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ABSTRACT
This paper initiates the study of data-path query languages (in par-
ticular, regular data path queries (RDPQ) and conjunctive RDPQ
(CRDPQ)) in the classic setting of embedded finite model theory,
wherein each graph is “embedded” into a background infinite struc-
ture (with a decidable FO theory or fragments thereof). Our goal
is to address the current lack of support for typed attribute data
(e.g. integer arithmetics) in existing data-path query languages,
which are crucial in practice. We propose an extension of register
automata by allowing powerful constraints over the theory and the
database as guards, and having two types of registers: registers that
can store values from the active domain, and read-only registers
that can store arbitrary values. We prove NL data complexity for
(C)RDPQ over the Presburger arithmetic, the real-closed field, the
existential theory of automatic structures and word equations with
regular constraints. All these results strictly extend the known NL
data complexity of RDPQ with only equality comparisons, and pro-
vides an answer to a recent open problem posed by Libkin et al.
Among others, we introduce one crucial proof technique for obtain-
ing NL data complexity for data path queries over embedded graph
databases called “Restricted Register Collapse (RRC)”, inspired by
the notion of Restricted Quantifier Collapse (RQC) in embedded
finite model theory.

CCS CONCEPTS
• Theory of computation→ Database query languages (prin-
ciples); Complexity theory and logic; Finite Model Theory;
Logic and databases; Regular languages.

KEYWORDS
Data graphs, complexity, embedded finite models, regular path
queries

1 INTRODUCTION
The past decade witnessed a lot of practical and theoretical work
in querying graph databases (e.g. [2, 3, 17, 49]), due to their rapidly
growing number of applications, e.g., in social networks, semantic
web, natural science, and supply chain management. On the practi-
cal side, graph databases have enjoyed a wide adoption in industry
with many commercial database systems developed for them by
various companies like Neo4j, Oracle, IBM, DataStax, TigerGraph,
JanusGraph, and Stardog, among many others. Although such sys-
tems adopt the so-called “property graph data model”, they differ in
many important aspects (e.g. querying facilities), which has led to
the ongoing standardization efforts of SQL/PGQ and GQL involving
leading researchers and engineers in academia and industry [17].

On the theoretical side, an important research avenue has been
to develop “well-behaved” graph query languages incorporating
topological aspects of the graph, especially the existence of paths in
a graph satisfying certain patterns and constraints. Such queries are
called path queries, and represent an essential feature (called GPML,
which stands for Graph Pattern Matching Languages) in the current
standardization effort [17] of GQL and SQL/PGQ. Historically,
Mendelzon and Wood [42] introduced in the 1990s the Regular Path
Query (RPQ) language, which has been the foundation of most path
query languages, e.g., Conjunctive Regular Path Queries (CRPQ) [16,
18, 25]. One of their main attractive features is that their query
evaluation problem has an NL (Nondeterministic Logspace) data
complexity (i.e. for any fixed query), potentially allowing traversals
of large graphs in practice (e.g. see [4, 48]).

Combining data and topology. RPQ and CRPQ are unfortunately
not suitable for “data querying” in graph databases, which is bread
and butter for relational database query languages. More precisely,
in a typical graph database each node is usually associated with
some data like names and ages of the users. In relational algebra
(assuming a relational encoding of graph databases), one could eas-
ily express the query that outputs two node ids for users with the
same ages. In the past decade, the importance of combining data
and topology in graph query languages has been brought to atten-
tion by multiple works, e.g. [6, 30, 40, 41]. There are many natural
examples of such queries, e.g., find two people in the database with
the same age. In particular, walk logic (WL) [30] and regular ex-
pressions with memory (REM) [41] emerged as two initial solutions
for overcoming this limitation. While RPQ using REM and register
automata as path constraint has NL data complexity [40, 41], WL
has an non-elementary data complexity [6]. The crucial observation
in [40, 41] is that paths in a graph database can be construed as a
data word, which enables one to apply automata over data words
(e.g. register automata [34], REM [41], data automata [14], etc.) as
path constraints in a path-query. Other automata models over data
words (e.g. data automata) increase the data complexity of RPQ
from NL to NP-hard [40].

The need for reasoning about concrete data. Thus far, the so-
lutions [6, 30, 40, 41] to combine data and topology aspects in
graph queries ignore completely the structure of the data. For ex-
ample, practical database query languages typically allow con-
crete data (e.g. numbers, words) and a wide variety of data opera-
tions/comparisons (e.g. substrings, inequality, difference). Consider,
for instance, the “Bacon graph” (see Figure 1) and the query “return
all actors with a finite Bacon number and whose birthyear differs
Bacon’s birthyear by at least 30 years,” whose only answer here is
Erdős. Alternatively, consider the query “return all users who were
in at least four different locations in the last month, but stayed within
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<latexit sha1_base64="6PoEVW4ZKrvfHFunPEJ0M60EXKY="></latexit>

Paul Erdős
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<latexit sha1_base64="aOrcVujYPNt6Wrx7cx3JPFeGmhs="></latexit>

Sean Penn

<latexit sha1_base64="bP+O9NmxvQYwe5Mjclmq1hGLaLE="></latexit>

Charlotte Rampling

<latexit sha1_base64="TgApUJm5Br+ZbwNxDOAYV9UelPM="></latexit>

Kevin Bacon

<latexit sha1_base64="SMfUHASvNwMNjS2EfEORyzcy1XM="></latexit>

N is a number
<latexit sha1_base64="cuD9WI3TQlYYNRfdYlLcJyH4lKE="></latexit>

The Mill and The Cross
<latexit sha1_base64="GK8ZOXJryJgGv4AgqxxDQFp83Xg="></latexit>

Searching for Debra Winger
<latexit sha1_base64="nf9sZh+SXe7x2Vl9bjucDZl8nTw="></latexit>Mystic River

<latexit sha1_base64="3YOj613D4kMEq/nbEBqJzzHndq8="></latexit>

1913
<latexit sha1_base64="2gfh1plzxr2XOwxbnYLTef4Rtsg="></latexit>

1960

<latexit sha1_base64="mo+ztbXvfkiBLfqNGqgvQk7mOTk="></latexit>

1963
<latexit sha1_base64="ecDcmLSXq7tmDzlXfvQbEMkVGIo="></latexit>

1946

<latexit sha1_base64="1Bi/y/OZj6KpIZnJTWXyxBzrGFw="></latexit>

1958

Figure 1: Part of the “Bacon Graph”, where each solid
(resp. dotted) edge represents the “acts in” (resp. “is born
in”) relation. Each actor is a black box, and each movie is a
white box. Birthyears are also nodes.

Table 1: Summary of our data complexity results

L Data Complexity of RDPQ(L, 𝜎)
FO(R×,+, 𝜎) NL
FO(ZLA, 𝜎) NL

EFO+ (TAut, 𝜎) NP-hard
EFO(TAut, 𝜎) NL (under LogH)
LPM NL
L+WE NL

a 10km radius from some point in a map,” whose numbers and how
they differ on a monthly basis might be insightful especially during
the time of COVID-19. Finally, for a phylogenetic database, one
might be interested in a path containing only nodes whose center
(with respect to some edit distance measure) is not that far away
from any DNA sequence along the path [15, 28]. None of the above
features are expressible in the existing path-query languages. For
example, while path query languages like RDPQ [40] may for in-
stance express the existence of a path from Erdős to Bacon, sharing
the same birth years, they only support active-domain values in
their registers, as well as equality comparisons, which restrict them
from expressing the three aforementioned examples.

Incorporating concrete attribute data and their operations in
a first-order query language over relational databases has been
intensively studied by database theorists between 1990 and early
2000s in the context of constraint databases and embedded finite
model theory (e.g. see [27, 38] and [39, Chapter 13]). In particular,
one considers a relational database embedded into the universe of
an infinite structure with a decidable FO theory (e.g. real-closed field
R×,+ or integer linear arithmetic ZLA [27, 38, 39]), and allows first-
order queries to make use of operations in the theory. For example,
over a graph embedded into R×,+, one could ask if all edges in
a graph lie on a line. The first-order query can be found in [39,
Chapter 13]: ∃𝑢 ∃𝑣 ∀𝑥 ∈ adom∀𝑦 ∈ adom (𝐸 (𝑥,𝑦) → 𝑦 = 𝑢.𝑥 + 𝑣).
Notice two kinds of quantifiers are in use: ∃𝑢 means “there is a real
number (not necessarily in the active domain)”, while ∀𝑥 ∈ adom
means “for all elements in the active domain”. The set of such first-
order formulas over the theory T and relational database schema 𝜎
is denoted by FO(T, 𝜎), and its restrictions with only active-domain
quantifiers by FOact (T, 𝜎). Despite this, the issue of querying data-
paths over embedded graph databases remains hitherto unaddressed
and was only left as an open problem by Libkin et al. [40].

Contributions. This paper initiates the study of data-path queries
in the setting of embedded graph databases, i.e., finite graphs embed-
ded in some infinite structure with a decidable first-order theory
T or fragments thereof. Because of the different graph models in
the literature we assume a general relational database schema 𝜎
and define a graph by means of first-order views over 𝜎 and T. This
is closer to the data model adopted by SQL/PGQ (e.g. see [17] and
https://pgql-lang.org/), and can be used to encode implicitly, as well
as explicitly, represented property graphs. We study the problem of
query evaluation over extensions of RDPQ and CRDPQ, allowing
the use of FO(T, 𝜎)-formulas in the queries, which capture a range
of meaningful queries involving typed attribute values like integers,
reals, and words (e.g. the three aforementioned examples).

Since register automata [40] use untyped attribute data which
can only be compared via equality and disequality, we first define ex-
tended register automata (ERA) that allow attribute data in T which
can be manipulated via operations in FO(T, 𝜎). By analogy to the
setting of embedded finite model theory, we allow two kinds of reg-
isters: active-domain registers and unrestricted registers. Each tran-
sition is associated with a guard 𝜑 (𝑐𝑢𝑟𝑟,R,R′,P,P′) ∈ FO(T, 𝜎),
where 𝑐𝑢𝑟𝑟 is the value in T representing the current node (called
node ID), R (resp. P) represents the current values of the active-
domain (resp. unrestricted) registers, and R′ (resp. P′) represents
the next values of the active-domain (resp. unrestricted) registers.
The register automata model of [40] can be construed as an in-
stance of ERA with no unrestricted registers, where 𝜎 = {𝐸},
T = ⟨N;=, {𝑐𝑖 }𝑖∈N⟩ with each constant 𝑐𝑖 interpreted as the number
𝑖 , and the guard uses only Boolean combinations of FO(T)-atoms.

Without further restrictions, the model easily captures the uni-
versal Minsky’s counter machine already with two unrestricted
registers and the theory ⟨N; 𝑠𝑢𝑐𝑐⟩ of natural numbers with succes-
sor [45]. Hence, we impose the so-called bounded-rewrite assump-
tions to the unrestricted registers, i.e., for some constant 𝑏 ∈ N,
each unrestricted register can be rewritten at most 𝑏 times. The
resulting query languages RDPQ(T, 𝜎) and CRDPQ(T, 𝜎) turn out
to be sufficiently general to express many interesting examples
(e.g. our three aforementioned examples). Our result on the data
complexity of query evaluation is summarized in Table 1. Note that
under the bounded-rewrite assumption we can assume that 𝑏 = 0
at the expense of increasing the number of unrestricted registers,
see Proposition 2.4.

First, we obtain NL data complexity for RDPQ(FO,R×,+, 𝜎) and
RDPQ(FO,ZLA, 𝜎). With these, we can express the first two out
of our three examples. To prove this, we introduce the so-called
Restricted Register Collapse (RRC) — akin to the notion of Restricted
Quantifier Collapse (RQC) for FO over embedded finite models [39,
Chapter 13] — which states that each query in RDPQ(FO,T, 𝜎)
is equivalent to a query in RDPQ(FO,T, 𝜎) without unrestricted
registers and so that no guards contain unrestricted quantifiers. We
show that this holds for R×,+ and ZLA.

The case of words is more involved. To permit reasoning about
properties such as edit distance, one needs a sufficiently expressive
word theory T, e.g., the theory TAut of automatic relations [11, 13],
or theory TWE of word equations [19]. Unfortunately, FO(TAut, 𝜎)
and FO(TWE, 𝜎) have prohibitive data complexity [11] (hard for the
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polynomial hierarchy PH and undecidable, respectively). We pro-
vide restrictions that still allow us to reason about interesting prop-
erties like edit distance, while admitting NL data complexity. First
we show that the existential fragment EFO(TAut, 𝜎) admits RQC
(i.e. EFO(TAut, 𝜎) ⊆ FOact (T, 𝜎)), implying an NC1 data complexity.
In contrast, we show that RDPQ(EFO,TAut, 𝜎) has NP-hard data
complexity and does not admit RRC, unless P = NP. Fortunately,
NL data complexity can be recovered for RDPQ(EFO,TAut, 𝜎) as-
suming the LogH hypothesis that the words in the database are of
length logarithmic in the size of the database, which is reasonable
for most graph database applications, with extremely large graphs
and exponentially smaller data sizes (e.g. names, DNA sequences,
etc.). Secondly, we provide two fragments of FO(TWE, 𝜎) (pattern-
matching fragment LPM and positive quantifier-free fragment L+WE)
that permit NL data complexity for RDPQ(TWE, 𝜎), even without
assuming LogH. The proof is an intricate application of word equa-
tion solving.

Organization. We introduce our data model and query language
in §2. We tackle data complexity of the theories over numbers (reals,
integers) in §3, and over words in §4 (automatic structures) and
§5 (word equations). We conclude in §6 with generalizations (e.g.
conjunctive queries and property graphs), and future work.

Complexity Theory Preliminaries. We assume standard complex-
ity classes esp. L (Logspace), NL (Nondeterministic Logspace), P,
NP, PH, PSPACE. In this paper, we will also mention (the uni-
form versions of) circuit complexity classes like AC0,TC0,NC1. It
is well-known that AC0 ⊊ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ P ⊆ NP ⊆
PH ⊆ PSPACE. All reductions mentioned in this paper can be
implemented in Logspace. See [37, 39, 47] for more.

2 DATA MODEL AND QUERIES
Embedded Finite Models. Fix a relational vocabulary 𝜎 containing

finitely many relation symbols𝑅𝑖 with arity 𝑟𝑖 (i.e. 𝜎 = {𝑅1, . . . , 𝑅𝑘 })
and an infinite structure T with domainD. A finite 𝜎-model embed-
ded into T [39, Ch. 13] is a 𝜎-structure S := ⟨𝑈 ; {𝑅S𝑖 }𝑘𝑖=1⟩ such that
𝑈 ⊆ D is finite and 𝑅S𝑖 ⊆ 𝑈 𝑟𝑖 for every 𝑖 . The set 𝑈 is called the
active domain of S and hence denoted by adom(S). In the sequel,
we shall also refer to such S as (T, 𝜎)-structure.

By FO(T, 𝜎), we denote first-order logic that may use (T ∪ 𝜎)-
atomic formulas, active-domain quantification (∃𝑥 ∈ adom,∀𝑥 ∈
adom), as well as unrestricted quantification (∃𝑥,∀𝑥 ). We denote by
FOact (T, 𝜎) the restriction of FO(T, 𝜎) that prohibits unrestricted
quantifications. For a formula 𝜑 (𝑥) and 𝑎 ∈ D |𝑥 | , we define the
notion of satisfaction S |=T 𝜑 (𝑎) by interpreting each atomic for-
mula from 𝜎 (resp. T) with respect to S (resp. T), each active-domain
quantifier ∃𝑥 ∈ adom 𝜓 (resp. ∀𝑥 ∈ adom 𝜓 ) as “there exists an
element 𝑏 in 𝑈 such that𝜓 ” (resp. “for all elements 𝑏 in 𝑈 ,𝜓 ”), and
each unrestricted quantifier ∃𝑥 𝜓 (resp. ∀𝑥 𝜓 ) as “there exists an
element 𝑏 inD such that𝜓 ” (resp. “for all elements 𝑏 inD,𝜓 ”). See
the example ∃𝑢∃𝑣∀𝑥 ∈ adom∀𝑦 ∈ adom (𝐸 (𝑥,𝑦) → 𝑦 = 𝑢.𝑥 + 𝑣) in
§ 1 and more examples in [27, 39].

We fix now some extra notation that we will use in the sequel.
We write |= instead of |=T, when T is understood. We also write
[[𝜑]] (T,S) to denote the set of all 𝑎 ∈ D |𝑥 | such that S |=T 𝜑 (𝑎).
Whenever understood, we also use the same notation for a relation

Table 2: Embedding of Bacon Graph into ZLA. Each year has
itself as node ID.

ID node
0 Kevin Bacon
1 Paul Erdős
2 Tomasz Łuczak
3 Sean Penn
4 Charlotte Rampling
-1 N is a number
-2 The Mill and The Cross
-3 Searching for Debra Winger
-4 Mystic River

symbol 𝑅 and the relation 𝑅S that instantiates 𝑅 in S. Finally, for the
purpose of measuring complexity of query evaluation problems,
we assume a size function |.| : D → N that defines the size of the
representation of a datum; this will be fixed with respect to each
theory under consideration.

Embedded Graph Databases. Fix a finite alphabet Σ of symbols.
We define our notion of data graphs following [40]. Our results can
be easily adapted to a notion of property graphs [17]; see § 6. We
assume in the following a theory T and a finite (T, 𝜎)-structure S.
Our notion of embedded graphs will be defined with respect to S
via views defined through formulas over a fragment L ⊆ FO(T, 𝜎).

Fix our view vocabulary 𝜈 = {𝑉 } ∪ {𝐸𝑎}𝑎∈Σ, where 𝑉 is unary
(denoting the vertex view) and each 𝐸𝑎 is binary (denoting the
view of 𝑎-labeled edges). A view definition for a view𝑊 with arity
𝑟 is an L-formula 𝜑𝑊 (𝑥) with 𝑟 = |𝑥 |. Each view 𝑊 will then
be interpreted as [[𝜑𝑊 ]] ⊆ 𝑈 𝑟 containing all 𝑎 ⊆ 𝑈 𝑟 such that
S |= 𝜑 (𝑎). As before, whenever understood, we will confuse each
view𝑊 and their interpretation [[𝜑𝑊 ]] . We are now ready to define
our notion of (data)-graph G embedded into T (or (T, 𝜎)-graph or
just graph for short): it is a pair (Θ, S), where Θ is a set of view
definitions and S a finite (T, 𝜎)-structure.

In the sequel, instead of writing (𝑣,𝑤) ∈ 𝐸𝑎 , we shall often write
𝑣 →𝑎 𝑤 . A G-path from 𝑣 to 𝑤 , where 𝑣,𝑤 ∈ 𝑉 , is simply an
alternating sequence 𝑣 = 𝑣0𝑎1 · · ·𝑎𝑛𝑣𝑛 = 𝑤 of vertices and edge
labels of G (i.e. each 𝑣𝑖 ∈ 𝑉 and each 𝑎 𝑗 ∈ Σ) such that 𝑣𝑖 →𝑎𝑖+1 𝑣𝑖+1
for each 𝑖 ∈ [0, 𝑛 − 1].

Example 2.1. Consider our Bacon graph 𝐺 from Figure 1. We
may assume that the database schema used to represent this is 𝜎 =
{𝐸𝑎, 𝐸𝑏 , 𝐴𝑐𝑡, 𝑀𝑜𝑣,𝑌 }, where 𝐸𝑎 (resp. 𝐸𝑏 ) is a binary relation repre-
senting the “acts in” (resp. “was born in”) relation, 𝐴𝑐𝑡 (resp. 𝑀𝑜𝑣)
is a unary relation representing all the actors (resp. movies), and
𝑌 is a unary relation containing all the years in the database. Let
T = ZLA. To embed 𝐺 into T, we will associate each node with a
unique ID, as in Table 2. For example, this embedding has tuples
𝐸𝑏 (1, 1913), 𝐸𝑎 (0,−4), etc. We may define the views as follows:

𝑉 (𝑥) := 𝐴𝑐𝑡 (𝑥)
𝐸 (𝑥1, 𝑥2) := ∃𝑦 (𝑀𝑜𝑣 (𝑦) ∧ 𝐸𝑎 (𝑥1, 𝑦) ∧ 𝐸𝑎 (𝑥2, 𝑦))

Note that two actors are connected by an 𝐸-edge iff they act in a
common movie.



Example 2.2. Let T = R×,+ and let 𝜎 = ⟨𝑇 ⟩, where 𝑇 is binary.
Each pair (𝑡, 𝑛) in 𝑇 indicates a time stamp 𝑡 ∈ Q (with day as unit,
where fractions are allowed since data are inserted as they become
available) and the total number 𝑛 ∈ N of active COVID cases at
time stamp 𝑡 . Graph views will contain only the vertex view 𝑉 and
a single edge view 𝐸 with the following view definitions:

𝑉 (𝑥) := ∃𝑦 ∈ adom (𝑇 (𝑥,𝑦))
𝐸 (𝑥1, 𝑥2) := 𝑥1 < 𝑥2 ∧ ∃𝑦1, 𝑦2 (𝑇 (𝑥1, 𝑦1) ∧𝑇 (𝑥2, 𝑦2)) ∧

¬∃𝑥 (𝑥1 < 𝑥 < 𝑥2 ∧ ∃𝑦 𝑇 (𝑥,𝑦))
In other words, we obtain a graphical representation of the number
of active COVID cases whose vertices represent time stamps in
the DB and edges represent the time progressions. One might be
interested in a long enough stretch of time stamps in𝑇 whose num-
ber of active COVID cases exceeds some sufficiently fast growing
function 𝑝 (𝑡). We will mention cases which can be answered with
NL data complexity.

Data Path Queries. Fix a fragment L ⊆ FO(T, 𝜎). For an alphabet
Σ, let Σ# = Σ ∪ {#}, where # ∉ Σ is a fixed “dummy symbol”. In
order to define our query language RDPQ(L,T, 𝜎) (or RDPQ(L, 𝜎)
or just RDPQ(L) in short), we define our notion of extended register
automata (ERA) admitting active-domain and unrestricted registers,
which can take any value in the domain D of T. More precisely, a
(𝜎,T)-register automaton is a tuple A = (R,P, 𝑄,𝑄0, 𝐹 ,Δ), where
R = {𝑟1, . . . , 𝑟𝑙 } is a set of active-domain registers,P = {𝑝1, . . . , 𝑝ℎ}
is a set of unrestricted registers, 𝑄 is a finite set of states, 𝑄0 ⊆ 𝑄 is
the set of initial states, 𝐹 ⊆ 𝑄 is the set of final states, andΔ is a finite
set of transitions1 each of the form (𝑞, (𝑎, 𝜑 (curr,P,P′,R,R′)), 𝑞′),
where 𝑞, 𝑞′ ∈ 𝑄 , 𝑎 ∈ Σ#, and 𝜑 ∈ L with R′ := {𝑟 ′1, . . . , 𝑟 ′𝑙 } and
P′ := {𝑝′1, . . . , 𝑝′ℎ}. Intuitively, curr refers to current node ID, P
(resp. R) the current values of the unrestricted (resp. active-domain)
registers, and P′ (resp. R′) the next values of the unrestricted
(resp. active-domain) registers. More formally, given a (T, 𝜎)-graph
G, a path in it

𝜋 := 𝑣0 →𝑎1 · · · →𝑎𝑛 𝑣𝑛,

we write that G, 𝜋 |= A if there is a sequence of transitions
𝑞0 →𝑡0 · · · →𝑡𝑛 𝑞𝑛+1,

with 𝑞0 ∈ 𝑄0, 𝑞𝑛+1 ∈ 𝐹 , and register values

v = (𝜇0, 𝜈0), . . . , (𝜇𝑛, 𝜈𝑛) ∈ 𝑈 R × DP (∗)
such that for every 0 < 𝑖 ≤ 𝑛: (1) 𝑡0 = (𝑞0, (#, 𝜑0), 𝑞1) and 𝑡𝑖 =
(𝑞𝑖 , (𝑎𝑖 , 𝜑𝑖 ), 𝑞𝑖+1); and (2) G |= 𝜑𝑖 (𝑣𝑖 , 𝜈𝑖−1, 𝜈𝑖 , 𝜇𝑖−1, 𝜇𝑖 ). We write
[[A]]G to be the set of all pairs (𝑢, 𝑣) ∈ 𝑉 2 of vertices in G such
that there is a path 𝜋 from 𝑢 to 𝑣 such that G, 𝜋 |= A.

