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We show that no more new distance-regular graphs in the tables of the book of (Brouwer, Cohen, Neumaier, 1989) can be produced by using the coset graph of additive completely regular codes over finite fields.

Introduction

Since the times of Delsarte [?], an important tool to construct distanceregular graphs has been the coset graph of a completely regular code. Many examples can be found in Chapter 11 of [?], involving notably the Golay codes and the Kasami codes (for a new description of these codes see e.g. [?]). More recently, a new distance-regular graph related to the dodecacode, an important additive F 4 -code of length 12 was constructed in [?]. This solved both a thirty year old problem in graph theory [?, Ch. 14], and a forty-five year old problem in coding theory [?].

• v = 343 = 7 3 , {48, 35, 9; 1, 7, 40} (Corollary ??);

• v = 625 = 5 [START_REF] Brouwer | Distance-Regular Graphs[END_REF] , {52, 42, 16; 1, 6, 28} (Section ??);

• v = 729 = 3 [START_REF] Krotov | On weight distributions of perfect colorings and completely regular codes[END_REF] , {56, 42, 20; 1, 6, 28} (Section ??);

• v = 512 = 2 [START_REF] Maruta | The nonexistence of some ternary linear codes of dimension 6[END_REF] , {63, 48, 10; 1, 8, 54} (Lemma ??);

• v = 729 = 3 [START_REF] Krotov | On weight distributions of perfect colorings and completely regular codes[END_REF] , {80, 63, 11; 1, 9, 70} (Corollary ??);

• v = 729 = 3 [START_REF] Krotov | On weight distributions of perfect colorings and completely regular codes[END_REF] , {104, 66, 8; 1, 12, 88}; a graph does not exist [?].

In this note we discuss the possibility to construct distance-regular graphs with the parameters above as coset graphs of linear completely regular codes in Hamming graph H(n, q), where q is prime. (Note that the existence of a completely regular code in H(n, q) where q = p s for prime p implies the existence of a completely regular code in H(n(q -1)/(p-1), p) with the same intersection matrix, because H(n(q -1)/(p -1), p) covers H(n, q), see also Lemma ?? below.)

Definitions and basic facts

Graphs

All graphs in this note are finite, undirected, connected, without loops or multiple edges. In a graph Γ, the neighborhood Γ(v) of a vertex v is the set of vertices adjacent to v. The degree of a vertex v is the size of Γ(v). A graph is regular if every vertex has the same degree. The i-neighborhood Γ i (v) is the set of vertices at geodetic distance i to v. The distance-i graph of Γ is the graph on the same vertex set where two vertices are adjacent if and only if the geodetic distance between them in Γ is i. A graph is distance-regular (DR) if for every pair or vertices ū and v at distance i apart the quantities

b i = |Γ i+1 (ū) ∩ Γ(v)|, c i = |Γ i-1 (ū) ∩ Γ(v)|,
which are referred to as the intersection numbers of the graph, solely depend on i and not on the special choice of the pair (ū, v). The automorphism group of a graph is the set of permutations of the vertices that preserve adjacency. Given a group G and an inversion-closed set G of non-identity elements of G, the Cayley graph Cal(G, G) is the graph on the vertex set G where two elements ū and v are adjacent if and only if ūv -1 ∈ G.

The Hamming graph H(n, q) is a distance-regular graph on the set Σ n of n-words over the alphabet Σ of size q, two vectors being adjacent if they are at Hamming distance one. We mostly consider the case when q is a prime power, Σ is the finite field F q of order q, and Σ n is an n-dimensional vector space over F q . The weight of a vertex of H(n, q) is the number of nonzero elements in the corresponding tuple. The weight distribution of a set C of vertices of H(n, q) is the sequence W = (W 0 , W 1 , . . . , W d ), where W i is the number of words of weight i in C. Sometimes, we will write the weight distribution in the form {i

W i 0 0 , i W i 1 1 , . . . , i W i k k }
, where W i 0 , . . . , W i k are the nonzero terms in W ; for example, (1, 0, 0, 7, 7, 0, 0, 1) = {0 1 , 3 7 , 4 7 , 7 1 }.

