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Abstract

The present paper introduces a surface formulation to solve the scattering prob-
lem for coated objects using the integral method and a high order impedance boundary
condition (HOIBC). We study the existence and uniqueness of the solution, and we pro-
pose a discretization of this formulation trough Rao-Wilton-Glisson functions (RWG).
Numerical results are obtained with a 3D MoM code running on MPI clusters. The
experiments show how the HOIBC significantly improves the accuracy of the results
compared to computations using the standard impedance boundary condition (SIBC).
Keywords: boundary element method, scattering problem, Lagrange multipliers, high
order impedance boundary condition.
AMS Subject Classification: 65R20, 65N38, 32A55

1 Introduction
The goal of this work is to solve time-harmonic scattering problem using an integral
method coupled with an impedance boundary condition. Generally, the impedance
boundary is considered to be constant, which is called Leontovitch or standard impedance
boundary condition (see for example [2, 27, 20, 14]). This method is widely used in
computational electromagnetic methods to model thin coatings on perfectly conducting
objects since it drastically reduces the number of unknowns. It is recognized that this
type of boundary condition can be advantageously used to get a more tractable prob-
lem in numerous complex situations of electromagnetic scattering computations (see
for example [1, 30, 8, 20, 14, 29]).

In this framework, some approximations of the HOIBC are proposed in [10, 19, 20]
which involve at most a first derivative of the field. Other strategies have also been
established in [25, 3] that based on a polynomial approximation of the impedance op-
erator is done in the spectral domain. The impedance boundary condition is a function
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of incidence angle and polarization. There exists other papers about the approximate
boundary condition in electromagnetism (see for example [29, 4, 5, 6, 7, 8, 23]).

In this paper, we consider the problem of electromagnetic scattering for a perfect
conducting body with a complex coating for an incident electromagnetic field (E,H).
Let Ω be a bounded domain with a Lipschitz-continuous boundary Γ. Let n be the
unit normal vector to Γ directed to the exterior of Ω. We define Ω+ as the space of
radiating electric fields E solutions of Maxwell equations. Waves propagate with a
constant wave number k in the exterior unbounded domain Ω. The electric field E
satisfies the harmonic Maxwell equation

∇× (∇×E)− k2E = 0

while the related magnetic field is given by

H =
1

ik
∇×E

An electric field is said to be radiating if it satisfies the Silver-Müller radiation condition
[9, 11]:

lim
r→∞

r(E× nr + H) = 0,

where r = |x| and nr =
x

|x|
, x ∈ R3.

The coating is modeled by the following impedance boundary condition:

Et − Z(n×H) = 0 on Γ. (1)

Here, Z is the impedance operator that depends on the incident angle, and Et denotes
the tangent component on the surface defined as:

Et = n× (E× n).

An approximation of this impedance operator is given in the Section 2.1. It depends
on the layer thickness, the dielectric characteristics of the layer medium, as well as on
the incident angle of the electromagnetic plane wave. Our problem writes as follows:

∇× (∇×E)− k2E = 0 Ω+,
∇× (∇×H)− k2H = 0 Ω+,
Et − Z(n×H) = 0 on Γ.
limr→∞ r(E× nr + H) = 0.

(2)

This paper deals with the implementation of high order impedance boundary con-
dition implemented in an integral equation a 3D code using RWG basis functions.

In Section 2, we give an approximation of the impedance operator with Hodge oper-
ator, and of the impedance boundary condition. Subsequently, we derive a formulation
for the three-dimensional scattering problem. Then we prove the existence and unique-
ness of a solution for this variational formulation and describe its discretization. In
Section 4, we present our implementation methods using the H-matrix approach with
ACA compression and MPI parallelization. The numerical results are presented in
Section 5. Finally, the paper concludes in Section 7.
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2 Variational formulation with HOIBC

