)
||x−y||1+ξ dsxdy

+
dj
5−ξ

∫
S×βj

ϕi(x)(x−y)
||x−y||1+ξ dxdsy − dj

5−ξ
∫
S×βj

(x−y)
||x−y||1+ξ dxdsy + gi

4−ξ
∫
αi×T

x−y
||x−y||1+ξ dsxdy

+
dj
4−ξ

∫
S×βj

x−y
||x−y||1+ξ dxdsy .

There are terms that vanish because of the fact that ϕi|αi
= ψi|βj = 0.

We have integrals in three dimensions we reapply the procedure to reduce dimention to two. The integrands are
no more homogeneous. It is possible to continue the reduction by taking the second common vertex as the origin
a2 = b2 = o. We reexpress the basis function as in (31) and we obtain

ϕi(x) = ϕi(ai+1) + (x|−→ei ) = (x|−→ei ); ψj(x) = ψj(bj+1) + (y|
−→
lj ) = (y|

−→
lj )

Finally, we get

J i,j = (
|S|
5−ξ − |S|

6−ξ )
2

4−ξP
ψj (ai+2, T, ξ) + ( gi

5−ξ − gi
6−ξ )

dj+1

4−ξ Q(α, βj+1, ξ)

+(
|S|
6−ξ − 2

|S|
5−ξ +

|S|
4−ξ )

2
3−ξP (ai+2, T, ξ) + ( gi

6−ξ − 2 gi
5−ξ + gi

4−ξ )
dj+1

3−ξ Q(αi, βj+1, ξ)

−(
|T |
5−ξ − |T |

6−ξ )
2

4−ξP
ϕi (bj+2, S, ξ)− ( d1

5−ξ − dj
6−ξ )

gi+1

4−ξ Q
1,ϕi (βj , αi+1, ξ)

−(
|S|
6−ξ − |S|

5−ξ )
2

4−ξP (bj+2, S, ξ) + (
dj
4−ξ +

dj
6−ξ − dj

5−ξ )
gi+1

4−ξ Q(αi+1, βj , ξ),

where

P (a, T, ξ) =

∫
T

(a− y)

||a− y||1+ξ
dsxdsy, Q(αi, βj , ξ) =

∫
αi×βj

(x− y)

||x− y||1+ξ
dsxdsy ,

Pψq (a, T, ξ) =

∫
T

ψq(y)(a− y)

||a− y||1+ξ
dy, Q1,ψq (αi, βj , ξ) =

∫
αi×βj

ψq(y)(x− y)

||x− y||1+ξ
dsxdsy .

We give also the other terms calculated with the same procedure:

(34)

J i,j+1 = P (ai+2, T, ξ)(
2|S|

(5−ξ)(3−ξ) − 2|S|
(5−ξ)(4−ξ) − 2|S|

(6−ξ)(3−ξ) +
2|S|

(6−ξ)(4−ξ) )

+P (bj+2, S, ξ)(− 2|T |
(5−ξ)(3−ξ) +

2|T |
(5−ξ)(4−ξ) +

2|T |
(6−ξ)(3−ξ) − 2|T |

(6−ξ)(4−ξ) )

+Q(αi, βi+1, ξ)(
gidj+1

(5−ξ)(3−ξ) − gidj+1

(5−ξ)(4−ξ) − gidj+1

(6−ξ)(3−ξ) +
gidj+1

(6−ξ)(4−ξ) )

+Q(αi+1, βj , ξ)(
djgi+1

(5−ξ)(3−ξ) − djgi+1

(6−ξ)(3−ξ) +
djgi+1

(6−ξ)(4−ξ) − djgi+1

(5−ξ)(4−ξ) )

+Q1,ψj+1 (αi+1, βj , ξ)(
djgi+1

(5−ξ)(4−ξ) − djgi+1

(6−ξ)(4−ξ) ) + Pψj+1 (ai+2, T, ξ)(
2|S|

(5−ξ)(4−ξ) − 2|S|
(6−ξ)(4−ξ) )

−Q1,ϕi (βj , αi+1, ξ)(
djgi+1

(6−ξ)(4−ξ) − djgi+1

(6−ξ)(5−ξ) ) + Pϕi (bj+2, S, ξ)(− 2|T |
(6−ξ)(4−ξ) +

2|T |
(6−ξ)(5−ξ) )

+Qϕi,ψj+1 (αi+1, βj , ξ)(
djgi+1

(6−ξ)(5−ξ) ),
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where

(35) Qϕp,ψq (αi, βj , ξ) =

∫
αi×βj

ϕp(x)ψq(y)(y − x)

||x− y||1+ξ
dsxdsy ,

(36)

J i,j+2 = P (bj+2, S, ξ)(− 2|T |
(5−ξ)(4−ξ) +

2|T |
(6−ξ)(4−ξ) )− Pϕi (bj+2, S, ξ)(

2|T |
(6−ξ)(5−ξ) )

+Pψj+2 (ai+2, T, ξ)(
2|S|

(5−ξ)(4−ξ) − 2|S|
(6−ξ)(4−ξ) ) +Q1,ψj+2 (αi, βi+1, ξ)(

dj+1gi
(5−ξ)(4−ξ) − dj+1gi

(6−ξ)(4−ξ) )

+Q1,ψj+2 (αi+1, βj , ξ)(
djgi+1

(5−ξ)(4−ξ) − djgi+1

(6−ξ)(4−ξ) ) +Qϕi,ψj+2 (αi+1, βj , ξ)(
djgi+1

(6−ξ)(5−ξ) ),

(37)

J i+1,j+1 = P (ai+2, T, ξ)(
2|S|

(6−ξ)(3−ξ) − 4|S|
(6−ξ)(4−ξ) +

2|S|
(5−ξ)(6−ξ) ) + Pψj+1 (ai+2, T, ξ)(

2|S|
(6−ξ)(4−ξ) − 2|S|

(6−ξ)(5−ξ) )

+Q(αi, βi+1, ξ)(
gidj+1

(6−ξ)(3−ξ) − 2gidj+1

(6−ξ)(4−ξ) +
gidj+1

(6−ξ)(5−ξ) ) +Q1,ϕi+1 (βi+1, αi, ξ)(−
dj+1gi

(6−ξ)(4−ξ) +
dj+1gi

(6−ξ)(5−ξ) )

