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Abstract

Imaging bio-markers have been widely used for Computer-Aided Diagnosis (CAD)

of Alzheimer’s Disease (AD) with Deep Learning (DL). However, the structural

brain atrophy is not detectable at an early stage of the disease (namely for Mild

Cognitive Impairment (MCI) and Mild Alzheimer’s Disease (MAD)). Indeed,

potential biological bio-markers have been proved their ability to early detect

brain abnormalities related to AD before brain structural damage and clinical

manifestation. Proton Magnetic Resonance Spectroscopy (1H-MRS) provides a

promising solution for biological brain changes detection in a no invasive man-

ner. In this paper, we propose an attention-guided supervised DL framework

for early AD detection using 1H-MRS data. In the early stages of AD, features

may be closely related and often complex to delineate between subjects. Hence,

we develop a 1D attention mechanism that explicitly guides the classifier to fo-

cus on diagnostically relevant metabolites for classes discrimination. Synthetic

data are used to tackle the lack of data problem and to help in learning the

feature space. Data used in this paper are collected in the University Hospital

of Poitiers, which contained 111 1H-MRS samples extracted from the Posterior

Cingulate Cortex (PCC) brain region. The data contain 33 Normal Control

(NC), 49 MCI due to AD, and 29 MAD subjects. The proposed model achieves
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an average classification accuracy of 95.23%. Our framework outperforms state

of the art imaging-based approaches, proving the robustness of learning metabo-

lites features against traditional imaging bio-markers for early AD detection.

Keywords: Computer-Aided Diagnosis, Deep learning, Attention mechanism,

Feature refinement, Alzheimer’s disease, Magnetic resonance spectroscopy

1. Introduction

Alzheimer’s Disease (AD) is the most frequently occurring progressive neuro-

degenerative disease that is increasing in prevalence and cost at unsustainable

levels Mayeda et al. (2016). Patients with AD suffer from the cognitive decline

that leads to brain neurons and synaptic loss (i.e. memory loss, difficulty with

problem-solving, etc). Although there is currently no cure for AD, there are

available medications that can slow down disease progression and improve the

patient lifestyle López et al. (2020). Recent studies on bio-markers research

have demonstrated that the AD pathology is now suspected to start a long time

before the manifestation of the clinical symptoms and even before brain damage

Morley et al. (2018). Hence, diagnosis of AD at earlier stages is of great clinical

importance so that cognitive functions would be improved by medications and

the spread of the disease would be prevented. Mild Cognitive Impairment (MCI)

is an intermediary stage condition between healthy people and AD Gallaway

et al. (2017). Detecting MCI subjects provide a potential window for early

AD detection. However, MCI subjects detection remain a challenging clinical

problem as it lies on a spectrum between NC and manifest AD Honig et al.

(2018). Before the confirmed AD, Mild Alzheimer’s Disease (MAD) is the next

stage after the MCI condition due to AD. Compared to the moderate and severe

stages of AD, MAD patients retain independence in simpler activities Knopman

& Petersen (2014). Therefore, identifying efficient bio-markers for early AD

stages detection helps in establishing diagnosis and treatment strategies without

delay.

Over the last decades, imaging-based bio-markers have been extensively in-
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vestigated for AD detection through Magnitude Resonance Imaging (MRI) tech-

niques Young et al. (2020); Ben Ahmed et al. (2015). These approaches are

mainly based on the quantification of brain volume loss and the neuronal de-

generation process. However, these structural atrophies occur once brain dam-

age has already begun and hence cannot provide diagnosis at an early stage.

Therefore, imaging-based bio-markers failed to accurately distinguish between

patients with MCI and MAD. An efficient bio-marker that could detect early

brain changes before neuronal death would be valuable. In this context, several

studies in the medical domain have identified biological bio-markers that could

detect early brain changes before neuronal death Bateman et al. (2012); Beason-

Held et al. (2013). These studies are mainly based on Cerebrospinal Fluid (CSF)

which can detect brain damage before 15 to 20 years of the first clinical signs of

AD Andreasen et al. (2001). However, CSF bio-markers are collected by lumbar

puncture and require an invasive procedure that is not recommended for routine

evaluation of early dementia Menéndez-González (2014).

Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique pro-

viding a complementary approach to brain metabolism in vivo, during conven-

tional MRI examination. MRS provides biological information of brain tissues

at the molecular level allowing detecting brain abnormalities while MRI re-

mains normal. Indeed, studies on brain metabolism have demonstrated differen-

tial metabolite measurements across early AD stages Graff-Radford & Kantarci

(2013); Maul et al. (2020). This ability to safely assess brain biological informa-

tion made MRS an efficient tool for virtual biopsy of early AD detection. Al-

though, the importance of MRS in the detection of brain chemical components,

their investigation for CAD of AD remains scarce. Indeed, DL is a powerful

paradigm for medical data analysis Bhatt et al. (2021) and MRS data opens up

new perspectives for DL-based CAD systems development of early AD.

However, compared to imaging data, MRS data are more challenging. First,

MRS are complex and high dimensional data with a high correlation between

metabolite spectral patterns. Moreover, MRS data are scarce and hence require

designing specific deep architectures and efficient features learning strategies.
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To the best of our knowledge, there is no work that has investigated DL for

early AD detection with MRS data. Yet, there is no public MRS data for CAD.