2.1 High order impedance boundary condition
The approximate boundary conditions is based on a relationship between the tangential
electric and magnetic fields on the boundary between the exterior of the coated body
and free space. This is a local property. In this section, we propose a new impedance
boundary condition with integral operators. In [25] the authors approximated the
impedance condition as a ratio of second order polynomials of the sine of the incidence
angle in the spectral domain. For the case of a rotational invariant coating, they
obtained a high order impedance boundary condition in spatial domain equations, which
is: [

1 + b1∂
2
x + b2∂

2
y (b1 − b2)∂2

xy

(b1 − b2)∂2
xy 1 + b2∂

2
x + b1∂

2
y

](
Ex

Ey

)
=[

a0 + a1∂
2
x + a2∂

2
y (a1 − a2)∂2

xy

(a1 − a2)∂2
xy a0 + a2∂

2
x + a1∂

2
y

](
−Hy

Hx

)
(3)

We apply algebraic properties on equation (3) and we get:

(I + b1LD − b2LR)Et = (a0I + a1LD − a2LR)(n×H). (4)

This approximation contains the operators LD and LR which are defined for all vector
functions A sufficiently smooth, such that A.n = 0

LD(A) = ∇Γ(divΓA), LR(A) = rotΓ(rotΓA).

In [21], different methods to calculate these coefficients (a0, aj , bj) for the formula (4)
are presented. In the following, we aim to establish a new variational formulation,
applying a boundary integral method with HOIBC for the problem in the 3D case.

2.2 Implementation of the HOIBC coupled by an integral
equation
We introduce the current densities J and M on the boundary Γ as follows:

M = E× n , J = n×H.

Note that the HOIBC equation (4) links J and M through the following relation:

(I + b1LD − b2LR)(n×M) = (a0I + a1LD − a2LR)J. (5)

Now, we derive the formulation. Multiplying the equation 5 by ΨJ and integrating on
the surface, we obtain

∫
Γ
(I + b1LD − b2LR)(n×M) ·ΨJds =

∫
Γ
(a0I + a1LD − a2LR)J ·ΨJds,

hence∫
Γ
(n×M) ·ΨJds =

∫
Γ
(a0I+a1LD−a2LR)J ·ΨJ−(b1LD−b2LR)(n×M) ·ΨJds. (6)
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Multiplying next the equation (5) by n ×ΨM and integrating on the surface, we
obtain∫

Γ
(I + b1LD − b2LR)(n×M) · (n×ΨM )ds =

∫
Γ
(a0I + a1LD − a2LR)J · (n×ΨM )ds,

hence ∫
Γ

J · (n×ΨM )ds =
1

a0

∫
Γ
(I + b1LD − b2LR)(n×M) · (n×ΨM )ds

− 1

a0

∫
Γ
(a1LD − a2LR)J · (n×ΨM )ds. (7)

In order to establish the variational formulation, we insert (6) and (7) in EFIE and
MFIE respectively using the formula of vector analysis.

Since rotΓA and divΓ(n×A) do not make sense for A ∈ H−
1
2 (div,Γ), we introduce

auxiliary unknowns J̃ and M̃ from H−
1
2 (div,Γ) with test functions Ψ̃J and Ψ̃M . This

method is inspired by recent papers [12, 18]. We finally obtain the following variational
formulation

Problem 2.1. Find U = (J,M, J̃, M̃) ∈ V = [H−1/2(div,Γ) ∩ L2(Γ)]4 and λ =
(λJ ,λM ) ∈ [H−1/2(Γ)]2 such that{

A(U,Ψ) +BT (λ,Ψ) = F (Ψ)

B(U, λ′) = 0
(8)

for all Ψ = (ΨJ ,ΨM , Ψ̃J , Ψ̃M ) ∈ V = [H−1/2(div,Γ) ∩ L2(Γ)]4 and λ′ = (λ′J ,λ
′
M ) ∈

W = [H−1/2(Γ)]2.

