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Low-power peaking-free high-gain observers for nonlinear systems

In this note the low-power observer structure presented in [1] is modified to avoid peaking of the observer state while preserving its good sensitivity properties to measurement noise and the implementation advantages in terms of powergain with respect to standard high-gain observers.

I. INTRODUCTION

High-gain observers have been extensively used in nonlinear control (see, for instance, the survey [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF] and the references therein) for their tunability property, namely the fact that the rate of convergence of the observer can be tuned. This important feature is motivated by the use of observers in output feedback control and it has been proved (see, among the others, the milestones [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF], [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF]) that this tunability property plays a key role in establishing a nonlinear separation principle. However, the standard high-gain paradigm has many problems when used in real applications. Mainly:

1) the maximum gain to implement is increasing polynomially with the system dimension n, i.e. we need to implement a term n , where is the high-gain parameter. When nonlinear systems are considered, the value of the gain has to be taken large enough to dominate the nonlinear terms and, therefore, if the Lipschitz constant is very large, or the system dimension is high, the term n can be incredibly large; 2) high-gain observers are typically characterized by high sensitivity to high-frequency measurement noise by thus making their use practically impossible in a realistic noisy environment; 3) during the transient the variables present a peaking phenomenon which grows polynomially in , i.e. the value of the variables have an order of magnitude O( n-1 ). Many works have been published trying to overcome some of the above points. Among the others, the works [START_REF] Astolfi | Output feedback stabilization for SISO nonlinear systems with an observer in the original coordinates[END_REF], [START_REF] Maggiore | A separation principle for a class of non uniformly completely observable systems[END_REF], [START_REF] Prieur | Hybrid high-gain observers without peaking for planar nonlinear systems[END_REF] presented different solutions to deal with the peaking phenomenon. Nevertheless it is worth noting that these techniques are quite complicated to implement. More recently, the work presented in [START_REF] Teel | Further variants of the Astolfi/Marconi high-gain observer[END_REF] solves the peaking problem with a "nested-saturation" design.
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problems. In particular the structure of the new observers is implemented by only using and 2 no matter the dimension n of the system is. Furthermore, the relative degree between the measure and the estimates of the new structure is higher than the ones of classical high-gain observers, resulting in a remarkable improvement of the sensitivity to high-frequency noise. The only price to pay is that the dimension of the new observer is 2n -2 and no more n. Furthermore, it can be easily proved that during the transient the values of the variables peak with an order of magnitude O( n-1 ).

The aim of this work is to present a modified version of the observer [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF] which solves the three problems presented above and which is easy to implement and tune. The observer [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF] is modified by adding saturations at various steps. The new structure preserves the benefits of the low-power observer presented in [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF]. Furthermore, the values of the internal variables present a peaking whose order of magnitude is only O( ). This, from a practical point of view, is acceptable because the gains and 2 need to be implemented and therefore internal variables of order O( ) are numerically compatible. We observe that there are common aspects between the proposed observer design and the design in [START_REF] Teel | Further variants of the Astolfi/Marconi high-gain observer[END_REF], though the analysis in [START_REF] Teel | Further variants of the Astolfi/Marconi high-gain observer[END_REF] is complicated by the nested saturation structure. Furthermore, while the work in [START_REF] Teel | Further variants of the Astolfi/Marconi high-gain observer[END_REF] addresses the problem of peaking only indirectly (indeed, it was not the focus of [START_REF] Teel | Further variants of the Astolfi/Marconi high-gain observer[END_REF]), in this work we provide a rigorous peaking analysis.

A simulation result completes the presentation of the new observer, confirming the benefits of the proposed structure with respect to the observer proposed in [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF] and with respect to standard high-gain observers. Finally a new constructive Lemma (different from the one proposed in [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF]) for the choice of the parameters is given in the Appendix.

Notation

We denote with R the set of real numbers. We denote with N, the set of positive integer i.e. N = {0, 1, . . . , ∞}.