Equitable partitions, completely regular codes

A partition (P 0 , . . . , P r ) of the vertex set of a graph Γ is called an equitable partition (also known as regular partition, partition design, perfect coloring) if there are constants S ij such that

|Γ(v) ∩ P j | = S ij
for every v ∈ P i , i, j = 0, . . . , r.

The numbers S ij are referred to as the intersection numbers, and the matrix (S ij ) r i,j=0 as the intersection (or quotient) matrix. If the intersection matrix is tridiagonal, then P 0 is called a completely regular code of covering radius r and intersection array (S 01 , S 12 , . . . , S r-1 r ; S 10 , S 21 , . . . , S r r-1 ). That is to say, a set of vertices C is a completely regular code if the distance partition (C = C (0) , C [START_REF] Bassalygo | On uniformly packed codes[END_REF] , . . . , C (r) ) with respect to C is equitable. As was proven by Neumaier [?], for a distance-regular graph, this definition is equivalent to the original Delsarte definition [?]: a code C is completely regular if the outer distance distribution (|C ∩ Γ i (v)|) i=0,1,2,... of C with respect to a vertex v depends only on the distance from v to C.

Linear and additive codes

A linear code (that is, a linear subspace of F n q ) of dimension k and minimum distance d in H(n, q) is called an [n, k, d] q code. The duality is understood with respect to the standard inner product.

Linear codes are special cases of the additive codes, which are, by definition, the subgroups of the additive group of F n q . A coset of an additive code C is any translate of C by a constant vector. A coset leader is any coset element that minimizes the weight. The weight of a coset is the weight of any of its leaders. The coset graph Γ C of an additive code C is defined on the cosets of C, two cosets being adjacent if they differ in a coset of weight one.

Lemma 1 (see, e.g., [?]). An additive code with distance at least 3 is completely regular with intersection array {b 0 , . . . , b ρ-1 ; c 1 , . . . , c ρ } if and only if the coset graph is distance-regular with intersection numbers b 0 , . . . , b ρ-1 , c 1 , . . . , c ρ .

On the other hand, Lemma 2 (see [?, Theorem 11.1.10]). If a distance-regular graph of diameter at least 3 is a Cayley graph on an elementary abelian p-group, then it is the coset graph of a linear completely regular 1-code over F p .

So, the existence of a distance-regular graph of diameter at least 3 that is a Cayley graph on an elementary abelian p-group is equivalent to the existence of a linear completely regular 1-code in a Hamming graph over F p with the same intersection array.

Weight distributions Lemma 3 ([?],[?]

). If P is an equitable partition of the Hamming graph H(n, q) with quotient matrix S, then P is an equitable partition of the distancew graph of H(n, q) with quotient matrix S (w) := K w (K -1 1 (S)), where

K k (x) := K k (x; n, q) := k j=0 (-1) j (q -1) k-j x j n -x k -j
is the Krawtchouk polynomial. In particular, K w (K -1 1 (S)) is integer. (The same is true for any distance-regular graph, with the corresponding P-polynomial.)

The sequence of matrices (S (w) ) n w=0 can be called the generalized weight distribution of the equitable partition. Indeed, if the all-zero word belongs to P i , then the number of vertices of weight w in P j is precisely the (i, j)th element of the matrix S (w) . The following corollary shows that for some putative intersection arrays we can easily, without any calculations, see that S (w) is not integer for some w.

Corollary 1. Assume that we have a completely regular code C with intersection array {β 0 , ..., β ρ-1 ; γ 1 , ..., γ ρ } in a distance-regular graph with intersection array {b 0 , ..., b D-1 ; c 1 , ..., c D }. Then for any appropriate i ∈ {1, ..., ρ} and j ∈ {0, ..., ρ -i} the product β j β j+1 ...β j+i-1 of i consequent intersection numbers (similarly, for γ j+1 ...γ j+i ) is divisible by c 1 c 2 ...c i (for Hamming graphs, by i!).

