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Low-power peaking-free high-gain observers for nonlinear systems

Daniele Astolfi a, Lorenzo Marconib and Andrew Teel c

Abstract— In this note the low-power observer structure pre-
sented in [1] is modified to avoid peaking of the observer state
while preserving its good sensitivity properties to measurement
noise and the implementation advantages in terms of power-
gain with respect to standard high-gain observers.

I. INTRODUCTION

High-gain observers have been extensively used in non-
linear control (see, for instance, the survey [8] and the
references therein) for their tunability property, namely the
fact that the rate of convergence of the observer can be
tuned. This important feature is motivated by the use of
observers in output feedback control and it has been proved
(see, among the others, the milestones [3], [12]) that this
tunability property plays a key role in establishing a non-
linear separation principle. However, the standard high-gain
paradigm has many problems when used in real applications.
Mainly:

1) the maximum gain to implement is increasing polyno-
mially with the system dimension n, i.e. we need to
implement a term `n, where ` is the high-gain param-
eter. When nonlinear systems are considered, the value
of the gain has to be taken large enough to dominate the
nonlinear terms and, therefore, if the Lipschitz constant
is very large, or the system dimension is high, the term
`n can be incredibly large;

2) high-gain observers are typically characterized by high
sensitivity to high-frequency measurement noise by thus
making their use practically impossible in a realistic
noisy environment;

3) during the transient the variables present a peaking
phenomenon which grows polynomially in `, i.e. the
value of the variables have an order of magnitude
O(`n−1).

Many works have been published trying to overcome some
of the above points. Among the others, the works [2], [9],
[10] presented different solutions to deal with the peaking
phenomenon. Nevertheless it is worth noting that these tech-
niques are quite complicated to implement. More recently,
the work presented in [11] solves the peaking problem with
a “nested-saturation” design.

A recent publication [1] presented a new “low-power”
high-gain observer substantially overtaking the first two
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mail: daniele.astolfi@unibo.it).

b Lorenzo Marconi is with CASY - DEI, University of Bologna, Viale del
Risorgimento 2, Bologna 40123, Italy (e-mail: lorenzo.marconi@unibo.it).

c Andrew Teel is with Electrical and Computer Engineering Department,
University of California, Santa Barbara, CA 93106-9560 USA (e-mail:
teel@ece.ucsb.edu).

problems. In particular the structure of the new observers is
implemented by only using ` and `2 no matter the dimension
n of the system is. Furthermore, the relative degree between
the measure and the estimates of the new structure is higher
than the ones of classical high-gain observers, resulting in a
remarkable improvement of the sensitivity to high-frequency
noise. The only price to pay is that the dimension of the
new observer is 2n− 2 and no more n. Furthermore, it can
be easily proved that during the transient the values of the
variables peak with an order of magnitude O(`n−1).

The aim of this work is to present a modified version of the
observer [1] which solves the three problems presented above
and which is easy to implement and tune. The observer [1]
is modified by adding saturations at various steps. The new
structure preserves the benefits of the low-power observer
presented in [1]. Furthermore, the values of the internal
variables present a peaking whose order of magnitude is
only O(`). This, from a practical point of view, is acceptable
because the gains ` and `2 need to be implemented and
therefore internal variables of order O(`) are numerically
compatible. We observe that there are common aspects
between the proposed observer design and the design in [11],
though the analysis in [11] is complicated by the nested
saturation structure. Furthermore, while the work in [11]
addresses the problem of peaking only indirectly (indeed,
it was not the focus of [11]), in this work we provide a
rigorous peaking analysis.

A simulation result completes the presentation of the new
observer, confirming the benefits of the proposed structure
with respect to the observer proposed in [1] and with respect
to standard high-gain observers. Finally a new constructive
Lemma (different from the one proposed in [1]) for the
choice of the parameters is given in the Appendix.