Throughout the text, the variables i ∈ N, j ∈ N are used as positive integer indexes. The matrices

A ∈ R 2×2 , B ∈ R 2×1 , B i ∈ R i×1 , C ∈ R 1×2 and D 2 ( ) ∈ R 2×2 are defined as A := 0 1 0 0 , B := 0 1 , C := 1 0 , B i := 0 0 . . . 0 1 , D 2 ( ) := 0 0 2 , where ∈ R. Given the coefficients (k i1 , k i2 ) ∈ R 2 , i > 0 we define the following matrices K i ∈ R 2×1 , E i ∈ R 2×2 , Q i ∈ R 2×2 and N ∈ R 2×2 as K i := k i1 k i2 , E i := A -K i C = -k i1 1 -k i2 0 , Q i := K i B = 0 k i1 0 k i2 , N := B B = 0 0 0 1 .
We define in a recursive manner the matrices M i as

M 1 := E 1 , M i := M i-1 Ni Qi E i , i > 1,
with Ni := B 2(i-1) B , Qi := K i B 2(i-1) . The matrices M i are characterized by a block-tridiagonal structure 

M i :=                E 1 N 0 . . . . . . 0 Q 2 E 2 N . . . . . . 0 
. . . Q i-1 E i-1 N 0 . . . . . . . . . 0 Q i E i               
.

(1) We denote with M ∈ R (2n-2)×(2n-2) the block-tridiagonal matrix defined as M := M n-1 . We denote with Γ 1 ∈ R n×(2n-2) and Γ 2 ∈ R n×(2n-2) the following matrices

Γ 1 := blkdiag ( C, . . . , C (n-2) times , I 2 ) , Γ 2 := blkdiag (I 2 , B T , . . . , B T (n-2) times
) .

For any s ∈ R, the function sat is the function defined as sat(s) := min 1, 1 |s| s .

We denote with • a , respectively • ∞ , the asymptotic norm, respectively the infinity norm, of a time-varying signal:

s a := lim sup t→∞ |s(t)| , s ∞ := max t≥0 |s(t)| .

II. MAIN RESULTS

In this work we consider systems of the form (known also as phase-variable representation, see [START_REF] Gauthier | Deterministic observation theory and applications[END_REF])

ẋi = x i+1 ∀ i = 1, . . . , n -1 ẋn = ϕ(x, u) y = x 1 (2)
where x = (x 1 , . . . , x n ) ∈ X ⊆ R n is the state and y ∈ R is the output. The function ϕ may depend on some other known and bounded inputs u ∈ R ν . Without loss of generality and with a mild abuse of notation, we will write ϕ(x), omitting the dependence on u. The following assumption is made throughout the paper.

Assumption 1

The function ϕ is locally Lipschitz, i.e. for any compact set C ⊂ R n , there exists a L ϕ > 0 such that

|ϕ(x) -ϕ(x)| ≤ L ϕ |x -x| for all (x, x) ∈ C × C.
It is worth noting that this is the standard context in which high-gain observer are used (see, for instance [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF]). The class of system considered includes all the nonlinear systems which are uniformly observable and that can be put in the form (2) by a proper global diffeomorphism (see, for instance, [START_REF] Bornard | A high gain observer for a class of uniformly observable systems[END_REF], [START_REF] Gauthier | Observability for any u(t) of a class of nonlinear systems[END_REF], [START_REF] Gauthier | Deterministic observation theory and applications[END_REF]). We further assume that the set X where the state evolves is a compact set of R n .

A. The Low-Power High-Gain Observer

The structure of the observer proposed in [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF] has the following form

ξi = A ξ i + N ξ i+1 + D 2 ( ) K i e i i = 1, . . . , n-2 ξn-1 = A ξ n-1 + B ϕ s (x ) + D 2 ( ) K (n-1) e n-1 (3) with ξ = col(ξ 1 , . . . , ξ n-1 ) ∈ R 2n-2 , x = Γ 1 ξ e 1 = y-Cξ 1 , e i = B ξ i-1 -Cξ i i = 2, . . . , n-1 ,
and ϕ s (•) is an appropriate saturated version of ϕ(•) that agrees with ϕ(•) on X. The variable x represents an asymptotic estimate of the state x of (2). It is obtained by "extracting" n components from the state ξ according to the matrix Γ 1 defined above. The redundancy of the observer can be used to extract from ξ an extra state estimation that is x = Γ 2 ξ.