Proof. We fix any vertex v from C (j) and denote by W l the set of vertices at distance l from v. We will prove by induction that

|W i ∩ C (i) | = i l=1 β j+l-1 c l . (1) 
For i = 0, it is trivially 1 = 1 (by usual convention, the result of multiplying no factors is 1). For i > 0, it is sufficient to show that

c i |W i ∩ C (i) | = β j+i-1 |W i-1 ∩ C (i-1) |. (2) 
By the definition of a completely regular code, the number of edges beginning in W i-1 ∩ C (i-1) and ending in

C (i-1) is β j+i-1 |W i-1 ∩ C (i-1) |. Since (C (t) ) t is a distance partition, all these edges end in W i .
By the definition of a distance-regular graph, the number of edges beginning in

W i ∩ C (i) and ending in W i-1 is c i |W i ∩ C (i) |. Since {C (t) } t is a distance partition, all these edges end in C (i-1) .
So, by double-counting the edges connecting W i-1 ∩ C (i-1) and W i ∩ C (i) we get (??). By induction, we have (??). Since the left part of (??) is integer, the claim of the corollary is now obvious. For {36, 28, 4; 1, 2, 24}, since 36 is the degree (q -1)n of the Hamming graph H(n, q), n ≥ 3, we have q ∈ {2, 3, 4, 5, 7, 10, 13}. In all the cases, direct calculations show that K 3 (K -1 1 (S)) is not integer, where K w (•) = K w (•; n, q) and S is the quotient matrix corresponding to the array {36, 28, 4; 1, 2, 24}.

For {63, 48, 10; 1, 8, 54}, the proof is similar.

5. {42,30,12;1,6,28}, q = 7

A putative distance-regular graph with intersection array {42, 30, 12; 1, 6, 28} has order 343 = 7 [START_REF] Brouwer | Parameters of strongly regular graphs[END_REF] . If such a graph can be realized as the coset graph of a linear completely regular code in a Hamming graph, then it is a 7ary code of length 7 = 42/(6 -1), dimension 4 = 7 -3, distance 3, and covering radius 3. The weight distributions of the code and of its dual are (1, 0, 0, 42, 42, 630, 840, 846) and (1, 0, 0, 0, 42, 0, 210, 90), respectively.

Proposition 1. If q is an odd prime power larger than 4, then there are no q-ary codes of length 7, dimension 3, and non-zero weights 4, 6, 7.

Proof. Assume that such a code C exists. W.l.o.g., it has a generator matrix   1 0 0 ? ? ? ? 0 1 0 ? ? ? ? 0 0 1 ? ? ? ?

 

We note that the weight of each row can only be 4, and two rows do not have two common zero positions (otherwise, for q > 4, they can be combined in a weight-5 codeword contradicting the hypothesis). So, w.l.o.g., we have Multiplying rows by coefficients, we get

  -1 0 0 0 -1 -1 -1 0 a -1 0 1 0 1 1 0 0 x -1 1 1 0 1   .
Now, the sum of the rows (-1, a -1 , x -1 , 2, 0, 0, 1) has weight 5, a contradiction.

Corollary 3. There are no linear completely regular codes with intersection array {42, 30, 12; 1, 6, 28} in H(7, 7).

We currently do not have a theoretical proof of the last proposition. The nonexistence of a code with the specified parameters was checked using the software [?] (1 hour of computation) and [?] (10 sec. of computation).

Corollary 5. There are no linear completely regular codes with intersection array {56, 42, 20; 1, 6, 28} in H(28, 3).

The following straightforward corollary of the fact above has an easy computer-free proof. Corollary 6. There are no linear completely regular codes with intersection array {56, 42, 20; 1, 6, 28} in H(7, 9).

Proof. If such a code exists, then its dual weight distribution is {0 1 , 4 56 , 6 392 , 7 280 }, which is impossible by Proposition ??.

8. {140,126,20,1;1,10,126,140}, q = 3

The only putative distance-regular graph in the [BCN] table with primepower order and more than 3 has order 2187 = 3 

Conclusion

We have shown that no distance-regular graphs with an unsolved intersection array from the table [?, Ch. 14] can be constructed as a Cayley graph on an elementary abelian group, or, equivalently, as the coset graph of a linear completely regular code.