+P (bj+2, S, ξ)(− 2|T |
(6−ξ)(3−ξ) +

4|T |
(6−ξ)(4−ξ) − 2|T |

(6−ξ)(5−ξ) ) + Pϕi+1 (bj+2, S, ξ)(
2|T |

(6−ξ)(5−ξ) − 2|T |
(6−ξ)(4−ξ) )

+Q(αi+1, βj , ξ)(
djgi+1

(6−ξ)(3−ξ) − 2djgi+1

(6−ξ)(4−ξ) +
djgi+1

(6−ξ)(5−ξ) ) +Q1,ψj+1 (αi+1, βj , ξ)(−
djgi+1

(6−ξ)(5−ξ) +
djgi+1

(6−ξ)(4−ξ) ),

(38)

J i+1,j+2 = P (bj+2, S, ξ)(
2|T |

(6−ξ)(5−ξ) − 2|T |
(6−ξ)(4−ξ) ) + Pψj+2 (ai+2, T, ξ)(

2|S|
(6−ξ)(4−ξ) − 2|S|

(6−ξ)(5−ξ) )

+Pϕi+1 (bj+2, S, ξ)(− 2|T |
(6−ξ)(5−ξ) ) +Q1,ψj+2 (αi, βi+1, ξ)(

dj+1gi
(6−ξ)(4−ξ) − dj+1gi

(6−ξ)(5−ξ) )

+Q1,ψj+2 (αi+1, βj , ξ)(
djgi+1

(6−ξ)(4−ξ) − djgi+1

(6−ξ)(5−ξ) ) +Qϕi+1,ψj+2 (αi, βi+1, ξ)(
dj+1gi

(6−ξ)(5−ξ) ),

and

(39)
J i+2,j+2 = Pψj+2 (ai+2, T, ξ)(

2|S|
(6−ξ)(5−ξ) ) + Pϕi+2 (bj+2, S, ξ)(− 2|T |

(6−ξ)(5−ξ) )

+Qϕi+2,ψj+2 (αi, βi+1, ξ)(
dj+1gi

(6−ξ)(5−ξ) ) +Qϕi+2,ψj+2 (αi+1, βj , ξ)(
djgi+1

(6−ξ)(5−ξ) ).

We can also give the symmetrical terms:

(40)

J i+1,j = P (ai+2, T, ξ)(
2|S|

(5−ξ)(3−ξ) − 2|S|
(5−ξ)(4−ξ) − 2|S|

(6−ξ)(3−ξ) +
2|S|

(6−ξ)(4−ξ) )

+P (bj+2, S, ξ)(− 2|T |
(5−ξ)(3−ξ) +

2|T |
(5−ξ)(4−ξ) +

2|T |
(6−ξ)(3−ξ) − 2|T |

(6−ξ)(4−ξ) )

+Q(αi, βi+1, ξ)(
gidj+1

(5−ξ)(3−ξ) − gidj+1

(5−ξ)(4−ξ) − gidj+1

(6−ξ)(3−ξ) +
gidj+1

(6−ξ)(4−ξ) )

+Q(αi+1, βj , ξ)(
djgi+1

(5−ξ)(3−ξ) − djgi+1

(6−ξ)(3−ξ) +
djgi+1

(6−ξ)(4−ξ) − djgi+1

(5−ξ)(4−ξ) )

+Q1,ψj (αi, βi+1, ξ)(
dj+1gi

(6−ξ)(4−ξ) − dj+1gi
(6−ξ)(5−ξ) )−Q1,ϕi+1 (βi+1, αi, ξ)(

djgi+1

(5−ξ)(4−ξ) − djgi+1

(6−ξ)(4−ξ) )

+Pψj (ai+2, T, ξ)(
2|S|

(6−ξ)(4−ξ) − 2|S|
(6−ξ)(5−ξ) ) + Pϕi+1 (bj+2, S, ξ)(− 2|T |

(5−ξ)(4−ξ) +
2|T |

(6−ξ)(4−ξ) )

+Qϕi+1,ψj (αi, βi+1, ξ)(
dj+1gi

(6−ξ)(5−ξ) ),

(41)

J i+2,j = P (ai+2, T, ξ)(
2|S|

(5−ξ)(4−ξ) − 2|S|
(6−ξ)(4−ξ) ) + Pϕi+2 (bj+2, S, ξ)(

2|T |
(6−ξ)(4−ξ) − 2|T |

(4−ξ)(4−ξ) )

+Pψj (ai+2, T, ξ)(
2|S|

(5−ξ)(6−ξ) ) +Q1,ϕi+2 (βj , αi+1, ξ)(
djgi+1

(6−ξ)(4−ξ) − djgi+1

(5−ξ)(4−ξ) )

+Q1,ϕi+2 (βi+1, αi, ξ)(
dj+1gi

(6−ξ)(4−ξ) − dj+1gi
(5−ξ)(4−ξ) ) +Qϕi+2,ψj (αi, βi+1, ξ)(

dj+1gi
(6−ξ)(5−ξ) ),

and

(42)

J i+2,j+1 = P (ai+2, T, ξ)(
2|S|

(6−ξ)(4−ξ) − 2|S|
(6−ξ)(5−ξ) ) + Pϕi+2 (bj+2, S, ξ)(

2|T |
(6−ξ)(5−ξ) − 2|T |

(6−ξ)(4−ξ) )

+Pψj+1 (ai+2, T, ξ)(
2|S|

(6−ξ)(5−ξ) ) +Q1,ϕi+2 (βi+1, αi, ξ)(
dj+1gi

(6−ξ)(5−ξ) − dj+1gi
(6−ξ)(4−ξ) )

+Q1,ϕi+2 (βj , αi+1, ξ)(−
djgi+1

(6−ξ)(4−ξ) +
djgi+1

(6−ξ)(5−ξ) ) +Qϕi+2,ψj+1 (αi+1, βj , ξ)(
djgi+1

(6−ξ)(5−ξ) ).

4.2 Reduction to mono-dimentional integrals

4.2.1 Calculation of P (a, T, ξ)

we will evaluate 43

(43) P (a, T, ξ) =

∫
T

(a− y)

||a− y||1+ξ
dsxdsy ,

with a = ai+2

• Case a don’t belongs to the support of T
In this case the reduction formulas are not usable. In order to operate the reduction, it is necessary to break
P into two parts.