The following theorem, taken from [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF], shows that the observer (3) recovers the same asymptotic properties for the two estimates x and x of the "standard" high-gain observer. In the statement of the theorem we let

x = col(x , x ) , x = col(x, x) .
Theorem 1 Consider system (2) and the observer (3) with the coefficients (k i1 k i2 ) fixed so that the matrix M defined in (1) is Hurwitz (see Lemma 1 in the Appendix). Let ϕ s (•) be any bounded function that agrees with ϕ(•) on X. Then there exist c 1 > 0, c 2 > 0 and ≥ 1 such that for any ≥ and for any ξ(0) ∈ R 2n-2 the following bound holds

|x(t) -x(t)| ≤ c 1 n-1 exp(-c 2 t) |x(0) -x(0)| , ( 4 
)
for all t ≥ 0 such that x(t) ∈ X.
The previous observer is proved to work in output feedback stabilization and principle of separations as shown for instance in [START_REF] Wang | Output Stabilization for a Class of Nonlinear Systems Via High-Gain Observer with Limited Gain Power[END_REF]. Furthermore, in [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF] the observer (3) has been shown also to improve the sensitivity to high-frequency noise with respect to standard implementation.

B. Saturated low-power high-gain observer

Having a look to the proof of Theorem 1 presented in [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF], it is not so difficult to see that during the transient we have that the variables ξ i1 "peak" as O( i-1 ) whereas the variables ξ i2 "peak" as O( i ). This phenomenon can be prevented by modifying the low-power high-gain observer (3) as follows

ξi = A ξ i + B η i+1 + D 2 ( ) K i (η i-1 -Cξ i ) (5) for i = 1, . . . , n -1, with ξ = col(ξ 1 , . . . , ξ n-1 ) ∈ R 2n-2 , x = Γ 1 ξ, x = Γ 2 ξ, η 0 = y η i = L i+1 sat B ξ i L i+1 , i = 1, . . . , n -1, η n = L n+1 sat ϕ s (x ) L n+1 , (6) 
and where the saturations level L i are defined as

L i := r i + ,
with a small positive real number and where we define the values r i > 0, i = 1, . . . , n + 1 as

r i := max x∈X |x i | , ∀ i = 1, . . . , n , r n+1 := max x∈X |ϕ(x)| . (7) 
It can be proved that the observer (5) has the same asymptotic properties of the observer (3) and moreover that the peaking of the variables ξ i1 does not grow with , whereas the variables ξ i2 peak as O( ), with thus evident benefits in term of implementation. Moreover the variables x i for i = 1, . . . , n -1 present a peaking phenomenon which does not grow with , with only the n-th estimate of x affected by a peaking of order O( ).

The tuning of the parameters k i1 and k i2 , i = 1, . . . , n-1, must be done according to the forthcoming definition. With respect to the choice required in Theorem 1 in which the parameters were just asked to make the matrix M Hurwitz (see Lemma 1), in this case the presence of saturation functions asks the parameters also fulfill additional "common-Lyapunov" conditions.

Definition 1

The coefficients (k i1 , k i2 ), i = 1, . . , n-1, are said to be admissible if, for any i = 2, . . . , n -1, there exists a P i = P i > 0 satisfying

P i M i + M i P i < 0 , P i F i + F i P i < 0 , (8) 
where

M i = M i-1 Ni Qi E i , F i := M i-1 0 Qi E i .
The set of admissible coefficients is denoted by G a .

According to Lemma 2 in the Appendix the set G a is nonempty. Therein, moreover, a constructive design procedure for the coefficients k i1 , k i2 , i = 1, . . . , n -1, is given. Theorem 2 Consider system (2) and the observer (5) and let the coefficients (k i1 k i2 ) be admissible according to Definition 1. Then, for any compact sets X ⊂ R n and Ξ ⊂ R 2n-2 and for any > 0, there exist µ 1 > 0, µ 2 > 0, δ 1 > 0, δ 2 > 0 and ≥ 1 such that, for any > and for any (x(0), ξ(0)) ∈ X × Ξ, the following bounds hold

|x(t) -x(t)| ≤ min µ 1 n-1 exp(-µ 2 t) |x(0) -x(0)| , δ 1 , ( 9 
)
|x i (t)| ≤ δ 2 i = 1, . . . , n -1 , (10) 
for all t ≥ 0 and as long as x(t) ∈ X.

By going throughout the proof of the theorem, it is easy to see that the observer (5) asymptotically coincides with the observer (3), namely the steady-state behaviour is not affected by the saturations. As a consequence the new design does not alter the sensitivity property of the observer (3).