Finally, we observe that the existence of unrestricted (not necessarily linear) completely regular codes with the parameters considered in Sections ??-?? and the existence of few-distance codes with dual parameters remain unsolved.

  If b = c, then there is a weight-5 linear combination of the first two rows, a contradiction. So, b = c; similarly, y = z; and, if we assume w.l.o.g. that a = b, we also see x = y:

7 .Since C ( 4 )Corollary 7 .

 747 and intersection array {140, 126, 20, 1; 1, 10, 126, 140}. The corresponding completely regular code C in H(70, It is easy to see that C ∪ C (4) is a completely regular code with intersection matrix consists of 3 cosets of C, the code C ∪ C (4) is linear; its coset graph is a strongly regular graph whose parameters are also questionable, according to [?]. The dual code is a ternary two-weight code with weight distribution {0 1 , 45 588 , 54 140 }. However, a [70, 6, 45] 3 code does not exist [?]. There are no linear completely regular codes with intersection array {140, 126, 20, 1; 1, 10, 126, 140} or {140, 126; 1, 30} in H(70, 3).
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6. {52,42,16;1,6,28}, q = 5 A putative distance-regular graph with intersection array {52, 42, 16; 1, 6, 28} has order 625 = 5 [START_REF] Brouwer | Distance-Regular Graphs[END_REF] . If such a graph can be realized as the coset graph of a linear completely regular code in a Hamming graph, then it is a 5-ary code of length 13 = 52/(5 -1), dimension 9 = 13 -4, distance 3, and covering radius 3. The weight distributions of the code and of its dual are (1, 0, 0, 52, 260, 2028, 10660, 48620, 128076, 305240, 479596, 521040, 350480, 107072) and (1, 0, 0, 0, 0, 0, 0, 52, 0, 0, 364, 0, 208, 0) = {0 1 , 7 52 , 10 364 , 12 208 }, respectively. Proposition 2. There is no 5-ary code of length 13, dimension 4, and nonzero weights 7, 10, 12.

Proof. Let G be a 4 × 13 generator matrix of a putative code with considered parameters. The columns of G form a set S of 13 points of the vector space F 4 5 = GF(5) [START_REF] Brouwer | Distance-Regular Graphs[END_REF] . Any (3-dimensional) hyperplane H 0 in F 4 5 is determined by its dual vector h:

a codeword of weight 7, 10, or 12, any such hyperplane intersects with S in 6 = 13 -7, 3 = 13 -10, or 1 = 13 -12 points. Now, consider a (2-dimensional) plane P containing at least two points of S. It is included in exactly six 3-dimensional hyperplanes, call them H i , i = 0, 1, 2, 3, 4, 5. In the rest of the proof, we will show that any intersection numbers of S with P and H i , i = 0, 1, 2, 3, 4, 5, are contradictory. Denote a := |S ∩ P |, a > 1, and b

where k is the number of i in {0, 1, 2, 3, 4, 5} such that b i = 6. We derive k = 5(a -1)/3. Since k is integer, we have a = 4 and k = 5. However, a = 4 also implies that b i cannot be 3 and hence k = 6, a contradiction. Corollary 4. There are no linear completely regular codes with intersection array {52, 42, 16; 1, 6, 28} in H(13, 5).

7. {56,42,20;1,6,28}, q = 3 A putative distance-regular graph with intersection array {56, 42, 20; 1, 6, 28} has order 729 = 3 [START_REF] Krotov | On weight distributions of perfect colorings and completely regular codes[END_REF] . If such a graph can be realized as the coset graph of a linear completely regular code in a Hamming graph, then it is a 3-ary code of length 28 = 56/(3 -1), dimension 22 = 28 -6, distance 3, and covering radius 3. The weight distributions of the dual code is {0 1 , 12 56 , 18 392 , 21 280 }. Proposition 3. There is no 3-ary code of length 28, dimension 6, and nonzero weights 12, 18, 21.