In this paper, inspired by the clinician diagnosis process, we propose a self-

guided attention DL framework for CAD of early AD. The contributions of the

paper can be summarized as follows:

• Biological bio-markers (brain metabolites) from non-invasive technique

with (1H-MRS) data are investigated for early AD detection.

• Unlike most existing works for binary classification, we address the prob-

lem of multi-class classification for MCI, MAD, and NC categories dis-

crimination. Indeed, the multi-classification strategy is more suitable in

clinical practice.

• We propose a method that guides the network to learn discriminative class-

related metabolites for fine-grained classification. Hence, we develop a 1D

attention mechanism for disease-related features learning. Indeed, the

latter is designed to build an attention map that represents the important

metabolites in spectrum recognition and uses it to refine the features space

in a supervised fashion.

• We tackle the problem of the lack of MRS data by simulating MRS data

from real spectra. Indeed, synthetic data help in learning the latent fea-

tures space and the attention mechanism guides the model to refine these

learned features.

• Finally, we give an interpretation and explanation of the proposed model

using a 1D attention map designed for MRS data.

The rest of this paper is organized as follows: First, Section 2 reviews State

Of The Art (SOTA) deep learning based approaches for AD detection. Second,

Section 3 describes the proposed subject classification framework. Then, exper-

iments and results are presented and analyzed in Section 4. Finally, Section 5

concludes the paper and opens new perspectives.
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2. Related Work

During the last years, DL techniques have been widely investigated for AD

detection using medical imaging data. In this section, we review some SOTA

deep learning-based approaches for early AD detection. Then, we present SOTA

contributions for CAD using MRS data.

2.1. Deep learning for early CAD of AD

Two-Dimensional (2D) Convolutional Neural Network (CNN) models have

been widely used for feature learning from 2D MRI slices for AD detection. Suk

et al. (2015) proposed to use a stack sparse auto-encoder for feature extraction

along with a Support Vector Machine (SVM) for classification. Martinez-Murcia

et al. (2019), the authors proposed a deep convolutional auto-encoder to com-

press MRI slices into low-dimensional representations and use SVM and Neural

Network (NN) for AD subjects classification. Moreover, 2D CNN models have

been used with transfer learning to identify AD Ebrahimi-Ghahnavieh et al.

(2019) Aderghal et al. (2017). However, the shortcomings of the 2D CNN-based

methods are that the spatial and the inter-slice information of the 3D images are

not fully explored. 3D CNN has been used to address this issue. For instance,

Hosseini-Asl et al. (2016), utilized a pre-trained 3D Adaptive CNN classifier for

the classification of AD vs NC. Korolev et al. (2017) used 3D residual NN ar-

chitecture together with several regularization techniques for AD classification.

Recently, Dufumier et al. (2021) proposed a 3D contrastive learning framework

for AD classification. The proposed contrasting scheme is based on the assump-

tion that similar metadata share similar discriminative features. However, 3D

CNNs are compute and memory-intensive limiting their use in clinical practice.

Other studies focused on combining 2D CNNs with Recurrent Neural Networks

(RNNs) to aggregate the intra-slice information. Liu et al. (2018) proposed a

classification framework based on 2D CNN and RNN from PET scan. They

used 2D CNN to capture the slice features with RNN to learn and integrate

the inter-slice features. Li & Liu (2019) combined CNN with RNN based on
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internal and external hippocampal to perform binary distinction, i.e., (AD vs

NC), (MCI vs AD), etc.

In order to boost the performance of early AD detection, information fusion

have been explored by either combining several imaging modalities Feng et al.

(2019) or by adding demographic features (cognitive scores, Age, etc) Khatri &

Kwon (2020). However, the necessity of balanced data made fusion approaches

not generic, since the model needs to use all modalities/information to give a

prediction. Most DL models proposed for AD diagnosis are formulated as bi-

nary classification problems (AD vs NC, NC vs MCI, and MCI vs AD) far from

meeting the clinical demand. Although CNN learns meaningful and high-level

features, they are known to learn redundant features leading to poor classifica-

tion performance. Therefore, learning to suppress irrelevant features and keep

only the important ones is very needed for early AD diagnosis. Based on the

idea that pertinent information in medical imaging are located in some regions

of interest, attention mechanism has been investigated for CAD Schlemper et al.

(2019) in 2D images. Indeed, attention mechanisms improve the classification

performance and provide decision interpretation which is important in the med-

ical domain Bourdon et al. (2021). For instance, Zhang et al. (2021), proposed a

3D explainable network improved by a self-attention network with residual con-

nection to automatically extract discriminative localization on sMRI for efficient

diagnosis.

2.2. CAD approaches using MRS data and deep learning

Deep learning has been recently explored for MRS data analysis Chen et al.

(2020), especially for data denoising Hu et al. (2021) and metabolites quan-

tification Lee & Kim (2020)Lee & Kim (2019)Javid & Buzdar (2021). More

recent DL-based approaches have been proposed for brain tumor detection us-

ing MRS data Menze et al. (2021) Lu et al. (2021a). Lu et al. (2021b) proposed

a DL framework to detect brain tumors with data augmentation and distilla-

tion. Distilling and raising the number of data improved the performance of the

model and outperformed the human expert-level prediction. Jang et al. (2021)
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proposed to train a Generative Adversarial Network (GAN) in an unsupervised

manner using 1H-MRS of the brain, which is capable of filtering out abnormal

spectra with different range of abnormalities from the normal ones. Dandıl

& Karaca (2021) proposed a DL model based on Long Short-Term Memory

(LSTM) and Bidirectional LSTM for binary classification able to distinguish

between brain tumors and normal brain tissue with pseudo-brain tumors. They

augmented their training data using the normal distribution to generate new

samples. Previous works proved that MRS data opens up new perspectives in

CAD, especially with the use of Deep Neural Networks (DNNs) models.