Notation

We denote with R the set of real numbers. We denote
with N, the set of positive integer i.e. N = {0, 1, . . . ,∞}.
Throughout the text, the variables i ∈ N, j ∈ N are used as
positive integer indexes. The matrices A ∈ R2×2, B ∈ R2×1,
Bi ∈ Ri×1, C ∈ R1×2 and D2(`) ∈ R2×2 are defined as

A :=

(
0 1
0 0

)
, B :=

(
0
1

)
, C :=

(
1 0

)
,

Bi :=
(
0 0 . . . 0 1

)>
, D2(`) :=

(
` 0
0 `2

)
,

where ` ∈ R. Given the coefficients (ki1, ki2) ∈ R2, i > 0
we define the following matrices Ki ∈ R2×1, Ei ∈ R2×2,
Qi ∈ R2×2 and N ∈ R2×2 as

Ki :=

(
ki1
ki2

)
, Ei := A−KiC =

(
−ki1 1
−ki2 0

)
,



Qi := KiB
> =

(
0 ki1
0 ki2

)
, N := BB> =

(
0 0
0 1

)
.

We define in a recursive manner the matrices Mi as

M1 := E1 , Mi :=

(
Mi−1 N̄i
Q̄i Ei

)
, i > 1,

with N̄i := B2(i−1)B
>, Q̄i := KiB

>
2(i−1). The matrices Mi

are characterized by a block-tridiagonal structure

Mi :=



E1 N 0 . . . . . . 0

Q2 E2 N
. . .

...

0
. . . . . . . . . . . .

...
...

. . . Qj Ej N
. . .

...
...

. . . . . . . . . . . . 0
...

. . . Qi−1 Ei−1 N
0 . . . . . . . . . 0 Qi Ei


.

(1)
We denote with M ∈ R(2n−2)×(2n−2) the block-tridiagonal
matrix defined as M := Mn−1. We denote with Γ1 ∈
Rn×(2n−2) and Γ2 ∈ Rn×(2n−2) the following matrices

Γ1 := blkdiag (C, . . . , C︸ ︷︷ ︸
(n−2) times

, I2) ,

Γ2 := blkdiag (I2 , B
T , . . . , BT︸ ︷︷ ︸
(n−2) times

) .

For any s ∈ R, the function sat is the function defined as

sat(s) := min

{
1,

1

|s|

}
s .

We denote with ‖ · ‖a, respectively ‖ · ‖∞, the asymptotic
norm, respectively the infinity norm, of a time-varying signal:

‖s‖a := lim sup
t→∞

|s(t)| , ‖s‖∞ := max
t≥0
|s(t)| .

II. MAIN RESULTS

In this work we consider systems of the form (known also
as phase-variable representation, see [6])

ẋi = xi+1 ∀ i = 1, . . . , n− 1
ẋn = ϕ(x, u)
y = x1

(2)

where x = (x1, . . . , xn) ∈ X ⊆ Rn is the state and y ∈ R is
the output. The function ϕ may depend on some other known
and bounded inputs u ∈ Rν . Without loss of generality and
with a mild abuse of notation, we will write ϕ(x), omitting
the dependence on u. The following assumption is made
throughout the paper.

Assumption 1 The function ϕ is locally Lipschitz, i.e. for
any compact set C ⊂ Rn, there exists a Lϕ > 0 such that

|ϕ(x)− ϕ(x̂)| ≤ Lϕ|x− x̂|

for all (x, x̂) ∈ C× C.

It is worth noting that this is the standard context in which
high-gain observer are used (see, for instance [8]). The
class of system considered includes all the nonlinear systems
which are uniformly observable and that can be put in
the form (2) by a proper global diffeomorphism (see, for
instance, [4], [5], [6]). We further assume that the set X
where the state evolves is a compact set of Rn.

A. The Low-Power High-Gain Observer

The structure of the observer proposed in [1] has the
following form

ξ̇i = Aξi +N ξi+1 +D2(`)Ki ei
i = 1, . . . , n−2

ξ̇n−1 = Aξn−1 +B ϕs(x̂
′) +D2(`)K(n−1) en−1

(3)
with ξ = col(ξ1, . . . , ξn−1) ∈ R2n−2, x̂′ = Γ1ξ

e1 = y−Cξ1 , ei = B>ξi−1−Cξi i = 2, . . . , n−1 ,

and ϕs(·) is an appropriate saturated version of ϕ(·) that
agrees with ϕ(·) on X . The variable x̂′ represents an
asymptotic estimate of the state x of (2). It is obtained by
“extracting” n components from the state ξ according to the
matrix Γ1 defined above. The redundancy of the observer
can be used to extract from ξ an extra state estimation that
is x̂′′ = Γ2ξ.