An RDPQ query is a formula 𝐹 of the form 𝑥 →A 𝑦, such
that [[𝐹 ]]G = [[A]]G. We are concerned with the query evaluation
problem: given a graph G, a pair of vertices (𝑠, 𝑡) ∈ 𝑉 2, and an
RDPQ formula 𝐹 := 𝑥 →A 𝑦, whether (𝑠, 𝑡) ∈ [[𝐹 ]]G.

Unsurprisingly, this problem is undecidable for a fixed A, even
for the decidable theory ⟨N, 𝑠𝑢𝑐𝑐⟩ of natural numbers with suc-
cessors, since two unrestricted registers can be used to simulate
universal Minsky’s 2-counter machines (e.g. see [45]). For this rea-
son, we impose the so-called bounded-rewrite restriction for the
1After gaining familiarity with ERA, the reader is referred to Section 6 for a general-
ization of ERA that directly traverse the relational database S.

<latexit sha1_base64="AqtQxc36Y9A2h5WPWLEA1b+mhOA=">AAACfHicbVFNb9NAEF0bCq1paUuPXCxSpEjQyEZR4VJRqReOAZo2UmJF6804WWW9dnZnC8HqT+i1VftP+Cn8GcTaiVAb90krPb03MzsfcS64xiD447hPnq49e76+4b3Y3Hq5vbP76kxnRjHoskxkqhdTDYJL6CJHAb1cAU1jAefx9KT0zy9AaZ7JU5znEKV0LHnCGUUrfZ8Ng+FOI2gFFfw6CZek8fn3bYm7znDXYYNRxkwKEpmgWvfDIMeooAo5E3DpDYyGnLIpHUPfUklT0FFR9Xrpv7XKyE8yZZ9Ev1LvZxQ01XqexjYypTjRq14pPub1DSafooLL3CBItvgoMcLHzC8H90dcAUMxt4QyxW2vPptQRRna9XieN/gGM2NjOst6p2FUlC1WxVZNxKOECg3vq9rhESoDUSF4DHYJEuoJF1TNTFT84u269z8tKiT8wJ/ViPYs4eoR6uTsQys8bLW/thvHTbLAOnlN3pAmCclHcky+kA7pEkbG5Ipckxvnr7vvvnMPFqGus8zZIw/gHv4D5LbIzw==</latexit>@0
<latexit sha1_base64="BiCZvOh2VE97CYPpq44MGyiaKvU="></latexit>@1

<latexit sha1_base64="Y26t0XYOIa/zmac8dkFvd++pb8Q="></latexit>@�

<latexit sha1_base64="8jujb5NFm+QwSBZtQ2SOrr+QXAs="></latexit>>
<latexit sha1_base64="qIhS1X7s10I8BX2tNXmSNhItLY0="></latexit>9I (⇢1 (curr, I) ^ A 0 = I) <latexit sha1_base64="IbJOy7pgQ96lYsCW/HY7v/D1rJo="></latexit>9I (⇢1 (curr, I) ^ |A � I | � 30)

Figure 2: Automaton A for the query in Example 2.5.

unrestricted registers. In the sequence of register values in (∗), a
register 𝑝𝑖 undergoes 𝑏 rewrites if the number of value changes of
𝑝𝑖 in the sequence is 𝑏. For example, if the values of 𝑝 in an A-run
are 7, 7, 7, 3, 3, 10, 1, then 𝑝 undergoes 3 rewrites. In the sequel, we
will restrict ourselves to runs ofA with at most 𝑏 rewrites for each
unrestricted register, for some constant 𝑏 ∈ N. We will refer to
suchA as (ℎ,𝑏)-rewrite register automaton, where ℎ is the number
of unrestricted registers of A. We will tacitly assume that each
RDPQ(L,T, 𝜎)-query uses an (ℎ,𝑏)-rewrite register automaton be-
cause of the following:

Proposition 2.3. Let L = FO(T, 𝜎) or L = EFO(T, 𝜎), and as-
sume that query evaluation for L is decidable. Then, query evaluation
for RDPQ(L, 𝜎) with (ℎ,𝑏)-rewrite register automata is decidable.

This can be easily proven: it suffices to consider paths in the
graph of length at most |𝑈 |𝑙 × |𝑄 | × (𝑏 + 1)ℎ (remember, 𝑙 = |R |)
and hence we turn each such path 𝜋 into a formula in L to check if
there is a sequence of A-configurations conforming to 𝜋 .

In this paper we are concerned mostly about the issue of data
complexity: What is the complexity of the evaluation problem for
a fixed RDPQ(T, 𝜎)-query? We count the view definitions in G
also as part of the query, which is consistent with PGQL (see
https://pgql-lang.org/). Following [40], NL data complexity is of par-
ticular interest, which is achieved for the basic RDPQ (i.e. with the
base theory ⟨N;=, {𝑐𝑖 }𝑖∈N⟩, and 𝜎 = ⟨𝐸1, . . . , 𝐸𝑛⟩). When consider-
ing data complexity, the following proposition shows that we may
assume (ℎ, 0)-rewrite register automata, i.e., each unrestricted reg-
ister behaves like a parameter, a notion that appears in parametric
one-counter automata [29] and parametric timed automata [1].

Proposition 2.4. RDPQ(L,T, 𝜎) with (ℎ,𝑏)-rewrite register au-
tomata is (effectively) equi-expressive with RDPQ(L, T, 𝜎) with (ℎ𝑏, 0)-
rewrite register automata.

In the sequel, we assume that each unrestricted register is a
parameter and we simplify notation accordingly (e.g. the guard in
each transition is of the form 𝜑 (curr,P,R,R′)).

Example 2.5. Following Example 2.1, we are interested in finding
the set of pairs (𝑥,𝑦) of actors whose age difference is at least 30.
This can be expressed in RDPQ(ZLA, 𝜎) as 𝑥 →A 𝑦, where A has
three states 𝑞0, 𝑞1, 𝑞𝐹 (𝑞0 initial and 𝑞𝐹 final) and one active-domain
register 𝑟 . The automaton A is depicted in Figure 2. Intuitively,
A saves the birthyear of the actor 𝑥 , follows the edges in 𝐸, and
nondeterministically guesses an actor 𝑦 whose birthyear differs by
at least 30 from the birthyear of 𝑥 . It can be seen that (0, 1) is an
answer to this query (recall that 0 and 1 refer to Erdős and Bacon).

Example 2.6. Following Example 2.2, suppose we are interested
in finding a period of at least 28 days where the total number
of active COVID cases grows exponentially. It is a well-known
open problem (e.g. see [27, Chapter 5]) whether R×,+ with the ex-
ponential function 𝑒𝑥 is decidable. To circumvent this, we could

https://pgql-lang.org/


use the standard trick in numerical methods to approximate 𝜆𝑒𝜒𝑥
by the 𝑛th Taylor polynomial 𝑝𝑛 (𝑥) for sufficiently large 𝑛, i.e.,∑𝑛
𝑖=0 𝜆(𝜒𝑥)𝑖/𝑖!. (In practice, one uses small enough 𝑛, e.g., 𝑛 = 4

is used in [5].) Let 𝑔(𝜆, 𝜒, 𝑥) := 𝑝𝑛 (𝑥), with 𝜆 and 𝜒 treated also
as variables. An example query could be to find any window be-
tween two time stamps (𝑡, 𝑡 ′) ∈ 𝐸 spanning across at least 28 days
(i.e. 𝑡 ′ − 𝑡 ≥ 28) such that there exist 𝜆 ≥ 1, 𝜒 > 0.4 such that
the total number of active COVID cases at each time step 𝑠 in
this interval is within 𝐵 := 50 from 𝑔(𝜆, 𝜒, 𝑠) + 𝑐 for some non-
negative constant 𝑐 . This can be expressed in RDPQ(R×,+, 𝜎) as
𝑥 →A 𝑦, where A has three states 𝑞0, 𝑞1, 𝑞2 (𝑞0 initial and 𝑞2 fi-
nal), one active-domain register 𝑟 and three parameters 𝜆, 𝜒, 𝑐 . The
transitions are (𝑞0,𝜓0 (curr,P, 𝑟 , 𝑟 ′), 𝑞1), (𝑞1,𝜓1 (curr,P, 𝑟 , 𝑟 ′), 𝑞1),
(𝑞1,𝜓2 (curr,P, 𝑟 , 𝑟 ′), 𝑞2), where

𝜓0 := 𝑟 = curr ∧ 𝜆 ≥ 1 ∧ 𝜒 > 0.4 ∧ 𝑐 ≥ 0 ∧ 𝜃
𝜓1 := 𝑟 ′ = 𝑟 ∧ 𝜃, 𝜓2 := 𝜓1 ∧ curr − 𝑟 ≥ 28
𝜃 := ∃𝑥 ∈ adom(𝑇 (curr, 𝑥) ∧ |𝑔(𝜆, 𝜒, curr) + 𝑐 − 𝑥 | ≤ 𝐵).

3 REALS AND LINEAR ARITHMETICS
This section deals with real-closed field R×,+ = ⟨R;+,×, ≤, 1, 0⟩ and
integer linear arithmetic ZLA = ⟨𝑍 ;+, ≤, 1, 0, {≡𝑘 }⟩, where ≡𝑘 is
the congruence modulo 𝑘 relation. Both admit (effective) quantifier
elimination (QE) [24, 31]: each formula 𝜑 (𝑥) can be effectively
converted into an equivalent quantifier-free formula in the theory.
Notice that each side of an (in)equation can be any general term in
the theory: a multivariate polynomial with integer coefficients in
the case of R×,+, and a linear multivariate polynomial with integer
coefficients in the case of ZLA. In the case of R×,+ each element
in the database is a rational number, i.e., given as 𝑎/𝑏 with two
integers 𝑎, 𝑏. The size of a number is the number of bits required to
represent it. Our main result is:

Theorem 3.1. The data complexity of RDPQ(FO,R×,+, 𝜎) and
RDPQ(FO,ZLA, 𝜎) is NL-complete.

The remainder of §3 presents a sketch of proof of Theorem 3.1.

Restricted Quantifier Collapse. We recall the notion of Restricted
Quantifier Collapse (RQC) only for theories T that admit QE; see [39,
Definition 13.5] for a general definition, which is not crucial for the
paper, and [39, Chapter 13.4] for positive and negative examples
as well as some properties of RQC. We also give a definition that
applies to fragments of FO. The logic L ⊆ FO(T, 𝜎) admits RQC
if L ⊆ FOact (T, 𝜎), i.e., for every formula 𝜑 (𝑥) ∈ L, there exists
𝜓 (𝑥) ∈ FOact (T, 𝜎) (i.e. without unrestricted quantifiers) such that
[[𝜓 ]]S = [[𝜑]]S for each finite (T, 𝜎)-structure S. We write “effec-
tively admits RQC” if the translation from 𝜑 to𝜓 is effective.

Proposition 3.2 ([9, 26]). Both FO(R×,+, 𝜎) and FO(ZLA, 𝜎) ef-
fectively admit RQC, and have data complexity TC0.

The proofs of RQC can also be found in the textbook [39, Theo-
rem 13.19] and in the textbook [27, Proposition 5.32], from which
data complexity immediately follows, e.g. see [9, 10] for FO(R×,+, 𝜎).
The same analysis as in [9, 10], combined with that modulo com-
parisons are in TC0 (e.g. see [47]), also gives TC0 data complexity
for FO(ZLA, 𝜎). RQC provides us sometimes with a tool for coming
up with an NL algorithm for RDPQ, as we shall see the case for
R×,+ and ZLA, but this is not always the case (see next section).

Restricted Register Collapse. We define an analogue of RQC for
RDPQ(L,T, 𝜎). Let RDPQact (L,T, 𝜎) refer to queries 𝑥 →A 𝑦 in
RDPQ(L,T, 𝜎) such that A has no parameters and L admits RQC.
We say that RDPQ(L, T, 𝜎) admits Restricted Register Collapse (RRC)
if RDPQ(L,T, 𝜎) ⊆ RDPQact (FOact,T, 𝜎). The following lemma is
crucial in obtaining NL data complexity of RDPQ(FO,R×,+, 𝜎) and
RDPQ(FO,ZLA, 𝜎).

Lemma 3.3. Both RDPQ(FO,R×,+, 𝜎) and RDPQ(FO,ZLA, 𝜎) ad-
mit RRC effectively.

The proof of the lemma is quite technical, and borrows some
ideas from the proofs of RQC for FO(R×,+, 𝜎) and FO(ZLA, 𝜎). Es-
sentially, it is shown that one can restrict the parameter valuations
to a bounded number of values while preserving equivalence. Al-
though the exact values might depend on the database S, they can
be uniformly FO-defined through the values of active domains, i.e.,
in FOact (R×,+, 𝜎) or FOact (ZLA, 𝜎). This allows us to replace each
parameter by active-domain registers.

We now proceed the proof of RRC for T := R×,+; the proof
for ZLA is similar (see appendix). Fix a vocabulary 𝜎 and a (T, 𝜎)-
register automaton

A = (R,P, 𝑄,𝑄0, 𝐹 ,Δ)
with P = {𝑝1, . . . , 𝑝𝑘 }. By RQC of FO(T, 𝜎), it follows that each
formula 𝜑 (𝑐𝑢𝑟𝑟,P,R,R′) in Δ can be assumed to have only active-
domain quantifiers. We shall construct a (𝜎, T)-register automaton

A′ = (R′,P \ {𝑝𝑘 }, 𝑄′, 𝑄′0, 𝐹 ′,Δ′),
such that [[A]]G = [[A′]]G for all T-embedded graph G over
𝜎 . By recursively eliminating the parameters, we will obtain an
equivalent (𝜎,T)-register automaton with no parameters. Let 𝑍 =
P ∪ R ∪ R′ ∪ {𝑐𝑢𝑟𝑟 } and 𝑍𝑘 := 𝑍 \ {𝑝𝑘 }.

We may assume (e.g. see proof of [39, Theorem 13.19]) that each
𝜑 (𝑐𝑢𝑟𝑟,P,R,R′) is of the form

𝑄1𝑦1 ∈ adom . . . 𝑄𝑚𝑦𝑚 ∈ adom 𝛼 (𝑦, 𝑝𝑘 , 𝑍𝑘 )
where each 𝑄1, . . . , 𝑄𝑚 denotes an ∀ or ∃ quantifier and 𝛼 is a
Boolean combination of formulas of

(1) atomic 𝜎-formulas 𝑅(𝑢) with𝑢 ⊆ 𝑦 (e.g. 𝐸 (𝑝𝑘 , 𝑟 ) is replaced
by ∃𝑧, 𝑧′ ∈ 𝑎𝑑𝑜𝑚(𝐸 (𝑧, 𝑧′) ∧ 𝑧 = 𝑝𝑘 ∧ 𝑧′ = 𝑟 )); and

(2) expressions of the form 𝑡 (𝑦, 𝑍𝑘 , 𝑝𝑘 ) ∼ 0, where 𝑡 is polyno-
mial with integer coefficients whose variables are among 𝑦,
𝑍𝑘 and 𝑝𝑘 , and ∼ ∈ {=, >}.

We will further assume that each term 𝑡 that appears in some
formula (of a transition) in A appears in each formula in A, e.g.,
if 𝑡 does not appear in a formula𝜓 , we may simply rewrite it with
𝜓∧(𝑡 = 0∨𝑡 ≠ 0). By the same token, we may for simplicity assume
that each formula 𝜑 inA uses the same number𝑚 of active-domain
variables 𝑦1, . . . , 𝑦𝑚 . Letting 𝑌𝑘 = 𝑦 ∪ 𝑍𝑘 , we may enumerate all
polynomial terms 𝑡 involving 𝑝𝑘 occurring in A as

𝑡1 (𝑌𝑘 , 𝑝𝑘 ), . . . , 𝑡𝑚 (𝑌𝑘 , 𝑝𝑘 ),
where 𝑡𝑖 has degree 𝑑𝑖 in 𝑝𝑘 . We introduce two new active-domain
registers 𝑟1 (𝑧) and 𝑟2 (𝑧) for each 𝑧 ∈ 𝑌𝑘 . Let 𝑟 𝑖 (𝑌𝑘 ) denote the set
containing each 𝑟 𝑖 (𝑧) with 𝑧 ∈ 𝑌𝑘 . The crux is to replace 𝑝𝑘 by



either one of the terms in the set 𝑆 defined as{
root𝑠𝑖 (𝑟1 (𝑌𝑘 )) + root𝑡𝑗 (𝑟2 (𝑌𝑘 ))

2 : 𝑖, 𝑗 ∈ [1,𝑚],
𝑠 ∈ [1, 𝑑𝑖 ], 𝑡 ∈ [1, 𝑑 𝑗 ]

}
∪ {root𝑠𝑖 (𝑟1 (𝑌𝑘 )) + 𝑐 : 𝑐 ∈ {−1, 1} ∧ 𝑖 ∈ [1,𝑚], 𝑠 ∈ [1, 𝑑𝑖 ]}

where root𝑠𝑖 (𝑌𝑘 ) represents the 𝑠th root of 𝑡𝑖 (𝑌𝑘 , 𝑝𝑘 ) (treated as a
univariate polynomial in 𝑝𝑘 ), if exists, otherwise 0. It is easy to
see that there is a FO(R×,+) formula Root𝑠𝑖 (𝑌𝑘 , 𝑥) which is true
iff 𝑥 equals root𝑠𝑖 (𝑌𝑘 ). By quantifier elimination, we may assume
Root𝑠𝑖 (𝑌𝑘 , 𝑥) is quantifier-free. At this point, we state a result from
embedded finite model theory, which we will use later:

Proposition 3.4 (See Lemma 13.20 of [39]). Let S be an finite
structure such that 𝑎𝑑𝑜𝑚(S) ≠ ∅ embedded into T = R×,+. For
each valuation 𝜇 : 𝑍𝑘 → R, it is the case that S, 𝜇 |=T ∃𝑝𝑘𝜑 iff
S, 𝜇 |=T

∨
𝑡 ∈𝑆 𝜑 [𝑡/𝑝𝑘 ], where 𝜑 [𝑡/𝑝𝑘 ] is 𝜑 but with 𝑝𝑘 replaced by

𝑡 .

Note that, in this proposition, we interpret an active-domain
register as an active-domain variable.

We now complete the construction of the new register automaton
that replaces 𝑝𝑘 by active domain registers. Define 𝑄 ′ := 𝑄 × 𝑆 ,
𝑄 ′0 = 𝑄0 × 𝑆 , and 𝐹 ′0 := 𝐹0 × 𝑆 . For each transition (𝑞, 𝜑 (𝑍𝑘 , 𝑝𝑘 ), 𝑞′)
and each 𝑡 ∈ 𝑆 , we add to Δ′ the transition

((𝑞, 𝑡), 𝜑′ (𝑍𝑘 , 𝑟1 (𝑌𝑘 ), 𝑟2 (𝑌𝑘 ), 𝑟1 (𝑌 ′𝑘 ), 𝑟2 (𝑌 ′𝑘 )), (𝑞′, 𝑡))
where 𝜑 ′ is constructed as follows depending on 𝑡 :

• 𝑡 =
root𝑠

𝑖
(𝑟 1 (𝑌𝑘 ) )+root𝑡

𝑗
(𝑟 2 (𝑌𝑘 ) )

2 . Let 𝜑 ′ :=
∧2

𝛼=1 𝑟
𝛼 (𝑌𝑘 ) =

𝑟𝛼 (𝑌 ′
𝑘
)∧

∃𝑧, 𝑧1, 𝑧2

(
𝜑 (𝑍𝑘 , 𝑧)∧ 𝑅𝑜𝑜𝑡𝑠𝑖 (𝑟1 (𝑌𝑘 ), 𝑧1)∧

𝑅𝑜𝑜𝑡𝑡𝑗 (𝑟2 (𝑌𝑘 ), 𝑧2) ∧ 2𝑧 = 𝑧1 + 𝑧2

)
• 𝑡 = root𝑠𝑖 (𝑟1 (𝑌𝑘 )) + 𝑐 . Let 𝜑 ′ :=

∧2
𝛼=1 𝑟

𝛼 (𝑌𝑘 ) = 𝑟𝛼 (𝑌 ′
𝑘
)∧

∃𝑧, 𝑧1 (𝜑 (𝑍𝑘 , 𝑧) ∧ 𝑅𝑜𝑜𝑡𝑠𝑖 (𝑟1 (𝑌𝑘 ), 𝑧1) ∧ 𝑧 = 𝑧1 + 𝑐)
By RQC of FO(R×,+, 𝜎), we may assume each 𝜑 ′ has only active-
domain quantifiers.

We claim now that [[A]]G = [[A′]]G for all (T, 𝜎)-graph G.
The direction [[A]]G ⊇ [[A′]]G is immediate since A′ restricts
the range of values that are permitted to 𝑝𝑘 in A (i.e. to values
in 𝑆 , where each 𝑟ℎ (𝑌𝑘 ) can be instantiated by any active-domain
values). To prove the other direction [[A]]G ⊆ [[A′]]G, assume an
accepting computation of A

𝜋 := (𝑞0, 𝜈0) →(𝑎1,𝜑1 ) · · · →(𝑎𝑛,𝜑𝑛 ) (𝑞𝑛, 𝜈𝑛)
for a valuation 𝜇 : P → R, i.e., (R×,+,G), 𝜇 |= ∃𝑝𝑘Φ(𝑍𝑘 , 𝑝𝑘 ), where
Φ(𝑍𝑘 , 𝑝𝑘 ) is:

∃𝑠, 𝑅 ∈ adom
𝑛−1∧
𝑖=0
(𝜑𝑖 (𝑠𝑖 , 𝑅𝑖 , 𝑅𝑖+1,P) ∧ 𝐸𝑎𝑖 (𝑠𝑖 , 𝑠𝑖+1)) .