Although, the importance of MRS in the detection of brain chemical com-

ponents, their investigation for an individual diagnosis of AD remains scarce.

To the best of our knowledge, there are no studies that have investigated DL

to detect AD at an early phase using MRS data. Only one recent work Ahmed

et al. (2020) has used 1H-MRS data for binary classification of AD and NC

subjects. This work outperformed SOTA structural MRI-based approaches for

AD vs NC detection. Indeed, the authors proposed to learn a 1D-CNN model

using the real and the imaginary parts of the 1H-MRS signal. However, includ-

ing the imaginary part in the model negatively impacts the interpretation of

the classification results because clinical information is located only in the real

part. Moreover, the authors used Global Average Pooling (GAP) layer to build

a Class Activation Maps (CAM) for model interpretation. However, the GAP

layer ignores the local spectrum details which are important for fine-grained

classification (early AD stages distinguishing).

3. Methodology

3.1. Medical background and research hypotheses

In the case of AD, the entorhinal and hippocampal cortices show some dif-

ferences at the beginning of this dementia Huang et al. (2002). Furthermore,

recent brain imaging studies Lee et al. (2020) indicate that the Posterior Cingu-

late Cortex (PCC) is more closely associated with early AD compared to other
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regions. In fact, the damage of the PCC region is frequently present before the

hippocampus neurodegeneration Leech & Sharp (2014). In addition, the posi-

tion of the PCC region and its clear structure (compared to the hippocampus)

permits obtaining efficient 1H-MRS data.

Indeed, the PCC region includes the connectivity between these regions and

the whole brain regions Leech & Sharp (2014). Yet, abnormal metabolic ratios

in the PCC have been identified with MRS in early AD Kantarci et al. (2007).

In addition, the position of the PCC region and its clear structure (compared

to the hippocampus) permits obtaining efficient 1H-MRS data. Figure 1 shows

three projections of a brain MRI of a MAD subject. Blue boxes indicate the

position of the PCC region.

(a) Axial plane (b) Sagittal plane (c) Coronal plane

Figure 1: PCC region placement on brain MRI ((a) Axial plane, (b) Sagittal plane and (c)

Coronal plane ) of a MAD subject from Poitiers University Hospital’s dataset

3.2. Self-guided attention deep network for AD diagnosis

In this work, we propose a 1D CNN model for MCI, MAD, and NC subjects

detection using 1H-MRS data. The proposed framework is presented in Figure

2. As we can see, the model is composed of three main sub-networks. A features

extractor block, an attention network block, and a classification block. The at-

tention block is used to capture and select relevant features during the training.

It guides the classifier to focus on the most important features for groups classi-

fication to ignore the non-relevant ones. In our case, we propose a 1D attention

mechanism adapted for MRS data, (i.e., allows our model to focus only on the
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Figure 2: Self-Guided attention deep network.

most relevant metabolites in order to distinguish between categories). To tackle

the problem of small MRS data for features space learning, we synthesize MRS

data using a Deep Neural Network (DNN). Then, learned features are refined

using the attention mechanism. The model is trained in an end-to-end manner

by minimizing the sum of the respectively classifier and the attention network

losses:

Ltotal (xi) = Latt (xi) + Lclass (xi)

with Latt = Lclass = −
3∑

i=1

ti log (pi)
(1)

where ti is the truth label and pi is the softmax probability for the ith class.

3.2.1. Features extractor block

This block is used to extract the learned feature maps f(xi) for each spec-

trum input xi. Based on medical domain knowledge, we used only the real part

of the spectral signal. The architecture of this network contains three layers

of 1D convolution (with Relu as activation function) using respectively 32, 64

and 64 filters with kernels size of 8, 5 and 8. We use padding for each convolu-

tion layer to keep the same input size. Hence, we use the same padding type,
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which appends zero values in the extremities of the spectrum without affecting

the semantic information. Thus, the convolution filters can cover the borders

of the spectrum for further processing. The feature extractor is optimized by

passing through the gradients of the attention and classification branches during

back-propagation. From one training epoch to another, the features extracted

became more discriminative.

3.2.2. Attention block for pertinent metabolites learning

The attention block uses an attention mechanism that teaches the model to

focus on important metabolites and ignores irrelevant ones for classes discrimi-

nation in a supervised fashion. Indeed, the attention block is designed to take

as input the feature maps f(xi) to build an attention map a(xi) which is then

used to focus on discriminative parts of signal in an end-to-end learning pro-

cess. This attention map is equivalent to a mask that filters only the important

information of each feature map from the features extractor block. Yet, this

map allows giving interpretation and explanation of the pertinent features for

each spectrum. The attention block architecture is composed of two convolu-

tion layers using 64 filters and kernel sizes of 5 and 8 respectively. This block

includes a batch normalization layer after the first convolution layer to stabilize

the learning to reduce model over-fitting. In order to build a(xi), we rely on the

last layer with a convolution layer of 1 filter, this layer is followed by a sigmoid

function for normalization.