The following theorem, taken from [1], shows that the
observer (3) recovers the same asymptotic properties for the
two estimates x̂′ and x̂′′ of the “standard” high-gain observer.
In the statement of the theorem we let

x̂ = col(x̂′, x̂′′) , x = col(x, x) .

Theorem 1 Consider system (2) and the observer (3) with
the coefficients (ki1 ki2) fixed so that the matrix M defined
in (1) is Hurwitz (see Lemma 1 in the Appendix). Let ϕs(·)
be any bounded function that agrees with ϕ(·) on X . Then
there exist c1 > 0, c2 > 0 and ` ≥ 1 such that for any ` ≥ `
and for any ξ(0) ∈ R2n−2 the following bound holds

|x̂(t)− x(t)| ≤ c1 `
n−1 exp(−c2` t) |x̂(0)− x(0)| , (4)

for all t ≥ 0 such that x(t) ∈ X .

The previous observer is proved to work in output feed-
back stabilization and principle of separations as shown for
instance in [13]. Furthermore, in [1] the observer (3) has been
shown also to improve the sensitivity to high-frequency noise
with respect to standard implementation.

B. Saturated low-power high-gain observer

Having a look to the proof of Theorem 1 presented in [1],
it is not so difficult to see that during the transient we have
that the variables ξi1 “peak” as O(`i−1) whereas the variables
ξi2 “peak” as O(`i). This phenomenon can be prevented by
modifying the low-power high-gain observer (3) as follows

ξ̇i = Aξi +B ηi+1 +D2(`)Ki (ηi−1 − Cξi) (5)



for i = 1, . . . , n − 1, with ξ = col(ξ1, . . . , ξn−1) ∈ R2n−2,
x̂′ = Γ1ξ, x̂′′ = Γ2ξ,

η0 = y

ηi = Li+1sat

(
B>ξi
Li+1

)
, i = 1, . . . , n− 1,

ηn = Ln+1sat

(
ϕs(x̂

′)

Ln+1

)
,

(6)

and where the saturations level Li are defined as

Li := ri + % ,

with % a small positive real number and where we define the
values ri > 0, i = 1, . . . , n+ 1 as

ri := max
x∈X
|xi| , ∀ i = 1, . . . , n ,

rn+1 := max
x∈X
|ϕ(x)| .

(7)

It can be proved that the observer (5) has the same asymptotic
properties of the observer (3) and moreover that the peaking
of the variables ξi1 does not grow with `, whereas the
variables ξi2 peak as O(`), with thus evident benefits in
term of implementation. Moreover the variables x̂′i for i =
1, . . . , n− 1 present a peaking phenomenon which does not
grow with `, with only the n-th estimate of x̂ affected by a
peaking of order O(`).

The tuning of the parameters ki1 and ki2, i = 1, . . . , n−1,
must be done according to the forthcoming definition. With
respect to the choice required in Theorem 1 in which the
parameters were just asked to make the matrix M Hurwitz
(see Lemma 1), in this case the presence of saturation func-
tions asks the parameters also fulfill additional “common-
Lyapunov” conditions.

Definition 1 The coefficients (ki1, ki2), i = 1, . . . , n−1, are
said to be admissible if, for any i = 2, . . . , n−1, there exists
a Pi = P>i > 0 satisfying

PiMi +M>i Pi < 0 , PiFi + F>i Pi < 0 , (8)

where

Mi =

(
Mi−1 N̄i
Q̄i Ei

)
, Fi :=

(
Mi−1 0
Q̄i Ei

)
.

The set of admissible coefficients is denoted by Ga.

According to Lemma 2 in the Appendix the set Ga is non-
empty. Therein, moreover, a constructive design procedure
for the coefficients ki1, ki2, i = 1, . . . , n− 1, is given.

Theorem 2 Consider system (2) and the observer (5) and
let the coefficients (ki1 ki2) be admissible according to
Definition 1. Then, for any compact sets X ⊂ Rn and
Ξ ⊂ R2n−2 and for any % > 0, there exist µ1 > 0, µ2 > 0,
δ1 > 0, δ2 > 0 and ` ≥ 1 such that, for any ` > ` and for
any (x(0), ξ(0)) ∈ X × Ξ, the following bounds hold

|x̂(t)− x(t)| ≤

min
{
µ1 `

n−1 exp(−µ2` t) |x̂(0)− x(0)| , δ1`
}
, (9)

|x̂′i(t)| ≤ δ2 i = 1, . . . , n− 1 , (10)

for all t ≥ 0 and as long as x(t) ∈ X .