(44) P (a, T, ξ) =

∫
T

(a− â)

(h2 + ||â− y||2)
1+ξ
2

dsxdsy +

∫
T

(â− y)

(h2 + ||â− y||2)
1+ξ
2

dsxdsy
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where â is the projection of a into the support of T and h is the distance h = |a − â|. Taking â as a new
origin we obtain homogeneous integrands of degrees −1− ξ and −ξ with parameter h. We can then apply
the formula (20) which gives

(45) P (a, T, ξ) = (a− â)
3∑
j=1

δj(â)S1(â, βj , h, ξ) +
3∑
j=1

δj(â)R2(â, βj , h, ξ),

where S1 and R2 are defined by

(46) S1(a, β, h, ξ) =

∫
β
h1−ξ

∫ +∞

h

du

u2−ξ(u2 + ||a− y||2)
1+ξ
2

dsy =

∫
β
f1(h, ||a− y||, ξ),

and

(47) R2(a, β, h, ξ) =

∫
β
(a− y)h2−ξ

∫ +∞

h

du

u3−ξ(u2 + ||a− y||2)
1+ξ
2

dsy =

∫
β
(a− y)f2(h, ||a− y||, ξ),

where

(48) fn(h, s, ξ) = hn−ξ
∫ +∞

h

du

un+1−ξ(u2 + s2)
1+ξ
2

.

S1(a, β, h, ξ) and R2(a, β, h, ξ) are calculated in (6.3) and (6.5).

• Case a belongs to the support of T
Since a belongs to the support of T we can consider a as an origin and get homogeneous integrant with
q = −ξ and n = 2 but we must distingue two different cases in order to apply the suitable reduction formula.

* If n+ q = 0, we apply (21) and we get

(49) P (a, T, ξ) =
3∑
j=1

δj

2− ξ
L(a, βj),

where

(50) L(a, βj) =
∫
βj

a− y

||a− y||3
ln(||a− y||)dsy.

* If n+ q ̸= 0, we apply (18) and we obtain

(51) P (a, T, ξ) =

3∑
j=1

δj

2− ξ
S(a, β, h, ξ)),

where

(52) S(a, β, ξ) =

∫
β

a− y

||a− y||1+ξ
dsy .

See appendix (6.2).

4.2.2 Calculation of Q(α, β, ξ)

Here we deal with

(53) Q(αi, βj , ξ) =

∫
αi×βj

(x− y)

||x− y||1+ξ
dsxdsy .

We distinguish two cases.

• Case α and β are neither parallel nor secants
First of all, we must find a new origin to ensure homogeneity of the integrand. Let α̌ be the projection of
α on the plane parallel to α going through β and let o be the intersection of α̌ with β. We will consider o
as a new origin. Define z = ǎ − a and h = ||z||. We express Q as a sum of two integrals whose integrands
are homogeneous of degrees q = −1− ξ and −ξ.

(54) Q(α, β, ξ) =

∫
α̌×β

(x− x̌)

(h2 + ||x̌− y||2)
1+ξ
2

dsxdsy +

∫
α̌×β

(x̌− y)

(h2 + ||x̌− y||2)
1+ξ
2

dsxdsy ,

where x̌ is a point α̌. This decomposition allows us to apply the formula (20) and gives

Q(α, β, ξ) = (x− x̌)[
∑
k=±

kskS1(ǎ
k, β, h, ξ) +

∑
l=±

ltlS1(b
l, α̌, h, ξ)]

(55) + [
∑
k=±

kskR2(ǎ
k, β, h, ξ)−

∑
l=±

ltlR2(a, β, h, ξ)],

where the abscissae are evaluated by sk = (ăk − o| α⃗|α| ) and tl = (bl − o| β⃗|β| ).
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• Case α and β are secants
Let o = α ∩ β be the new origin. Note that can be o = ai+1 = bj+1 or o = ai+2 = bj+2. In this case the
integrand is homogeneous of degree q = −ξ and n = 2. We must distinguish two cases:

* If q + n ̸= 0, the formula (18) gives

(56) Q(α, β, 0) =
∑
k=±

ksk

2
S(ak, β, 0)−

∑
l=±

ltl

2
S(bl, α, 0).

* If q + n = 0, we apply (21) and we get

(57) Q(α, β, 2) =
∑
k=±

kskL(ak, β)−
∑
l=±

ltlL(bl, α).

• Case α and β are parallel

When the supports of α and β are parallel, we must use the second formula (20), called with parameter.
This is possible by orthogonally projecting one of the segments (we choose β) on the support of the other
(α). Thus, the distance d between the supports of the two segments, appears and plays the role of the
parameter. Let β̃ and ỹ, be the respective orthogonal projections of β and y on the support of α, z⃗ = ỹ− y
and d = ||ỹ − y|| the distance from α to the support of β. Then, the integral Q(α, β, ξ) becomes

(58) Q(α, β, ξ) = z⃗

∫
α×β̃

1

(d2 + ||x− ỹ||2)
1+ξ
2

dsxdsỹ +

∫
α×β̃

(x− ỹ)

(d2 + ||x− ỹ||2)
1+ξ
2

dsxdsỹ .

Taking any point of α as a new origine, for exemple one of the two vertices of the triangle a− and a+, we
get two homogeneous integrands with parameter d and degrees q = −1− ξ respectively q = −ξ.
(59)

Q(α, β, ξ) = z⃗[s+
∫
β̃
d1−ξ

∫ +∞

d

du

u2−ξ(u2 + ||a+ − ỹ||2)
1
2

dsỹ +
∑
l=±

ltl
∫
α
d1−ξ

∫ +∞

d

du

u2−ξ(u2 + ||x− b̃l||2)
1
2

dsx]

+s+
∫
β̃
d2−ξ(a+ − y)

∫ +∞

d

du

u3−ξ(u2 + ||a+ − y||2)
1
2

dsỹ +
∑
l=±

ltl
∫
α
d2−ξ(x− b̃l)

∫ +∞

d

du

u3−ξ(u2 + ||x− b̃l||2)
1
2

dsx,

which is equivalent to

(60) Q(α, β, ξ) =
∑
l=±

ltl[z⃗S1(b̃
l, β, d, ξ)−R2(b̃

l, β, h, ξ)] + s+[S1(a
+, β̃, d, ξ) +R2(a

+, β̃, d, ξ)].