III. PROOF OF THEOREM 2

The proof is divided in two parts. First we prove the asymptotic convergence of the observer. In this proof we get a conservative bound. Then, we make a more detailed analysis to show that this bound can be refined and that, indeed, the state variables are "peaking-free". In the following we define v i , i = 1, . . . , n -1 as

v i := η i+1 -x i+2 ∀ i = 1, . . . , n -2 v n-1 := η n -ϕ(x) .

Note that

|η i (t)| ∞ ≤ L i+1 , |v i (t)| ∞ ≤ r i+2 + L i+2 . ( 11 
)
Furthermore, let the variables ξi , ζ i and ε i be defined as

ξi := ξ i -col(x i , x i+1 ) , ζ i := D 2 ( ) -1 ξi , ε i := 2-i D 2 ( ) -1 ξi . (12) 
Finally, let R i > 0, i = 1, . . . , n be the numbers such that

| ξi (0)| ≤ R i , ∀ x ∈ X, ∀ ξ ∈ Ξ . (13) 
A. Exit from saturation and convergence a) Case i = 1: Consider the first variable ξ 1 . Its dynamic is given by

ξ1 = Aξ 1 + Bη 2 + D 2 ( )K 1 (y -Cξ 1 ) .

By using the change of coordinates (12) the latter is trans

- formed into ε1 = E 1 ε 1 + -1 Bv 1
Let 1 ≥ 1 be chosen according to Lemma 4 with κ = 1 for some T 1 > 0 and 1 < . We obtain

| ε 1 (t)| ≤ 1 ∀ t ≥ T 1 ,
for all ≥ 1 Furthermore, by recalling (for any ≥ 1)

|ξ 12 | ≤ |ξ 12 -x 2 | + |x 2 | ≤ |ε 12 | + |x 2 | ≤ |ε 1 | + |x 2 |
we get

|ξ 12 (t)| ≤ |ε 1 | + |x 2 | ≤ 1 + r 2 ≤ L 2
for any ≥ 1 and for all t ≥ T 1 . With this in mind, we have that η 1 = ξ 12 for all t ≥ T 1 .

b) General Case i > 1: After time T i-1 > 0 we get η j = ξ j2 for j = 1, . . . , i-1. So consider the cascade system

ξ1 = A ξ 1 + N ξ j+1 + D 2 ( )K 1 (y -Cξ 1 ) . . . ξi-1 = A ξ i-1 + B η i + D 2 ( ) K i-1 (B ξ i-2 -Cξ i-1 ) ξi = A ξ i + Bη i+1 + D 2 ( ) K i-1 (B ξ i-1 -Cξ i )
By using the change of coordinates ( 12) the latter is transformed into

ε[1,i-1] εi = M i-1 0 Qi E i ε [1,i-1] ε i + 1 i B 2(i-1) 0 0 B v i-1 (t) v i (t) with the notation ε [1,i-1] = (ε 1 , . . . , ε i-1 ) . Note that v i-1 (t) = η i -x i+1 = L i+1 sat i ε i2 + x i+1 L i+1 -x i+1
By the Lipschitz mean-value theorem, for each t sufficiently large, there exists a continuous function

ρ(t) ∈ [0, 1] such that v i-1 (t) = ρ(t) i ε i2 .
As a consequence we get

ε[1,i-1] εi = Λ i (t) ε [1,i-1] ε i + 1 i 0 B v i (t)
where Λ i (t) is defined as in (16) in the Appendix. Let i ≥ i-1 be chosen according to Lemma 3 and 4 with κ = i and some T i > T i-1 and i < . We obtain

| i ε [1,i] (t)| ≤ i ∀ t ≥ T i ,
Furthermore, by recalling (for any ≥ 1)

|ξ i2 | ≤ |ξ i2 -x i+1 | + |x i+1 | ≤ i |ε i2 | + |x i+1 | ≤ i |ε [1,i] | + |x i+1 | we get |ξ i2 (t)| ≤ i |ε [1,i] | + |x i+1 | ≤ i + r i+1 ≤ L i+1
for any ≥ i and for all t ≥ T i . This prove that for t ≥ T i also η i = ξ i2 . c) Asymptotic Convergence: Finally, after the (n -1)th step we recover the observer [START_REF] Atassi | A separation principle for the stabilization of a class of nonlinear systems[END_REF]. By direct application of Theorem 1 we thus have that if is taken sufficiently large ( ≥ n ) then the following estimate holds

|x(t) -x(t)| ≤ µ 1 n-1 exp(-µ 2 t) |x(0) -x(0)| (14)
for some strictly positive real numbers µ 1 , µ 2 and for all t ≥ T n-1 . Note that the estimate bound n-1 is too conservative. Indeed, it can be proved that during the transient the peaking depends only on and not on n-1 , as shown in the next part of the proof.