The bilinear forms are defined by:

B(U, λ′) =

∫
Γ
λ′J · (J̃− n× J)ds+

∫
Γ
λ′M · (M̃− n×M)ds

and
A(U,Ψ) = iZ0

∫∫
Γ
kG (J ·ΨJ)− 1

k
G divΨJ divJdsds′ (9)

+
i

Z0

∫∫
Γ
kG (ΨM ·M)− 1

k
G divΨM divMdsds′

+

∫∫
Γ
∇′G · (ΨJ ×M)dsds′ − i

∫∫
Γ
∇′G · (ΨM × J)dsds′

+
a0

2

∫
Γ
J ·ΨJds+

1

2a0

∫
Γ
M ·ΨMds

−a1

2

∫
Γ

divΓJ divΓΨJds−
a2

2

∫
Γ

divΓJ̃ divΓΨ̃Jds

+
b1
2

∫
Γ

divΓM̃ divΓΨJds−
b2
2

∫
Γ

divΓM divΓΨ̃Jds

− b1
2a0

∫
Γ

divΓM̃ divΓΨ̃Mds−
b2

2a0

∫
Γ

divΓM divΓΨMds
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+
a1

2a0

∫
Γ

divΓJ divΓΨ̃Mds−
a2

2a0

∫
Γ

divΓJ̃ divΓΨMds,

where G(x, y) is the Green kernel.

In the next section, we study this problem mathematically.

2.3 Existence and uniqueness theorem
We use a theorem from [13] to prove the existence and uniqueness of a solution to the
problem 2.1. First, we prove the following result.

Lemma 2.1. The operator A is continuous on V × V for all Ψ ∈ V and we have

|A(U,Ψ)| ≤ C‖U‖V ‖Ψ‖V

Proof. In order to prove this lemma, it is convenient to introduce a decomposition of
A as A = A1 +A2 +A3

where
A1(U,Ψ) =< Z0(B − S)J,ΨJ > +

1

Z0
< (B − S)M,ΨM >

+ < QM,ΨJ > − < QJ,ΨM > +
a0

2
< J,ΨJ > +

1

2a0
< M,ΨM >

A2(U,Ψ) = −a1

2
< divΓJ, divΓΨJ > −

a2

2
< divΓJ̃,divΓΨ̃J >

− b1
2a0

< divΓM̃, divΓΨ̃M > − b2
2a0

< divΓM, divΓΨM >

and
A3(U,Ψ) =

b1
2
< divΓM̃,divΓΨJ > −

b2
2
< divΓM, divΓΨ̃J >

+
a1

2a0
< divΓJ, divΓΨ̃M > − a2

2a0
< divΓJ̃, divΓΨM >

Hence, the theorems 2.2 and 4.6 in [14] yield that there exist constants C1 and C2 such
that

|A1(U,Ψ)| ≤ C1‖U‖V ‖Ψ‖V , (10)

and
|A2(U,Ψ) +A3(U,Ψ)| ≤ C2‖U‖V ‖Ψ‖V (11)

Combining (10) and (11) we obtain:

|A(U,Ψ)| = |A1 +A2 +A3| ≤ |A1(U,Ψ)|+ |A2(U,Ψ) +A3(U,Ψ)| ≤ C‖U‖V ‖Ψ‖V

where C = C1 + C2.

Lemma 2.2. The operator A is coercive on V . We have to show that there exists α > 0
such that

<[A(U,U∗)] ≥ α‖U‖2V − C‖U‖2V , ∀U ∈ V.
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Proof. It follow from [14] that there exists α such that

<(A1) = <(< Z0(B − S)J,J∗ >) + <(< Z−1
0 (B − S)M,M∗ >) + <(< QM,J∗ >)

−<(< QJ,M∗ >) + <(
a0

2

∫
Γ

J · J∗ds) + <(
1

2a0

∫
Γ

M ·M∗ds)

≥ α
(
‖J‖2−1/2,divΓ

+ ‖M‖2−1/2,divΓ

)
+
<(a0)

2
‖J‖2L2(Γ) +

<(a0)

2|a0|2
‖M‖2L2(Γ).