4.2.3 Calculation of Pψq (a, T, ξ)

To calculate the singular integral

(61) Pψq (a, T, ξ) =

∫
T

ψq(y)(a− y)

||a− y||1+ξ
dy.

we are inspired by the section (4.2.1). There are two different geometrical cases.

• Case a don’t belongs to the support of T
Note that a = ai+2 is a vetex of S. To maintain the homogeneity of the integrands the origin must belongs
to the support of the triangle T . So we consider â the projection of a on the support of T (see Figure ??)
and we break Pψq (a, T, ξ) into two parts

(62) Pψq (a, T, ξ) = (a− â)

∫
T

ψq(y)

(h2 + ||â− y||2)
1+ξ
2

dy +

∫
T

ψq(y)(â− y)

(h2 + ||â− y||2)1+ξ
,

where h = |a− â| and ξ = 0, 2. Next, we express ψq(y) with the new origin o = â,

ψq(y) = ψq(â) + (y|lq),
which gives

Pψq (a, T, ξ) = (a− â)[ψq(â)

∫
T

1

(h2 + ||â− y||2)
1+ξ
2

dy +

∫
T

(y|lq)

(h2 + ||â− y||2)
1+ξ
2

dy]

(63) + ψq(â)

∫
T

(â− y)

(h2 + ||â− y||2)
1+ξ
2

dy +

∫
T

(y|lq)(â− y)

(h2 + ||â− y||2)
1+ξ
2

dy.

We notice that the four intergrands are homogeneous with parameter h and degrees (respectively) q =
−1− ξ, q = −ξ, q = −ξ and q = 1− ξ. We can then apply (20) and we obtain

(64)

Pψq (a, T, ξ) = (a− â)ψq(â)
∑3
j=1 δj(â)

∫
βj
h1−ξ

∫+∞
h

du

u2−ξ(u2+||â−y||2)
1+ξ
2

dy

+(a− â)
∑3
j=1 δj(â)

∫
βj
h2−ξ(y|lq) du

u3−ξ(u2+||â−y||2)
1+ξ
2

dy

+ψq(â)
∑3
j=1 δj(â)

∫
βj
h2−ξ(â− y)

∫+∞
h

du

u3−ξ(u2+||â−y||2)
1+ξ
2

dy

+
∑3
j=1 δj(â)

∫
βj
h3−ξ(y|lq)(â− y)

∫+∞
h

du

u4−ξ(u2+||â−y||2)
1+ξ
2

dy.
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To simplify the formula, we express the basic functions in this form (y|lq) = ψq(y) − ψq(â) and we delete
the terms that vanish, thanks to (94)

(65)

Pψq (a, T, ξ) = (a− â)ψq(â)
∑3
j=1 δj(â)

∫
βj
f1(h, ||â− y||, ξ)− f2(h, â− y, ξ)dsy

+(a− â)[δq+1(â)
∫
βq+1

ψq(y)f2(h, â− y, ξ)dsy + δq+2(â)
∫
βq+2

ψq(y)f2(h, â− y, ξ)dsy ]

+ψq(â)
∑3
j=1 δj(â)

∫
βj

(â− y)(f2(h, ||â− y||, ξ)− f3(h, â− y, ξ))dsy

+δq+1(â)
∫
βq+1

ψq(y)(â− y)f3(h, ||â− y||, ξ)dsy + δq+2(â)
∫
βq+2

ψq(y)(â− y)f3(h, â− y, ξ)dsy.

otherwise we can write

(66)

Pψq (a, T, ξ) = (a− â)ψq(â)
∑3
j=1 δj(â)(S1(â, β, h, ξ)− S2(â, β, h, ξ))

+(a− â)[δq+1(â)S
ψq

2 (â, βq+1, h, ξ) + δq+2(â)S
ψq

2 (â, βq+2, h, ξ)]

+ψq(â)
∑3
j=1 δj(â)R2(â, βj , h, ξ)−R3(â, βj , h, ξ)

+δq+1(â)D
ψq

3 (â, βq+1, h, ξ) + δq+2(â)D
ψq

3 (â, βq+2, h, ξ),

where

(67) D
ψq
n (a, βp, h, ξ) = δq+1(a)

∫
βp

ψκ(y)(a− y)fn(h, a− y, ξ)dsy .

• Case a belongs to the support of T
It suffices to consider a as origin to have homogeneity . Since o = a is the new origin, ψq(y) can be written

ψq(y) = ψq(a) + (y|lq).
We obtain

(68) Pψq (a, T, ξ) = ψq(a)

∫
T

(a− y)

||a− y||1+ξ
dy +

∫
T

(y|lq)(a− y)

||a− y||1+ξ
dy.

Integrands are homogeneous of degrees q = −ξ and q = 1− ξ. We apply (18) and we get

(69) Pψq (a, T, ξ) = ψq(a)
3∑
j=1

δj(a)

2− ξ

∫
βj

(a− y)

||a− y||1+ξ
dsy +

3∑
j=1

δj(a)

3− ξ

∫
βj

(y|lq)(a− y)

||a− y||1+ξ
dy.

We replace (y|lq) by (y|lq) = ψq(y)− ψq(a), the we get

Pψq (a, T, ξ) = ψq(a)
3∑
j=1

δj(a)

2− ξ

∫
βj

(a− y)

||a− y||1+ξ
dsy .

(70) +

3∑
j=1

δj(a)

3− ξ

∫
βj

ψq(y)(a− y)

||a− y||1+ξ
dsy − ψq(a)

3∑
j=1

δj(a)

3− ξ

∫
βj

(a− y)

||a− y||1+ξ
dsy,

which is equivalent to

(71) Pψq (a, T, ξ) =
3∑
j=1

δj(a)

3− ξ
Sψq (a, βj , ξ) + ψq(a)

3∑
j=1

[
δj(a)

2− ξ
S(a, βj , ξ)−

δj(a)

3− ξ
S(a, βj , ξ)].

4.2.4 Calculation of Q1,ψq (α, β, ξ)

We want to evaluate the singular integral

(72) Q1,ψq (αi, βj , ξ) =

∫
αi×βj

ψq(y)(x− y)

||x− y||1+ξ
dsxdsy,

where β ̸= α ̸= αi+2, β ̸= βi+2 ̸= βq . We are going to study two different cases.