By going throughout the proof of the theorem, it is easy
to see that the observer (5) asymptotically coincides with
the observer (3), namely the steady-state behaviour is not
affected by the saturations. As a consequence the new design
does not alter the sensitivity property of the observer (3).

III. PROOF OF THEOREM 2

The proof is divided in two parts. First we prove the
asymptotic convergence of the observer. In this proof we
get a conservative bound. Then, we make a more detailed
analysis to show that this bound can be refined and that, in-
deed, the state variables are “peaking-free”. In the following
we define vi, i = 1, . . . , n− 1 as

vi := ηi+1 − xi+2 ∀ i = 1, . . . , n− 2
vn−1 := ηn − ϕ(x) .

Note that

|ηi(t)|∞ ≤ Li+1 , |vi(t)|∞ ≤ ri+2 + Li+2 . (11)

Furthermore, let the variables ξ̃i, ζi and εi be defined as

ξ̃i := ξi − col(xi, xi+1) ,

ζi := `D2(`)−1ξ̃i ,

εi := `2−iD2(`)−1ξ̃i .

(12)

Finally, let Ri > 0, i = 1, . . . , n be the numbers such that

|ξ̃i(0)| ≤ Ri , ∀x ∈ X, ∀ ξ ∈ Ξ . (13)

A. Exit from saturation and convergence

a) Case i = 1: Consider the first variable ξ1. Its
dynamic is given by

ξ̇1 = Aξ1 +Bη2 +D2(`)K1(y − Cξ1) .

By using the change of coordinates (12) the latter is trans-
formed into

ε̇1 = `E1ε1 + `−1Bv1

Let `1 ≥ 1 be chosen according to Lemma 4 with κ = 1 for
some T1 > 0 and ε1 < %. We obtain

|` ε1(t)| ≤ ε1 ∀ t ≥ T1 ,

for all ` ≥ `1 Furthermore, by recalling (for any ` ≥ 1)

|ξ12| ≤ |ξ12 − x2|+ |x2| ≤ `|ε12|+ |x2| ≤ `|ε1|+ |x2|

we get

|ξ12(t)| ≤ `|ε1|+ |x2| ≤ ε1 + r2 ≤ L2

for any ` ≥ `1 and for all t ≥ T1. With this in mind, we
have that η1 = ξ12 for all t ≥ T1.



b) General Case i > 1: After time Ti−1 > 0 we get
ηj = ξj2 for j = 1, . . . , i−1. So consider the cascade system

ξ̇1 = Aξ1 +N ξj+1 +D2(`)K1(y − Cξ1)
...

ξ̇i−1 = Aξi−1 +B ηi +D2(`)Ki−1(B>ξi−2 − Cξi−1)

ξ̇i = Aξi +Bηi+1 +D2(`)Ki−1(B>ξi−1 − Cξi)

By using the change of coordinates (12) the latter is trans-
formed into(

ε̇[1,i−1]
ε̇i

)
= `

(
Mi−1 0
Q̄i Ei

)(
ε[1,i−1]
εi

)
+

1

`i

(
B2(i−1) 0

0 B

)(
` vi−1(t)
vi(t)

)
with the notation ε[1,i−1] = (ε1, . . . , εi−1)>. Note that

vi−1(t) = ηi − xi+1

= Li+1sat

(
`iεi2 + xi+1

Li+1

)
− xi+1

By the Lipschitz mean-value theorem, for each t sufficiently
large, there exists a continuous function ρ(t) ∈ [0, 1] such
that

vi−1(t) = ρ(t) `iεi2 .

As a consequence we get(
ε̇[1,i−1]
ε̇i

)
= `Λi(t)

(
ε[1,i−1]
εi

)
+

1

`i

(
0
B

)
vi(t)

where Λi(t) is defined as in (16) in the Appendix. Let `i ≥
`i−1 be chosen according to Lemma 3 and 4 with κ = i and
some Ti > Ti−1 and εi < %. We obtain

|`iε[1,i](t)| ≤ εi ∀ t ≥ Ti ,

Furthermore, by recalling (for any ` ≥ 1)

|ξi2| ≤ |ξi2 − xi+1|+ |xi+1| ≤ `i|εi2|+ |xi+1|
≤ `i|ε[1,i]|+ |xi+1|

we get

|ξi2(t)| ≤ `i|ε[1,i]|+ |xi+1| ≤ εi + ri+1 ≤ Li+1

for any ` ≥ `i and for all t ≥ Ti. This prove that for t ≥ Ti
also ηi = ξi2.