We can easily show that

<(A2) = −<(a1)

2
‖divΓJ‖2L2(Γ) −

<(a2)

2
‖divΓJ̃‖2L2(Γ)

−<(b1a
∗
0)

2|a0|2
‖divΓM̃‖2L2(Γ) −

<(b2a
∗
0)

2|a0|2
‖divΓM‖2L2(Γ)

On the other hand, we get:

<(A3) = <(
b1
2

∫
Γ

divΓM̃ divΓJ∗ds)−<(
b2
2

∫
Γ

divΓM divΓJ̃∗ds)

+<(
a1

2a0

∫
Γ

divΓJ divΓM̃∗ds)−<(
a2

2a0

∫
Γ

divΓJ̃ divΓM∗ds)

= <
{(

b1
2

+
a∗1
2a∗0

)∫
Γ

divΓM̃ divΓJ∗ds

}
−<

{(
b2
2

+
a∗2
2a∗0

)∫
Γ

divΓJ̃∗ divΓMds

}
= <

{∫
Γ

1

|a0|1/2

(
b1
2

+
a∗1a0

2|a0|2

)1/2

divΓM̃ · |a0|1/2

(
b1
2

+
a∗1a0

2|a0|2

)1/2

divΓJ∗ds

}

−<

{∫
Γ
|a0|1/2

(
b2
2

+
a∗2a0

2|a0|2

)1/2

divΓJ̃∗ · 1

|a0|1/2

(
b2
2

+
a∗2a0

2|a0|2

)1/2

divΓMds

}
.

We also define q1 and q2 by

q1 = b1|a0|+ a∗1a0/|a0| q2 = b2|a0|+ a∗2a0/|a0|,

and we find that

<(A3) ≥ −|q1|
4
‖divΓJ‖2L2(Γ) −

|q1|
4|a0|2

‖divΓM̃‖2L2(Γ)

−|q2|
4
‖divΓJ̃‖2L2(Γ) −

|q2|
4|a0|2

‖divΓM‖2L2(Γ).

Using the conditions on the coefficients

<(aj) +
|qj |
2

= 0, where j = 1, 2

and from the sufficient uniqueness conditions, we get <(aj) = <(b∗ja0).
Thus, we obtain

<(A2) + <(A3) ≥ 0.

Finally, for an operator A, we have

<(A) ≥ α
(
‖J‖2−1/2,divΓ

+ ‖M‖2−1/2,divΓ

)
+
<(a0)

2
‖J‖2L2(Γ) +

<(a0)

2|a0|2
‖M‖2L2(Γ)
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Lemma 2.3. The operator B verifies the inequality

sup
‖U‖V =1

|B(U, λ)| ≥ β‖λ‖W , ∀λ ∈W = [H−1/2(Γ)]3 × [H−1/2(Γ)]3

where U ∈ V = [H−1/2(div,Γ) ∩ L2(Γ)]4 and β > 0.

Proof. We have to show that there exists β > 0 such that

sup
‖U‖V =1

∣∣∣∣∫
Γ
λJ · (J̃− n× J) + λM · (M̃− n×M)ds

∣∣∣∣ ≥ β‖λ‖W
First, we take

J = 0; M = 0; J̃ =
Ĵ

‖Ĵ‖V
and M̃ =

M̂

‖M̂‖V

Ĵ(x) =

∫
Γ\x

λJ

|x− y|
dsy and M̂(y) =

∫
Γ\x

λM

|x− y|
dsy

so, we get following inequality:

sup
‖U‖V =1

∣∣∣∣∫
Γ
λJ · (J̃− n× J) + λM · (M̃− n×M)ds

∣∣∣∣ ≥
1

‖Ĵ‖−1/2,divΓ

∫∫
Γ

λJ(x)λJ(y)

|x− y|
dsydsx +

1

‖M̂‖−1/2,divΓ

∫∫
Γ

λM (x)λM (y)

|x− y|
dsydsx (12)

Using the Planchard-Nédélec inequality [15], we get∫∫
Γ

λ(x)λ(y)

|x− y|
dsydsx ≥ β‖λ‖2−1/2,Γ (13)

and therefore, by (12) and (13), it follows that

sup
‖U‖V =1

∣∣∣∣∫
Γ
λJ · (J̃− n× J) + λM · (M̃− n×M)ds

∣∣∣∣ ≥
1

‖Ĵ‖−1/2,divΓ

βJ‖λJ‖2−1/2,Γ +
1

‖M̂‖−1/2,divΓ

βM‖λM‖2−1/2,Γ (14)