• Case α and β are neither parallel nor secants
Let α̌ be the projection of α on the plane containing β and parallel to α, x̌ a point in α̌, h = |a − ǎ| and
z⃗ = x− x̌. We decompose Q1,ψq in two parts

(73) Q1,ψq (α, β, ξ) = z⃗

∫
α̌×β

ψq(y)

(h2 + ||x̌− y||2)
1+ξ
2

dsx̌dsy +

∫
α̌×β

ψq(y)(x̌− y)

(h2 + ||x̌− y||2)
1+ξ
2

dsx̌dsy .

We will follow the same approach as previously. We consider o = α̌∩β the new origin and we replace in the
equation (73) the basic function ψq(y) by the equivalent expression

ψq(y) = ψq(o) + (y|lq).
Once we have homogeneous integrands, the reduction formula (20) gives

Q1,ψq (α, β, ξ) = ψq(o)[
∑
k=± kskR2(âk, β, h, ||âk − y||, ξ)−R2(bl, α, h, ||x̂− bl||, ξ)]

+
∑
k=± ksk[D

ψq

3 (âk, βj , ||âk − y||, ξ)− ψq(o)R3(âk, β, ||âk − y||, ξ)]
+

∑
l=± lt

l[(−ψq(bl) + ψq(o))R3(bl, α, ||x̂− bl||, ξ)]
+z⃗ψq(o)[

∑
k=± ks

kS1(âk, β, h, ξ) +
∑
l=± lt

lS1(b̂l, α, h, ξ)]

+z⃗
∑
k=± ks

k[S
ψq

2 (âk, β, h, ||âk − y||, ξ)− ψq(o)S2(âk, β, h, ||âk − y||, ξ)]
+z⃗

∑
l=± ltl[(ψq(bl)− ψq(o))S2(bl, α̂, h, ||x̂− bl||, ξ)].
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• Case α and β are secants
Let o = α ∩ β be the new origin. The basis function ψq(y) can be expressed as following

ψq(y) = ψq(o) + (y|lq),

which gives

(74) Q1,ψq (α, β, ξ) = ψq(o)

∫
α×β

(x− y)

||x− y||1+ξ
dsxdsy +

∫
α×β

(y|lq)(x− y)

||x− y||1+ξ
dsxdsy

The integrants are homogeneous of degrees q = −ξ and q = 1− ξ with n = 2.

* If q + n ̸= 0 the formula (18) gives

Q1,ψq (α, β, ξ) = ψq(o)[
∑
k=±

ksk

2
S(ak, β, 0)−

∑
l=±

ltl

2
S(bl, α, 0)] +

∑
k=±

ksk

3
Sψq(y)(ak, β, 0)

(75) − ψq(o)
∑
k=±

ksk

3
S(ak, β, 0)−

∑
l=±

ltl

3
(ψq(b

l)− ψq(o))S(b
l, α, 0),

where

(76) Sψq(y)(ak, β, 0) =

∫
β

ψq(y)(ak − y)

||ak − y||
dsy.

* If q + n = 0 it will be appropriate to apply the formula (21), which leads us to this expression

Q1,ψq (α, β, ξ) = ψq(o)[
∑
k=±

kskL(ak, β)−
∑
l=±

ltlL(bl, α)] +
∑
k=±

kskLψq (ak, β)

(77) −
∑
k=±

kskψq(o)L(a
k, β)−

∑
l=±

ltl(ψq(b
l)− ψq(o))L(b

l, α),

where

(78) Lψq (ak, β) =

∫
β

ψq(y)(ak − y)

||ak − y||3
dsy .

4.2.5 Calculation of Qϕp,ψq (α, β, ξ)

Here we deal with the singular integral

(79) Qϕp,ψq (α, β, ξ) =

∫
α×β

ϕp(x)ψq(y)(y − x)

||x− y||1+ξ
dsxdsy .

• Intersecting triangles
We project α on the plan parallel to α and going through β. Let α̂ be the projection of α and x̂ the
projection of x. Then, we provide an equivalent expression of the basis functions:

(80) ϕp(x) = 1 + µ
(x− ap|α⃗)

|α|2
= 1 + µ

(x̂− âp|⃗̂α)
|α|2

,

(81) ψq(y) = 1 + ν
(y − bq)|β⃗

|β|2
,

where µ = ±1(µ = 1 if ap = a+ and µ = −1 if ap = a−). Likewise, ν = ±1(ν = 1 if bp = b+ and ν = −1 if
bp = b−). We choose the intersection of the supports of α̂ and β, as origin and we note it o. we obtain :

ϕp(x) = 1 + µ
(o− âp|α⃗)

|α|2
+ µ

(x̂− o|α⃗)
|α|2

(82) = Cp + µ
(x̂− o)

⃗̂α
,

ψq(y) = 1 + ν
(o− bq |β⃗)

|β|2
+ ν

(y − o|β⃗)
|β|2

(83) = Cq + µ
(y − o|β⃗)

|β|2

where Cp = 1 + µ
(o−âp)|α⃗

|α|2 and Cq = 1 + ν
(o−bq)|β⃗

|β|2 Then the expression of Qϕp,ψq becomes



13

Qϕp,ψq (α, β, ξ) = CqCq

∫
α̂×β

(x̂− y)

(h2 + ||x̂− y||2)
1+ξ
2

dsx̂dsy +
Cpν

|β|2

∫
α̂×β

(y − o|β⃗)(x̂− y)

(h2 + ||x̂− y||2)
1+ξ
2

dsx̂dsy

(84) +
Cqµ

|α|2

∫
α̂×β

(x̂− o|α⃗)(x̂− y)

(h2 + ||x̂− y||2)
1+ξ
2

dsx̂dsy +
µµ

|α̂|2|β|2

∫
α̂×β

(y − o|β⃗)(x̂− o|α⃗)(x̂− y)

(h2 + ||x̂− y||2)
1+ξ
2

dsx̂dsy.