Instead of using the traditionally used Global Average Pooling (GAP) for

attention mechanisms Zhou et al. (2016) on 2D images, we propose to adapt

this layer to our MRS data characteristics. Indeed, the GAP lets the model

focus on the globality of the spectrum to distinguish the classes, which is not

sufficient for clinicians that need also to get the importance of each metabolite

per class. In fact, in clinical practice, clinicians focus on an important peaks

in the signal while keeping the global context. In this work, we argue that

attention can benefit from both GAP and Global Max Pooling (GMP). Hence,

we propose to design a Global Mixed Pooling Gmix layer that would investigate
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the most prominent features by integrating the advantages of both GAP (for

global context) and GMP (for local context). The Gmix layer is a weighted

linear combination of GMP and GAP layers as shown in equation 2.

Gmix(F) = α.Gmax.(F) + (1− α).Gavg(F) (2)

where F = {F1, F2, . . . , Fk}, represents the feature maps of the last convo-

lution layer containing k feature map Fi, α ∈ R is a none trainable parameter,

and Gmax, Gavg are the (GMP) and (GAP) layers that calculate respectively

the global maximum and average for each Fi and then append all the values to

get a vector. These layers are defined as follows:

Gmax(F) = [m1,m2, . . . ,mk]
⊤

with mi = maxFi, i ∈ {1, 2, . . . , k}
(3)

and

Gavg(F) = [v1, v2, . . . , vk]
⊤

with vi =
1

W

W∑
i=1

(Fi), i ∈ {1, 2, . . . , k}
(4)

where W is the length of Fi. Thus, we get an output vector which has a length

of k = 64 constituted from F . The Gmix layer adapts the attention branch

network to help the classifier block. In fact, the Gmix is expected to build

a CAM for model interpretation. However, traditional CAM cannot generate

attention maps in the training stage. Thus, we hypothesize that using attention

map for features filtering in the training process would help the classifier to filter

the non-pertinent information for each class and hence learning discriminative

class-related features.

This layer is followed by a dense layer of 3 neurons and a softmax activation

function to get prediction from the attention block.

3.2.3. Classification network for subject class detection

Finally the classification block outputs the final probability of each class.

The input of the classifier block f ′ (xi) is fed by the multiplication of the feature
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maps f (xi) that were come out from the extractor block with the attention map

a (xi) as illustrated in equation 5. The attention map reflects the metabolites

on input spectrum which support the network’s prediction.

f ′ (xi) = f (xi) · a (xi) (5)

The classifier block contains one convolution layer of 64 filters and 5 as

kernel size, followed by three dense layers of 256, 32, and 3 neurons followed by

a softmax function to get the final predictions.

3.2.4. Features space augmentation using synthetic data

To deal with the challenges of learning from small MRS data, we propose to

augment the features space by learning from synthetic data. In order to generate

synthetic 1H-MRS spectra for each class, we use a DNN model composed of two

fully-connected layers followed by a (LeakyReLU = max(0.1c, c), where c is the

input) and a linear activation function respectively. The first fully connected

layer is fed by a random noise input of dimension 1024 (size of the spectrum)

with 128 neurons. For the remaining dense layer (output), we use 1024 neurons.

We employ the available 1H-MRS data of each class to generate artificial

spectra. Thus, we train one model for each class, trying to minimize the Mean

Squared Error (MSE) (Equation 6) between a real spectrum xi which is the

ground truth and the generated spectrum x̃i.

MSE =
1

n− κ

n−κ∑
i=1

(xi − x̃i)
2

(6)

where n is the total number of spectra for a specific class and κ is a reserved

number of spectra for each class for the final framework test. These reserved

spectra are independent from the synthetic spectra used to train the classifier

model. Thus, we hypothesize that correctly classifying these κ spectra in the

test phase would design a generalized method.
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4. Experiments and Results

In this section, we present the experimental setup and classification results.

First, we present the used material for our MRS data acquisition and collecting

procedure. Then, we showcase the model parameters and the training settings

as well as the obtained results. After that, an ablation study is performed

to study the efficiency of the attention mechanism and the coherence of the

model prediction with medical domain knowledge in AD. Finally, we compare

our framework with SOTA methods.

4.1. MR Spectroscopy data acquisition, collection and pre-processing

4.1.1. Data acquisition and preparation

1H-MR spectra were acquired with a single voxel sequence, TR = 1700 ms,

TE= 135 ms, number of excitation ((NEX)=160) with a voxel size of 28×28×20

mm3. To facilitate voxel placement, high-resolution MR images were acquired

with a T1-weighted Magnetization-Prepared Rapid Gradient-Echo (MPRAGE)

with the following parameters: TR = 18000 ms, TE= 2.24 ms, TI= 900 ms, 176

axial slices and a spatial resolution of 1 mm3. The jMRUI plugin 1 is used to

process the MRS data. The data used in this work contain 3 Tesla 111 1H-MRS

spectra divided into three groups namely MCI, MAD, and NC with an average

Mini-Mental State Examination (MMSE) score of 26.73±2.00, 20.54±3.06 and

29.5± 1.00 respectively.

The individual labels of the data were achieved via the diagnosis of a prac-

ticed physician in which the clinical and radiological information of each patient

were incorporated. Knowing that all the subjects go through a brain exami-

nation by a conventional MRI, where the anatomical T1-weighted MRIs were

recorded for each patient. This exam included also a hydrogen-based MRS se-

quence with the use of a Siemens 64-channel 3-Tesla ”Skyra” whole-body MRI

system (Siemens Healthcare, Erlangen, Germany).