Furthermore, there exist CJ > 0 and CM > 0 such that

‖Ĵ‖−1/2,divΓ
≤ CJ‖λJ‖−1/2,Γ and ‖M̂‖−1/2,divΓ

≤ CM‖λM‖−1/2,Γ (15)

Consequently, we obtain that

sup
‖U‖V =1

∣∣∣∣∫
Γ
λJ · (J̃− n× J) + λM · (M̃− n×M)ds

∣∣∣∣ ≥ βJ
CJ
‖λJ‖−1/2,Γ +

βM
CM
‖λM‖−1/2,Γ

≥ β‖λ‖W

where β = min(βJ/CJ ;βM/CM ).
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Theorem 2.1. The problem (2.1) admits a unique solution U ∈ V = [H−1/2(div,Γ) ∩
L2(Γ)]4 and λ ∈ [H−1/2(Γ)]2, if the coefficients satisfy

<(aj) +
|a0||bj + a∗j/a

∗
0|

2
= 0 for j = 1, 2. (16)

Proof. Using the above lemma, we can show as in [13] that the variational problem 2.1
has a unique solution.

In the next section, a discretization of the problem 2.1 is obtained using Rao-Wilton
functions.

3 Discretization of the variational problem with
HOIBC
As a next step, we express the problem in matrix form. Let {fi}i=1,Ne be a set of Rao-
Wilton-Glisson functions [16, 17]. We decompose the electric and magnetic currents
with these basis functions. For the Lagrange multipliers, we use the basis functions gn

proposed in [12]. We obtain these following integrals:

(B − S)i,j = i

∫ ∫
Γh

kG(s, s′)fj(s
′) · fi(s)−

1

k
G(s, s′)(divΓfi)(div′Γfj)dsds

′

Qi,j = −i
∫ ∫

Γh

[fi(s)× fj(s
′)] · ∇′ΓG(s, s′)dsds′

Ii,j =

∫
Γh

fi · fjds; Di,j =

∫
Γh

(divΓfj)(divΓfi)ds

CHi,j =

∫
Γh

gi · fjds; CKi,j =

∫
Γh

gi · (n× fj)ds, (17)

where [CH ] is a non singular diagonal matrix. Therefore, [CH ] is invertible.
Then, we define [A1] and [A2] by

[A1] = [(B − S)] +
a0

2
[I]− a1

2
[D], [A2] = [(B − S)] +

1

2a0
[I]− b2

2a0
[D]. (18)

Using (17) and (18), we now present the discrete problem 2.1 in the following matrix
form

[A1] [Q] 0 b1
2 [D] [CK ]T 0

[Q]T [A2] − a2
2a0

[D] 0 0 [CK ]T

0 − b2
2 [D] −a2

2 [D] 0 [CH ]T 0
a1
2a0

[D] 0 0 − b1
2a0

[D] 0 [CH ]T

[CK ] 0 [CH ] 0 0 0
0 [CK ] 0 [CH ] 0 0





J

M

J̃

M̃

λJ
λM


=



E

H
0
0
0
0


(19)

where right-side vectors E, H are defined as follows:

Ei =

∫
Γh

Einc · fids; Hi =

∫
Γh

Hinc · fids.
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As a second step, we focus on eliminating auxiliary currents and the Lagrange
multiplier.

Using the definition of the basis function, we obtain∫
Γ

gn(s) · J̃ds =
|T+

n |+ |T−n |
3

J̃n.