In the formula below the integrands are homogeneous with variable h and of degrees q = −ξ, q = 1 − ξ,
1− ξ and 2− ξ. Formula (20) gives

(85)

Qϕp,ψq (α, β, ξ) = CpCq [
∑
k=± kŝ

k
∫
β(â

k − y)h2−ξ
∫+∞
h

du

u3−ξ(u2+||âk−y||2)
1+ξ
2

dsy

+
∑
l=± lt̂l

∫
α̂(x̂− bl)h2−ξ

∫+∞
h

du

u3−ξ(u2+||x̂−bl||2)
1+ξ
2

dsx]

+
Cpν

|β|2 [
∑
k=± kŝ

k
∫
β(y − o|β⃗)(âk − y)h3−ξ

∫+∞
h

du

u4−ξ(u2+||âk−y||2)
1+ξ
2

dsy

+
∑
l=± lt̂l

∫
α̂(b

l − o|α⃗)(x̂− bl)h3−ξ
∫+∞
h

du

u4−ξ(u2+||x̂−bl||2)
1+ξ
2

dsx]

+
Cqµ

|α|2 [
∑
k=± kŝk

∫
β(â

k − o|α⃗)(âk − y)h3−ξ
∫+∞
h

du

u4−ξ(u2+||âk−y||2)
1+ξ
2

dsy

+
∑
l=± lt̂l

∫
α̂(x̂− o|α⃗)(x̂− bl)h3−ξ

∫+∞
h

du

u4−ξ(u2+||x̂−bl||2)
1+ξ
2

dsx]

+ νµ
|α|2|β|2 [

∑
k=± kŝk

∫
β(â

k − o|α⃗)(y − o|β⃗)(âk − y)h4−ξ
∫+∞
h

du

u5−ξ(u2+||âk−y||2)
1+ξ
2

dsy

+
∑
l=± lt̂l

∫
α̂(x̂− o|α⃗)(b̂l − o|α⃗)(x̂− bl)h4−ξ

∫+∞
h

du

u5−ξ(u2+||x̂−bl||2)
1+ξ
2

dsx],

which is equivalent to

(86)

Qϕp,ψq (α, β, ξ) = CpCq [
∑
k=± kŝkR2(âk, β, h, ξ)ξ −

∑
l=± lt̂

lR2(bl, α̂, h, ξ)]

+
∑
k=± kŝk[

Cqµ

|α|2 (â
k − o|α⃗)R3(âk, β, h, ξ) +

Cpν

|β|2 M3(âk, o, β, h, ξ)]

+
∑
l=± lt̂

l[−Cpν

|β|2 (b
l − o|β⃗)R3(bl, α̂, h, ξ)−

Cqµ

|α|2M3(bl, o, α, h, ξ)]

+ νµ
|α|2|β|2 [

∑
k=± kŝ

k(âk − o|α⃗)M4(âk, o, β, h, ξ)−
∑
l=± lt̂l(bl − o|β⃗)M4(bl, o, α, h, ξ)].

where

(87) M3(â
k, o, β, h, ξ) =

∫
β
(âk − o|α⃗)(âk − y)f3(h, ||âk − y||, ξ)dsy .

(88) M4(â
k, o, β, h, ξ) =

∫
β
(a− o|α⃗)(a− y)f4(h, ||âk − y||, ξ)dsy.

• Coplanar triangles

As we saw in section (4.2.2), we need to distinguish two geometrical configurations for the supports of the
sides α and β.
Two intersecting segments
When the supports of α and β are intersecting, we choose the intersection of the supports, denoted o, as
the origin. Then we use the same decompositions as (82) and (83).

(89) ϕp(y) = Cp + µ
(x− o|α⃗)

|α|2
ψq(y) = Cq + µ

(y − o|β⃗)
|β|2

.

In case ξ − 2 ̸= 0:
If we combine (89) with (18) we obtain

(90)

Qϕp,ψq (α, β, 0) =
CpCq

2
[
∑
k=± ks

kS(ak, β, 0)−
∑
l=± lt

lS(bl, α, 0]

+
Cpµ

3|β|2 [
∑
k=± kskN(ak, o, β, 0)−

∑
l=± lt

l(bl − o|β⃗)S(bl, α, 0)]
+
Cqν

3|α|2 [
∑
k=± ksk(ak − o|α⃗)S(ak, β, 0)−

∑
l=± lt

lN(bk, o, α, 0)]

+ νµ
4|α|2|β|2

∑
k=± ks

k[(ak − o|α⃗)N(ak, o, β, 0)−
∑
l=± ltl(bl − o|β⃗)N(bk, o, α, 0)].

where

(91) N(ak, o, β, ξ) =

∫
β

(y − o|β⃗)(ak − y)

||ak − y||1+ξ
dsy .
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5 Numerical application

5.1 Calculation of the Radar Cross Section
In radiation theory it’s well known that the energy intercepted by an object can be reflected, transmitted or
absorbed through the target. We can assume that most of the energy is reflected. The spatial distribution of this
energy depends on the size, shape and composition of the target, and on the frequency and nature of the incident
wave. This distribution of energy is called scattering, and the target itself is often referred to as a scatterer. The
radar cross section (RCS) of the body is a measure of the energy scattered in a particular direction for a given
illumination [15].
Bistatic scattering is the name given to the situation when the scattering direction is not back toward the source
of the radiation. If E and H represent fields scattered by an object illuminated by incident plane wave Einc

traveling in the direction of the unit vector k, the bistatic radar cross section in the observation direction r is

σ(r,k) = lim
r→∞

4πr2
|E|2

|Einc|2
.

This cross section is defined as the area through which an incident plane wave carries sufficient power to produce,
by omnidirectional radiation, the same scattered power density as that observed in a given far field direction.
The monostatic radar cross section is defined as the radar cross section observed in the back scattering direction,
σ(−k,k).
Radar cross section is the measure of a target’s ability to reflect radar signals in the direction of the radar receiver,
i.e. it is a measure of the ratio of backscatter power per steradian (unit solid angle) in the direction of the radar
(from the target) to the power density that is intercepted by the target.
The radar cross section of a target can be viewed as a comparison of the strength of the reflected signal from a
target to the reflected signal from a perfectly smooth sphere.
The units for RCS are square meters. As RCS can span a wide range of values, a logarithmic decibel scale is also
used with a typical reference value σref equal to 1m2:

(92) σdBm2 = 10 log10(
σ

σref
)

5.2 Numerical results
To illustrate our approach, we compute the RCS of a unit sphere coated with a thin dielectric layer. The radius of
the inner conductor is denoted by r and the thickness of the coating by d. The material properties are described
by a Leontovich Impedance Z = const.