By assumption, Φ shares the same polynomial terms with any one
of 𝜑𝑖 (up to renaming 𝑐𝑢𝑟𝑟 , 𝑅 and 𝑅′ with respectively 𝑠𝑖 , 𝑅𝑖 , and
𝑅𝑖+1). Using Proposition 3.4, there exist 𝑖, 𝑗 ∈ [1,𝑚], 𝑖 ∈ [1, 𝑑𝑖 ],
𝑗 ∈ [1, 𝑑 𝑗 ], and two tuples 𝑎, 𝑏 over adom(G), each of length |𝑌𝑘 |,
such that (R×,+,G) with valuation 𝜇 satisfies

Φ(𝑍𝑘 , (root𝑠𝑖 (𝑎) + root𝑡𝑗 (𝑏))/2) ∨
∨

𝑐∈{−1,1}
Φ(𝑍𝑘 , root𝑠𝑖 (𝑎) + 𝑐)

Hence, A′ may simply instantiate 𝑟1 (𝑌𝑘 ) (resp. 𝑟2 (𝑌𝑘 )) with 𝑎
(resp. 𝑏) and keep them constant throughout the computation, as is
done in the definition of A′. Extend each 𝜈𝑖 with this instantiation
yielding𝜈 ′𝑖 . Let 𝜇′ := 𝜇 |𝑍𝑘 be the restriction of 𝜇 to𝑍𝑘 . The following
path is then an accepting path of A′ with valuation 𝜇′:

𝜋 ′ := (𝑞0, 𝜈
′
0) →(𝑎1,𝛿 ′0 ) · · · →(𝑎𝑛,𝛿 ′𝑛 ) (𝑞𝑛, 𝜈𝑛) .

This completes the proof of Theorem 3.3.

NL algorithm. Theorem 3.1 is a direct consequence of the follow-
ing lemma, Proposition 3.2, and Lemma 3.3.

Lemma 3.5. We assume a sublogic L of FO(T, 𝜎) with NL data
complexity. Then, RDPQ(L, T, 𝜎) without parameters is NL-complete.
It remains NL if we allow parameters that can be instantiated by data
values whose sizes are logarithmically bounded.

Proof idea. One nondeterministically simulates a run of A in
a query 𝑥 →A 𝑦 over RDPQ(L, T, 𝜎), while using the NL algorithm
for L as a subprocedure. References to active-domain values are
saved in the working tape, hence keeping the algorithm running in
NL. Full proof is in the appendix. □

4 THEORY OF AUTOMATIC RELATIONS
We consider the theory of automatic relations on finite words. Let
Γ be a finite alphabet, and Γ⊥ be Γ ¤∪{⊥}. Given 𝑢1, . . . , 𝑢𝑘 ∈ Γ∗,
the convolution 𝑢1 ⊗ · · · ⊗ 𝑢𝑘 of these words is defined as the word
𝑤 ∈ (Γ𝑘⊥)∗ such that the projection onto the 𝑖-th component of 𝑤
yields 𝑢𝑖 · ⊥ |𝑤 |− |𝑢𝑖 | , for every 1 ≤ 𝑖 ≤ 𝑘 . An automatic relation of
arity 𝑘 is a relation 𝑅 ⊆ (Γ∗)𝑘 such that

𝑅 = {(𝑢1, . . . , 𝑢𝑘 ) : 𝑢1 ⊗ · · · ⊗ 𝑢𝑘 ∈ 𝐿} (1)

for some regular language 𝐿 over (Γ⊥)𝑘 . Let Rel be the set of all
automatic relations over some fixed alphabet Γ. TAut is then the
theory ⟨Γ∗; {𝑅}𝑅∈Rel⟩. Some examples of automatic relations are
the prefix relation · ⪯ ·, the equal length relation eq-len(·, ·) and
the unary relation lst𝑎 (·) stating that the last letter of the word is
an 𝑎 ∈ Γ. In fact, in the relational calculus, these relations coincide
with the automatic relations, in the sense that the following are
equivalent: (1) 𝑅 is an automatic relation from Rel of arity 𝑘 ; (2)
there is 𝜑 (𝑥1, . . . , 𝑥𝑘 ) ∈ FO(Γ∗, ⪯, eq-len, {lst𝑎}𝑎∈Γ) such that 𝑅 =
[[𝜑]] = {𝑢 ∈ (Γ∗)𝑘 : Γ∗ |= 𝜑 [𝑢]} [23]. This is why FO(Γ∗, ⪯
, eq-len, {lst𝑎}𝑎∈Γ) is sometimes called the “universal automatic
structure” [12]. Another example of an automatic relation is the
edit-distance-𝑘 binary relation (see [7]), for any fixed 𝑘 . Observe
that regular languages are exactly the class of automatic relations
of arity 1.

We assume that words are represented as a list of letters, and
relations as lists of lists of words. The size of a word is its length.
We represent automatic relations inside formulas via an NFA rec-
ognizing the language 𝐿 in (1).

Example 4.1. Consider a phylogenetic database, with each node
defining a DNA sequence (and perhaps some other data). Using
FO(TAut, 𝜎) we can query, whether the DNA sequence of the cur-
rent element is at edit distance at most 5 from parameter 𝑝:

𝜑 (curr, 𝑝) = ∃𝑦 dna-seq(curr, 𝑦) ∧ edit-distance-5(𝑦, 𝑝),



where dna-seq(curr, 𝑦) specifies that 𝑦 is the DNA sequence of the
current node curr and edit-distance-5(·, ·) is an automatic relation
(of being at edit distance at most 5).

Unfortunately, model checking of FO over TAut-embedded struc-
tures is hard for the polynomial hierarchy (PH) [11, Prop. 4.12],
implying untractability for RDPQ querying:

Proposition 4.2 ([11]). RDPQ(FO, TAut, 𝜎) is hard for every level
of PH in data complexity, even without parameters.

Hence, we focus on the EFO fragment of FO-formulas in prenex
form using no universal quantifiers. The set of EFO formulas using
no negation is denoted by EFO+.

Lemma 4.3 (proof in Appendix). EFO(TAut, 𝜎) has effective RQC.

Thus, model checking for EFO is tractable, since model checking
for FOact (TAut, 𝜎) is in NC1 (proof in Appendix).

Lemma 4.4. [11, proof of Corollary 4.15] The model checking prob-
lem for FOact (TAut, 𝜎) is in NC1 in data complexity.

By Lemma 4.3, every EFO(TAut, 𝜎) formula is effectively equiv-
alent to a FOact (TAut, 𝜎) formula which in turn, by Lemma 4.4, is
in NC1, hence in NL. Thus, by Lemma 3.5 the bound transfers to
RDPQ evaluation.

Corollary 4.5 (of Lemma 4.3, Lemma 4.4, and Lemma 3.5). Eval-
uation of RDPQ(EFO,TAut, 𝜎) and RDPQ(FOact,TAut, 𝜎) without
parameters is NL-complete in data complexity.

However, as soon as unrestricted parameters are allowed, we
lose tractability, as we show next (proof in Appendix E).

Lemma 4.6. Evaluation of RDPQ(EFO+,TAut, 𝜎) is NP-hard in
data complexity, even with no registers and one parameter.

To regain tractability we assume LogH on the (TAut, 𝜎)-structure
S, that is, that for some constant 𝑐 , every word 𝑤 ∈ adom satisfies
|𝑤 | ≤ 𝑐 · log( |S|). In fact, LogH implies that parameters can be
taken to have a logarithmic size, and in light of Lemmas 4.3 and 3.5,
we deduce that RDPQ(EFO,TAut, 𝜎) evaluation (under LogH) is in
NL. To prove this, we use a corollary of the proof of Lemma 4.3 (in
Appendix G):

Corollary 4.7 (of Lemma 4.3). Every EFO(TAut, 𝜎) formula
𝜓 (𝑧) is effectively equivalent to a disjunction of EFOact (TAut, 𝜎)
formulas 𝜓 ′ of the form 𝐴′ (𝑧) ∧ ∃𝑟 ∈ adom 𝜏 (𝑧𝑟 ), where 𝐴′ is a
TAut-atom, 𝜏 is a EFOact (𝜎) formula.

Let 𝑁 = max𝑤∈adom |𝑤 | and let 𝑣 : 𝑧 → Γ∗ be a satisfying
assignment for 𝜓 ′ (𝑧), and 𝑧 ∈ 𝑧 such that |𝑣 (𝑧) | > 𝑁 . Suppose
there is a word 𝑢 ∈ Γ∗ such that |𝑢 | > 𝑁 and Γ∗, 𝑣 ′ |= 𝐴′ (𝑧) for
𝑣 ′ = 𝑣 [𝑧 ↦→ 𝑢]. Then, 𝑣 ′ is also a satisfying assignment for𝜓 ′.

Theorem 4.8. Evaluation of RDPQ(EFO,TAut, 𝜎) with parame-
ters under LogH is NL-complete in data complexity.

Proof. Let G be a TAut-embedded graph over 𝜎 , 𝐹 = ∃P :
𝑥 →A,P 𝑦 be an RDPQ(EFO, TAut, 𝜎) query, and (𝑠, 𝑡) ∈ 𝑉 2 be two
vertices of G. Let 𝑁 be the maximum size of a word in the active
domain (of logarithmic size by LogH).

Let 𝑠 = 𝑣0 →𝑎1 · · · →𝑎𝑛 𝑣𝑛 = 𝑡 be an accepting G-path with
transitions 𝑡0, . . . , 𝑡𝑛 , where 𝑡𝑖 = (𝑞𝑖 , (𝑎𝑖 ,𝜓𝑖 ), 𝑞𝑖+1) and 𝑎0 = #. Then

for some register valuations 𝜇0, . . . , 𝜇𝑛+1 ∈ 𝑉 R the formula 𝜑 (P) =∧
𝑖 𝜓𝑖 (𝑣𝑖 ,P, 𝜇𝑖 , 𝜇𝑖+1) is satisfiable. We show that if 𝜑 is satisfiable,

then it is satisfied with a valuation for P with log-size words.
Suppose there is a parameter valuation 𝜈 ∈ 𝑈 P which satisfies

𝜑 . By Corollary 4.7, for each 𝑖 , 𝜓𝑖 can be written as a disjunction
of formulas of the form 𝑅𝑖 (𝑧) ∧ ∃𝑟 ∈ adom 𝜏 (𝑧𝑟 ) where 𝑅𝑖 is a
TAut-atom and 𝜏 is a FOact (𝜎) formula. Consider the DFA 𝐴𝑖 over
Γ𝑛𝑖⊥ corresponding to the relation denoted by 𝑅𝑖 , let it have 𝑛𝑖 free
variables. Let 𝑣𝑖 be a satisfying assignment for 𝑦𝑖 . Hence, there
is an accepting run of 𝐴𝑖 over the convolution 𝑤 of the words
𝑣𝑖𝜈𝜇𝑖𝜇𝑖+1𝑣𝑖 . These words are of logarithmic size, since they are
from adom, with a possible exception of those from 𝜈 , which are
parameters. Let 𝑤 ′ be the 𝑁 -prefix of 𝑤 , and let 𝑞𝑖 be the state
of 𝐴𝑖 after reading 𝑤 ′ from the initial state. We define 𝐴′𝑖 to be
the same automaton as 𝐴𝑖 but (1) setting 𝑞𝑖 as initial state, and (2)
removing any transition reading a non-⊥ symbol on any component
which is not of the parameters. It then follows that, if 𝑤 ′′ is any
word in the language of 𝐴′𝑖 , then 𝑤 ′ · 𝑤 ′′ is in the language of
𝐴𝑖 . Let 𝜋 (𝐴′𝑖 ) be the automaton corresponding to the projection
onto the components of the parameters of 𝐿(𝐴′𝑖 ). Consider a word
𝑢 ∈ ⋂𝑖 𝐿(𝜋 (𝐴′𝑖 )) ⊆ (Γ

| P |
⊥ )∗; observe that its description is bounded

by a function of the (fixed) RDPQ 𝐹 , and hence 𝑢 is of constant size.
It then follows, by Corollary 4.7, that𝑢′ ·𝑢 witnesses also a satisfying
assignment for 𝜑 , where 𝑢′ is the 𝑁 -prefix of 𝜈 . This shows that we
can assume that the parameter valuation for witnessing a word in
the language is also of logarithmic size. Since parameters can be
taken to have a logarithmic size, by Lemmas 4.3, 4.4, and 3.5 we get
an NL bound. □

5 WORD EQUATIONS
This section deals with the theory of word equations with con-
catenation and regular languages, i.e., let TWE be the theory of
⟨Γ∗; ·, {𝑅}𝑅∈Reg⟩, where Γ is a finite alphabet, · is the concatena-
tion, and Reg is the set of all regular languages (over Γ). The data
complexity of FO(TWE, 𝜎) is undecidable [11], so we consider two
fragments of FO(TWE, 𝜎): (1) L+WE = EFO+act (TWE, 𝜎) of existential
positive formula with active-domain quantifiers, and (2) LPM of
existential positive formulas without regular relations and whose al-
lowed TWE-formulas have atoms of the form ∃𝑦 (∧𝑖∈𝐼 𝑥𝑖 = 𝛽𝑖 ) with
the left-hand side 𝑥𝑖 being a single element from curr∪R ∪R′ ∪P
and the right-hand side 𝛽𝑖 being a concatenation of elements in
𝑦 ∪R ∪R′ ∪ {curr} and constants, and that each existentially quan-
tified variable occurs at most once in an equation whose left-hand
side is from P. (Note that it can occur at multiple equations in
which the left-hand side is from curr ∪ R ∪ R′.)

Example 5.1. Consider a query in a phylogenetic database, de-
fined in Example 4.1: is there a path, such that all DNA sequences on
it are at edit distance at most 𝑘 from some (unknown) DNA sequence?

Answering such query is related to the closest string problem [15,
28]. It is known [7, Eq. (3)], that the edit distance between 𝑝,𝑤 is
at most 𝑘 if and on only if∨

𝑎1,...,𝑎𝑘 ∈Γ∪{𝜀 }
𝑏1,...,𝑏𝑘 ∈Γ∪{𝜀 }

∃𝑥0, . . . , 𝑥𝑘 𝑝 = 𝑥0𝑎1𝑥1 · · · 𝑥𝑘−1𝑎𝑘𝑥𝑘 ∧
𝑤 = 𝑥0𝑏1𝑥1 · · · 𝑥𝑘−1𝑏𝑘𝑥𝑘 .

When 𝑝 is a parameter and 𝑤 in curr, this formula is in LPM and so
this query is expressible in RDPQ(LPM,TWE, 𝜎).



Theorem 5.2. RDPQ(L+WE,TWE, 𝜎) has NL-complete data com-
plexity, similarly RDPQ(LPM,TWE, 𝜎).

Proof idea. As in both cases the guards on a G-path are pos-
itive formulas, the guard on any G-path 𝜋 are a positive Boolean
combination of word equations over some variables and traversing
such a path can be seen as constructing a system of word equations.
In particular, given a valuation of the parameters and existentially
quantified variables such that G, 𝜋 |= A we can determine, which
atomic equations were true and this valuation can be seen as a
solution to the system of word equations (i.e. the equations that
are made true in the guards). Hence evaluating a query can be seen
as solving a system of word equations, though this system is not
given explicitly. The best algorithms solving word equations run
in PSPACE, so in order to answer RDPQ queries in NL, we need
some insight into the structure of the systems of equations that we
obtain in this case. Those turn out to be different for L+WE and LPM.

For LPM: each atomic equation is of the form 𝑝 = 𝛽 or 𝛼 = 𝛽 ,
where 𝑝 is a parameter, 𝛼 ∈ curr ∪ R ∪ R′ and 𝛽 is a sequence of
(existentially quantified) variables and elements from Γ ∪ curr ∪
R ∪ R′. In the second case 𝛼 ∈ adom(S), so every (existentially
quantified) variable in 𝛽 is a substring of an element in adom(S), so it
can be represented in NL. For equations 𝑝 = 𝛽 , fix a parameter 𝑝 and
consider all such equations in the system created while traversing
the G-path. Every variable at the right-hand side is used once in the
system and not used in any other such subsystem. Such system is
satisfiable if and only if each of the equations satisfies a condition
on a prefix and suffix of its sides; in particular, we do not need
to consider all the equations simultaneously, they can be checked
one by one, see Lemma H.1 in the appendix. The NL algorithm
guesses for each parameter 𝑝 an appropriate prefix and suffix, it
can be shown that those can be represented as concatenations of at
most |A| many constants and substrings of elements from adom(S).
Then inG it guesses consecutive edge views and evaluates the guard
𝜑 using the condition on prefixes and suffixes mentioned above, i.e.
the one from Lemma H.1.

Concerning L+WE, for simplicity of presentation, we ignore reg-
ular relations; the appendix contains a brief discussion how to
generalize to this case. The (existential) active domain quantifiers
are instantiated by elements of adom(S) using nondeterministic
guesses. Therefore the equations occurring in guards are only in
variables that are parameters. We first observe that if words sub-
stituted for parameters are polynomial-length and there is an NL
access to individual letters in them, then RDPQ(L+WE,TWE, 𝜎) has
NL data complexity, as desired.

Lemma 5.3. Assume a logarithmic-size representation of valua-
tions of parameters P, such that each parameter is of polynomial
(in |G|) length and individual letter of each parameter and length of
each parameter can be accessed in NL. Then we can evaluate a given
RDPQ(L+WE,TWE, 𝜎) query for those parameters on G in NL.

Proof. We guess consecutive vertices on a G-path. At a given
node we guess the next node in G, the letter and transition of A,
which yields a guard 𝜑 that should be satisfied. To verify 𝜑 , we
guess the existentially quantified variables, which are an element
from adom, and then evaluate the atomic equations in the guards
one by one. For a given equation 𝑢 (𝑥) = 𝑣 (𝑥) we already have

the substitutions for each variable in 𝑥 , which is either an active-
domain quantified (so was guessed) or a parameter (so we have a
valuation for it). Hence we verify the equation symbol by symbol,
which can be done in NL, as each substituted value is of polynomial
length and individual letters can be accessed in NL. As each atom
of 𝜑 is evaluated in NL, we can also evaluate 𝜑 in NL.

If we have ended in 𝑡 then the traversed path 𝜋 yields G, 𝜋 |= A.
On the other hand, if there is 𝜋 such that G, 𝜋 |= A then we guess
𝜋 ’s consecutive nodes, the transitions of A and substitutions for
variables, for which we end up at 𝑡 , as desired. □

We show that if there is an accepting G-path 𝜋 , and parameter
valuation 𝜈 : P → Γ∗ such that G, 𝜋 |= A then this also holds for a
valuation 𝜈 ′ such that each assigned value is polynomial-size and
its letters can be accessed in NL.

So assume such a path 𝜋 and corresponding sequence of transi-
tions in A. For any guard 𝜑 take the equations made true under 𝜈 ,
they form a system of word equations in 𝑘 variables P; the sum of
lengths of equations is polynomial in |G|: the length |𝜋 | is polyno-
mial (discussion after Proposition 2.3), and each atom in it is from
Γ∗∪ curr∪R∪R′, hence of linear size. Lemma H.5 in the Appendix
shows that such a system has a polynomial-size solution. Moreover,
it is known [44] that for (some) such solutions the length of the
substitutions together with the system of equations uniquely deter-
mines the solution and yield access to letters in the substitutions,
in this case the access is in NL; see the appendix. However, the
size of this representation is polynomial, as there are (potentially)
polynomially many equations.

We exploit the form of equations in the system: fix an atomic
equation 𝑢 (𝑝, 𝑥) = 𝑣 (𝑝, 𝑥), where 𝑝 are from P and 𝑥 are from
curr,R,R′ and active domain quantified variables. For different
substitutions for 𝑥 , the obtained equations have the same sequence
of variables (from P), separated with different words; call such
equations similar. We show that given two similar equations we
can deduce a partial valuation of variables, which makes those two
equations equivalent (in appropriate sense). By considering consec-
utive equations we get a partial substitution that makes increasing
set of equations equivalent. Moreover, this process “simplifies” the
resulting equation and we can perform it O(𝑚) times, where𝑚 is
the number of occurrences of variables in the equation. As a result,
among a system of similar equations we can choose O(𝑚) which
unify this system. This is done for each equation𝑢 (𝑝, 𝑥) = 𝑣 (𝑝, 𝑥) in
A, yielding a system of O(𝑚 |A|) equations, which can be used to
access the substitution for parameters. See appendix for details. □

6 GENERALIZATIONS AND CONCLUSIONS
We conclude by mentioning related issues and future work.

Conjunctive Queries. NL data complexity of RDPQ easily extends
to CRDPQ [40], which enriches RDPQ by conjunctions. Here we
enrich RDPQ(L,T, 𝜎) not only by conjunctions, but also by an
additional constraint in L. Namely, queries in CRDPQ(L,T, 𝜎) are
conjunctions of the form

𝑄 (𝑧) ←
𝑛∧
𝑖=1

𝑥𝑖 →A𝑖
𝑦𝑖 ∧ 𝜑 (P, 𝑥,𝑦)



where 𝑧 ⊆ 𝑥 ∪ 𝑦, 𝑥𝑖 →A𝑖
𝑦𝑖 is an RDPQ(L,T, 𝜎)-query, and

𝜑 (P, 𝑥,𝑦) ∈ L. Here, P contains all parameters used across all
register automata in 𝑄 , which may among themselves share param-
eters. Given a (T, 𝜎)-structure S with active domain 𝑈 , let [[𝑄]]S
be the set of all 𝛽 : 𝑧 → 𝑈 such that for some 𝜈 : 𝑥 ∪ 𝑦 → 𝑈 ,
with 𝛽 (𝑧) = 𝜈 (𝑧) for each 𝑧 ∈ 𝑧, and 𝜇 : P → D, it is the case
that S |= 𝜑 (𝜇 (P), 𝜈 (𝑥), 𝜈 (𝑦)) and 𝜈 (𝑥𝑖 ) →A𝑖

𝜈 (𝑦𝑖 ). In other words,
each path constraint 𝑥𝑖 →A𝑖

𝑦𝑖 is satisfied where a parameter
valuation 𝜇 that conforms to 𝜑 . One example of a CRDPQ query is
the query that there are two actors with finite Bacon graphs whose
ages differ from Bacon by an even number 𝑘 , i.e., this is of the form

𝑄 (𝑦, 𝑧) ← 𝑥 →A 𝑦 ∧ 𝑥 →A 𝑧 ∧ 𝑘 ≡ 0 (mod 2) ∧ 𝑥 = Bacon,

where A uses one active-domain register 𝑟 to save the birthyear
𝑦0 of the first person in the path, and a parameter 𝑘 that is non-
deterministically guessed and is checked against the difference
between 𝑦0 and the birthyear of the final person in the path. We
sketch in the appendix a log-space reduction from CRDPQ(L, T, 𝜎)
to RDPQ(L,T, 𝜎) query evaluation, where the output query de-
pends only on the input query. This extends NL data complexity to
CRDPQ(L,T, 𝜎).