B. Bound Estimate

Consider the ξ i dynamic. By using the change of coordinates [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF], it is transformed into

ζi = E i ζ i + -1 v i + K i-1 η i
(except for the ζ 1 for which the term η 1 is not present). Now consider the Lyapunov function V i defined as V i := η i S i η i with S i given by

S i E i + E i S i = -I, we get Vi ≤ -|ζ i | 2 + 2|ζ i ||S i |( -1 v i + |K i-1 |η i-1 ) .
Then, standard Lyapunov arguments show that there exist positive constants a ij , j = 1, . . . , 4, such that, if is taken sufficiently large, we get

|ζ i (t)| ≤ a i1 exp(-a i2 t)|ζ i (0)| + a i3 2 v i + a i4 |K i-1 |η i-1
for any i = 1, . . . , n -1. Furthermore, by recalling (for any ≥ 1)

| ξi1 | ≤ |ζ i | ≤ | ξi | , 1 | ξi2 | ≤ |ζ i | ≤ | ξi | , we get | ξi1 (t)| ≤ a i1 e -ai2 t | ξi (0)| + -2 a i3 v i + a i4 |K i-1 |η i-1 , | ξi2 (t)| ≤ a i1 e -ai2 t | ξi (0)| + -1 a i3 v i + a i4 |K i-1 |η i-1 , for all t ≥ 0. By using |x -x| ≤ n-1 i=1 | ξi1 | + | ξi2 | and by
defining δ 1 as

δ 1 := n-1 i=1 2a i1 R i + 2a i3 (r i+2 + L i+2 ) + a i4 |K i-1 |L i
with R i defined in [START_REF] Wang | Output Stabilization for a Class of Nonlinear Systems Via High-Gain Observer with Limited Gain Power[END_REF], we get |x(t) -x(t)| ≤ δ 1 for all t ≥ 0. By combining the latter with (14) we finally get [START_REF] Maggiore | A separation principle for a class of non uniformly completely observable systems[END_REF]. The bound [START_REF] Prieur | Hybrid high-gain observers without peaking for planar nonlinear systems[END_REF] follows by by noting

|x i | ≤ |ξ i1 -x i | + |x i | , i = 1, . . . , n -1,
and by setting

δ 2 := max i∈[1,n-1] r i +a i1 R i +a i3 (L i+2 +r i+2 )+a i4 L i |K i-1 | .

IV. SIMULATIONS

We consider as example a forced Van Der Pol oscillator, described by

ẅ + b(w 2 -1) ẇ + w = α cos(ωt + φ)
where b > 0. The system can be described in the phasevariable representation (2) with n = 4, By taking ω = 2 and α ≤ 1, it can be verified that, for any φ ∈ R, the solutions of the systems are ultimately bounded. Taking b = 0.01, a numerical simulation can be used to show that the solutions satisfy

ϕ(x) = -6bx 1 x 2 x 3 -2bx 3 2 -x 3 -b(x 2 1 -1)x 4 -ω 2 (x 3 + b(x 2 1 -1)x 2 + x 1 ) and initial conditions x 1 (0) = w(0) , x 2 (0) = ẇ(0) , x 3 (0) = -b(w(0) 2 -1) ẇ(0) -w(0) + α cos(φ), x 4 (0) = -2bw(0) ẇ(0) 2 -ẇ(0) -b(w(0) 2 -1)x 3 (0) + αω sin(φ).
x 1 a < 2.2 , x 2 a < 2.6 , x 3 a < 3 , x 4 a < 4.6 , ϕ (x 
) a < 6.9 .

In the following we consider any compact set X of initial conditions satisfying (see also ( 7)) r 1 < 2.2 , r 2 < 2.6 , r 3 < 3 , r 4 < 4.6 , r 5 < 6.9 .