Z = z0

√
µr

ϵr
tan (

√
µrϵrk0d)

where µr and ϵr denote the magnetic permeability and electical permittivity of the coating. To validate the code,
we test it on a sphere with different sphere-meshes and we compare it with Mie series. We take the sphere’s radius
is 1m and incident waves pulsation ω = 0.9GHz.

In figure (6), we plot the exact RCS calculated by Mie Series(continuous black line) and we compare it with
our code results in different sphere mesh with inner radius r = 0.95 and coating thikness d = 0.05. In 6, the azure
continuous line is the ucp code calculated on the mesh λ/10, red continuous line in our code calculated on the
mesh λ/15 and the blue discontinue line is our code on the mesh λ/20.

In the second test, we decrease the coating thikness to d = 0.125 and we increase the inner sphere radius, for
the same frequence as the previous test. In figure (7), we plot the exact RCS calculated by Mie Series(continuous
black line) the red continuous line is our code calculated on the mesh λ/10, azure continuous line represent our
code calculated on the mesh λ/15 and the blue discontinuous line represent our code on the mesh λ/20

Figure 6: Bistattic RCS for a coated unit sphere,
when d = 0.05, r = 0.95, µr = 1.0, ϵr = 2 and
ω = 0.9GHz

Figure 7: Bistattic RCS for a coated unit sphere,
when d = 0.0125, µr = 1.0, ϵr = 2 and ω = 0.9GHz

In figure 8, we consider a coating thikness d = 0.125, a frequence f = 014313GHz, the same constant for the
magnetic permiability µr = 1.0 and electical permittivity ϵr = 2073.42 . In figure (8), we plot the exact RCS
calculated by Mie Series(continuous red line) and the RCS calculated with our code

6 Appendix

6.1 Barycentric basis function
We begin by presenting the basic functions used and some of their properties that will simplify calculations in the
section 4. Let S be the triangle of vertices ai and side αi. We introduce the basic functions ϕp associated with
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Figure 8: Bistattis RCS for a coated unit sphere

the vertices of the triangle S:

(93) ϕi(x) = 1 + (
−−−−→
x− ai|−→ei ); i = 1, 2, 3

where
e⃗i = µ1

−−→αi+1 + µ2
−−→αi+2

with

µ1 =
||−−→αi+2||2 + (−−→αi+1|−−→αi+2)

||−−→αi+2||2||−−→αi+1||2 − (−−→αi+1|−−→αi+2)2

µ2 = −
||−−→αi+1||2 + (−−→αi+1|−−→αi+2)

||−−→αi+2||2||−−→αi+1||2 − (−−→αi+1|−−→αi+2)2

The basis function ϕi verify ϕi(ai) = 1, ϕi(ai+1) = ϕi(ai+2) = 0 besides

(94) ϕi|αi
= 0, ϕi(x)|αi+1

= 1−
x− ai

|αi+1|
;ϕi(x)|αi+2

= 1−
x− ai

|αi+2|
.

6.2 Calcul of S(a, β, ξ)

(95) S(a, β, ξ) =

∫
β

a− y

||a− y||1+ξ
dsy

Let q(a) be the projection of a on the support of β and d = ||q(a)− a||. Then

(96) S(a, β, ξ) = (a− q(a))

∫ t+

t−

1

(d2 + s2)
1+ξ
2

ds+

∫ t+

t−

s

(d2 + s2)
1+ξ
2

ds

where s is the abscissa on β which will be calculated as follows s = y − q(a) and t± where t± are abscisses of the
extremities of beta with q(a) origin and d = q(a)− a.

6.3 Calcul of S1, S2 and S3

• S1(a, β, h, ξ)

S1(a, β, h, ξ) =

∫
β
f1(h, ||a− y||, ξ)dsy

(97) =

∫
β
h1−ξ

∫ +∞

h

du

u2−ξ(u2 + ||a− y||2)
1+ξ
2

dsy

where fn(h, s, ξ) were be defined in 48. Let q(a) be the projection of a into the support of β, then

(98) S1(a, β, h, ξ) =

∫ t+

t−
h1−ξ

∫ +∞

h

du

u2−ξ(u2 + d2 + s2)
1+ξ
2

dsy

where t± are abscisses of the extremities of beta with q(a) origin and d = q(a)− a.
if ξ = 0

S1(a, β, h, 0) =

∫ t+

t−
h1

∫ +∞

h

du

u2(u2 + d2 + s2)
1
2

dsy

=

∫ t+

t−

√
h2 + d2 + s2 − h

d2 + s2
ds

(99) =

∫ t+

t−

1
√
h2 + d2 + s2 − h

ds

(100) S1(a, β, h, 0) = [
h

s
−

√
h2 + s2

s
+ lg(s+

√
h2 + s2)]t

+

t−
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for ξ = 2

S1(a, β, h, 2) =

∫ t+

t−
h−1

∫ +∞

h

du

(u2 + d2 + s2)
3
2

dsy

=

∫ t+

t−

1

h(d2 + s2)
(1−

h
√
h2 + d2 + s2

)ds

(101) = [
1

dh
arctan(

s

d
)−

1

dh
arctan(

hs

d
√
h2 + d2 + s2

)]t
+

t−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• S2(a, β, h, ξ)

S2(a, β, h, ξ) =

∫
β
f2(h, ||a− y||, ξ)dsy

(102) =

∫
β
h2−ξ

∫ +∞

h

du

u3−ξ(u2 + ||a− y||2)
1+ξ
2

dsy

(103) S2(a, β, h, ξ) =

∫ t+

t−
h2−ξ

∫ +∞

h

du

u3−ξ(u2 + d2 + s2)
1+ξ
2

ds

if ξ = 0

S2(a, β, h, 0) =

∫ t+

t−
h2

∫ +∞

h

du

u3(u2 + d2 + s2)
1
2

ds

(104) [
h2 + d2

2d2
arcsinh(

s
√
h2 + d2

)−
sh2

2d2
√
s2 + d2

arcsinh(

√
d2 + s2

h
)]t

+

t−

for ξ = 2

S2(a, β, h, 2) =

∫ t+

t−

∫ +∞

h

du

u(u2 + d2 + s2)
3
2

ds

=

∫ t+

t−
−

1

(d2 + s2)
√
h2 + d2 + s2

+
1

(d2 + s2)
3
2

arcsinh
(
√
d2 + s2)

h
ds

(105) = [
s

d2(
√
d2 + s2)

arcsinh(

√
d2 + s2

h
)−

1

d2
log(s+

√
d2 + h2 + s2)]t

+

t−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• S3(a, β, h, ξ)