Property Graphs. Property graphs are the data models used by
most modern graph database systems [17]. A property graph asso-
ciates unique IDs to both nodes and edges in a graph, i.e., they are
both first-class citizens. The main difference to the standard data
graph model in database theory (e.g., see [40]) is three-fold. First,
some edges could be unordered and there could be multiple edges
from a node to another node. second, nodes (as well as edges) may
also carry labels from Σ. Finally, edges (as well as nodes) may be
associated with a property value. Since we allow first-order views,
we may easily view a property graph G as a data graph G′ in the
sense of [40] by interpreting nodes and edges in G as nodes in G′.
Indeed, view definitions allow a huge amount of flexibility, e.g., one
can reverse the edge relation, make an edge relation symmetric, etc.
This allows us to also obtain NL data complexity of RDPQ(L,T, 𝜎)
on the property graph data model.

Combined Complexity. The primary concern of our paper is de-
veloping data path query languages with NL data complexity. The
consideration of data complexity is standard and sensible for data-
base query evaluation since typically the size of the database is
very large and the size of the query small. The combined complex-
ity of our query languages is higher than that of the basic RDPQ
from [40] (i.e. PSPACE), primarily because of the high complexity
of the theories that we consider, e.g., the best known algorithm for
FO(R×,+) is double-exponential time (see [8]) and FO(ZLA) would
require at least double exponential-time [37]. We leave it for fu-
ture work to identify fragments of FO(T, 𝜎) that could match the
PSPACE combined complexity of the basic RDPQ.

Integrating views into the automaton. Thus far, our presentation
has kept the view definitions 𝐺 = (𝑉 , {𝐸𝑎}𝑎∈Σ) of the relational
database S rather “separate” from the automaton A in the query
𝑥 →A 𝑦. In effect, the automaton A is forced to explore the rela-
tional database S through the graph views as defined by𝐺 . Although
this is more in line with the data model of SQL/PGQ (e.g. see [17]
and https://pgql-lang.org/), a further generalization that enablesA

to directly traverse the relational structure S is possible, which we
will discuss next.

For a start, we dispense completely with the view definitions
over the database S. How does A then traverse S? The answer is
simple. Each transition ofA can be associated with a 𝑛𝑒𝑥𝑡 variable
indicating which element in S it can go to, i.e., it is of the form

(𝑞, 𝜑 (curr, 𝑛𝑒𝑥𝑡,R,R′,P,P′), 𝑞′),
where 𝜑 is a formula over the vocabulary 𝜎 of S. Notice that Σ does
not exist, and therefore an automata transition does not have any
Σ entry. The semantics of a transition is the same as defined in § 2,
except that by taking this transition the automaton A goes from
curr to 𝑛𝑒𝑥𝑡 . This setting is strictly more general than the setting
defined in § 2 in that the graph views allowed by this extended
automaton might depend on the register and parameter values. All
the results in this paper generalize easily to this extended data
model.

Future Work. We now mention several open questions. Firstly, in
what way can our query languages be extended with aggregation
(e.g., summing values along a path, taking average, etc.) without
sacrificing NL data complexity? To this end, we conjecture that
decidable subclasses of counter automata (e.g. [35, 46]) could prove
useful. Secondly, identify the fragment of the graph pattern match-
ing language (GPML) over property graphs [17] that can be captured
in CRDPQ(L, T, 𝜎). Concerning word equations, can we extend the
methods used for L+WE to obtain NL data complexity for RDPQ over
fragment with negation and/or with existential quantification?
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A PROOF OF PROPOSITION 2.3
The input consists of a (T, S)-graphG, a RDPQ(L, T, 𝜎)-query𝑥 →A
𝑦, and two nodes 𝑠, 𝑡 ∈ 𝑉 . A configuration𝐶 is a tuple (𝑣, 𝑞, 𝑟, 𝑝, 𝑚̄) ∈
𝑉 × 𝑄 × 𝑈 𝑙 × Dℎ × {0, . . . , 𝑏}ℎ . The values in the component
𝑚̄ are to record the number of rewrites to the unrestricted reg-
isters performed thus far. In the following, we refer to 𝑚̄ as the
mode of𝐶 . An initial configuration is of the form (𝑠, 𝑞0, 𝑟 , 𝑝, 0̄) with
𝑞0 ∈ 𝑄0, whereas a final coniguration is of the form (𝑡, 𝑞𝐹 , 𝑟 , 𝑝, 𝑚̄).
Let 𝜋 := 𝐶0, · · · ,𝐶𝑛 be sequence of configurations witnessing a
path from 𝑠 to 𝑡 in G satisying 𝑠 →A 𝑡 . We may assume that 𝜋
has no repetition of configurations (otherwise, one may simply cut
out the segment in between two repeating configurations). Now,
notice that the modes in 𝜋 either stay the same or increase (in a
component-wise manner). This means that 𝜋 can be divided into a
sequence of subsequences 𝜋1, . . . , 𝜋𝑁 such that each 𝜋𝑖 has exactly
the same mode (and no 𝜋𝑖 and 𝜋 𝑗 with 𝑖 ≠ 𝑗 share the same mode).
Thus 𝑁 ≤ ℎ(𝑏 + 1). Notice also that the values of the unrestricted
registers stay the same throughout each 𝜋𝑖 . So, each 𝜋𝑖 now has
length at most |𝑉 | × |𝑄 | × |𝑈 |𝑙 . Thus, we deduce that the length of
𝜋 is at most 𝑀 := |𝑉 | × |𝑄 | × |𝑈 |𝑙 × (𝑏 + 1)ℎ .

To conclude, we simply need to guess 𝜋 of length at most 𝑀 ,
but keep the values of the unrestricted registers symbolically. Let
m := 𝑚̄1, . . . , 𝑚̄𝑁 be the sequence of modes of each path segment
𝜋1, . . . , 𝜋𝑁 (as above) and a sequence 𝑙 := 𝑙1, . . . , 𝑙𝑛 of lengths of
these paths. We also guess the sequence of transitions in A that
takes us through 𝜋 with guards 𝜓1, . . . ,𝜓𝑛 . [We separately need
to ensure that the edge labels in 𝜋 through the graph and A also
agree.] We can then write a formula 𝜑𝜋 in L with free variables
𝑋 := {𝑝 𝑗𝑖 : 𝑖 ∈ [1, ℎ], 𝑗 ∈ [0, 𝑏]} that asserts that 𝜋 with can be
realized by 𝑋 . Here, we use 𝑝

𝑗
𝑖 to denote 𝑝𝑖 but after 𝑗 rewrites.

Thus, from m and 𝑙 , we may compute an appropriate sequence
𝑝0, . . . , 𝑝𝑛 of variables from 𝑋 consisting of exactly one 𝑝 𝑗𝑖 for each
𝑖 ∈ [1, ℎ]. If the node (resp. the active-domain register values) in𝐶𝑖
is denoted by 𝑣𝑖 (resp. 𝑟𝑖 ), then

𝜑 :=
𝑛∧
𝑖=1

𝜓𝑖 (𝑣𝑖−1, 𝑟𝑖−1, 𝑟𝑖 , 𝑝𝑖−1, 𝑝𝑖 )

Thus, query evaluation reduces to query evaluation of

∃𝑋𝜑
which is a formula in L and can be solved by the query evaluation
algorithm for L.

B PROOF OF PROPOSITION 2.4
Let 𝑥 →A 𝑦 be a RDPQ(L,T, 𝜎)-query. Let P = {𝑝1, . . . , 𝑝ℎ} be
the unrestricted registers used in A. The new A′ will use P′ :=
{𝑝 𝑗𝑖 : 𝑖 ∈ [1, ℎ], 𝑗 ∈ [0, 𝑏]}, where 𝑝 𝑗𝑖 records the value of 𝑝𝑖 after 𝑗

rewrites. To ensure that A′ uses the right 𝑝 𝑗𝑖 , we could record the
number of rewrites for 𝑝𝑖 in the state, i.e., the set 𝑄 ′ of states ofA′
will be 𝑄 × [0, 𝑏]ℎ , where 𝑄 is the set of states of A. Although this
shows equi-expressivity, the resulting A′ is exponentially bigger
in A. This is immaterial for data complexity.

C RRC FOR LINEAR ARITHMETICS
We follow the notation from the proof for R×,+.

We may assume (see proof of [27, Proposition 5.6.10]) that each
𝜑 (𝑐𝑢𝑟𝑟,P,R,R′) in A is of the form

𝑄1𝑦1 ∈ 𝑎𝑑𝑜𝑚 . . . 𝑄𝑚𝑦𝑚 ∈ 𝑎𝑑𝑜𝑚𝛼 (𝑦, 𝑝𝑘 , 𝑍𝑘 )
where 𝛼 is a boolean combination of formulas of the form

(1) atomic 𝜎-formula 𝑅(𝑢) with 𝑢 ⊆ 𝑦.
(2) linear constraints of the form 0 ∼ 𝑡 (𝑦, 𝑍𝑘 , 𝑝𝑘 )
(3) congruence constraint of the form 𝑥 ≡ 𝑐 (mod 𝑀) for

𝑥 ∈ 𝑦 ∪ ∪𝑍𝑘 ∪ {𝑝𝑘 } and 𝑐,𝑀 constant integers.
We may also assume that each linear constraint of type (2) of the
form 𝑐𝑝𝑘 ∼ 𝑡 (𝑦, 𝑍𝑘 ) satisfies that either 𝑐 = 0 or 𝑐 = 1. This can
be done by a standard normalization step in quantifier elimination
of Presburger Arithmetic [24]. More precisely, we collect all coeffi-
cients 𝑐1, . . . , 𝑐𝑠 such that 𝑐𝑖𝑝𝑘 appears in some linear constraint of
the form (2) in A. Let ℓ be the least common multiple of 𝑐1, . . . , 𝑐𝑠 .
By multiplying with suitable constants, each linear constraint of
type (2) and type (3) containing 𝑝𝑘 will have the same term ℓ𝑝𝑘 .
Note that 𝑝𝑘 ≡ 𝑐 (mod 𝑀) will become ℓ𝑝𝑘 ≡ ℓ𝑐 (mod ℓ𝑀). Use a
new parameter 𝑝′

𝑘
and replace each ℓ𝑝𝑘 by 𝑝′

𝑘
. Finally replace each

resulting formula 𝜑 in a transition by 𝜑 ∧ 𝑝′
𝑘
≡ 0 (mod ℓ).

In addition, by taking the least common multiple of all the divi-
sors 𝑀 across all congruence constraints (i.e. of type (3)) in tran-
sitions in A, we may also assume that there is a single 𝑀A such
that each congruence constraint is of the form 𝑥 ≡ 𝑐 (mod 𝑀A ).
In summary, 𝛼 is now a boolean combination of the form:

(1) atomic 𝜎-formula 𝑅(𝑢) with 𝑢 ⊆ 𝑦.
(2a) linear constraints of the form 𝑝𝑘 ∼ 𝑡 (𝑦, 𝑍𝑘 )
(2b) linear constraints of the form 0 ∼ 𝑡 (𝑦, 𝑍𝑘 )
(3) congruence constraint of the form 𝑥 ≡ 𝑐 (mod 𝑀A ) for

𝑥 ∈ 𝑦 ∪ ∪𝑍𝑘 ∪ {𝑝𝑘 } and 𝑐 constant integers.
For simplicity, we assume that each formula 𝜑 in A uses precisely
𝑚 active-domain variables 𝑦1, . . . , 𝑦𝑚 . Letting 𝑌𝑘 = 𝑦 ∪𝑍𝑘 , we may
enumerate all linear term 𝑡 of type (2a) occuring in some formula
in A as

𝑡1 (𝑌𝑘 ), . . . , 𝑡𝑚 (𝑌𝑘 )
We introduce an active-domain register 𝑟 (𝑧) for each 𝑧 ∈ 𝑌𝑘 . Extend
this to sets of variables, i.e., 𝑟 (𝑌𝑘 ) is defined. The idea is to replace
𝑝𝑘 by either one of the terms in the set

𝑆 := {𝑡𝑖 (𝑟 (𝑌𝑘 )) + 𝑐 : 𝑐 ∈ [−𝑀,𝑀] ∧ 1 ≤ 𝑖 ≤ 𝑚}
Define𝑄 ′ := 𝑄×𝑆 ,𝑄 ′0 = 𝑄0×𝑆 , and 𝐹 ′0 := 𝐹0×𝑆 . For each transition
(𝑞, 𝜑 (𝑍𝑘 , 𝑝𝑘 ), 𝑞′) and each 𝑡 ∈ 𝑆 , we add to Δ′ the transition

((𝑞, 𝑡), 𝜑′ (𝑍𝑘 , 𝑟 (𝑌𝑘 ), 𝑟 (𝑌 ′𝑘 )), (𝑞′, 𝑡))
where 𝜑 ′ is defined as

𝑟 (𝑌𝑘 ) = 𝑟 (𝑌 ′𝑘 ) ∧ 𝜑 (𝑍𝑘 , 𝑡 (𝑟 (𝑌𝑘 )))
By RQC of FO(T, 𝜎), we may assume each𝜑 ′ has only active-domain
quantifiers.

We claim now that [[A]]G = [[A′]]G for all (T, 𝜎)-graph G.
The direction [[A]]G ⊇ [[A′]]G is immediate since A′ restricts
the range of values that are permitted to 𝑝𝑘 in A (i.e. to values
in 𝑆 , where each 𝑟 (𝑌𝑘 ) can be instantiated by any active-domain
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values). To prove the other direction [[A]]G ⊆ [[A′]]G, assume an
accepting computation of A

𝜋 := (𝑞0, 𝜈0) →(𝑎1,𝜑1 ) · · · →(𝑎𝑛,𝜑𝑛 ) (𝑞𝑛, 𝜈𝑛)
for a valuation 𝜇 : P → Z, i.e., (T,G), 𝜇 |= ∃𝑝𝑘Φ(𝑍𝑘 , 𝑝𝑘 ), where
Φ(𝑍𝑘 , 𝑝𝑘 ) is:

∃𝑠, 𝑅 ∈ 𝑎𝑑𝑜𝑚
𝑛−1∧
𝑖=0
(𝜑𝑖 (𝑠𝑖 , 𝑅𝑖 , 𝑅𝑖+1,P) ∧ 𝐸𝑎𝑖 (𝑠𝑖 , 𝑠𝑖+1)) .

By the proof of [39, Proposition 5.6.10], there exist 𝑐 ∈ [−𝑀,𝑀],
𝑖 ∈ [1,𝑚], and a tuple 𝑎 over 𝑎𝑑𝑜𝑚(G) of length |𝑌𝑘 | such that
(T,G), 𝜇 |= Φ(𝑍𝑘 , 𝑡𝑖 (𝑎)+𝑐). Hence,A′ may simply instantiate 𝑟 (𝑌𝑘 )
with 𝑎 and keep them constant throughout the computation, as is
done in the definition of A′. Extend each 𝜈𝑖 with this instantiation
yielding𝜈 ′𝑖 . Let 𝜇′ := 𝜇 |𝑍𝑘 be the restriction of 𝜇 to𝑍𝑘 . The following
path is then an accepting path of A′ with valuation 𝜇′:

𝜋 ′ := (𝑞0, 𝜈
′
0) →(𝑎1,𝛿 ′0 ) · · · →(𝑎𝑛,𝛿 ′𝑛 ) (𝑞𝑛, 𝜈𝑛) .

D PROOF OF LEMMA 3.5
Fix a (T, 𝜎)-register automaton with parameters

A = (R,P, 𝑄,𝑄0, 𝐹0,Δ),
and a logarithmic function 𝑓 . Say |R | = 𝑘 . Given two vertices 𝑠, 𝑡
of a given graph G with set 𝑉 of nodes and universe D of data
values, we want to know if there is some parameter assignment
𝜇 : P → {𝑑 ∈ D : |𝑑 | ≤ 𝑓 ( |G|)} for which the query returns (𝑠, 𝑡).
The NL machine 𝑇 first guesses 𝜇 (using logarithmic space) and
then simply traverses G, while simultaneously simulating A (as
in standard product automata construction). More precisely, it will
initially guess a state 𝑞0 ∈ 𝑄0 in the simulation, and set the register
values in R to an arbitrary active-domain values r0 ∈ D𝑘 , and start
the procedure from configuration (𝑠, 𝑞0, r). From any configuration
(𝑣, 𝑞, r), the machine 𝑇 guesses a node 𝑣 ′ and a label 𝑎 ∈ Σ such
that (𝑣, 𝑣 ′) ∈ 𝐸𝑎 , the next register (active-domain) values r′, and a
transition

(𝑞, (𝑎, 𝜑 (𝑐𝑢𝑟𝑟,P,R,R′)), 𝑞′)
such that G |= 𝜑 (𝑣, 𝜇, r, r′). The simulation proceeds to the next
configuration (𝑣 ′, 𝑞′, r′). It will stop and accept as soon as a config-
uration of the form (𝑡, 𝑞𝐹 , r), for some 𝑞𝐹 ∈ 𝐹 and register values r,
is visited.

Recall that an NL machine have an input tape, and a log-space
working memory tape. To ensure an NL simulation, we use the
standard trick of using pointers that refer to the parts of the input
tape that contain the node/datum of interest in G. Each such a
pointer reference uses space that is logarithmic in the size of the
input (i.e. G).

E PROOF OF LEMMA 4.6
We reduce from 3-SAT. Consider a (𝜎,TAut)-register automaton
with no registers and having just three states 𝑞0, 𝑞, 𝑞𝐹 , where 𝑞0 is
initial and 𝑞𝐹 is final, one parameter 𝑝 , and three transitions:

• (𝑞0, (#,⊤), 𝑞),
• (𝑞, (𝑎,⊤), 𝑞𝐹 ), and
• (𝑞, (𝑎,𝜓 (curr, 𝑝)), 𝑞),

with

𝜓 (curr, 𝑝) = ∃𝑝′, 𝑥 ′, 𝑥 value(curr, 𝑥) ∧ 𝑥 ′ ≺ 𝑥 ∧ 𝑝′ ≺ 𝑝 ∧
eq-len(𝑝′, 𝑥 ′) ∧ lst1 (𝑥 ′) ∧
((lst1 (𝑝′) ∧ lst1 (𝑥)) ∨ (lst0 (𝑝′) ∧ lst0 (𝑥))) .

Note that𝜓 says that there is a position 𝑖 so that the current value
𝑥 is such that: (1) the 𝑖-th letter of the parameter and the last letter
of 𝑥 coincide, and (2) 𝑥 has a 1 at position 𝑖 . The idea will be that
𝑝 encodes a satisfying assignment (where the 𝑖-th variable is true
iff the 𝑖-th position of 𝑝 is 1), and 𝑥 is of the form 0𝑖−110 · · · 0𝑏 if
it encodes a literal of the 𝑖-th variable appearing either positive if
𝑏 = 1 or negative if 𝑏 = 0.

Given a 3-SAT formula

𝜑 :=
𝑚∧
𝑖=1
(ℓ𝑖,1 ∨ ℓ𝑖,2 ∨ ℓ𝑖,3)

Consider the TAut-embedded graph over a singleton relation
signature {𝑎}, an attribute-assigning relation value(·, ·), a vertex
set 𝑉 = {𝑣𝑖, 𝑗 : 𝑖 ∈ [1,𝑚], 𝑗 ∈ {1, 2, 3}} ¤∪{𝑣0, 𝑣𝐹 } and edges

𝐸𝑎 = {(𝑣0, 𝑣1, 𝑗 ), (𝑣𝑚,𝑗 , 𝑣𝐹 ) : 𝑗 ∈ {1, 2, 3}} ∪
{(𝑣𝑖, 𝑗 , 𝑣𝑖+1, 𝑗 ′ ) : 𝑖 ∈ [1, 𝑛 − 1], 𝑗, 𝑗 ′ ∈ {1, 2, 3}}.

The interpretation of value contains (𝑣0, 𝜀), (𝑣𝐹 , 𝜀); and for any other
𝑣𝑖, 𝑗 such that ℓ𝑖, 𝑗 = 𝑥𝑘 (resp. ℓ𝑖, 𝑗 = ¬𝑥𝑘 ) it contains (𝑣𝑖, 𝑗 , 𝑢), where
𝑢 is the string over {0, 1} of length𝑚 + 1 such that:

• its 𝑘-th position has a 1,
• its last position has a 1 (resp. 0), and
• every other position has a 0.

If 𝜑 is satisfiable by setting variables 𝑥𝑖1 , . . . , 𝑥𝑖𝑟 to true and the
remaining ones to false, then there is a path from 𝑣0 to 𝑣𝐹 in the
language with the parameter assignment {0, 1}𝑚+1 which has a
1-symbol on the 𝑖 𝑗 -th position, for every 1 ≤ 𝑗 ≤ 𝑟 , and a 0-symbol
otherwise. Conversely, for any path from 𝑣0 to 𝑣𝐹 in the language,
the𝑚-prefix of the parameter assignment witnessing membership
yields a satisfying assignment for 𝜑 . □

F PROOF OF LEMMA 4.4
Assume an input formula 𝜑 ∈ FOact (TAut, 𝜎) in prenex normal
form. For each atomic formula of the form 𝐻 (𝑥), where 𝐻 ∈ 𝜎
and assignment 𝜇 : 𝑥 → Γ∗, testing 𝜇 |= 𝐻 is log-uniform AC0

(therefore, NC1) because it reduces to checking if a tuple of strings
is in a list of tuples of strings. For each atomic formula of the form
𝑅(𝑥), where 𝑅 ∈ TAut is an automatic relation, and for each as-
signment 𝜇 : 𝑥 → Γ∗, testing 𝜇 |= 𝑅 is log-uniform NC1 because it
reduces to checking if the convolution of 𝜇 is in some regular lan-
guage. We can then connect the NC1 circuits via ∧, ∨, and ¬ in the
quantifier-free subformula of 𝜑 by induction. We may furthermore
replace ∃𝑦𝑖 ∈ 𝑎𝑑𝑜𝑚 by

∨
𝑛∈adom and ∀𝑦𝑖 ∈ 𝑎𝑑𝑜𝑚 by

∧
𝑛∈adom, and

replace these with ∨ and ∧ of unbounded fan-in, which can easily
be simulated with bounded fan-in log-depth circuits. Since 𝜑 is a
fixed formula, the depth of the circuit stays logarithmic and the
size stays polynomial. □

G PROOF OF LEMMA 4.3
We actually show that, in terms of expressive power, we have:



(1) EFO+ (TAut, 𝜎) ⊆ EFO+act (TAut, 𝜎) and
(2) EFO(TAut, 𝜎) ⊆ FOact (TAut, 𝜎).

To prove (1), first note that an existential-positive input formula
𝜑 (𝑥) is equivalent to a disjunction of formulas of the form 𝜑 ′ (𝑥) =
∃𝑦 𝜓 (𝑧) ∧∧

𝑖∈𝐼 𝐻𝑖 (𝑧𝑖 ), where variables from 𝑧 and 𝑧𝑖 range over
𝑥𝑦, each 𝐻𝑖 is a relation from the schema 𝜎 , and𝜓 is a formula of
EFO+ (TAut). We can further push any existential quantification of
variable from 𝑦 which is not in

⋃
𝑖∈𝐼 𝑧𝑖 inside 𝜓 . In other words,

we can assume that every variable of 𝑦 is either free (i.e., in 𝑥)
or in some 𝑧𝑖 . Now we can consider the automatic relation 𝑅𝜓 =
{𝑢 : Γ∗ |= 𝜓 [𝑢]} and redefine 𝜑 ′ as the equivalent formula ∃𝑦 ∈
adom 𝑅𝜓 (𝑧) ∧

∧
𝑖∈𝐼 𝐻𝑖 (𝑧𝑖 ).