On the other side, we have∫
Γ

gn(s) · (n× J)ds =

∫
T+
n ∪T−

n

gn(s) · (n× J)ds,

which is calculated with help of Gaussian quadrature. We get the equation

|T+
n |+ |T−n |

3
J̃n =

∫
T+
n ∪T−

n

gn(s) · (n× J)ds (20)

Thus, we obtain

J̃n =
3

|T+
n |+ |T−n |

∫
T+
n ∪T−

n

gn(s) · (n× J)ds (21)

on each edge of the mesh. Consequently, we conclude that the auxiliary currents can
be rewritten as

J̃ = −[CH ]−1[CK ]J and M̃ = −[CH ]−1[CK ]M (22)

As a consequence, equation (19) together with (22) yields the following expression of
Lagrange multipliers in terms of J and M :

λJ =
b2
2

[CH ]−T [D]M − a2

2
[CH ]−T [D][CH ]−1[CK ]J (23)

λM = − a2

2a0
[CH ]−T [D]J − b1

2a0
[CH ]−T [D][CH ]−1[CK ]M (24)

Now we define the matrices

[CKH ] = [CH ]−1[CK ] and [CKH ]T = [CK ]T [CH ]−T (25)

Using (23),(24) and (25), we obtain the final matrix

MHOIBC =

 [A1]− a2
2 [CKH ]T [D][CKH ] [Q]− b1

2 [D][CKH ] + b2
2 [CKH ]T [D]

[Q]T + a2
2a0

[D][CKH ]− a1
2a0

[CKH ]T [D] [A2]− b1
2a0

[CKH ]T [D][CKH ]


4 Implementation methods
Considering a surface with N edges, the matrix of the HOIBC defined in the previous
section is of size 2Nx2N in its dense form. This O(N2) complexity poses significant
challenges in terms of memory footprint and computational costs. The current section
describes the methods applied with a view to meeting both challenges via memory com-
pression and parallel computing. We implemented these methods through an adapted
version of the open-source HACApK library for CPU clusters [34, 35] which is originally
designed for real-valued BEM-matrices only.
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4.1 H-matrix
Hierarchical matrices or H-matrices [32, 33] are a well-known approach which allows
creating a subdivided and data-sparse representation of dense BEM-matrices. The
principle consists in partitioning the matrix into sub matrices called blocks, and to
perform low-rank approximations of certain blocks by using an admissibility condition.
The tree-based subdivision of the H-matrix is achieved by a recursive subdivision of the
geometry defining groups of edges, and by permuting the indices in the matrix such that
consecutive rows and columns correspond to edges at a close distance. The diagonal
blocks, which represent intra-group interactions, as well as blocks of degenerated form
having few rows or columns are not admissible for compression and are processed in
dense mode. All other blocks correspond to interactions of well-separated groups of
edges and will be compressed by the ACA algorithm which is presented in the next
subsection. As an example, Figure 1 displays a typical H-matrix partitioning pattern
with its admissible and non-admissible blocks.

Figure 1: H-matrix partition of a sphere mesh with 1434 edges. Matrix size is 2868x2868.
Admissible blocks are shown in green, non-admissible blocks in red.

4.2 Adaptive Cross Approximation
Adaptive Cross Approximation (ACA) is a greedy compression algorithm producing
low-rank approximations of the admissible blocks [36]. The advantages of the ACA
compared to other compression methods lie notably in the facts that (1) it is purely
algebraic, i.e its formulation is integral equation kernel independent, and (2) it does
not require the assembly of the complete matrix.

Every matrix of rank r is the sum of r matrices of rank 1. With this insight in mind,
the ACA improves the accuracy of the approximation by successively adding rank-1
matrices. At iteration k, a block A ∈ Cm∗n is approximated by the rank-k matrix

Bk =
k∑

l=1

ulv
T
l ∈ UkV

T
k , Uk ∈ Cm∗k, Vk ∈ Cn∗k (26)

The algorithm terminates when a required accuracy is achieved, i.e. when the residual
||A−Bk||F ≤ ε||A||F for a specified tolerance ε, ||.||F denoting the Frobenius norm. A
block which has been compressed with rank r needs a memory space of only r(m+ n)
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entries instead of mn entries. Note that for some admissible blocks ACA may yield
unprofitable compressions with r(m+n) > mn. In that case, we reject the compression
and fall back to dense mode. A detailed description of the ACA algorithm can be found
in [37].