c) Asymptotic Convergence: Finally, after the (n− 1)-
th step we recover the observer (3). By direct application of
Theorem 1 we thus have that if ` is taken sufficiently large
(` ≥ `n) then the following estimate holds

|x̂(t)− x(t)| ≤ µ1 `
n−1 exp(−µ2 ` t) |x̂(0)− x(0)| (14)

for some strictly positive real numbers µ1, µ2 and for all t ≥
Tn−1. Note that the estimate bound `n−1 is too conservative.
Indeed, it can be proved that during the transient the peaking
depends only on ` and not on `n−1, as shown in the next
part of the proof.

B. Bound Estimate

Consider the ξi dynamic. By using the change of coordi-
nates (12), it is transformed into

ζ̇i = `Eiζi + `−1vi + `Ki−1ηi

(except for the ζ1 for which the term η1 is not present). Now
consider the Lyapunov function Vi defined as Vi := η>i Siηi
with Si given by SiEi + E>i Si = −I , we get

V̇i ≤ −`|ζi|2 + 2|ζi||Si|(`−1vi + `|Ki−1|ηi−1) .

Then, standard Lyapunov arguments show that there exist
positive constants aij , j = 1, . . . , 4, such that, if ` is taken
sufficiently large, we get

|ζi(t)| ≤ ai1 exp(−ai2`t)|ζi(0)|+ ai3
`2
vi + ai4|Ki−1|ηi−1

for any i = 1, . . . , n− 1. Furthermore, by recalling (for any
` ≥ 1)

|ξ̃i1| ≤ |ζi| ≤ |ξ̃i| ,
1

`
|ξ̃i2| ≤ |ζi| ≤ |ξ̃i| ,

we get

|ξ̃i1(t)| ≤ ai1e
−ai2`t|ξ̃i(0)|+ `−2ai3vi + ai4|Ki−1|ηi−1 ,

|ξ̃i2(t)| ≤ ai1`e
−ai2`t|ξ̃i(0)|+ `−1ai3vi + ai4`|Ki−1|ηi−1 ,

for all t ≥ 0. By using |x̂ − x| ≤
n−1∑
i=1

|ξ̃i1| + |ξ̃i2| and by

defining δ1 as

δ1 :=

n−1∑
i=1

2ai1Ri + 2ai3(ri+2 + Li+2) + ai4|Ki−1|Li

with Ri defined in (13), we get |x̂(t) − x(t)| ≤ ` δ1 for all
t ≥ 0. By combining the latter with (14) we finally get (9).
The bound (10) follows by by noting

|x̂i| ≤ |ξi1 − xi|+ |xi| , i = 1, . . . , n− 1,

and by setting

δ2 := max
i∈[1,n−1]

{
ri+ai1Ri+ai3(Li+2+ri+2)+ai4Li|Ki−1|

}
.

IV. SIMULATIONS

We consider as example a forced Van Der Pol oscillator,
described by

ẅ + b(w2 − 1)ẇ + w = α cos(ωt+ φ)

where b > 0. The system can be described in the phase-
variable representation (2) with n = 4,

ϕ(x) = −6bx1x2x3 − 2bx32 − x3 − b(x21 − 1)x4

− ω2(x3 + b(x21 − 1)x2 + x1)

and initial conditions
x1(0) = w(0) ,
x2(0) = ẇ(0) ,
x3(0) = −b(w(0)2 − 1)ẇ(0)− w(0) + α cos(φ),
x4(0) = −2bw(0)ẇ(0)2 − ẇ(0)

−b(w(0)2 − 1)x3(0) + αω sin(φ).



TABLE I: Features of the low-power high-gain observer (3).