The proof for (2) is similar to the existential positive case with
a twist. By a similar reasoning as before, it suffices to assume that
we deal with the formula 𝜑 (𝑥) of the form ∃𝑦 ( ∧

𝑖∈𝐼 (¬)𝑅𝑖 (𝑧𝑖 ) ∧
𝐴(𝑧)) , where 𝑦 = 𝑦1, . . . , 𝑦𝑛 , 𝑅𝑖 ∈ 𝜎 and 𝐴 is an automatic relation.
Furthermore, we may assume that 𝑦 ∩ 𝑧𝑖 ≠ ∅ and 𝑦 ∩ 𝑧 ≠ ∅;
otherwise, we pull the corresponding atom out of the scope of 𝑦.
Let <𝑙𝑒𝑥 be the ‘shortlex’ lexicographic order on Σ-strings (here,
we implicitly assume a total ordering on Σ). That is, 𝑣 <𝑙𝑒𝑥 𝑤 iff (i)
|𝑣 | < |𝑤 |, or (ii) |𝑣 | = |𝑤 | = 𝑛, 𝑣 = 𝑎1 · · ·𝑎𝑛 ,𝑤 = 𝑏1 · · ·𝑏𝑛 , and there
is 𝑖 ∈ [1, 𝑛] such that 𝑎𝑖 < 𝑏𝑖 and 𝑎1 · · ·𝑎𝑖−1 = 𝑏1 · · ·𝑏𝑖−1. Observe
that <𝑙𝑒𝑥 is a total linear order and is also automatic. We assume
below the variables 𝑥, 𝑥1, 𝑥2, . . . do not appear in 𝑧. Define 𝜃 (𝑥1, 𝑥2)
and max𝑎𝑑𝑜𝑚 (𝑥) as follows:

𝜃 (𝑥1, 𝑥2) := 𝑥1 <𝑙𝑒𝑥 𝑥2 ∧ ¬∃𝑥 ∈ 𝑎𝑑𝑜𝑚(𝑥1 <𝑙𝑒𝑥 𝑥 <𝑙𝑒𝑥 𝑥2),
max
𝑎𝑑𝑜𝑚

(𝑥) := ∀𝑥1 ∈ 𝑎𝑑𝑜𝑚(𝑥1 <𝑙𝑒𝑥 𝑥),
min
𝑎𝑑𝑜𝑚

(𝑥) := ∀𝑥1 ∈ 𝑎𝑑𝑜𝑚(𝑥 <𝑙𝑒𝑥 𝑥1).

Then, 𝜑 is equivalent to a big disjunction of 𝜓𝐶 formulas, where
𝐶 = (𝐶1, . . . ,𝐶𝑛) and 𝐶𝑖 ∈ {min𝑎𝑑𝑜𝑚 (𝑟𝑖 ), 𝜃 (𝑟𝑖 , 𝑟 ′𝑖 ),max𝑎𝑑𝑜𝑚 (𝑟𝑖 )}.
The idea is that by a satisfying valuation of 𝐶𝑖 we guess where the
valuation of 𝑦𝑖 appears w.r.t. the <𝑙𝑒𝑥 order: either before the first
adom word (case 𝐶𝑖 = min𝑎𝑑𝑜𝑚 (𝑟𝑖 )), or between two consecutive
adom words (case𝐶𝑖 = 𝜃 (𝑟𝑖 , 𝑟 ′𝑖 )), or after the last adom word, should
there be one (case 𝐶𝑖 = max𝑎𝑑𝑜𝑚 (𝑟𝑖 )). Let 𝑌+ ⊆ 𝑦 be the set of all
variables 𝑧 appearing in a positive literal 𝑅𝑖 (𝑧𝑖 ) with 𝑧 ∈ 𝑧𝑖 . Here
𝜓𝐶 is defined as

∃𝑟1, 𝑟
′
1, . . . , 𝑟𝑛, 𝑟

′
𝑛 ∈ 𝑎𝑑𝑜𝑚 ©­«

𝑛∧
𝑖=1

𝐶𝑖 ∧
∨

𝑌 ⊆(𝑦\𝑌+ )
𝜒𝑌

ª®¬
where 𝑌 is intuitively the variables whose valuations are guessed
to be not in adom (which of course cannot intersect 𝑌+). The for-
mula 𝜒𝑌 is defined as follows. Let 𝜂𝑌 be the variable substitution
replacing each 𝑦𝑖 ∉ 𝑌 by 𝑟𝑖 , and for any formula 𝜉 , let us write
𝜉 [𝜂𝑌 ] to denote the result of substituting the variables according
to 𝜂𝑌 in 𝜉 . Thus, 𝜒𝑌 is a conjunction consisting of each 𝑅(𝑧𝑖 ) [𝜂𝑌 ]
appearing positive, each negative ¬𝑅(𝑧𝑖 ) [𝜂𝑌 ], where 𝑧𝑖 ∩ 𝑌 = ∅,
and the formula

𝜒 ′𝑌 := ∃𝑌 (𝐴(𝑧) [𝜂𝑌 ] ∧ 𝜇 (𝑌 ))
where 𝜇 (𝑌 ) = ∧

𝑦𝑖 ∈𝑌 𝜈𝑖 (𝑦𝑖 ) with

𝜈𝑖 (𝑦𝑖 ) :=


𝑦𝑖 <𝑙𝑒𝑥 𝑟𝑖 if, 𝐶𝑖 = min𝑎𝑑𝑜𝑚 (𝑟𝑖 )
𝑟𝑖 <𝑙𝑒𝑥 𝑦𝑖 <𝑙𝑒𝑥 𝑟 ′𝑖 if, 𝐶𝑖 = 𝜃 (𝑟𝑖 , 𝑟 ′𝑖 ) and,

𝑟𝑖 <𝑙𝑒𝑥 𝑦𝑖 if, 𝐶𝑖 = max𝑎𝑑𝑜𝑚 (𝑟𝑖 )

Observe that 𝜒 ′𝑌 is automatic, and hence can be written as an
atom 𝐴′ (𝑧) for some 𝐴′ ∈ Rel. The reason why ¬𝑅(𝑧𝑖 ) [𝜂𝑌 ], with
𝑧𝑖 ∩ 𝑌 ≠ ∅, can be removed is that the above formula already
ensures that at least one of the arguments in 𝑧𝑖 [𝜂𝑌 ] will not be
in the active domain, which implies ¬𝑅(𝑧𝑖 ) [𝜂𝑌 ]. Observe that 𝜒 ′𝑌
is in FO(TAut) and so is an automatic relation. Thus, we obtain a
formula in FO𝑎𝑐𝑡 (TAut, 𝜎). □

Corollary G.1 (implying Corollary 4.7). Every EFO(TAut, 𝜎)
formula𝜓 (𝑧) is effectively equivalent to a EFOact (TAut, 𝜎′) formula
𝜓 ′, where 𝜎′ is the extension of 𝜎 with

{𝜃 (·, ·), max
𝑎𝑑𝑜𝑚

(·), min
𝑎𝑑𝑜𝑚

(·)},

interpreted as in the proof of Lemma 4.3. Further,𝜓 ′ (𝑧) is a disjunction
of formulas of the form 𝐴′ (𝑧) ∧∃𝑟 ∈ adom 𝜏 (𝑧𝑟 ), where 𝐴′ is a TAut-
atom, 𝜏 is a conjunction of 𝜎′-atoms and negated 𝜎-atoms.

Let 𝑁 = max𝑤∈adom |𝑤 | and let 𝑣 : 𝑧 → Γ∗ be a satisfying
assignment for 𝜓 ′ (𝑧), and 𝑧 ∈ 𝑧 such that |𝑣 (𝑧) | > 𝑁 . Suppose
there is a word 𝑢 ∈ Γ∗ such that |𝑢 | > 𝑁 and Γ∗, 𝑣 ′ |= 𝐴′ (𝑧) for
𝑣 ′ = 𝑣 [𝑧 ↦→ 𝑢]. Then, 𝑣 ′ is also a satisfying assignment for𝜓 ′.

H WORD EQUATIONS: PROOF OF
THEOREM 5.2

We consider RDPQ(LPM,TWE, 𝜎) and first give the proof of Theo-
rem 5.2 in this case.

We begin a simple technical characterization of systems of word
equations that need to be solved in this case.

Lemma H.1. Consider a system of word equations of the form

𝑥 = 𝑣𝑖 (𝑦) for 𝑖 = 1, . . . , ℎ ,

where 𝑥 is a fixed variable other than variables in 𝑦 and each variable
from 𝑦 appears at most once in 𝑣1, . . . , 𝑣ℎ and each 𝑣𝑖 contains at least
one variable (from 𝑦).

Let 𝑤𝑖 , 𝑠𝑖 be the longest prefix and suffix of each 𝑣𝑖 consisting of
letters, i.e. no variables are allowed. Then the system has a solution if
and only if there are 𝑤, 𝑠 such that 𝑤𝑖 ⪯ 𝑤 and 𝑠 ⪰ 𝑠𝑖 for each 𝑖 .

Proof. Suppose that the condition does not hold, by symmetry,
suppose that there is no such 𝑤 . This means that for some 𝑖, 𝑗 the
𝑤𝑖 [ℓ] ≠ 𝑤 𝑗 [ℓ] for some ℓ ≤ min( |𝑤𝑖 |, |𝑤 𝑗 |). But then the two equa-
tions 𝑥 = 𝑣𝑖 (𝑦) and 𝑥 = 𝑣 𝑗 (𝑦) cannot be simultaneously satisfied,
as they differ already at the constants. Symmetric argument applies
to the suffixes.

So suppose that the condition is satisfied. We will explicitly define
a solution in this case. For each 𝑣𝑖 let 𝑣 ′𝑖 be the 𝑣𝑖 with the prefix𝑤𝑖 ,
suffix 𝑠𝑖 and all variables removed. We assign 𝑥 := 𝑤𝑣 ′1𝑣

′
2 · · · 𝑣 ′ℎ𝑠 , in

the following we will define the substitution for remaining variables.
Consider an equation 𝑥 = 𝑣𝑖 (𝑦), by the assumption, a variable
that appears in 𝑣𝑖 (𝑦) does not appear in any other equation. Let
𝑤 = 𝑤𝑖𝑤

′
𝑖 , 𝑠 = 𝑠′𝑖 𝑠𝑖 , those are well defined as by case assumption

𝑤𝑖 ⪯ 𝑤 and 𝑠 ⪰ 𝑠𝑖 . Let𝑦𝑖 be the first variable in 𝑣 and𝑦′𝑖 the last; we
set all other variables in 𝑣𝑖 to 𝜀. There are two subcases, depending
on whether 𝑦𝑖 = 𝑦′𝑖 or not. In the first case we have that 𝑣𝑖 is𝑤𝑖𝑦𝑖𝑠𝑖 ,
then we assign 𝑦𝑖 := 𝑤 ′𝑖 𝑣

′
1𝑣
′
2 · · · 𝑣 ′ℎ𝑠′𝑖 . Then 𝑣𝑖 (𝑦) evaluates to

𝑤𝑖𝑤
′
𝑖 𝑣
′
1𝑣
′
2 · · · 𝑣 ′ℎ𝑠′𝑖 𝑠𝑖 = 𝑤𝑣 ′1𝑣

′
2 · · · 𝑣 ′ℎ𝑠

and so 𝑥 = 𝑣 (𝑦) is satisfied.



Otherwise, we assign 𝑦𝑖 := 𝑤 ′𝑖 𝑣
′
1 · · · 𝑣 ′𝑖−1 and 𝑦′𝑖 := 𝑣 ′𝑖+1 · · · 𝑣 ′ℎ𝑠′𝑖 .

Then 𝑣𝑖 (𝑦) evaluates to (recall that any variable other than 𝑦𝑖 and
𝑦′𝑖 is set to 𝜀)

𝑤𝑖𝑦𝑖𝑣
′
𝑖𝑦
′
𝑖 𝑠𝑖 = 𝑤𝑖 𝑤

′
𝑖 𝑣
′
1 · · · 𝑣 ′𝑖−1︸         ︷︷         ︸
𝑦𝑖

𝑣 ′𝑖 𝑣
′
𝑖+1 · · · 𝑣 ′ℎ𝑠′𝑖︸        ︷︷        ︸

𝑦′
𝑖

𝑠𝑖

= 𝑤𝑣 ′1 · · · 𝑣 ′ℎ𝑠
and so 𝑥 = 𝑣𝑖 (𝑦) is satisfied. □

We now give an NL algorithm for RDPQ(LPM, TWE, 𝜎). For each
parameter 𝑝𝑖 for 𝑖 = 1, . . . , 𝑘 we first guess, whether its value can be
represented as a concatenation of at most𝑚 substrings of elements
in the active domain and constants, where𝑚 is the longest right-
hand side of the equations in formulas labelling the transitions in
A. If so, then we guess such a representation. If not, then we guess
such a representation for a prefix 𝑤𝑖 and suffix 𝑠𝑖 of value of 𝑝𝑖
(those will be the 𝑤 and 𝑠 from Lemma H.1 for 𝑝𝑖 ). Note that this
all fits in NL, as 𝑚 and number of parameters depend on the query.
We then guess the path 𝜋 in G node by node, verify, whether they
are connected by an edge (i.e. evaluate the node-view formula for
each node and the edge-view formula for the two nodes) guess the
transition ofA and evaluate the guard 𝜑 of the transition. The view
formulas can be computed in time independent of |G|; for a given
guard 𝜑 , we choose a subset of equations that make this formula
true (this can be checked after the choice) and treat it as a system
of equations. We then verify this system of equations; note that in
general we need to verify all such equations along the whole path
𝜋 , but Lemma H.1 will allow us to verify this system in isolation of
other equations.

We first deal with the equations of the form 𝑥 = 𝑣 (𝑦), where 𝑥 is
an element from the active domain (be it a register or some current
value) or parameter whose whole value was initially guessed. As the
left-hand side is known, we can guess the lengths of all (existentially
quantified) variables on the right-hand side and this yields the
values of those variables; note that each such valuation of a variable
is a substring of a value from active domain. Then we verify the
consistency of those guesses (i.e. whether the value of existentially
quantified variable𝑦 in each equation is the same) and the equations,
which in both cases is done letter by letter, so in NL.

We then verify the equation of the form

𝑝𝑖 = 𝑣𝑖 (𝑦)
for 𝑝𝑖 that have guessed prefix and suffix. First we instantiate each
variable 𝑦 on the right-hand side, whose value was already set
(when considering earlier equations); if this is the case then its
value is a substring of an element in the active domain. Afterwards,
if on the right-hand side there is no variable (whose value has not
been yet fixed), then we reject, as we should have guessed the value
of 𝑝𝑖 : 𝑣 consists of at most 𝑚 symbols (by choice of 𝑚) and each
of them was substituted with a substring of an element from the
active domain.

Otherwise, we verify, whether the prefix of 𝑣𝑖 before the first
variable is a prefix of 𝑤𝑖 and a suffix of 𝑣𝑖 after the last variable is a
suffix of 𝑠𝑖 . If not, then we reject. Clearly those computations can
be done in NL.

If at the end of the path we have not rejected, then we accept. We
should show that if we accepted then indeed the graph G satisfied
the query. Consider exactly the path that we simulated on the graph,
let all variables be instantiated in the same way as the algorithm
did. Note that the only variables that are not set in this way are
the parameters 𝑝 such that we have guessed only the prefix and
suffix for them and some variables that occur at the right-hand side
of equations for those parameters. Fix one such parameter 𝑥 and
consider all equations that were verified for it, let them be 𝑥 = 𝑣𝑖 (𝑦)
for appropriate set 𝑖 ∈ 𝐼 , we instantiate on the right-hand side all
variables that were instantiated during the computation. By the
algorithm, each such an equation has at least one uninstantiated
variable. Then this means that the algorithm explicitly verified the
condition of Lemma H.1 for this system, and so 𝑥 = 𝑣𝑖 (𝑦) for 𝑖 ∈ 𝐼
has a solution. By the definition of the fragment LPM, no variable
appearing in the right-hand side occurs in any other such subsystem
and also by the algorithm it does not appear in any other equation
(as then it would have been instantiated). Hence, we can consider
the subsystem for each parameter 𝑝 separately.

It remains to show that if G satisfies the query then we return a
positive answer (for appropriate non-deterministic guess). Assume
an accepting path

𝜋 := (𝑞0, 𝜈0) →(𝑎1,𝜑1 ) · · · →(𝑎𝑛,𝜑𝑛 ) (𝑞𝑛, 𝜈𝑛)
For each formula guard 𝜑𝑖 take all equations that are satisfied in
it, rename the variables so that existentially quantified variables
from different instances of the formula are different. In the obtained
system, call a variable or parameter fixed, when

(1) this variable is on the right-hand side of an equation whose
left-hand side is from 𝑐𝑢𝑟𝑟,R,R′ (in this case the variable
is represented by a substring of an element from the active
domain)

(2) this variable is a parameter and is a left-hand side of an equa-
tion whose right-hand side use only constants, 𝑐𝑢𝑟𝑟,R,R′
and fixed variables, which need to be fixed in point 1. Ob-
serve that in this case the fixed variable can be represented
as concatenation of at most𝑚 substrings of elements from
the active domain (and constants).

For parameters that are fixed we can guess in the algorithm the
appropriate values, for the remaining parameters, the system of
equations that they satisfy is of the form as in the Lemma H.1. In
particular, in the algorithm we can guess for the parameter 𝑝 the
prefix and suffix according to Lemma H.1. It can be represented as a
concatenation of at most 𝑚 substrings of elements from the active
domain and constants, as the longest prefix and suffix consisting
only of letters of right-hand sides of considered equations, as in
Lemma H.1, can be represented in this way.

General properties of word equations. Our proof of Theorem 5.2
in case of L+WE is based on general properties of word equations,
which are independent from our setting. Thus we will introduce
and prove using more standard terminology and only at the end
show how those properties can be exploited in our case. The only
departure from the standard usage is that we will use 𝑢 (𝑥) = 𝑣 (𝑥)
or even 𝑒 (𝑥) to denote an equation with variables 𝑥 and𝑢 (𝑠) = 𝑣 (𝑠),
or simply 𝑒 (𝑠), to denote the evaluation on the substitution 𝑠 . Due to
our setting, we are focusing on equations with a fixed (or bounded)



number of variables and appearances of variables, as opposed to
the length of those equations, which are not bounded. We first
recall some general properties of word equations. In most cases
their statement do not distinguish between the equations length,
number of variables and number of occurrences of variables. We
will state the refined versions of those bounds and sketch the needed
improvements of the proofs.

Given a word 𝑤 by |𝑤 | we denote its length and also denote it
as 𝑤 [1]𝑤 [2] · · ·𝑤 [|𝑤 |], with each 𝑤 [𝑖] being a single letter, and
𝑤 [𝑖 . . . 𝑗] = 𝑤 [𝑖] · · ·𝑤 [ 𝑗]. We also use this notation to the equation
of two words i.e. for an equation 𝑒 equal to 𝑢 = 𝑣 , the 𝑒 (𝑠) [𝑖 . . . 𝑗]
is 𝑢 (𝑠) [𝑖 . . . 𝑗], when 𝑠 is a solution, note that this does not depend
on the choice of the side. Also, we extend length to the equations:
when 𝑒 is 𝑢 = 𝑣 then |𝑒 (𝑠) | = |𝑢 (𝑠) | + |𝑣 (𝑠) |. Given an equation
with substituted variables 𝑒 (𝑠), we say that a letter comes from an
equation (or is a position of a letter), when the corresponding letter
was present in 𝑒 , and that it comes from a variable (is a position of
a variable), when this letter was substituted for a variable.

A solution 𝑠 is length-minimal solution of a system of equations
𝐸, when for each other solution 𝑠′ it holds that∑︁

𝑒∈𝐸
|𝑒 (𝑠) | ≤

∑︁
𝑒∈𝐸
|𝑒 (𝑠′) | .

Regular constraints. While we formally introduced the regular con-
straints by allowing unary symbols for regular relations, from the
algorithmic perspective it is easier to fix the regular languages ap-
pearing in an instance and consider the transition functions (into
Boolean matrices), i.e. a homomorphism 𝜌 : Γ → M𝑞 , whereM𝑞

are the 𝑞 × 𝑞 Boolean matrices with the standard (i.e. Boolean op-
erations). The idea is that theM𝑞 encodes the transition matrices
of the automata specifying the regular languages involved in the
instance. Regular constraints are then encoded by specifying 𝜌𝑥 for
various variables and requiring that for a variable 𝑥 we consider
only substitutions 𝑠 such that 𝜌 (𝑠) = 𝜌𝑥 . There is a folklore nonde-
terministic reduction that encodes the relational regular constraints
into the ones specified by 𝜌 .

When considering word equations with regular constraints it
is useful [21] to close the original alphabet under the transition
function: Given a finite alphabet Γ and a homomorphism 𝜌 : Γ∗ →
M𝑞 we say that an alphabet Γ is 𝜌-closed if 𝜌 (Γ) = 𝜌 (Γ+), i.e. for
each word𝑤 ∈ Γ+ there exists a letter 𝑎 ∈ Γ such that 𝜌 (𝑤) = 𝜌 (𝑎).
Usually, an alphabet is not 𝜌-closed, however, we can naturally
extend it with “missing” letters: for an alphabet Γ define a 𝜌-closure
cl𝜌 (Γ) of Γ:

cl𝜌 (Γ) = Γ ∪ {𝑎𝑃 : there is 𝑤 ∈ Γ+ such that 𝜌 (𝑤) = 𝑃} ,

where each 𝑎𝑃 is a fresh letter not in Γ and 𝑎𝑃 ≠ 𝑎𝑃 ′ when 𝑃 ≠
𝑃 ′. Then cl𝜌 (Γ) is 𝜌-closed. Whenever clear from the context (or
unimportant), we will drop 𝜌 in the notation and talk about closure
and cl.

The cl𝜌 (Γ) might be in general large and it is better not to store
it explicitly, instead, when we are given a letter 𝑎𝑃 we can verify,
whether 𝑎𝑃 ∈ cl𝜌 (Γ), which boils down to checking, whether 𝑃
is a transition function for some word 𝑤 ∈ Γ+. This can be easily
verified in NSPACE(𝑞2): we guess the word 𝑤 letter by letter and
store the transition matrix of the so-far guessed prefix. When the

next letter is guessed, we multiply the matrix by the transition
matrix of a guessed letter.

Viewing a system of word equations over Γ (with regular con-
straints) as a system of word equations (with regular constraints)
over cl(Γ) does not change the satisfiability [21, Lemma 10].