4.3 Parallel computing
Due to the independence of the blocks, H-matrix computing can be conveniently coupled
with parallel computing technologies to distribute the memory load, and to accelerate
not only the matrix filling but also the classical matrix/vector product in order to
obtain fast iterative solvers.

The HACApK library provides a powerful hybrid programming framework for CPU
clusters with both MPI and OpenMP parallelizations. After the H-matrix partitioning
into blocks, the blocks are evenly assigned to the MPI processes and filled in parallel,
in dense or ACA-compressed mode depending on their admissibility. The filling is
further accelerated through OpenMP directives such that multiple threads can work on
different blocks at the same time.

After the filling stage, the H-matrix memory load has therefore been scattered over
the MPI processes, each process holding a share of the blocks. Subsequently usual
linear algebra operations can be performed. Most importantly, when the iterative solver
requires a matrix/vector product, each MPI process multiplies its particular blocks with
the vector and produces a partial result. The operation is again accelerated through
OpenMP multithreading such that several blocks can be handled in parallel. The partial
multiplications are broadcasted among the MPI processes and added up to the final
product.

5 Numerical results
We present some numerical results which validate the approximation HOIBC by com-
paring the calculated radar coross section and a method of moments solution for several
geometries that have been generated with CAPITOLE. The main goals of this section
are to illustrate the numerical performance of the higher order impedance boundary
condition. The following test examples are selected:

5.1 Coated sphere
As a first example, we consider the case of a coated conducting sphere with a conductor
radius of 1.5λ0 and a coating thickness of 0.075λ0, with εr = 5 and µr = 1.0. The
geometry is illustrated in Figure 2.



12

Figure 2: A mesh (right) and corresponding sphere (left).

Figure 3 shows the θθ components of the bistatic RCS for a plane wave incident
from the angle θ = 0. Three solutions are included: the exact solution (MIE) and
the solutions using the method of moments with SIBC and the HOIBC. The Figure
clearly illustrates the increased accuracy of the HOIBC solution compared to the SIBC
solution. The SIBC only gives the average behavior of the scattered field, whereas the
HOIBC accurately predicts the sidelobe behavior. In this example, the code only take
the default optimization of the machine, that is , they are not parallel code.
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Figure 3: θθ component of the bistatic RCS for a coated conducting sphere. Exact serie
solution and HOIBC solution.

5.2 Coated spheroïd
The second test concerns a coated conducting spheroïd whose radii are 0.5m and 1m
with a coating thickness of 0.17λ0, εr = 5 and µr = 1. The geometry is illustrated in
Figure 4.
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Figure 4: A mesh (right) and corresponding spheroïd (left).

Figure 5 and Figure 6 show the θθ and φφ components of the monostatic RCS.
Three solutions are included : a method of moments solution called PMCHWT [24],
the HOIBC solution and the SIBC solution. Note that there exists no exact solution
for this case. We see only a slight difference between the PMCHWT solutions and the
HOIBC solutions, whereas the SIBC solutions are very poor. In both cases excellent
results are obtained with HOIBC for all angles of incidence, however the finite radii of
curvature on the spheroïd contribute to the inaccuracy of the HOIBC result.

Figure 5: θθ component of the monostatic RCS for a coated conducting spheroïd, PMCHWT
solution, SIBC solution and HOIBC solution.
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Figure 6: φφ component of the monostatic RCS for a coated conducting spheroïd, PMCHWT
solution, SIBC solution and HOIBC solution.

5.3 Coated conesphere
The next three examples are used to illustrate the effects of the HOIBC solution. We
consider the case of a coated conducting conesphere which is illustrated in Figure 7.
This PEC conesphere with a half angle 15Âř and half total length 1.29 mm is coated
with a 5 mm layer, coating thickness of 0.11λ0 ,εr = 5 and µr = 1.

Figure 7: A mesh (right) and corresponding cone-sphere (left).
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Figure 8: θθ component of the monostatic RCS for a coated conducting cone-sphere, PM-
CHWT solution and HOIBC solution.