1http://www.jmrui.eu/plugins-overview/
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4.1.2. MRS extraction from PCC

Figure 3: T1-weighted MRI for a random patient from Poitiers University Hospital’s dataset

with the three projection and its corresponding 1H-MRS spectrum from the PCC region.

Spectroscopy acquisitions were performed in the PCC region. Figure 3 shows

the placement of the PCC region (blue box) and its corresponding spectrum

in top right. The extraction of the 1H-MRS was in a Single Voxel Sequence

(SVS) manner, i.e., acquiring directly our volume of interest which is the PCC.

After obtaining all the PCC spectra, a Fourier Transform with a shift was

applied to move from the spatial to the frequency domain. Finally, each patient

has it’s 1H-MRS complex spectrum. Based on clinical domain knowledge Öz

et al. (2021); Near et al. (2021), we use the spectrum’s real part for AD stages

discrimination. Moreover, we select the range of 300 frequencies after the water

peak to learn the classification model. Indeed, relevant metabolites such as N-

acetyl-aspartate+N-acetyl-aspartyl-glutamate (NAA), Creatine/phosphocreate

(Cr), Choline (Cho), and myo-Inositol (mI) are only in the real part situated

on the right side of the water peak.

4.2. Experimental setup

For model training, the sum of two categorical loss functions for both atten-

tion and classification blocks (see equation 1) is minimized using Adam opti-
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mizer with learning rate = 0.001, β1 = 0.9 and β2 = 0.999.

0 500 1000 1500 2000 2500 3000
Number of synthetic data per class

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 9
5.

23
%

Model accuracy

Figure 4: Variation the number of training

synthetic spectra per class and their corre-

sponding classification accuracy.

0.0 0.2 0.4 0.6 0.8 1.0
Alpha

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

 9
3.

33
%

Model attention branch accuracy

Figure 5: Variation of α value for the Global

Mixed Pooling layer and its corresponding at-

tention branch accuracy.

The model is trained using randomly select 80% samples from the generated

synthetic spectra, while keeping the remaining 20% for the validation set. We

train the model with a batch size of 128 for 150 epochs. We recall here that when

generating synthetic data, we left 5 spectra per class for model testing. In order

to select the optimal number of generated spectra for model training, we vary

the number of training synthetic spectra per class from 0 to 3000 samples per

class and we compute the corresponding classification accuracy with test data.

As shown in Figure 4, the accuracy increases proportionally with the number of

used data, until the value of 2000 samples per class, where the accuracy starts

to stabilize.

In order to find the optimal value of parameter α for the proposed Global

Mixed Pooling layer, we varied α from 0 to 1. Figure 5 represents the varia-

tion of α over the training accuracy of the attention block. The best accuracy

value is obtained with α = 0.8, where we get nearly 100% prediction accuracy.

However, with this value of α the model produces much sparser attention maps

which affect the classifier block inputs and thereby reduce the accuracy of this

block. The second-best accuracy is when α = 0.5, where we obtained an ac-

curacy of 93.33%. The involvement of the GAP decreases the performance of
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the attention branch. However, the attention maps are less dense which encour-

ages the classifier block to be stable and focus on features with respect to the

distinction between the three classes.

4.3. Results and evaluation

4.3.1. Synthetic data generation

Data are generated from 1024-D spectra with the water peak following the

data generation scheme described in (Section 3.2.4) where a set of spectra is used

for training. For instance, given the 33 spectra of the NC class, we iteratively

generate synthetics 1H-MRS data from 28 spectra.
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Figure 6: Synthetic generated MRS data of MCI (blue), MAD (red) and NC (green) classes

6(a), 6(b), 6(c) compared with spectra from the ground truth dataset 6(d), 6(e), 6(f).

Thus, after deploying the model, we can generate as many spectra as we

want. The reserved 5 spectra will be used for testing the proposed classification

model, i.e., we test on the signals 1 to 5 in the first iteration, 6 to 10 in the

second, and so on. By this way, we are performing cross-validation to prove that

our proposed method is generic and does not depend on training data. Figure
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6 shows some examples of real spectra for the three classes with the synthetics

ones, which are very close to the original data.

4.3.2. Classification results

We compute the accuracy, sensitivity, and sensitivity of the model. In these

experiments, the strategy “One-Versus-Rest” (OVR) is adopted to expand the

model for multi-class classification. For class C, we compute ”C versus the rest

of the classes” metrics. We compute these metrics for respectively MCI versus

(NC and MAD), MAD versus (NC and MCI), and NC versus (MCI and MAD).

Table 1: Evaluation of the data augmentation performance using a cross-validation method.

Fold Accuracy
Sensitivity Specificity

MCI vs rest MAD vs rest NC vs rest MCI vs rest MAD vs rest NC vs rest

1 100% 100% 100% 100% 100% 100% 100%

2 93.33% 100% 80% 100% 90% 100% 100%

3 93.33% 100% 80% 100% 90% 100% 100%

4 93.33% 80% 100% 100% 100% 90% 100%

5 86.66% 80% 100% 80% 90% 90% 100%

6 100% 100% 100% 100% 100% 100% 100%

7 100% 100% 100% 100% 100% 100% 100%

8 93.33% 100% 80% 100% 90% 100% 100%

95.23%± 5.04% 95.00%± 9.25% 93.33%± 10.00% 97.50%± 7.07% 95.00%± 5.34% 97.50%± 4.62% 100.00%± 0.00%

Table 1 gives the performance of our method in terms of accuracy, sensitivity,

and specificity. Each row in this table represents the test performances of the

reserved five spectra for each class. Thus, each row contains 15 spectra as a

data test. The average accuracy is 95.23% with a standard deviation of 5% that

was calculated with the equation 7.