Lemma H.2 ([21, Lemma 10]). A system 𝐸 of word equations with
regular constraints (defined using a homomorphism 𝜌 : Γ → M𝑞)
over an alphabet Γ has a solution over Γ∗ if and only if it has a solution
over cl(Γ)∗ (treating the input system as a system over cl(Γ)).
Similar equations. When we consider systems of equations that
appear on a path in a graph data base, we often find equations of
the form

⋃
𝑠 𝑒 (𝑥 ; 𝑠). Those equations have the same variables in

the same order, but the words of letters between them are different.
Many bounds are easy to obtain for such equations and in fact those
bounds hold for equations in which the variables appear in the
same order. Formally, equations 𝑢 (𝑥) = 𝑣 (𝑥) and 𝑢′ (𝑥) = 𝑣 ′ (𝑥) are
similar, when the sequence of variables (obtained by removing all
letters) in 𝑢 (𝑥) and 𝑢′ (𝑥) is the same and the sequence of variables
in 𝑣 (𝑥) and 𝑣 ′ (𝑥) is the same. Clearly, being similar is an equivalence
relation.

We say that 𝑒 and 𝑒′ are strongly similar, when they are similar
and moreover, the lengths of words between the corresponding
variables in 𝑒 and 𝑒′ are the same. Again, being strongly similar is
an equivalence relation.

If two equations are strongly similar then either they are the
same equation or they can be split into the same system of (smaller)
equations with the same solution.

Lemma H.3. Suppose that equations 𝑢 (𝑥) = 𝑣 (𝑥) and 𝑢′ (𝑥) =
𝑣 ′ (𝑥) are strongly similar and that they have a solution 𝑠 . Then either
they are the same equation or

𝑢 = 𝑤0𝑢1𝑤1 · · ·𝑤𝑟𝑢𝑟𝑤𝑟+1
𝑣 = 𝑤0𝑣1𝑤1 · · ·𝑤𝑟 𝑣𝑟𝑤𝑟+1
𝑢′ = 𝑤 ′0𝑢1𝑤

′
1 · · ·𝑤 ′𝑟𝑢𝑟𝑤 ′𝑟+1

𝑣 ′ = 𝑤 ′0𝑣1𝑤
′
1 · · ·𝑤 ′𝑟 𝑣𝑟𝑤 ′𝑟+1

where
• 𝑟 ≥ 1;
• 𝑤0,𝑤 ′0, . . . ,𝑤𝑟+1,𝑤 ′𝑟+1 are non-empty words of letters and
|𝑤𝑖 | = |𝑤 ′𝑖 | for 0 ≤ 𝑖 ≤ 𝑟 + 1;

• 𝑢1, 𝑣1, . . . , 𝑢𝑟 , 𝑣𝑟 are words of letters and variables;
• for 1 ≤ 𝑖 ≤ 𝑟 the equation 𝑢𝑖 = 𝑣𝑖 contains at least one

occurrence of variables and 𝑠 is its solution.
In particular, the system of equations {𝑢𝑖 = 𝑣𝑖 }𝑖=1....,𝑟 has a solution 𝑠
and every solution 𝑠′ of this system is also a solution of the two input
equations.

Proof. Suppose that those are not the same equation. Consider
𝑢 (𝑠) and 𝑢′ (𝑠) and the first position (from the left) on which they
differ, say the first has 𝑎 and in the other: 𝑏. By the assumption
that the equations are strongly similar, those letters come from the
letters in the equation and so we can represent 𝑢 as 𝑢1𝑎𝑢2 and 𝑢′
as 𝑢1𝑏𝑢′2, observe that 𝑢1 may or may not have variables.

Consider the corresponding positions in 𝑣 (𝑠) and 𝑣 ′ (𝑠). Those
cannot be positions coming from the variables, as this would imply
that a substitution for a variable has 𝑎 and 𝑏 at the same position. So



those are positions coming from the letters. Hence, we can represent
𝑣 as 𝑣1𝑎𝑣2 and 𝑣 ′ as 𝑣1𝑏𝑣 ′2, where 𝑢1 (𝑠) = 𝑣1 (𝑠), note again that 𝑣1
may or may not have a variable. We proceed with the equation
𝑢2 = 𝑣2 and 𝑢′2 = 𝑣 ′2, which are strongly similar. If 𝑢1 or 𝑣1 contain
a variable then we make them into 𝑢1 and 𝑣1 from the statement,
if not, then 𝑢1𝑎 and 𝑣1𝑎 are the same string and we attach them to
the initial word returned by the recursive call to get the words 𝑤0
and 𝑤 ′0 from the statement.

The claims about the solution 𝑠 and 𝑠′ are clear from the con-
struction. □

Exponent of periodicity, length-minimal solution bounds. For a word
𝑤 the maximal 𝑘 such that𝑢𝑘 , where𝑢 ≠ 𝜀, is a substring of𝑤 is the
exponent of periodicity of𝑤 , denote it by per(𝑤) and extend to a set
of words by taking a maximum, i.e. per(𝑊 ) = max𝑤∈𝑊 per(𝑤). For
a system of equations (with regular constraints), the per(𝐸) is the
maximum over length-minimal solutions 𝑠 of per(𝐸 (𝑠)). It is enough
that we consider only simpler variant: per1, whose definition is
similar (for words, sets of words and systems of equations with
regular constraints), but we additionally require that |𝑢 | = 1, i.e. we
consider only the length of the maximal repetitions of a letter.

Lemma H.4. Consider a system of equations 𝐸 with regular con-
straints. Let 𝑛 = max𝑒∈𝐸 |𝑒 | and 𝑛𝑣 = max𝑒∈𝐸 |𝑒 |𝑥 i.e. the maximal
number of occurrences of variables in 𝑒 , 𝑘 be the number of variables
and let the constraints by expressed using Boolean matricesM𝑞 . Then

per1 (𝐸) ≤ O
(
𝑛𝑘 (2𝑞!𝑛𝑣)2𝑘

)
.

Proof. Proving the bound on per1 (𝐸) stated in the Lemma re-
quires adaptations of existing proofs. The proof presented below
it uses the existing proofs the most. In particular, the standard
proof [20] in the presence of regular constraints extends [36], which
processes the word equation letter by letter, introducing an integer
variable for each letter of the equation. This is most likely an artifact
of the proof and a sequence of constants could be processed in one
step without much effect on the whole proof. Unfortunately, the
existing proof is not modular enough and so verifying this claim
essentially requires rewriting most of the existing definitions and
proofs.

We first show the bound on per1 in case of system of equations
only, with no constraints. This bound is essentially given in the
desired form in [33] (and it is a simplification of the proof in [36]).
Then we consider the addition of the regular constraints, which
requires a small improvement of this proof, which is described for
instance in [21].

Consider a length-minimal solution 𝑠 of 𝐸. We say that 𝑎𝑘 is
a maximal power, when it occurs in some 𝑒 (𝑠) and it cannot be
extended in 𝑒 (𝑠). Consider the set of all such maximal powers in
𝐸 (𝑠), let there be 𝑝 of them. In [33, Section 8] it is shown (formally:
for one equation, but many equations can be always encoded into
one with constant-size increase; also exactly the same approach
applies when we have a system of equations) that there are 𝑝 ≤ 2𝑛𝐸
such different lengths and moreover, one can construct a system
of 𝑝 linear Diophantine expressions 𝑛1 (𝑧), . . . , 𝑛𝑝 (𝑧), where 𝑧 is
a sequence of natural-valued variables, corresponding to those
lengths, in the sense that 𝑧 = 𝑧1, . . . , 𝑧2𝑘 , i.e. there are at most 2 such
variables for one word-variable, and 𝑛1 (𝑚̄), . . . , 𝑛𝑝 (𝑚̄) include all

length of such maximal 𝑎-powers, where 𝑚̄ is a sequence of lengths
of 𝑎-maximal prefixes and suffixes of 𝑠1, . . . , 𝑠𝑘 . We then create a
system of equations, roughly speaking, if 𝑛𝑖 (𝑚̄) = 𝑛 𝑗 (𝑚̄) then we
add an equation 𝑛𝑖 (𝑧) = 𝑛 𝑗 (𝑧). Then any other solution 𝑚̄′ of this
system leads to another solution 𝑠′ of 𝐸, in which, in essence, we
are replacing maximal 𝑎-powers of length 𝑛𝑖 (𝑚̄) with 𝑛𝑖 (𝑚̄′) (this
is a simpler variant of an approach from [36]). As a simple example,
an equation 𝑎𝑥1𝑥1 = 𝑥2𝑥2𝑥2 has maximal powers of 𝑎 of length
1 + 2𝑛𝑥 and 3𝑛𝑦 , where the substitution for 𝑥1 is 𝑎𝑚1 and for 𝑥2
is 𝑎𝑚2 . This leads to an (integer) equation 1 + 2𝑧1 = 3𝑧2 and each
solution 𝑚′1,𝑚

′
2 of the latter system leads to a solution of the word

equation 𝑥1 = 𝑎𝑚
′
1 , 𝑦 = 𝑎𝑚

′
2 .

It is shown that if 𝑠 is a length-minimal solution then the cor-
responding solution of the system of Diophantine equations is
minimal (i.e., minimal for pointwise comparison) and some known
linear algebra and known estimations are used, see [33, Lemma 8.2],
to bound the size of components of minimal solutions of a linear
Diophantine systems. In essence, we need to bound the maximal
value of determinant over square submatrices of the matrix of this
system of Diophantine equations. The proof of [33, Lemma 8.2,
Lemma 8.3] gives a bound

O(𝑛𝑘 (2𝑛𝑣)ℓ ) . (2)

Note that there the proof uses only one equation, but the case with
many equations can be easily improved to the given bound. Then it
maximizes it over 𝑛𝑣, ℓ as functions of

∑
𝑒∈𝐸 |𝑒 | and only the result

of this maximization is stated explicitly. Here 2𝑛𝑣 means that the
maximum sum of absolute values of coefficients at a single equation
is at most 2𝑛𝑣 and ℓ means that we look at square submatrix of size
ℓ × ℓ . However, there are only 2𝑘 integer-valued variables, where 𝑘
is the number of variables of the system of word equations, so (2)
is at most

O
(
𝑛 (2𝑛𝑣))2𝑘

)
. (3)

When the regular constraints are taken into the account, the
construction using the system of linear Diophantine equations still
works, but for each (integer) variable 𝑥 we add an equation of the
form 𝑥 = 𝑥 ′𝑞′ + 𝑐 , see [22, Section 4.5.2], where 𝑞′ ≤ 𝑞! is the
minimal idempotent power of transition matrix for appropriate
letter, 0 ≤ 𝑐 < 𝑞′ and moreover 𝑥 ′ is not used elsewhere in the
equations. This formalizes the idea that the transition function of
the 𝑎-power should be the same in all solutions. As 𝑥 ′ is used only
once and 𝑥 has one more occurrence, this means that when we
compute the bounds in (2) we need to multiply by 𝑞′2𝑘 ≤ 𝑞!2𝑘 : In
the submatrix we can include the columns and rows that use the
2𝑘 variables and they have only one element (𝑞′) per column, so
we can eliminate them by using the Laplace expansion for columns
(note that this expansion also takes care of the new occurrence of
the old variables: the corresponding coefficients are eliminated).
Hence the bound (2) turns to

O
(
𝑛𝑘 (2𝑞!𝑛𝑣)2𝑘

)
, (4)

as promised. □

Let us move to the bound on the solutions size of the length-
minimal solution.



Lemma H.5. Consider a system of equations 𝐸 with regular con-
straints. Let 𝑛𝑣 = max𝑒∈𝐸 |𝑒 |𝑥 and 𝑘 be the number of variables. Let
the constraints by expressed using Boolean matricesM𝑞 .

Let 𝑠 be a length-minimal solution (over some alphabet). Then∑︁
𝑒∈𝐸
|𝑒 (𝑠) | ≤ 𝑝 (max

𝑒∈𝐸
|𝑒 |) · 𝑔(𝑞, 𝑛𝑣, 𝑘) ,

where 𝑝 is a polynomial (with degree depending on 𝑛𝑣, 𝑘) and 𝑔 is
triply exponential function not depending on max𝑒∈𝐸 |𝑒 |.

Proof. The bound on the solution size can be obtained by us-
ing a graph representation of all solutions, which is available in
many variants [22, 32, 33, 43]. Many details of newer construc-
tions [22, 32, 33] are in fact interchangeable, one needs to update
the bounds appropriately though. We will refer to [22], as it has the
simplest definition and explicitly refers to regular constraints; all
those constructions are based on applying compression operations
to word equations and we will use the particular strategy described
in [32], as it suits most our purposes. This means that the bounds on
the space complexity are as in [32]. The [43] uses a much different
approach, but the resulting structure is still similar.

The general idea [22, 32, 33] is that we define a (directed) graph,
whose nodes are labelled with equations, and edges with families
of transformations of substitutions (for the variables). One of the
nodes corresponds to the input equation and the “final” nodes have
only trivial solutions, i.e. 𝜀. The graph represents solutions in the
following sense (see [22, Lemma 2] and the discussion after Lemma
2 there):

(1) If there is an edge from 𝐸 to 𝐸′ labelled with Φ and 𝑠′ is a
solution of 𝐸′ then for each 𝜑 ∈ Φ the 𝜑 (𝑠′) is a solution of
𝐸.

(2) On the other hand, for every solution 𝑠 of the initial system
of equations 𝐸 there is a (directed) path from 𝐸 to a trivial
equation with edges labelled with families Φ1, . . . ,Φ𝑚 such
that for some 𝜑𝑖 ∈ Φ𝑖 it holds that 𝑠 = 𝜑1 (𝜑2 (· · ·𝜑𝑚 (𝜀)));
so in a sense each solution can be obtained in the way
above.

As mentioned, an edge between 𝐸 and 𝐸′ means that 𝐸′ can be
obtained from 𝐸 by applying some simple compression operations
on letters in equations from 𝐸 (as well as substitutions for variables
of the form 𝑥 → 𝑎𝑥𝑏). We will extend the above construction by
allowing also an operation of splitting the equations: if a node of
the graph is labelled with a system of equations 𝐸∪{𝑢 = 𝑣} then we
may introduce another node, labelled with 𝐸 ∪ {𝑢′ = 𝑣 ′, 𝑢′′ = 𝑣 ′′},
where 𝑢 = 𝑢′𝑢′′, 𝑣 = 𝑣 ′𝑣 ′′, where here the equality is understood as
equality of sequences of letters and variables. Clearly, this operation
has the properties 1–2.

It can be showed that if 𝑠 is a length-minimal solution then
the path in 2 does not contain a cycle, as removing it would yield
a shorter solution, contradicting the length-minimality, see [33,
Theorem 8.7] for a formal argument. Although this proof does not
consider regular constraints, it generalizes easily, using exactly the
same argument, when regular constraints are allowed.

We can also compare the lengths of the solutions words 𝑒′ (𝑠′)
and 𝑒 (𝑠) for 𝑒 ∈ 𝐸 and the corresponding equation 𝑒′ ∈ 𝐸′. The 𝑒 (𝑠)
is obtained from 𝑒′ (𝑠′) by substituting letters with longer words,
their lengths are either constant (1 or 2) or are coordinates of a

system of linear Diophantine equations, see construction in [22,
Algorithm 2]; this system is the same as the one considered for per1
in Lemma H.4 and it can be shown that if 𝑠 is a length-minimal
solution, then bound from Lemma H.4 applies to the length of the
words substituted for a constant by 𝜑 ; those bounds depend on
the system 𝐸 (maximal equation length 𝑛, number of variables 𝑘 ,
maximal number of occurrences of variables in an equation 𝑛𝑣 );
again see [33, Theorem 8.7] for a formal argument; although it does
not consider regular constraints, the proof is the same when regular
constraints are allowed, as they only apply simple arguments on
length-minimality. Observe that we need to treat the splitting of
equations separately, however, for them the sum

∑
𝑒 |𝑒 (𝑠) | does not

change.
The edge from 𝐸 to 𝐸′ is present, when we can obtain 𝐸′ by one

of “compression operations” and the main part of the proof is that
by applying the operations in an appropriate way we can guarantee
that we do not need to use equations longer than some bound. The
exact bound depends on particular strategy that is used.

We want to obtain an upper bound on a length of a (loopless)
path in such a graph. This bound is derived from a bound on maxi-
mum number of different systems of equations on such a path. The
algorithm given in [32] works in phases. If we focus on a word 𝑤
between two variables in the equation (or between a variable and
one of the ends of the equation’s side), then [32, Lemma 10] when
we consider the corresponding word during a phase (the proof gives
the bounds in terms of 𝑛, but in fact they hold for 𝑛𝐸 ):

• at most 4𝑛𝐸 + 2 letters are introduced to this word during
the phase

• at least 1/4|𝑤 | letters are removed from the word (due to
compression) during a phase.

So at the end of the phase the word has length at most 3/4|𝑤 | +
4𝑛𝐸 + 2.

As observed in [33, Lemma 5.2], we can modify the bound (on
the number of “crossing pairs”) to 2𝑘 instead of 2𝑛𝐸 at the expense
of increasing the additive constant of introduced letters by 2. So
that when considering a word between variables in one phase

• at most 4𝑘 + 4 letters are introduced during a phase
• at least 1/4|𝑤 | letters are removed from the word (due to

compression).

Hence, at the end of the phase the corresponding word has length
at most 3/4|𝑤 | + 4𝑘 + 4. Note that it could be that some variable is
removed during a phase, so 𝑤 ′ could be actually only a part of a
word between the variables.

This bound implies that afterO (𝑘 log (max𝑒∈𝐸 |𝑒 |)) = O(𝑘 log𝑛)
initial steps the system is shortened so that the word between any
two variables is of length at most 32𝑘 (if any two words are joined
because of variable removal, then they will be shortened to the
length of the longest of them after O(1) phases and there are at
most 𝑘 such removals, as the variables are not introduced).

Before we proceed, we observe that this system cannot have
too many equations: there are at most 𝑘𝑛𝑣+1 different equivalence
classes of the (equations) similarity relation (as there are 𝑘 variables
and at most 𝑛𝑣 occurrences of variables in an equation). As the
length of each word between two variables is at most 32𝑘 , we can
also bound the number of equivalence classes of the (equations)



strong similarity relation:
𝑘𝑛𝑣+1 · (33𝑘)𝑛𝑣+2 ≤ 33𝑛𝑣+2𝑘2𝑛𝑣+3 .

There are at most 𝑛𝑣 + 2 words between the variables (and ends of
words) and each has length from 0 to 32𝑘 . Now, by Lemma H.3 given
a system of equations and its solution 𝑠 we can replace all strongly
similar equations by a system of equations whose total length is
the same as one such equation, each solution of this system is a
solution of the previous one and 𝑠 is a solution of the new system.
Hence, we perform such replacement. Hence, we end up with a
system of equations of total length at most

33𝑛𝑣+2𝑘2𝑛𝑣+3 · (33𝑘) (𝑛𝑣 + 2) ≤ 33𝑛𝑣+4𝑘2𝑛𝑣+4 .

The left part corresponds to the number of possible equations and
the right to the maximal length: there are at most 𝑛𝑣 + 2 words
between letters and variables, each contains at most 32𝑘 letters and
one variable.

In the following we consider the systems on this path that have
total length at most 33𝑛𝑣+4𝑘2𝑛𝑣+4. No two systems can repeat on this
path and we identify letters up to permutation, so the path length
(after the initial steps) is 𝑝33𝑛𝑣+4𝑘2𝑛𝑣+4 , where 𝑝 is an upper bound
on the size of the alphabet. As we take letters up to renaming, there
are at most 2𝑞2 + 33𝑛𝑣+4𝑘2𝑛𝑣+4 different letters (we can distinguish
letters in the equations and can also distinguish them by transition
function). Hence in total the length of the path is

O(𝑘 log𝑛) + (2𝑞2 + 33𝑛𝑣+4𝑘2𝑛𝑣+4)33𝑛𝑣+4𝑘2𝑛𝑣+4
. (5)

We now estimate, how much we can increase the length of the so-
lution when going (backwards) on a path defining a solution. When
there is an edge from 𝐸 to 𝐸′ and 𝑠 = 𝜑 (𝑠′) then 𝐸′ (𝑠′) is obtained
from 𝐸 (𝑠) by replacing some substrings with single letters. Hence
we can estimate

∑
𝑒∈𝐸 |𝑒 (𝜑 (𝑠)) | by multiplying

∑
𝑒∈𝐸′ |𝑒 (𝜑 (𝑠′)) | by

a number that bounds the length of the longest substring that is
replaced by a single letter; this bound corresponds to (3) applied to
system 𝐸:

O
(
𝑘 max

𝑒∈𝐸
|𝑒 | · (2𝑞!𝑛𝑣)2𝑘

)
.

This bound is sufficient when max𝑒∈𝐸 |𝑒 | = O(33𝑛𝑣+4𝑘2𝑛𝑣+4), i.e.
after the initial O(𝑘 log𝑛) steps, but it is too large for the initial
segment of the path, when we can only bound it in terms of 𝑛. To
bound the size increase in this case, we need to be more subtle.

Fix an equation 𝑒 from the initial equation and the consecutive
equations 𝑒 = 𝑒1, 𝑒2, . . . on the path corresponding to 𝑒 . They are
obtained by replacing some substrings by single letters and replac-
ing all occurrences of a variable 𝑥 with𝑤𝑥𝑤 ′ for some words𝑤,𝑤 ′,
the words 𝑤,𝑤 ′ are “popped” from the variable. We will say that
an occurrence of a letter represents original occurrences, when this
occurrence corresponds to an occurrence of a letter in the origi-
nal equation 𝑒 or it replaced occurrences that represented original
occurrences. In other words, no popped letters were used in the
compression leading to this letter. The remaining letters are said to
represent popped letters, i.e. the compressions leading to this occur-
rence of a letter included at least one popped letter. Observe that
when we go back in a path from 𝑒𝑖 to 𝑒 then each letter 𝑎 such that
𝑎 has an occurrence representing original occurrences, is replaced
with a word of length at most 𝑛, as there are words of length at
most 𝑛 in the original equation 𝑒 .

On the other hand, we can show that (in each 𝑒𝑖 ) the number of
letters representing popped letters is at most 16𝑘𝑛𝑣 , the estimation
is similar as for the length of the word between the variables: such
letters are organized into sequences, at most 2 of them per occur-
rence of the variable (one to the left and one to the right). Similarly
as in the case of the words between the variables, such sequence
increases by at most 2𝑘 + 2 letters during the popping (for the word
between the variables this happens from both sides, so it is 4𝑘 + 4).
On the other hand, such sequence of letters is shortened by at least
1/4 of its length from the beginning of the phase. Hence its length
after one phase is at most:

|𝑤 ′ | ≤ 3/4|𝑤 | + 2𝑘 + 2

This shows that the sequence is of length at most 16𝑘 . There are at
most 2 such sequences to a side of occurrence of a variable, and 𝑛𝑣
occurrences of variables, so there are at most 32𝑛𝑣𝑘 occurrences
representing popped letters. (Such sequences can be joined, but
then the estimate remains the same).

Now, the estimation of “𝑛” in (4) actually refers to sum of number
of variables and number of compressed letters. If we are replacing
powers of a letter which does not have an occurrence representing
original letter, this estimation is O(32𝑛𝑣𝑘) = O(𝑛𝑣𝑘). If there are
some letters representing original letters, this bound is O(𝑛𝑘) (so
much higher). However, afterwards each such letter is multiplied in
total by at most 𝑛. Hence for the length increase, we either multiply
by O (𝑛𝑣𝑘) · (2𝑛𝑣𝑞!)2𝑘 and all other multiplication in total yield
increase of

O
(
𝑛2𝑘

)
· (2𝑛𝑣𝑞!)2𝑘 ≤ O

(
𝑛2𝑘 · (2𝑛𝑣𝑞!)2𝑘

)
.