` = 5 ` = 10 ` = 100 ` = 1000

T0.01 4.9898 1.8382 0.2544 0.0399

‖x̃′
1‖∞ 1 1 1 1

‖x̃′′
2‖∞ 7.5 14.4 139 1.4 · 103

‖x̃′
2‖∞ 7 13.6 133 1.3 · 103

‖x̃′′
3‖∞ 16.5 70 7.2 · 103 7.2 · 105

‖x̃′
3‖∞ 14.1 60 6.4 · 103 6.4 · 105

‖x̃′
4‖∞ 16.2 126 1.3 · 105 1.3 · 108

By taking ω = 2 and α ≤ 1, it can be verified that, for any
φ ∈ R, the solutions of the systems are ultimately bounded.
Taking b = 0.01, a numerical simulation can be used to show
that the solutions satisfy

‖x1‖a < 2.2 , ‖x2‖a < 2.6 , ‖x3‖a < 3 ,

‖x4‖a < 4.6 , ‖ϕ(x)‖a < 6.9 .

In the following we consider any compact set X of initial
conditions satisfying (see also (7))
r1 < 2.2 , r2 < 2.6 , r3 < 3 , r4 < 4.6 , r5 < 6.9 .

By following the procedure indicated by Lemma 1, we chose
the coefficients of the observer as

K1 =

(
3

6.4

)
, K2 =

(
3

2.131

)
, K3 =

(
3

0.7095

)
,

such that the poles of M3 are in
(−2,−1.8,−1.6,−1.4,−1.2,−1). It is easy to verify
that they are also admissible, according to Definition 1. The
saturations level are chosen as
L1 = 2.5 , L2 = 3 , L3 = 3.5 , L4 = 5 , L5 = 7.5 .

In the simulations we compared the observer (3) with the new
observer (5) for different choices of `. The initial conditions
of the forced Van Der Pol are chosen as w(0) = 1, ẇ(0) =
−1, γ = 1, φ = 0, that is x(0) = (1,−1, 0, 0.98), whereas
the two observers are initialized in the origin. The tables
show the maximum peaking values in the error coordinates
and the time needed to convergence to an error sufficiently
small, i.e. the time Tε such that

|x(t)− x̂(t)| < ε ∀ t ≥ Tε .

In the tables we denote

x̃′i = x̂′i − xi , x̃′′i = x̂′′i − xi .

Note that x̃′1 = x̃′′1 and x̃′4 = x̃′′4 . The big numerical
improvement during the transient, given by the saturations
in the proposed design (5), it is evident from the simulation,
especially for the variables x̃′3, x̃′′3 and x̃′4. The Table II
confirms the theoretical result of Theorem 2. In particular
the variables x̂′1, x̂

′
2 and x̂′3 are always bounded with a bound

independent of the high-gain parameter `. Finally, it can be
noticed from the simulations that the when the high-gain
parameter is small, the speed of convergence of the novel
observer (5) is worsen with respect to the standard low-
power high-gain observer (3), whereas when the high-gain
parameter is high the rate of convergence is improved. This

TABLE II: Features of the low-power peaking-free high-gain
observer (5).

` = 5 ` = 10 ` = 100 ` = 1000

T0.01 5.6072 2.0222 0.2364 0.0312

‖x̃′
1‖∞ 1 1 1 1

‖x̃′′
2‖∞ 7.2 13.4 127 1300

‖x̃′
2‖∞ 4.3 4.4 4.4 4.4

‖x̃′′
3‖∞ 9.3 21 261 2600

‖x̃′
3‖∞ 3.7 3.9 3.8 3.8

‖x̃′
4‖∞ 4.7 9.4 92 900

phenomenon is caused by the effect of the saturations which
prevent the state of the observer to have very large transients.

V. CONCLUSION

By following the ideas in [1], we proposed a modified
version of the low-power high-gain observer introduced
therein. The new structure is designed by adding saturations
at each block. The new design preserves the same benefits
of the observer proposed in [1] and overtakes the peaking
phenomenon. The proposed observer has a dimension which
is 2n − 2 (where n is the system dimension) with a high-
gain parameter which grows only up to power 2 (whereas
in standard high-gain observers the parameter is powered up
to n) and the peaking phenomenon exhibits with a growth
O(`) on the last component only (and not O(`n−1) as in
the observer of [1]), giving evident benefits with respect to
the standard implementations of high-gain observers. A new
constructive Lemma for the choice of the parameter is given
in the appendix. The new procedure may result easier with
respect to the one proposed in [1]. Due to the asymptotic tun-
able convergence property (9), the novel proposed observer
can be used in any output feedback design where a standard
high-gain observer applies (see, for instance, [12] and [13]).