S3(a, β, h, ξ) =

∫
β
f3(h, ||a− y||, ξ)dsy

(106) S3(a, β, h, ξ) =

∫ t+

t−
h3−ξ

∫ +∞

h

du

u4−ξ(u2 + d2 + s2)
1+ξ
2

ds

if ξ = 0

S3(a, β, h, 0) =

∫ t+

t−

2h3 + (
√
d2 + h2 + s2)(d2 + s2 − 2h2)

3(d2 + s2)2
ds

=
1

3
[
h3s− h2s

√
d2 + h2s2

d2(d2 + s2)
+
h3 arctan( s

d
)

d3

(107) −
h3

d3
arctan(

hs

d
√
d2 + h2 + s2

) + lg(s+
√
d2 + h2 + s2)]

if ξ = 2

S3(a, β, h, 2) =

∫ t+

t−

d2 + s2 + 2h2(h−
√
d2 + h2 + s2)

(d2 + s2)2
√
d2 + h2 + s2

ds

(108) = [
s(−h+ s

√
d2 + h2 + s2)

d2(d2 + s2)
−

h

d3
(arctan(

s

d
)− arctan(

hs

d
√
d2 + h2 + s2

))]



17

6.4 Calculation of T1, T2 and T3

• T1(a, β, h, ξ)

(109) T1(a, β, h, ξ) =

∫ t+

t−
sf1(h,

√
d2 + s2, ξ)ds

if ξ = 0

T1(a, β, h, 0) =

∫ t+

t−
sh

∫ +∞

h

du

u2(u2 + ||a− y||2)
1
2

ds

if ξ = 2

T1(a, β, h, 2) =

∫ t+

t−
sh−1

∫ +∞

h

du

(u2 + ||a− y||2)
3
2

ds

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• T2(a, β, h, ξ)

(110) T2(a, β, h, ξ) =

∫ t+

t−
sf2(h,

√
d2 + s2, ξ)ds

if ξ = 0

T1(a, β, h, 0) =

∫ t+

t−
sh2

∫ +∞

h

du

u3(u2 + ||a− y||2)
1
2

dsy

=

∫ t+

t−

s
√
d2 + h2 + s2

2(d2 + s2)
−

sh2

2(d2 + s2)
3
2

arcsinh(

√
d2 + s2

h
)ds

(111) = [

√
d2 + h2 + s2

2
+

h2

2
√
d2 + s2

arcsinh(

√
d2 + s2

h
)]t

+

t−

if ξ = 2

T1(a, β, h, 2) =

∫ t+

t−
s

∫ +∞

h

du

u(u2 + ||a− y||2)
3
2

ds

=

∫ t+

t−
−

s

(d2 + s2)
√
d2 + h2 + s2

+
s

(d2 + s2)
3
2

arcsinh(

√
d2 + s2

h
)ds

(112) [−
1

√
d2 + s2

arcsinh
(
√
d2 + s2

h
)]t

+

t−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
• T3(a, β, h, ξ)

(113) T3(a, β, h, ξ) =

∫ t+

t−
sf3(h,

√
d2 + s2, ξ)ds

if ξ = 0

T3(a, β, h, 0) =

∫ t+

t−

s

3(d2 + s2)2
(
√
d2 + h2 + s2(d2 + s2 − 2h2) + 2h3)ds

(114) [
−h3 + (d2 + h2 + s2) 3

2

3(d2 + s2)
]t

+

t−

if ξ = 2

T3(a, β, h, 2) =

∫ t+

t−

sd2 + s3 + 2sh(h−
√
d2 + h2 + s2)

√
d2 + h2 + s2(d2 + s2)2

(115) [
h−

√
d2 + h2 + s2

d2 + s2
]t

+

t−
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6.5 Calcul of R1, R2 and R3

• R1(a, β, h, ξ)

(116)
R1(a, β, h, ξ) =

∫
β(a− y)f1(h, ||a− y||, ξ)

=
∫
β(a− y)h1−ξ

∫+∞
h

du

u2−ξ(u2+||a−y||2)
1+ξ
2

dsy

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• R2(a, β, h, ξ)

R2(a, β, h, ξ) =

∫
β
(a− y)f2(h, ||a− y||, ξ)dsy

= (a− q(a))

∫
β
f2(h, ||a− y||, ξ)dsy +

∫
β
(q(a)− y)f2(h, ||a− y||, ξ)dsy

(117)

= (a− q(a))

∫ t+

t−
h2−ξ

∫ +∞

h

du

u3−ξ(u2 + d2 + s2)
1+ξ
2

dsy −
β⃗

|β|

∫ t+

t−
sh2−ξ

∫ +∞

h

du

u3−ξ(u2 + d2 + s2)
1+ξ
2

dsy

wich is equivalent to

(118) R2(a, β, h, ξ) = (a− q(a))S2(a, β, h, ξ)−
β⃗

|β|
T2(a, β, h, ξ)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

• R2(a, β, h, ξ)

R3(a, β, h, ξ) =

∫
β
(a− y)f3(h, ||a− y||, ξ)dsy

= (a− q(a))

∫
β
f3(h, ||a− y||, ξ)dsy +

∫
β
(q(a)− y)f3(h, ||a− y||, ξ)dsy

(119) = (a−q(a))
∫ t+

t−
h3−ξ

∫ +∞

h

du

u4−ξ(u2 + d2 + s2)
1+ξ
2

ds−
β⃗

|β|

∫ t+

t−
sh3−ξ

∫ +∞

h

du

u4−ξ(u2 + d2 + s2)
1+ξ
2

ds

wich is equivalent to

(120) R3(a, β, h, ξ) = (a− q(a))S3(a, β, h, ξ)−
β⃗

|β|
T3(a, β, h, ξ)
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