Hence in total the solution size is at most:

O
(
𝑛2𝑘 · (2𝑛𝑣𝑞!)2𝑘

)
· O(𝑛𝑣𝑘)O(𝑘 log𝑛) ·

·
(
33𝑛𝑣+4𝑘2𝑛𝑣+4

) (2𝑞2+33𝑛𝑣+4𝑘2𝑛𝑣+4 )33𝑛𝑣+4𝑘2𝑛𝑣+4

The third term depends only on 𝑘, 𝑞, 𝑛𝑣 and is triply exponential,
as promised; the first is just 𝑛2 times an exponential function de-
pending on 𝑘, 𝑞, 𝑛𝑣 . Let us analyze the middle term:

O (𝑛𝑣𝑘)O(𝑘 log𝑛) =
exp (O (𝑘 log𝑛 · log(𝑛𝑣𝑘))) =

𝑛 (𝑘 ·log(𝑛𝑣𝑘 ) )

which indeed is a polynomial of degree depending only on𝑘, 𝑛𝑣 . □

Solutions and length functions. In the following, we consider substi-
tutions (and solutions) such that the lengths of substitutions for the
variables are known. This approach is known [44] and formalized
using length functions: a length function 𝑓 : {𝑥1, . . . , 𝑥𝑘 } → N
simply assigns to each variable a natural number (i.e. the length
of the substitution for this variable). Given a length function 𝑓 ,
a substitution 𝑠 is an 𝑓 -substitution when |𝑠𝑖 | = 𝑓 (𝑥𝑖 ) for each
variable 𝑖 = 1, . . . , 𝑘 . It is an 𝑓 -solution, when it is 𝑓 -substitution
and a solution.



Given a length function we can relate positions that have the
same letters for each 𝑓 -solution [44, Lemma 4] (note that the orig-
inal definition did not allow regular constraints): Given a sys-
tem of word equations 𝐸 over variables 𝑥 = (𝑥1 . . . , 𝑥𝑘 ) and a
length function 𝑓 : {𝑥1, . . . , 𝑥𝑘 } → N for an equation 𝑢 = 𝑣
from 𝐸 define a word 𝑓 (𝑢) as follows: going from left to right
in 𝑢 leave each letter intact and replace each variable 𝑥𝑖 with sym-
bols (𝑥 (1)𝑖 , . . . , 𝑥

(𝑓 (𝑥𝑖 ) )
𝑖 ); define 𝑓 (𝑣) analogously. Formally 𝑥

( 𝑗 )
𝑖 is

a letter-variable, but we are not going to use it nor refer to it, it is
just a marker to indicate letter coming from a substitution for a
variable. We also use 𝑓 (𝑢) = 𝑓 (𝑣) for equation 𝑢 = 𝑣 and 𝑓 (𝐸) for
a set of such equations.

We say that a position with a letter 𝑎 ∈ Σ comes from a letter (is a
position of 𝑎) and a position with 𝑥

( 𝑗 )
𝑖 comes from a variable 𝑥𝑖 and

that it is the 𝑗-th position of a variable 𝑥𝑖 (we also use the notions
first and last position of a variable, with an obvious meaning). By
(𝑖, 𝐿, 𝑒), where 𝑒 is 𝑢 = 𝑣 or 𝑒 ≠ 𝑣 , we will denote the 𝑖-th position
in 𝑓 (𝑢) (so left-part) from 𝑒 , we similarly use (𝑖, 𝑅, 𝑒) for 𝑓 (𝑣). We
drop “𝑒” and use (𝑖, 𝐿), (𝑖, 𝑅) when it is clear from the context or
unimportant, similarly, we simply use 𝑖 , when also the side is clear
or unimportant. We will use positions to address positions in the
system of equations, i.e. 𝑓 (𝐸) [(𝑖, 𝐿, 𝑒)] is a well-defined position.
However, in most cases we will refer to an abstract position, without
specifying the equation or its side, so we will use 𝑓 (𝐸) [𝑖] in this
case.

Define a relation R𝑓 that intuitively relates positions (in 𝑓 (𝐸))
that contain the same letters for each such 𝑓 -substitution:

• 𝑅𝑓 ((𝑖, 𝐿, 𝑒), (𝑖, 𝑅, 𝑒)), i.e. the corresponding positions on the
two sides of the equations are in the relation;

• 𝑅𝑓 (𝑖, 𝑖′) when both 𝑖, 𝑖′ are 𝑗-th letters of some variable 𝑥 .
Let R∗

𝑓
be reflexive, symmetric and transitive closure of R𝑓 . Again,

we use R and R∗, when 𝑓 is clear from the context or unimportant.
The following Lemma is a slight generalization of [44, Lemma 4]

to the case of regular constraints, the proof idea remains the same,
though.

Lemma H.6 (cf. [44, Lemma 4]). Given a system of equations 𝐸
over words with regular constraints, and a length function 𝑓 an 𝑓 -
substitution 𝑠 is an 𝑓 -solution if and only if the following conditions
hold:

• for any two positions in a relation R∗
𝑓

the letters at those
positions in 𝐸 (𝑠) are the same

• the regular constraints are satisfied.

Proof. If the two conditions are satisfied then the substitution
is a solution: given any equation 𝑢 = 𝑣 the corresponding positions
at both sides of 𝑢 (𝑠), 𝑣 (𝑠) are in the relation R, so they contain the
same letter and so 𝑢 (𝑠) = 𝑣 (𝑠). Moreover, we explicitly require that
the regular constraints are satisfied.

In the other direction, observe that when 𝑠 is a solution, then
straight from the definition of R𝑓 and 𝑓 -solution we have that
letters at position in relation R are the same, and so also the let-
ters at positions of the relation R∗ are the same. Also, the regular
constraints are satisfied. □

Given a length function 𝑓 and a set of positions 𝐼 by R∗
𝑓
(𝐼 ) we

denote the set of positions that are in relation with any position

in 𝐼 . We say that 𝐼 fixes this set of positions and that it fixes a
solution, when R∗

𝑓
(𝐼 ) = 𝑓 (𝐸), i.e. it fixes all positions in the system

of equations. The intuition is that 𝐼 is a set of positions, for which we
already know the letters (because, those are positions of the letters,
or we already inferred, what those letters are). Then R∗ (𝐼 ) gives
us all positions, on which we can deduce the letters using only the
knowledge about the letters on 𝐼 . Using a concrete set of positions,
instead of, say, all position of letters, allows us to formally argue
that we can choose a subset of equations in order to determine the
whole solution.

Clearly

Lemma H.7. The operationR∗ (·) is monotone (on sets) and, further,
R∗ (R∗ (𝐼 )) = R∗ (𝐼 ). In particular, if 𝐼 ⊆ 𝐼 ′ ⊆ R∗ (𝐼 ) then R∗ (𝐼 ′) =
R∗ (𝐼 ).

By Lemma H.6, if 𝐼 fixes a solution (for a given length function
𝑓 ) then it is enough to specify the letter at the position from 𝐼 to
uniquely determine the 𝑓 -solution; note that it is possible that no
such solution exists. Moreover, we can access an arbitrary position
in the 𝐸 (𝑠) in nondeterministic logarithmic space, assuming that
we can access a letter on position 𝑖 ∈ 𝐼 in logarithmic space.

Lemma H.8. Suppose that we are given:
• a system𝐸 of word equations with𝑘 variables𝑥 = (𝑥1, . . . , 𝑥𝑘 )

such that each equation is of length at most ℓ
• a length-function 𝑓
• set of positions 𝐼 that fixes an 𝑓 -solution.

Then for a set {𝑎𝑖 }𝑖∈𝐼 , there is at most one 𝑓 -solution 𝑠 such that
𝐸 (𝑠) [𝑖] = 𝑎𝑖 for each 𝑖 ∈ 𝐼 .

If such a solution 𝑠 exists, then we can compute 𝑒 (𝑠) [𝑖] for any 𝑒 ∈ 𝐸
and any position 𝑖 ∈ 𝑓 (𝑒) in NSPACE(log(ℓ) +max𝑗=1,...,𝑘 log |𝑠 𝑗 |),
assuming that a letter 𝑎𝑖′ for 𝑖′ ∈ 𝐼 can be retrieved in such space.
Similarly, we can compute 𝑠 𝑗 [𝑖] for any 𝑗 ∈ {1, . . . , 𝑘} and 1 ≤ 𝑖 ≤
|𝑠 𝑗 | in the same space bounds.

Given a set {𝑎𝑖 }𝑖∈𝐼 , establishing, whether there is such a solution
𝑠 can be decided in NSPACE(log(ℓ) +max𝑖=1,...,𝑘 log |𝑠𝑖 |),

Proof. From Lemma H.6 it follows that ifR∗ (𝑖, 𝑖′) then𝐸 (𝑠) [𝑖] =
𝐸 (𝑠) [𝑖′]. Since 𝐼 fixes the solution, for every 𝑓 -solution 𝑠 each posi-
tion 𝑖 is in relation R∗ with some position 𝑖′ ∈ 𝐼 . Hence the letter at
position 𝑖 is 𝑎𝑖′ and therefore there is at most one such solution 𝑠 .

Observe, that given a position 𝑖 ∈ 𝑓 (𝑒) we can determine in the
given space, whether 𝑒 (𝑠) [𝑖] is a position of a letter (and which
letter) or of a variable and which position within the variable: we
scan the appropriate side of 𝑒 from left to right, counting the number
of used positions, adding 1 for a letter and 𝑓 (𝑝) for a variable 𝑝 .
The length of this side is at most ℓ ·max𝑗=1,...,𝑘 |𝑠 𝑗 |, so the available
space NSPACE(log(ℓ) +max𝑗=1,...,𝑘 log |𝑠 𝑗 |) is sufficient.

Consider a graph, whose nodes are positions in 𝑓 (𝐸) and there
is an edge between 𝑖, 𝑖′ if and only if R(𝑖, 𝑖′). Description of a node
takes O(log(ℓ) + max𝑗=1,...,𝑘 log |𝑠 𝑗 |) space and using the routine
above we can establish in NSPACE(log(ℓ) + max𝑗=1,...,𝑘 log |𝑠 𝑗 |)
whether there is an edge between 𝑖, 𝑖′. Question, whether R∗ (𝑖, 𝑖′)
is exactly the reachability problem in such a graph, and so it can
be answered in the same (nondeterministic) space as above, by
guessing consecutive positions and verifying that there is an edge
between them. As 𝐼 fixes the solution, to establish the letter at



position 𝑖 we guess 𝑖′ such that 𝑖′ ∈ 𝐼 (there is one by assumption),
verify that R∗ (𝑖, 𝑖′) and return 𝑎𝑖′ .

If we want to establish a letter 𝑠 𝑗 [𝑖] then we choose 𝑒 ∈ 𝐸 using
𝑠 𝑗 and proceed in a similar way.

Concerning the last claim of the Lemma, we are now given a set
{𝑎𝑖 }𝑖 ∈ 𝐼 and want to validate, whether there is an 𝑓 -solution 𝑠 such
that 𝐸 (𝑠) [𝑖] = 𝑎𝑖 for each 𝑖 ∈ 𝐼 . First, we check, whether there are
𝑖, 𝑖′ ∈ 𝐼 such thatR∗ (𝑖, 𝑖′) and 𝑎𝑖 ≠ 𝑎𝑖′ . If this is so then clearly there
is no such solution, by Lemma H.6. In other words, for every pair
𝑖, 𝑖′ ∈ 𝐼 such that 𝑎𝑖 ≠ 𝑎𝑖′ we should check that ¬R∗ (𝑖, 𝑖′). Observe
that this is a co-reachability problem in the graph defined above and
so it can be verified in coNSPACE(log(ℓ) +max𝑗=1,...,𝑘 log |𝑠 𝑗 |). By
the Immerman–Szelepcsényi theorem coNSPACE(𝑔) = NSPACE(𝑔)
for any (reasonable and fast-growing enough) function 𝑔 (and the
translation is effective) and so we can verify this condition in
NSPACE(log(ℓ) + max𝑗=1,...,𝑘 log |𝑠 𝑗 |), as desired. Note that it is
possible that there are 𝑖, 𝑖′ ∈ 𝐼 such that R∗ (𝑖, 𝑖′), but in such case
𝑎𝑖 = 𝑎𝑖′ .

We verify each equation one by one and letter by letter, by com-
puting the corresponding positions of two sides of the equation,
i.e. for position 𝑖 we find 𝑖′ ∈ 𝐼 such that R∗ (𝑖, 𝑖′) and take the
letter 𝑎𝑖′ and verifying their equality or inequality (in the case of
first differences); note that the position 𝑖′ may be not unique, but
the letter 𝑎𝑖′ is defined uniquely. In the same space we can also
compute the transition function of the sides of the equation. Lastly,
we can verify the regular constraints for variables by computing
the transition function for each variable in the same way, i.e. letter
by letter.

We conclude, that by Lemma H.6 there is an 𝑓 -solution 𝑠 . □

In view of Lemma H.8 we should show that a system of equations
has a well-defined small set positions that fix a solution. For a system
of word equations 𝐸 with regular constraints and length-function 𝑓
define Letters𝑓 (𝐸) as a set of positions of letters in 𝐸 and Last𝑓 (𝐸)
the set of last positions of all occurrences of variables in 𝑓 (𝐸). As
usual, we use Letters(𝐸), Last(𝐸) when the length function is clear
from the context or unimportant.

Lemma H.9. Let 𝑠 be a length-minimal solution over the alphabet
cl(Σ) and 𝑓 be its length function. Then Letters𝑓 (𝐸) ∪Last𝑓 (𝐸) fixes
𝑠 .

Note that for a fixed variable 𝑥 is enough to take one position of
the last letter of 𝑥 , as all such position are in relationR∗

𝑓
, but we take

all for simplicity of the notion. Observe also that the assumption
that we consider a solution over a 𝜌-closed alphabet is crucial: in
an equation 𝑥 = 𝑥 a regular constraint may force x to be a long
word and clearly the whole solution is not fixed by the last letter
of 𝑥 ; on the other hand, when we consider the 𝜌-closed alphabet,
there is a solution that use exactly one letter, and so it is indeed
fixed by Last.

Proof. Let 𝐼 = Last𝑓 (𝐸) ∪ Letters𝑓 (𝐸). Consider a position
𝑖 ∉ R∗ (𝐼 ). We claim that:

• R∗ (𝑖, 𝑖′) if and only if R∗ (𝑖 + 1, 𝑖′ + 1);
• if R∗ (𝑖, 𝑖′) then 𝑖′ + 1 is not a position of a letter.

Suppose first that the first condition does not hold, consider the
shortest sequence of position 𝑖 = 𝑖0, 𝑖1, . . . , 𝑖ℓ such that R(𝑖 𝑗 , 𝑖 𝑗+1)

and it does not hold that R∗ (𝑖 + 1, 𝑖ℓ + 1). Then by the minimality
R(𝑖 𝑗 +1, 𝑖 𝑗+1+1) for 𝑗 < ℓ−1 and ¬R(𝑖ℓ−1+1, 𝑖ℓ +1). Let us consider,
why R(𝑖ℓ−1, 𝑖ℓ ) holds. If this is because they are corresponding
positions on the sides of the equation then also the same holds for
the positions one to the right, i.e. R(𝑖ℓ−1 + 1, 𝑖ℓ + 1) holds, which
cannot be. If this is because they are corresponding positions of
a variable then since R(𝑖ℓ−1 + 1, 𝑖ℓ + 1) does not hold, we get that
𝑖ℓ−1+1, 𝑖ℓ +1 are not corresponding positions coming from the same
variable as 𝑖ℓ−1, 𝑖ℓ . So 𝑖ℓ−1, 𝑖ℓ are the last positions in the variable,
contradiction with the assumption. The proof when R∗ (𝑖 + 1, 𝑖ℓ + 1)
and ¬R∗ (𝑖, 𝑖ℓ ), is similar; note that here in the last case we conclude
that 𝑖ℓ−1 + 1 is a first letter of a variable, but then 𝑖ℓ−1 is either a
position of a letter or a last in a variable.

For the second claim observe that it would contradict the as-
sumption that 𝑖 ∉ R∗ (𝐼 ): if 𝑖′ + 1 were a position of a letter then
𝑖′ would be a position of a letter or a last position in a variable, so
𝑖′ ∈ R∗ (𝐼 ) and so also 𝑖 ∈ R∗ (𝐼 ).

Now consider the letters 𝑎, 𝑏 at positions 𝑖, 𝑖+1 and take the letter
𝑐 = 𝑎𝜌 (𝑎𝑏 ) , this letter is available, as we work over the 𝜌-closed
alphabet. We construct a new solution: we replace 𝑎 on positions in
the whole equivalence class of 𝑖 with 𝑐 and each 𝑏 on position in the
whole equivalence class of 𝑏 with 𝜀 (i.e., we delete those letters). We
claim that this is still a solution. It satisfies the regular constraints,
as 𝜌 (𝑐) = 𝜌 (𝑎𝑏) and by the first showed claim, we replace 𝑎 at
position 𝑖′ if and only if we replace 𝑏 at position 𝑖′ + 1. For the
equation 𝑒 observe that the corresponding letters at both sides of
𝑒 (𝑠) are in the relation R∗ and so both sides are modified in the
same way and so the equality is preserved. The new substitution is
well defined, as all corresponding position coming from substitution
for 𝑥 are in the relation. Yet, the constructed solution has smaller
length than 𝑠 , contradiction with the length-minimality of 𝑠 . □

The following two lemmata show that “fixing” of positions has
natural properties that we associate with solving equation by sub-
stituting positions in the variables, on which we know the letters:
if the first/last letter of 𝑥 is known (fixed by 𝐼 ), we can substitute 𝑥
with 𝑎𝑥/𝑥𝑏 (the same positions are fixed by a union of 𝐼 and new po-
sitions of letters): this is formalized in Lemma H.10. In Lemma H.11
we show that if corresponding positions at two sides of the equation
are positions of letters (so they have no impact on the solution),
they can be removed and this does not impact the solution (the
same positions are fixed).

Note that we need to show one more property: a given equation
can be used “in transit” to fix some other positions. Hence we should
show that if two positions 𝑖, 𝑗 are not fixed, but are in the relation
before some operation, they are also in the relation afterwards.

Lemma H.10. Given a system 𝐸 (𝑥) of equations with regular con-
straints and its solution 𝑠 , let 𝑠𝑖 = 𝑠′𝑖𝑏

′
𝑖 where 𝑏𝑖 ∈ Γ for some 𝑖 ; define

𝑠′ as 𝑠 with 𝑠𝑖 replaced with 𝑠′𝑖 . Consider a system 𝐸′ (𝑥 ′) obtained by
replacing 𝑥𝑖 with 𝑥𝑖𝑏𝑖 . Then 𝑠′ is a solution of 𝐸′.

Let 𝑓 ,R be the old the length function and relation (so for 𝐸) and
𝑓 ′,R′ be the new ones (so for 𝐸′). Let 𝐼 be any set of positions and
𝐼 ′: the set of position of letters introduced to 𝐸′. If 𝐼 ′ ⊆ R∗ (𝐼 ) then
R∗ (𝐼 ) = R′∗ (𝐼 ∪ 𝐼 ′), i.e. 𝐼 and 𝐼 ∪ 𝐼 ′ fix the same set of positions.

Moreover, if 𝑖, 𝑗 ∉ R∗ (𝐼 ) then R∗ (𝑖, 𝑗) ⇐⇒ R′∗ (𝑖, 𝑗).
Similar claims hold also for substitution 𝑥𝑖 = 𝑎𝑖𝑥

′′
𝑖 .



Proof. The proof of the first part is a straightforward manipula-
tion of definitions. Consider any 𝑒 ∈ 𝐸 and its counterpart 𝑒′ ∈ 𝐸′.
Observe that 𝑒′ (𝑠′) is exactly 𝑒 (𝑠): we take a letter 𝑏𝑖 from 𝑠𝑖 and
add it to the variable; hence 𝑒′ (𝑠′) holds.

Note, that the lengths of corresponding equations in 𝑓 (𝐸) and
𝑓 ′ (𝐸′) are the same. Suppose that 𝑗 ∈ R∗ (𝐼 ), let 𝑗 = 𝑗0, 𝑗 − 1, . . . , 𝑗𝑟
be a sequence of positions such that any two consecutive are in rela-
tion R and 𝑗𝑟 ∈ 𝐼 . Consider the first index 𝑗ℓ such that ¬R′ ( 𝑗ℓ , 𝑗ℓ+1);
if there is no such index then R′∗ ( 𝑗, 𝑗𝑟 ) and so 𝑗 ∈ R′∗ (𝐼 ∪ 𝐼 ′). The
only reason why R′ ( 𝑗ℓ , 𝑗ℓ+1) does not hold is that 𝑗ℓ is a last po-
sition in 𝑥𝑖 (in 𝐸) and so 𝑗ℓ is a position of a letter in 𝐸′. But then
𝑗ℓ ∈ 𝐼 ′ and so 𝑗 ∈ R′ (𝐼 ∪ 𝐼 ′).

In the other direction, suppose that 𝑗 = 𝑗0, 𝑗1, . . . , 𝑗𝑟 are a se-
quence of positions such that any two consecutive are in the ration
R′ and 𝑗𝑟 ∈ 𝐼 ∪ 𝐼 ′. As R′ ⊆ R, we have R( 𝑗𝑟 , 𝑗𝑟+1), and so R∗ ( 𝑗, 𝑗𝑟 ).
If 𝑗𝑟 ∈ 𝐼 then we are done. Otherwise 𝑗𝑟 ∈ 𝐼 ′ ⊆ R∗ (𝐼 ) which also
implies that 𝑗 ∈ R∗ (𝐼 ).

Concerning the last claim, suppose that 𝑖, 𝑗 ∉ R∗ (𝐼 ) and R∗ (𝑖, 𝑗).
When we consider the sequence of positions that show that R∗ (𝑖, 𝑗),
none of them is from 𝐼 ′, so exactly the same sequence shows
R′∗ (𝑖, 𝑗). In the other direction it is enough to observe that R′ ⊆ R.

The proofs for the prefix are done in a symmetric way. □

Lemma H.11. Suppose that we are given a system of equations
𝐸 ∪ {𝑒} and a length function 𝑓 . Suppose that (𝑖, 𝐿, 𝑒), (𝑒, 𝑅, 𝑒) are
both positions of letters in 𝑓 (𝑒), i.e. the corresponding letters at both
sides of 𝑒 are letters, let 𝐼 be a set of positions containing those two
positions. Let 𝑒′ be an equation obtained by removing those positions.
Let R,R′ be the corresponding relations.

Then

R∗ (𝐼 ) = R′∗ (𝐼 \ {(𝑖, 𝐿, 𝑒), (𝑖, 𝑅, 𝑒)}) ∪ {(𝑖, 𝐿, 𝑒), (𝑖, 𝑅, 𝑒)} ,

i.e. the same sets of positions are fixed in the corresponding systems
of both equations for corresponding sets.