σ =

√∑n
i=1 (acci − ācc)

2

n− 1
(7)

where acci is the accuracy of the ith row in the table, ācc is the mean accuracy

and n is the number of the used iterations. We report also the sensitivity for

each class, where we get an average of 95.00%, 93.33%, and 97.5% as sensitivity

for the three classes MCI, MAD, and NC respectively. These results show the

robustness of the proposed method, even between the similar two classes (i.e.,
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MCI and MAD), our model can distinguish the two classes. The results of the

specificity confirm the performance of the framework and how well our model

recognizes the negative samples for a given class, where we obtain an average

specificity of 95.00%, 97.50%, and 100% for MCI, MAD, and NC respectively.

We can observe that the specificity of the MCI class is relatively less than

the rest of both classes, which is very logical since this class is between the

two phases. Therefore, the misled subjects from the NC and MAD classes are

generally classified as MCI. Figure 7 represents the mean ROC of each class
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Figure 7: Mean Receiver operating characteristic (ROC) curve of each class with its standard

deviation.

with respect to the remaining ones using the 8 models. We reported an average

Area Under the Curve (AUC) of 0.957± 0.06, 0.940± 0.11, and 0.980± 0.02 for
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MCI vs rest, MAD vs rest, and NC vs rest respectively.

In order to show the model learning performances in terms of loss and accu-

racy convergences during the training, we present in Figure 8 and Figure 9 the

learning curves of a random model from Table 1 including the accuracy and the

loss respectively. We observe in Figure 8 that the accuracies of attention and the

classifier blocks converge after the 50th epoch without over-fitting. In parallel,

in Figure 9 the total training and validation losses decrease and converge after

the same epoch.
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Figure 8: Learning curves (accuracy) for

training and validation data for attention and

classifier blocks.
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Figure 9: Learning curves (total loss) for

raining and validation data of the proposed

framework.

4.3.3. Ablation study

a. Data generation. In order to study the performance of the proposed data

generation method, we evaluate its effectiveness compared to widely used 1D

data generation methods in terms of data quality generation criteria (i.e., Peak

Signal-to-Noise Ratio (PSNR)) and AD stages classification performance.

We compare the proposed spectra generation method with GAN, recently

used for MRS data generation for glioma detection Jang et al. (2021), Wasser-

stein GAN Gradient Penalty (WGAN-GP) Gulrajani et al. (2017) used for spec-

tra augmentation Liu et al. (2019) and Conditional GAN (CGAN) Mirza &

Osindero (2014). It is to note that all studied models have the same generator

architectures and the same training hyper-parameters as the proposed DNN-
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based data generation method. While for the discriminator, we use 03 fully

connected layers of 32, 16, and 1 neurons.

Table 2 presents PSNR values by using different data generation methods

and settings. The PSNR values are used as quality measurements between the

original and synthesized data and computed as follows:

PSNRavg = E
x̃i∼Pc

1

n

n∑
i=1

PSNR(µc, x̃i). (8)

where Pc is the model distribution for a class c of n spectra. Pc is defined

by x̃ = G(z) with G is the data generator and z is a random noise input. x̃i

is a generated spectrum, and µc is the average of the original data belonging to

the same class.

Also, we study the effect of synthesizing from 300-Dimensional (D)(without

water peak) and 1024-Dimensional spectra (with water peak). First, Table 2

shows that the PSNR values of the data generated by the proposed method

are higher than the studied SOTA data generation methods. Indeed, the GAN

model gives the worst PSNR results. Yet, the class-oriented CGAN model

generates noisy spectra compared to the WGAN-GP method, especially for the

MAD class, where there are fewer spectra than NC and MCI classes. Moreover,

we can see that our model generates clean data distribution close to the original

data (row 6 from table 2) and can generalize especially for the MCI and NC

class. Second, experimental results in Table 2 show that learning from 1024-

Dimensional spectra (with water peak) generates better spectra quality than

directly learning from 300-D spectra.

Table 2: PSNR by using different data generation methods and settings

Spectra generation method MCI group MAD group NC group

GAN Jang et al. (2021) 24.01 20.33 23.44

WGAN-GP Liu et al. (2019) 29.12 23.65 28.74

Conditional GAN Mirza & Osindero (2014) 26.21 21.64 25.72

Ours (generating from 300-D spectra (no water peak)) 30.57 24.11 28.78

Ours (generating from 1024-D spectra (with water peak) 30.62 23.98 29.23

PSNR values of the original spectra 29.14 25.85 28.65

Table 3, represents the model classification performance using synthetic data

obtained by different aforementioned data generation techniques. The best clas-
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sification accuracy for the three GANs-based methods is about 59.21% witch is

very low compared to the classification results when using data generated by

our proposed method (rows 4 and 5). In fact, training such a class-oriented data

augmentation with the few available MRS data leads to overfitting. Moreover,

the discriminator block forces the model to generate data with high similarity

and small diversity. Thus, testing the classifier model on the kept κ spectra per

class (see section 3.2.4), which are independent from the training synthetic data,

would give a random classification, especially between MCI and MAD classes.