By following the procedure indicated by Lemma 1, we chose the coefficients of the observer as

K 1 = 3 6.4 , K 2 = 3 2.131 , K 3 = 3 0.7095 , such that the poles of M 3 are in (-2, -1.8, -1.6, -1.4, -1.2, -1).
It is easy to verify that they are also admissible, according to Definition 1. The saturations level are chosen as L 1 = 2.5 , L 2 = 3 , L 3 = 3.5 , L 4 = 5 , L 5 = 7.5 .

In the simulations we compared the observer (3) with the new observer [START_REF] Gauthier | Observability for any u(t) of a class of nonlinear systems[END_REF] for different choices of . The initial conditions of the forced Van Der Pol are chosen as w(0) = 1, ẇ(0) = -1, γ = 1, φ = 0, that is x(0) = (1, -1, 0, 0.98), whereas the two observers are initialized in the origin. The tables show the maximum peaking values in the error coordinates and the time needed to convergence to an error sufficiently small, i.e. the time T such that

|x(t) -x(t)| < ∀ t ≥ T .
In the tables we denote

x i = x i -x i , x i = x i -x i .
Note that x 1 = x 1 and x 4 = x 4 . The big numerical improvement during the transient, given by the saturations in the proposed design [START_REF] Gauthier | Observability for any u(t) of a class of nonlinear systems[END_REF], it is evident from the simulation, especially for the variables x 3 , x 3 and x 4 . The Table II confirms the theoretical result of Theorem 2. In particular the variables x 1 , x 2 and x 3 are always bounded with a bound independent of the high-gain parameter . Finally, it can be noticed from the simulations that the when the high-gain parameter is small, the speed of convergence of the novel observer ( 5) is worsen with respect to the standard lowpower high-gain observer (3), whereas when the high-gain parameter is high the rate of convergence is improved. This phenomenon is caused by the effect of the saturations which prevent the state of the observer to have very large transients.

V. CONCLUSION

By following the ideas in [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF], we proposed a modified version of the low-power high-gain observer introduced therein. The new structure is designed by adding saturations at each block. The new design preserves the same benefits of the observer proposed in [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF] and overtakes the peaking phenomenon. The proposed observer has a dimension which is 2n -2 (where n is the system dimension) with a highgain parameter which grows only up to power 2 (whereas in standard high-gain observers the parameter is powered up to n) and the peaking phenomenon exhibits with a growth O( ) on the last component only (and not O( n-1 ) as in the observer of [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF]), giving evident benefits with respect to the standard implementations of high-gain observers. A new constructive Lemma for the choice of the parameter is given in the appendix. The new procedure may result easier with respect to the one proposed in [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF]. Due to the asymptotic tunable convergence property [START_REF] Maggiore | A separation principle for a class of non uniformly completely observable systems[END_REF], the novel proposed observer can be used in any output feedback design where a standard high-gain observer applies (see, for instance, [START_REF] Teel | Global stabilizability and observability imply semi-global stabilizability by output feedback[END_REF] and [START_REF] Wang | Output Stabilization for a Class of Nonlinear Systems Via High-Gain Observer with Limited Gain Power[END_REF]).

APPENDIX

The eigenvalues of M i , i > 0, can be arbitrarily assigned by appropriately choosing the coefficients (k j1 , k j2 ), j = 1, . . . , i, as claimed in the next lemma (taken off-the-shelf from the Lemma 1 published in [START_REF] Astolfi | A High-Gain Nonlinear Observer with Limited Gain Power[END_REF] by setting i = n -1).

Lemma 1 Let

P Mi (λ) = λ 2i + m 1 λ 2i-1 + ... + m 2i-1 λ + m 2i
be an arbitrary Hurwitz polynomial. There exists a choice of k j1 , k j2 , j = 1, . . . , i, such that the characteristic polynomial of M i coincides with P Mi (λ).

Lemma 2

The set G a is non-empty.

Proof: We show constructively, though conservatively, a recursive procedure to assign the coefficients k i1 , k i2 .

Step i = 1) Let k 11 > 0 and k 12 > 0 be any (positive) real numbers.

Step i > 1) Let k i1 = k (i-1)1 , and let k i2 > 0 be chosen such that k i2 < k i1 /γ i-1 , with γ i-1 defined in the forthcoming equation (15).