Figure 9: φφ component of the monostatic RCS for a coated conducting cone-sphere, PM-
CHWT solution and HOIBC solution.

Figure 8 and Figure 9 show the θθ and φφ components of the monostatic RCS.
Three solutions are included : a method of moments solution called PMCHWT, the
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HOIBC solution and the SIBC solution. Note that the HOIBC solution is much more
accurate than the SIBC solution.

6 Coated cone
Our next concern is to assess the performance of our approximation HOIBC in this case
the highest index coating. We consider a coated conducting cone which is illustrated
in Figure 10. This PEC cone of total length 2 cm, tip radius 10 cm, diameter flat base
20 cm is coated with a 5cm layer, εr = 2− 3i and µr = 1− i.

Figure 10: A mesh (right) and corresponding cone (left).

As can be seen in the Figure 11 and Figure 12 we present θθ and φφ of the monostatic
RCS. Here, we compare the results obtained using HOIBC solution with various meshes
and PMCHWT solution where the step is h = λ0/28 . For the highest index coating,
the HOIBC solution is the most accurate.

Figure 11: θθ component of the monostatic RCS for a coated conducting cone, PMCHWT
solution and HOIBC solutions.



17

Figure 12: φφ component of the monostatic RCS for a coated conducting cone, PMCHWT
solution and HOIBC solutions.

6.1 Coated cylinder
The next example, we consider a coated conducting cylinder which is illustrated in
Figure 13. This PEC cylinder of total length 2m, hemisphere radius 25 cm, hemisphere
radius 25 cm is coated with a 5 cm layer, εr = 1− i and µr = 1.

Figure 13: A mesh (right) and corresponding cylinder (left).

As in the previous test examples, we use the approximation HOIBC to compute these
solutions for different values of h namely, h = λ0/10, h = λ0/20, h = λ0/25, h = λ0/40
while the step h = λ0/28 to compute PMCHWT solution. The corresponding results
for θθ and φφ components of monostatic RCS are presented in Figure 14 and Figure 15.
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Figure 14: θθ component of the monostatic RCS for a coated conducting cylinder, PMCHWT
solution and HOIBC solutions.

Figure 15: φφ component of the monostatic RCS for a coated conducting cylinder, PMCHWT
solution and HOIBC solutions.

6.2 Coated Nasa Almond
As a final example, we consider a coated conducting nasa almond which is illustrated
in Figure 16. From a numerical point of view this test example is more difïňĄcult than
these previous. This PEC nasa almond of total length 2.56 m is coated with a 30mm
layer, coating thickness of 0.1λ0, εr = 4 and µr = 1.
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Figure 16: A mesh (right) and corresponding almond (left).

Figure 17: φφ component of the monostatic RCS for a coated conducting almond, PMCHWT
solution, SIBC solution and HOIBC solution.

Figure 17 show the φφ components of the monostatic RCS. Three solutions are
included : a method of moments solution called PMCHWT, the HOIBC solution and the
SIBC solution. In the case clearly show the increased accuracy of the HOIBC solution
relative to the SIBC solution. Moreover the approximation HOIBC that considers gives
essentially the PMCHWT solution in all directions.

Then, the comparison of the calculation time is given by the following table:
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Table 1: Computation time.

Unknowns Direct solve time (s on 16 cores) ACA solve time (s on 16 cores)
Thick model 206514 48664 13284
SIBC model 29016 212 58
HIOBC model 29016 438 101

7 Conclusion
This paper proposed a new formulation of the electromagnetic scattering problem with
a higher order impedance boundary condition which is an approximation of the re-
lationship between the tangential traces of electric and magnetic fields . We proved
the existence and uniqueness of the solution of the variational formulation which is
a saddle point formulation. Then we discretized the formulation where J and M are
the unknowns with Rao Wilson Glisson basis functions which are H(div). The nu-
merical validations showed an important improvement in accuracy using the higher
order impedance boundary condition over the standard impedance boundary condition
model in the case of coated body and complex numerical simulations such as a coated
conesphere and coated Nasa Almond validate the method.
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