APPENDIX

The eigenvalues of Mi, i > 0, can be arbitrarily assigned
by appropriately choosing the coefficients (kj1, kj2), j =
1, . . . , i, as claimed in the next lemma (taken off-the-shelf
from the Lemma 1 published in [1] by setting i = n− 1).

Lemma 1 Let

PMi(λ) = λ2i +m1λ
2i−1 + ...+m2i−1λ+m2i

be an arbitrary Hurwitz polynomial. There exists a choice of
kj1, kj2, j = 1, . . . , i, such that the characteristic polynomial
of Mi coincides with PMi

(λ).

Lemma 2 The set Ga is non-empty.

Proof: We show constructively, though conservatively,
a recursive procedure to assign the coefficients ki1, ki2.

Step i = 1) Let k11 > 0 and k12 > 0 be any (positive) real
numbers.
Step i > 1) Let ki1 = k(i−1)1, and let ki2 > 0 be chosen such
that ki2 < ki1/γi−1, with γi−1 defined in the forthcoming
equation (15). /



To verify that this choice satisfies the Definition 1 let
consider first the case i = 1. By choosing k11 > 0 and
k12 > 0 the matrix E1 is Hurwitz, and so is M1. Now
consider the case i > 1 and the following two systems{

ẋi−1

yi−1

=

=

Mi−1xi−1 +B2(i−1)ui−1

B>2(i−1)xi−1{
ẋi

yi

=

=

Eixi +Kiui

B>xi

and let denote x̄i = (xi−1, xi). Let assume the matrix Mi−1
is Hurwitz and note that the matrix Ei is Hurwitz for any
choice of positive real numbers ki1, ki2. Let Hi−1(s), Hi(s)
be the transfer function of the two systems

Hi−1(s) := B>2(i−1)(sI2(i−1) −Mi−1)−1B2(i−1) ,

Hi(s) := B>(sI2 − Ei)−1Ki .

and let γi−1, γi be the real numbers defined as

γi−1 := max
s∈R
|Hi−1(s)| ,

γi := max
s∈R
|Hi(s)| .

(15)

It is easy to verify that

Hi(s) =
ski2

s2 + ki1s+ ki2
, γi =

ki2
ki1

.

By interconnecting the two subsystems with ui−1 = 0 and
ui = y−1 we obtain a closed loop system described by

˙̄xi = Fix̄i ,

whereas, by interconnecting the two subsystems with ui−1 =
yi and ui = y−1, we obtain a closed loop system described
by

˙̄xi = Mix̄i .

The choice of ki2 of the Step i satisfies the small-gain
theorem (see, for instance, [7])

γi−1 · γi < 1

and therefore the interconnection (xi−1, xi) is stable in both
cases. We conclude that Fi and Mi are Hurwitz and that
there exists a common Lyapunov function satisfying (8).

Note that, by using MATLAB, the values of γi can be
easily calculated with the command getPeakGain.

Lemma 3 Let the coefficients kj1, kj2, j = 1, . . . , i be
admissible and let the matrix Λi(t) be defined as

Λi(t) :=

(
Mi−1 ρ(t)N̄i−1
Q̄i Ei

)
(16)

with ρ(t) ∈ [0, 1] any continuous function. Then the origin
of the system

ẋ = Λi(t)x (17)

is globally exponentially stable.

Proof: When ρ(t) ≡ 0 we get Λi = Fi whereas when
ρ(t) ≡ 1 we get Λi = Mi. As a consequence, by using the
Pi claimed in the Definition 1 we get the inequality

PiΛi(t) + Λi(t)
>Pi < 0

is satisfied for all ρ(t) ∈ [0, 1] and therefore the claim follows
trivially.

Lemma 4 Consider the system

ẋ = `Λi(t)x+ `−κvi(t)

where x ∈ R2i, κ ≥ 0 and vi(t) satisfying |vi(t)|∞ ≤ v̄i for
some v̄i > 0. Suppose the origin of the system (17) is globally
asymptotically stable and locally exponentially stable. Then,
for any compact set X ⊂ R2i, for any T > 0 and for any
ε > 0, there exist a a `? ≥ 1 such that

|`κ x(t)| ≤ ε , ∀ t ≥ T

for any ` > `? and for any initial condition x(0) ∈ X .

Proof: Trivial, by applying standard ISS-Lyapunov
arguments.
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