To verify that this choice satisfies the Definition 1 let consider first the case i = 1. By choosing k 11 > 0 and k 12 > 0 the matrix E 1 is Hurwitz, and so is M 1 . Now consider the case i > 1 and the following two systems ẋi-1

y i-1 = = M i-1 x i-1 + B 2(i-1) u i-1 B 2(i-1) x i-1 ẋi y i = = E i x i + K i u i B x i
and let denote xi = (x i-1 , x i ). Let assume the matrix M i-1 is Hurwitz and note that the matrix E i is Hurwitz for any choice of positive real numbers k i1 , k i2 . Let H i-1 (s), H i (s) be the transfer function of the two systems H i-1 (s) := B 2(i-1) (sI 2(i-1) -M i-1 ) -1 B 2(i-1) , H i (s) := B (sI 2 -E i ) -1 K i . and let γ i-1 , γ i be the real numbers defined as

γ i-1 := max s∈R |H i-1 (s)| , γ i := max s∈R |H i (s)| . ( 15 
)
It is easy to verify that

H i (s) = sk i2 s 2 + k i1 s + k i2 , γ i = k i2 k i1 .
By interconnecting the two subsystems with u i-1 = 0 and u i = y -1 we obtain a closed loop system described by ẋi = F i xi , whereas, by interconnecting the two subsystems with u i-1 = y i and u i = y -1 , we obtain a closed loop system described by ẋi = M i xi .

The choice of k i2 of the Step i satisfies the small-gain theorem (see, for instance, [START_REF] Isidori | Nonlinear control systems II[END_REF])

γ i-1 • γ i < 1
and therefore the interconnection (x i-1 , x i ) is stable in both cases. We conclude that F i and M i are Hurwitz and that there exists a common Lyapunov function satisfying [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF].

Note that, by using MATLAB, the values of γ i can be easily calculated with the command getPeakGain.

Lemma 3 Let the coefficients k j1 , k j2 , j = 1, . . . , i be admissible and let the matrix Λ i (t) be defined as

Λ i (t) := M i-1 ρ(t) Ni-1 Qi E i ( 16 
)
with ρ(t) ∈ [0, 1] any continuous function. Then the origin of the system ẋ = Λ i (t) x (17

)
is globally exponentially stable.

Proof: When ρ(t) ≡ 0 we get Λ i = F i whereas when ρ(t) ≡ 1 we get Λ i = M i . As a consequence, by using the P i claimed in the Definition 1 we get the inequality P i Λ i (t) + Λ i (t) P i < 0 is satisfied for all ρ(t) ∈ [0, 1] and therefore the claim follows trivially.

Lemma 4 Consider the system ẋ = Λ i (t) x + -κ v i (t) where x ∈ R 2i , κ ≥ 0 and v i (t) satisfying |v i (t)| ∞ ≤ vi for some vi > 0. Suppose the origin of the system (17) is globally asymptotically stable and locally exponentially stable. Then, for any compact set X ⊂ R 2i , for any T > 0 and for any > 0, there exist a a ≥ 1 such that

| κ x(t)| ≤ , ∀ t ≥ T
for any > and for any initial condition x(0) ∈ X.

Proof: Trivial, by applying standard ISS-Lyapunov arguments.

TABLE I :

 I Features of the low-power high-gain observer (3).

		= 5	= 10	= 100	= 1000
	T 0.01	4.9898	1.8382	0.2544	0.0399
	x 1 ∞	1	1	1	1
	x 2 ∞	7.5	14.4	139	1.4 • 10 3
	x 2 ∞	7	13.6	133	1.3 • 10 3
	x 3 ∞	16.5	70	7.2 • 10 3	7.2 • 10 5
	x 3 ∞	14.1	60	6.4 • 10 3	6.4 • 10 5
	x 4 ∞	16.2	126	1.3 • 10 5	1.3 • 10 8

TABLE II :

 II Features of the low-power peaking-free high-gain observer[START_REF] Gauthier | Observability for any u(t) of a class of nonlinear systems[END_REF].

		= 5	= 10	= 100	= 1000
	T 0.01	5.6072	2.0222	0.2364	0.0312
	x 1 ∞	1	1	1	1
	x 2 ∞	7.2	13.4	127	1300
	x 2 ∞	4.3	4.4	4.4	4.4
	x 3 ∞	9.3	21	261	2600
	x 3 ∞	3.7	3.9	3.8	3.8
	x 4 ∞	4.7	9.4	92	900
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