Furthermore, classification accuracy using data generated from 1024-D spec-

tra with water peak gives an average accuracy of 78.46%, which is better than

the results obtained with the three GANs-based methods. However, as we can

see the water peak which is higher than the other metabolites peaks impacts the

classification results, especially between MCI and MAD classes, where we report

a sensitivity of 77.50% for both classes. Finally, using 300-D data from 1024-D

generated spectra, gives the best average classification accuracy (95.23%).

Table 3: Classification results using data generated with different data augmentation meth-

ods/settings.

Method Accuracy
Sensitivity Specificity

MCI vs rest MAD vs rest NC vs rest MCI vs rest MAD vs rest NC vs rest

GAN Jang et al. (2021) 38.75%± 22.04% 36.00%± 8.94% 32.00%± 17.88% 84.00%± 16.73% 56.00%± 5.47% 70.00%± 12.24% 90.00%± 7.07%

WGAN+GP Gulrajani et al. (2017) 42.98%± 26.06% 40.00%± 14.14% 48.00%± 17.88% 70.00%± 10.00% 60.00%± 12.24% 74.00%± 16.73% 90.00%± 7.07%

CGAN Mirza & Osindero (2014) 59.21%± 13.18% 43.33%± 15.05% 53.33%± 20.65% 68.33%± 9.83% 63.33%± 12.11% 83.33%± 12.11% 90.00%± 8.94%

Ours (1024-D with water peak) 78.46%± 6.66% 77.5%± 12.82% 77.50%± 16.69% 87.50%± 14.88% 88.75%± 11.26% 88.75%± 9.91% 93.75%± 9.16%

Ours (300-D/without water peak) 95.23%± 5.04% 95.00% ± 9.25% 93.33% ± 10.00% 97.50% ± 7.07% 95.00%± 5.34% 97.50%±4.62% 100.00%± 0.00%

b Attention mechanism . In order to demonstrate the effectiveness of the learned

features with and without the attention mechanism, we use the t-distributed

Stochastic Neighbor Embedding (t-SNE) technique der Maaten & Hinton (2008)

for features visualization. Figure 10, plots the feature t-SNE visualization of the

used samples in the first column, with the last hidden fully-connected layer with-

out and with the attention block in the second and the third columns respec-

tively. Before using the model (i.e., the first column), the samples are randomly

distributed after applying the t-SNE. This random distribution is diminished,

when we use our framework as shown in the rest of the columns (i.e., second and
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third columns). Moreover, when we use the attention block, the model shows

its capability to discriminate the MCI samples from the MAD ones which is not

the case without using it from both training and test samples. These results

demonstrate that the attention block allows to the exploitation of the simi-

larities and differences between classes via analyzing the learned feature maps

from the extractor block. Thus, adapting the network to better generalize and

thereby improves the robustness of the model. Therefore, eliminating this block

causes instability of learning and generalization.
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Figure 10: Feature visualization via t-SNE (t-distributed stochastic neighbor embedding) of

synthetic training data and Poitiers university hospital data in the first and second row re-

spectively. Column1: shows the representations of original data. Column2: shows the feature

representations without attention mechanism. Column3: shows the feature representations

using the attention mechanism.

In addition to its role in guiding the network for learning and refining fea-

tures. The attention mechanism allows to interpret and validate the model with

domain knowledge the model with domain knowledge for AD diagnosis using

MRS data. Hence, we generate an attention map that highlights the relevant

metabolites for classes discrimination from 1H-MRS data. Such representation

would help radiologists to understand the model predictions and provide correc-

tions if necessary. Figure 11 represents attention maps (heat-maps) overlayed
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Figure 11: Heat-maps visualization for each class from 03 testing spectra samples (real part).

on 03 random spectrum of a MCI, MAD and NC subjects respectively. The im-

portance of the metabolites grows as the colors vary from blue to brown color.

Also, we report the percentage importance of each peak having an intensity

above 0.15, in order to include all the relevant metabolites such as N-acetyl-

aspartate+N-acetyl-aspartyl-glutamate (NAA), Creatine/phosphocreate (Cr),

Choline (Cho), and myo-Inositol (mI). Indeed, the sigmoid activation function is

used to build an attention map with values ranging between 0 and 1. Therefore,

the percentage importance of each peak is illustrated by overlaying the position

of each peak on the corresponding value of the attention map at this position.
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All these metabolites are situated around the frequencies 230Hz, 120Hz, 90Hz

and 50Hz. As shown in Li et al. (2003), the level of Cr is considered relatively

stable during the degenerative pathology. The Cr is used as a reference value for

the clinical diagnostic criteria computation namely the NAA/Cr, Cho/Cr, and

mI/Cr ratios Kantarci & Jicha (2019). In Figure 11, we present the attention

map for 03 examples per class. As we can see, the most important metabolite

is the Cr for all the classes, i.e., MCI, MAD, and NC (e.g., a percentage of 96%,

88%, and 91% respectively for the first row), which demonstrate the stability

of this metabolite. In the same figures, the percentages of neuronal integrity

markers NAA (allows for an accurate assessment of neuronal functional loss)

and NAA/Cr decrease moving from NC to MAD groups (eg, an NAA percent-

age of 84%, 80%, and 70% respectively for the first row), which is in conformity

with Salem et al. (2008); Adalsteinsson et al. (2000). More additionally, the

ratio Cho/Cr is higher in MAD classes compared to the MCI classes with a

ratio of 83/88 = 0.94 and 82/96 = 0.85 respectively for the first row. Moreover,

the mI/Cr ratio also increases moving from MCI to MAD classes with a ratio of

67/96 = 0.67 and 74/88 = 0.84 respectively for the first row. These results are

in concordance with SOTA bio-medical works on early AD detection Li et al.

(2003); Kantarci et al. (2007); Schott et al. (2010). Furthermore, we note that

the importance order of the metabolites is unchanged for all testing spectra with

respect to a specific class. For example, for the class NC, the order is as follows:

Cr, mI, NAA, and Cho is in the last position. The same conclusion is for the

MCI and MAD classes. Thus, the proposed classification model uses prominent

metabolites in the MRS data that are commonly used in clinical practice but

also considers metabolites such as glutamate and glutamine (Glx) peaks. These

metabolites have been recently investigated for neural brain damage detection

Zeydan & Kantarci (2021); Oeltzschner et al. (2019), pointing out new directions

for future clinical research on early AD detection.
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4.3.4. Comparison with SOTA

In order to evaluate the performance of the proposed framework against

SOTA works. First, we compare our approach to Ahmed et al. (2020) which is

the only work that has tackled the detection of AD vs NC using 1H-MRS data

using an end to end 1D-CNN approach. Indeed, we use their proposed model to

perform multi-class classification using our 1H-MRS dataset. However, we use

three instead of two fully-connected neurons since we have three categories.

Table 4: Evaluation of our proposed approach with different settings compared to (a)

DeepMRS method Ahmed et al. (2020) (b) Hipp (MRI) Li & Liu (2019). (c) Whole brain +

meta-data Dufumier et al. (2021). (d) our proposed approach.

Method Accuracy
Sensitivity Specificity

MCI vs rest MAD vs rest NC vs rest MCI vs rest MAD vs rest NC vs rest

DeepMRS Ahmed et al. (2020) 67.5%± 9.72% 67.5%± 26.05% 42.5%± 19.82% 92.5%± 10.35% 71.25%± 12.46% 86.25%± 10.60% 85.00%± 7.56%

Hipp (MRI) Li & Liu (2019) 61.73%± 6.06% 72.00%± 30.33% 12.00%± 17.88% 100.00% ± 0.00% 56.00%± 8.94% 88.00%± 16.43% 98.00%± 4.47%

Whole brain + meta-data Dufumier et al. (2021) 78.66%± 5.57% 64.00%± 8.94% 72.00%± 17.88% 100.00% ± 0.00% 86.00%± 8.94% 90.00%± 10.00% 96.00%± 8.94%

Ours 95.23%± 5.04% 95.00% ± 9.25% 93.33% ± 10.00% 97.50%± 7.07% 95.00%± 5.34% 97.50%±4.62% 100.00%± 0.00%

Second, we evaluate the proposed MRS-based CAD approach for early AD

against recent imaging-based approaches. Hence, we use the corresponding T1-

weighted MRI of our MRS data for approaches evaluation and we perform multi-

classification by updating the last model layer. For a fair comparison, we follow

the same experimental protocol and training parameters

We start by comparing the obtained classification results with those reported

in Li & Liu (2019). The latter used the hippocampus region as imaging-based

bio-markers to learn relevant features for AD detection in deep learning frame-

work. Then, we perform comparison with a recently proposed approach Du-

fumier et al. (2021) based on contrastive learning. The authors investigated

patients meta-data and the whole brain structure as bio-imaging bio-markers

for AD detection.

Table 4 reports the comparison results. We can see that our method outper-

forms the DeepMRS model in all the proposed metrics, especially in destining

MCI samples from MAD ones, which demonstrates the robustness of our frame-

work and the efficiency of the attention mechanism to distinct AD early stage

subjects. Moreover, contrary to Ahmed et al. (2020) in which the authors
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quantify the contribution of each metabolite separately, we highlight the impor-

tance of clinical features in terms of metabolite ratios (NAA/Cr, Cho/Cr and

mI/Cr) which correspond to the diagnostic criteria adapted in clinical practice.

Furthermore, compared to the structural approaches, our model outperforms

both frameworks proposed by Li & Liu (2019) and Dufumier et al. (2021) by

respectively 27% and 14% difference in term of classification accuracy. This

is due to the highly challenging issue, where it produced a random prediction

between MCI and MAD classes, which is not the case for our method. These

obtained results proved the effectiveness of using MRS metabolites with DL for

early AD detection compared to structural MRI.

5. Conclusion

In this paper, we proposed a multi-class classification framework for early AD

detection from 1H-MRS data. The proposed classification is explicitly guided

by an attention mechanism that helps the classifier to focus on diagnostically

relevant metabolites for classes discrimination. Synthetic data are used to tackle

the problem of lack of data and to help in learning the features space. The ob-

tained results show the efficiency of the approach under extensive metrics. Our

framework outperforms the SOTA imaging bio-markers-based approach which

demonstrates the robustness of selectively learning metabolites features against

traditional imaging bio-markers for early AD detection. Using 1H-MRS data

with 1D-CNN opens a promising direction to create a new virtual biopsy for

early AD detection. For future works, we will investigate additional medical

imaging modalities (PET, FLAIR, and DTI) for proposed method evaluation.

Yet, we plan to use multi-modal MRS including 1H-MRS, MRS of GABA, Phos-

phorus MRS (31P-MRS) and high magnetic field imaging such as 7 Tesla MRI.
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