Moreover, if 𝑗, 𝑗 ′ ∉ R∗ (𝐼 ) then R∗ ( 𝑗, 𝑗 ′) ⇐⇒ R′∗ ( 𝑗, 𝑗 ′).
Proof. The proof is trivial: since (𝑖, 𝐿, 𝑒), (𝑒, 𝑅, 𝑒) are the corre-

sponding positions on both sides of the equation, they are not in the
relationR with any other positions. Hence,R′∗ (𝐼\{(𝑖, 𝐿, 𝑒), ( 𝑗, 𝑅, 𝑒)})
contains each position of R∗ (𝐼 ) except for {(𝑖, 𝐿, 𝑒), ( 𝑗, 𝑅, 𝑒)}.

The proof of the second claim is similar: assume 𝑗, 𝑗 ′ ∉ R(𝐼 ) and
R∗ ( 𝑗, 𝑗 ′). Then the sequence of positions that show that R∗ ( 𝑗, 𝑗 ′)
cannot use (𝑖, 𝐿, 𝑒), ( 𝑗, 𝑅, 𝑒), as they are only in relation with them-
selves. □

From now, the analysis crucially exploits the equations that we
are dealing with are similar. The next lemma shows that if we
have several similar equations and a fixed length function, then
we can choose a subset of them (the size depends on the number
of occurrences of variables), such that the new subsystem fixes
the same set of positions. Note that this is not obvious: in general
removing equations makes the relation R smaller and so fewer
positions are fixed.

Lemma H.12. Let 𝐸 be a system of similar equations and 𝑓 be
a length function 𝑓 such that there is an 𝑓 -solution, let R be the
corresponding relation.

Then there is an 𝐸′ ⊆ 𝐸 of size O(𝑚), where 𝑚 is the number
of occurrences of variables in any equation in 𝐸, such that for the
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corresponding relation R′ we have

R′∗ (Last(𝐸′) ∪ Letters(𝐸′)) = R∗ (Last(𝐸) ∪ Letters(𝐸)) ∩ 𝑓 (𝐸′) .

Moreover, if 𝑖, 𝑗 ∈ 𝑓 (𝐸′) and 𝑖, 𝑗 ∉ R∗ (Last(𝐸) ∪ Letters(𝐸)) then
R∗ (𝑖, 𝑗) ⇐⇒ R′∗ (𝑖, 𝑗).

Proof. For the purpose of the proof we say that an equation
(system of equations) equipped with a length function 𝑓 is sim-
ple, when we cannot apply the operation from Lemma H.11. The
simplification is a process of transforming an equation (system of
equation) to the corresponding simple equation. It is easy to see
that this does not depend on the order of application of the Lemma
to different pairs of corresponding positions.

Suppose 𝑢 (𝑥) = 𝑣 (𝑥) (called also 𝑒 (𝑥)) and 𝑢′ (𝑥) = 𝑣 ′ (𝑥) (the
𝑒′ (𝑥)) are similar, i.e. the order of the variables is the same in 𝑢,𝑢′
and the same in 𝑣, 𝑣 ′, and simple, i.e. the corresponding positions at
sides of 𝑢 = 𝑣 (𝑢′ = 𝑣) are not both positions coming from letters. If
they are strongly similar, i.e. the corresponding sequence of letters
between variables are of the same length, then by Lemma H.3 and
the assumption that they are simple we conclude that they are the
same equation, and so we are done.

So consider a left-most occurrence of a variable such that the
corresponding occurrences in 𝑓 (𝑢), 𝑓 (𝑢′) (or 𝑓 (𝑣) and 𝑓 (𝑣 ′)) are
different. By symmetry, let it begin at position 𝑖 in 𝑓 (𝑢) and 𝑖 + ℓ
in 𝑓 (𝑢′); take the occurrence which maximizes ℓ , if there are two
possible choices. Let this variable be 𝑥 . Consider the positions
[𝑖 . . . 𝑖 + ℓ − 1] in 𝑓 (𝑢′). If any of them was a position of a variable,
then this variable needs to occur in 𝑓 (𝑢) as well, and it is on po-
sition before 𝑖 , which contradicts our choice of 𝑖 . So those are all
position of letters, say of a word 𝑤 , in particular, they are all fixed
by Letters({𝑒, 𝑒′}). Consider also, what is at position 𝑖 in 𝑓 (𝑣 ′). By
simplicity, this cannot be a letter, as there is a letter at this position
in 𝑢′. So this is a position of a variable, say 𝑥 ′.

Consider the first position of this occurrence of 𝑥 ′ in 𝑓 (𝑣 ′). Sup-
pose first that it is a position earlier than 𝑖 , see Fig. 3. Then by the
choice of position 𝑖 , also in 𝑓 (𝑣) it begins at the same position. Let
𝑖′ be the earliest of positions: end of positions coming from the
variable 𝑥 beginning at position 𝑖 in 𝑓 (𝑢) and the end of positions
coming from the variable 𝑥 ′ in 𝑓 (𝑣) that include the position 𝑖 . Then
we conclude that all positions in [𝑖 . . . 𝑖′] are fixed by the positions
[𝑖 . . . 𝑖 + ℓ − 1], Fig. 3 shows that this word is periodic with period
ℓ , in terms of fixing we can show that each position in [𝑖 + ℓ . . . 𝑖′]
is in relation R∗ with a position ℓ positions earlier:

• R(( 𝑗, 𝐿,𝑢 = 𝑣), ( 𝑗, 𝑅,𝑢 = 𝑣)) (equation 𝑢 = 𝑣),
• R(( 𝑗, 𝑅,𝑢 = 𝑣), ( 𝑗, 𝑅,𝑢′ = 𝑣 ′)) (corresponding positions of

a variable)
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• R(( 𝑗, 𝑅,𝑢′ = 𝑣 ′), ( 𝑗, 𝐿,𝑢′ = 𝑣 ′)) (equation 𝑢′ = 𝑣 ′)
• R(( 𝑗, 𝐿,𝑢′ = 𝑣 ′), ( 𝑗 − ℓ, 𝐿,𝑢 = 𝑣)) (corresponding positions

in 𝑥 ).
Note that this takes into the account the special case when 𝑖′ ≤ 𝑖 +ℓ :
in this case simply those positions are fixed.

We make a partial substitution to variable 𝑥 at positions [𝑖 . . . 𝑖′].
We change the length function appropriately. Observe that if 𝑖′ is
the last position of 𝑥 then we have substituted 𝑥 completely and if it
is the last position of 𝑥 ′ then in 𝑓 (𝑢) = 𝑓 (𝑣) the 𝑥 begins at position
𝑖′ + 1 and 𝑥 ′ and at position 𝑖′, We then simplify both equations. By
Lemma H.10, this does not change the set of fixed positions of the
equation. We then repeat the whole step (beginning with removal
of corresponding positions of letters).

The analysis, when the first position of 𝑥 ′ in 𝑓 (𝑣 ′) is 𝑖 is similar.
Consider the first position of 𝑥 ′ in 𝑓 (𝑣). It cannot be earlier than 𝑖 ,
as this would contradict the choice of 𝑖 . If the first position of 𝑥 ′ in 𝑣
is 𝑖 then the analysis is the same as in the previous case. So suppose
that it is at position 𝑖 + 𝑗 ; let 𝑖′ be the earliest of the ends of positions
of 𝑥 (in 𝑓 (𝑢′)) and 𝑥 ′ (in 𝑓 (𝑣 ′)). Consider first the case that 𝑗 ≤ ℓ
(recall that 𝑥 occurs at position 𝑖 + ℓ in 𝑢′), see Fig. 4. We show that
positions [𝑖 . . . 𝑖′] in 𝑓 (𝑣 ′) are fixed by positions of letters. First:
the position [𝑖 . . . 𝑖 + 𝑗 − 1] are positions of letters in 𝑓 (𝑣) so the
corresponding positions in 𝑓 (𝑢) are fixed (corresponding sides of
the equations), so also positions [𝑖 + ℓ . . . 𝑖 + ℓ + 𝑗 − 1] are fixed
in 𝑓 (𝑢′) (corresponding positions of the variable). The positions
[𝑖 . . . 𝑖+ℓ−1] are positions of letters, so all positions [𝑖 . . . 𝑖+ℓ+ 𝑗−1]
are fixed in 𝑓 (𝑢′), so they are also fixed in 𝑓 (𝑣 ′) (corresponding
sides of the equation); i.e. the first ℓ + 𝑗 position of 𝑝′ are fixed in
𝑓 (𝑣 ′). Consider now w position 𝑗 ′ + ℓ + 𝑗 ∈ [𝑖 + ℓ + 𝑗 . . . 𝑖′] if 𝑓 (𝑣 ′).
We show that it is in relation with positions 𝑗 ′, which will end the
proof.

• R(( 𝑗 ′+ℓ+ 𝑗, 𝑅,𝑢′ = 𝑣 ′), ( 𝑗 ′+ℓ+ 𝑗, 𝐿,𝑢′ = 𝑣 ′)) (corresponding
sides of the equation)

• R(( 𝑗 ′ + ℓ + 𝑗, 𝐿,𝑢′ = 𝑣 ′), ( 𝑗 ′ + 𝑗, 𝐿,𝑢 = 𝑣)) (corresponding
variables)

• R(( 𝑗 ′ + 𝑗, 𝐿,𝑢 = 𝑣), ( 𝑗 ′ + 𝑗, 𝑅,𝑢 = 𝑣)) (corresponding sides
of the equation)

• R(( 𝑗 ′ + 𝑗, 𝑅,𝑢 = 𝑣), ( 𝑗 ′, 𝑅,𝑢′ = 𝑣 ′)) (corresponding vari-
ables)

We proceed as in the previous case, making a substitution at posi-
tions [𝑖 + ℓ . . . 𝑖′] to 𝑥 in 𝑢′ and to [𝑖 . . . 𝑖′] to 𝑥 ′ in 𝑣 ′. Observe, that
we have substituted either 𝑥 (in 𝑢′) or 𝑥 ′ (in 𝑣 ′) completely.

The last remaining case is that ℓ < 𝑗 . But this contradicts the
choice of ℓ : we could choose variable 𝑥 ′ instead of 𝑥 , with 𝑥 ′ occur-
ring at positions 𝑖 (in 𝑓 (𝑣 ′)) and 𝑖 + 𝑗 (in 𝑓 (𝑣)), and 𝑗 > ℓ , while ℓ
was chosen as the maximal one.

Observe that in the third case the partial substitution fully substi-
tutes a variable, so this can happen at most 𝑘 times. In the first and
second case it is also possible that a variable is removed, in which
case the same analysis applies (with a common bound of 𝑘). The
only remaining case is that we only substitute a prefix of 𝑥 . In this
case we analyze the overlaps between variables: two occurrences
of a variable overlap in 𝑓 (𝑢) = 𝑓 (𝑣), when there is a position 𝑖
which comes from a variable in 𝑓 (𝑢) and in 𝑓 (𝑣). Observe that in
the analysis in the first case above there was an overlap between
occurrence of variables 𝑥, 𝑥 ′ in 𝑓 (𝑢′) = 𝑓 (𝑣 ′) and the partial substi-
tution removes all such overlaps. Moreover, a partial substitution
cannot increase the number of overlaps (it can decrease it though).
It remains to estimate the maximal initial number of overlaps. Each
overlap is associated with two ends of a substitution for variables,
and initially there are at most 2𝑚 such ends. Each such step reduces
this number by at least 1 and partial substitution cannot increase
this number. So there are at most 2𝑚 such steps in total; note that a
removal of variable also removes at least one such end, so we have
a joint bound of 2𝑚.

Concerning the claim on relations: first, we can simplify the
input system of equations. By Lemma H.11 the relation R remain
the same after the simplification and each pair of removed positions
were ir R only with themselves.

By 𝐸′0 we denote the subsystem of equations for which the al-
gorithm performed some simplification, we denote this subsystem
after consecutive steps by 𝐸′1, 𝐸

′
2, . . .. We consider also the set of posi-

tions 𝐼 ′0 = Last(𝐸′0)∪Letters(𝐸′0), 𝐼 ′1, . . . and the relations R′0,R′1, . . ..
For the purpose of the proof, let us also denote by 𝐽 ′0, 𝐽

′
1, . . . the set

of positions so far-removed from the subsystem. We inductively
show that:

(1) R′∗0 (𝐼 ′0) ∩ 𝑓 (𝐸′
ℎ+1) = R′∗ℎ+1 (𝐼 ′ℎ+1)

(2) R′∗0 (𝑖, 𝑗) ⇐⇒ R′∗
ℎ
(𝑖, 𝑗) for 𝑖, 𝑗 ∉ R′∗0 (𝐼 ′0);

(3) Letters(𝐸′
ℎ
) ⊆ 𝐼 ′

ℎ
;

(4) 𝐽 ′
ℎ
⊆ R′∗0 (𝐼 ′0).

Suppose that we make a partial substitution, transforming 𝐸′
ℎ

with 𝐼 ′
ℎ

to 𝐸′
ℎ+1. Define the new set of positions as the old ones union

with the positions of introduced letters. As Letters(𝐸′
ℎ
) ⊆ 𝐼 ′

ℎ
, this

means that 𝐼 ′
ℎ+1 = 𝐼 ′

ℎ
∪Letters(𝐸′

ℎ+1) and so 3 holds. By Lemma H.10
we get that R′∗

ℎ
(𝐼 ′
ℎ
) = R′∗

ℎ+1 (𝐼 ′ℎ+1), as 𝑓 (𝐸′
ℎ+1) = 𝑓 (𝐸′

ℎ
), this shows

1. Moreover, R′∗
ℎ
(𝑖, 𝑗) ⇐⇒ R′∗

ℎ+1 (𝑖, 𝑗) holds when 𝑖, 𝑗 ∉ R′∗
ℎ
(𝐼ℎ)

by Lemma H.10 and so 2 holds; and 4 holds as here nothing changed.
When the system of equations is transformed by removing corre-

sponding positions of letters at two different sides of the equation,
then those positions are in R′∗

ℎ
(𝐼 ′
ℎ
), so they were also in R∗0 (𝐼 ′0) and

so 4 holds. Define 𝐼 ′
ℎ+1 as 𝐼 ′

ℎ
minus the removed positions. Then 3

clearly holds and 1, 2 hold by Lemma H.11.
Consider similar sets for the whole system of equations, i.e.

consider the system 𝐸 = 𝐸0, 𝐸1, . . . , that are obtained using similar
operations, i.e. by partial substitutions and simplifications, by 𝐽ℎ
denote the position that were removed due to simplifications. Define
𝐼0 = Last(𝐸0) ∪ Letters(𝐸0). Define also R0,R1, . . .. We show that:



(5) R∗0 (𝐼0) ∩ 𝑓 (𝐸ℎ+1) = R∗ℎ+1 (𝐼ℎ+1)
(6) R∗0 (𝑖, 𝑗) ⇐⇒ R∗

ℎ
(𝑖, 𝑗) for 𝑖, 𝑗 ∉ R∗0 (𝐼0);

(7) Letters(𝐸ℎ) ⊆ Letters(𝐸0) ∪ R∗0 (𝐼 ′0)
(8) 𝐽ℎ ⊆ Letters(𝐸0) ∪ R∗0 (𝐼 ′0).

Condition 5, 6 is shown as 1, 2. For 7 observe that those are either
original letters or ones introduced due to partial substitutions and
those are letters in R∗

ℎ
(𝐼 ′
ℎ
), which is equal to R∗0 (𝐼 ′0). For 8 observe

that we simplify positions such that both have letters on them, so
this follows from 7.

At the end we have that all equations in 𝐸ℎ and 𝐸′
ℎ

are the same
equation. Hence

R∗ℎ (𝐼ℎ) ∩ 𝑓 (𝐸′ℎ) = R′∗ℎ (𝐼 ′ℎ)
By 1 and 5, we get

R∗0 (𝐼0) ∩ 𝑓 (𝐸′ℎ) = R′∗0 (𝐼 ′0)
We are still missing positions that we deleted from 𝐸′0 to get 𝐸′

ℎ
,

those are 𝐽 ′
ℎ

and by 4 we have 𝐽 ′
ℎ
⊆ R′∗0 (𝐼 ′0) and so we get

R∗0 (𝐼0) ∩ 𝑓 (𝐸′0) = R′∗0 (𝐼 ′0)
For the last condition, when 𝑖, 𝑗 ∈ 𝑓 (𝐸′0) and 𝑖, 𝑗 ∉ 𝑅∗0 (𝐼0) then

we already know that 𝑖, 𝑗 ∉ 𝑅′∗0 (𝐼 ′0) and so

𝑅′∗0 (𝑖, 𝑗) ⇐⇒ 𝑅′∗ℎ (𝑖, 𝑗) ⇐⇒ 𝑅∗ℎ (𝑖, 𝑗) ⇐⇒ 𝑅∗0 (𝑖, 𝑗)
with the first equivalence following from 2, second by observation
that for the final equations R′∗ and R∗ are the same on 𝑓 (𝐸′

ℎ
) and

the last from 6. □

Lemma H.13. Let 𝐸 =
⋃ℎ

𝑖=1 𝐸𝑖 be a system of equations (with
regular constraints), such that equations in each 𝐸𝑖 are all similar,
let each equation in 𝐸 has at most 𝑚 occurrences of variables. Let 𝑠
be a length-minimal solution over an alphabet cl(𝐴), 𝑓 be the length
function of 𝑠 .

The there is a subsystem 𝐸0 ⊆ 𝐸 of sizeO(𝑚ℎ) such that Last(𝐸0)∪
𝑙𝑎𝑠𝑡 (𝐸0) fixes 𝑠 (for 𝐸0).

Proof. For each 𝐸𝑖 we apply Lemma H.12, it returns a subsystem
𝐸′𝑖 of size at most 2𝑚, define 𝐸′ =

⋃
𝑖 𝐸
′
𝑖 , it has the appropriate size.

Let R be the relation in 𝐸 and R′ in 𝐸′ and similarly R𝑖 be the
relation in 𝐸𝑖 and R′𝑖 in 𝐸′𝑖 .

By Lemma H.9 the Last(𝐸) ∪ Letters(𝐸) fix the solution 𝑠 . Con-
sider any position 𝑖 ∈ 𝑓 (𝐸′), then 𝑖 ∈ R∗ (Last(𝐸) ∪ Letters(𝐸)),
so consider a sequence of positions 𝑖0, 𝑖1, . . . 𝑖ℎ = 𝑖 such that each
two consecutive are in the relation R and 𝑖0 ∈ Last(𝐸) ∪Letters(𝐸),
without loss of generality, no position except of 𝑖0 is in Letters(𝐸) ∪
Last(𝐸) (if not then we can remove the prefix before this posi-
tion). Let 𝑒 ∈ 𝐸 be the equation such that 𝑖0 ∈ 𝑓 (𝑒), then also
𝑖1 ∈ 𝑓 (𝑒) and 𝑖1 is a position within variable. So there is a position
𝑖′1 ∈ 𝑓 (𝐸′) that is a corresponding position of a variable, as for
𝑒 we have chosen some similar equations to 𝐸′. By Lemma H.12,
𝑖′1 ∈ R′∗ (Last(𝐸′) ∪ Letters(𝐸′)).

Consider the sequence 𝑖1, . . . , 𝑖𝑟 and subdivide it into subse-
quences, such that one subsequence uses positions from similar
equations. Take any such subsequence 𝑖 𝑗 , 𝑖 𝑗+1, . . . , 𝑖 𝑗+𝑞 , say it corre-
sponds to similar equations 𝐸ℎ . Then any two consecutive position
are in relation Rℎ . Since 𝑖 𝑗−1 is not in class of equations as 𝑖 𝑗 (by the
division into subsequences), then they are both corresponding posi-
tions of the variable. In particular, there is a position 𝑖′𝑗 ∈ 𝑓 (𝐸′

ℎ
) that

is also the corresponding position of (the same) variable. Similarly,
𝑖 𝑗+𝑞 and 𝑖 𝑗+𝑞+1 are corresponding positions of the variables and
there is a corresponding position 𝑖′𝑗+𝑞 ∈ 𝑓 (𝐸′

ℎ
). Then R∗

ℎ
(𝑖′𝑗−1, 𝑖

′
𝑗+𝑞).

If either one of them is in R∗
ℎ
(Last(𝐸ℎ) ∪ Letters(𝐸ℎ)) then also

the other one is and so by Lemma H.12 they are also both in
R′∗
ℎ
(Last(𝐸′

ℎ
) ∪Letters(𝐸′

ℎ
)) ⊆ R′∗ (Last(𝐸′) ∪Letters(𝐸′)). If they

are both not inR∗
ℎ
(Last(𝐸ℎ)∪Letters(𝐸ℎ)) then by the same Lemma

R∗
ℎ
(𝑖′𝑗−1, 𝑖

′
𝑗+𝑞) implies R′∗

ℎ
(𝑖′𝑗−1, 𝑖

′
𝑗+𝑞) and so also R′∗ (𝑖′𝑗−1, 𝑖

′
𝑗+𝑞).

Consider the whole such created sequence, take the last of its
elements that is in R′∗ (Last(𝐸′)∪Letters(𝐸′)), we have shown that
𝑖′1 is there. Then each two consecutive are either corresponding
positions in the same variable (and both are in 𝑓 (𝐸′)), so are in R′∗,
or were shown to be in relation R′∗. Hence the last element, i.e. 𝑖 ,
is also in R′∗ (Last(𝐸′) ∪ Letters(𝐸′)).

It remains to observe that Last(𝐸) ∪ Letters(𝐸) fix all position
in 𝑓 (𝐸′), so also Last(𝐸′) ∪ Letters(𝐸′) fix all position in 𝑓 (𝐸′), so
they fix the solution 𝑠 . □

Lemma H.14. Assume accepting computation of A
𝜋 := (𝑞0, 𝜈0) →(𝑎1,𝜑1 ) · · · →(𝑎𝑛,𝜑𝑛 ) (𝑞𝑛, 𝜈𝑛)

for some valuation of P in Γ∗.
Then there is another valuation 𝜇 : P → cl𝜌 (Γ)∗, such that 𝜋 is

accepting for it, |𝜇 (𝑝𝑖 ) | is polynomial (in graph size) and there is an
NL algorithm that given 𝑖, 𝑗 returns letter of 𝜇 (𝑝𝑖 ) [ 𝑗].

Proof. For each 𝜑 on the path 𝜋 choose the set of equations
and regular constraints that make 𝜑 satisfiable. Let 𝑛 be the size of
the graph and maximal size of data in it and𝑚 the maximal sum of
length of equations in any 𝜑𝑖 in 𝜋 . Let all the constraints be over
M𝑞 . Suppose there are 𝑘 parameters.

Without loss of generality 𝜋 has length at most (see discussion
after Proposition2.3) 𝑛𝑟 × |𝑄 | × 𝑘 , here 𝑟 is the number of registers.
So the total length of equations in the constructed system 𝐸 is ℎ(𝑛),
for some polynomial ℎ with degree depending on the query, and
the system is over variables P, so there are 𝑘 of them.

This system of equations is satisfiable, so by Lemma H.5, the
length-minimal solution has length 𝑞(𝑛) times a function not de-
pending on 𝑛, where 𝑞 is a polynomial with degree depending on
𝑚,𝑞, 𝑘 (note that 𝑛𝑣 from Lemma H.5, is at most𝑚 in our setting).
We set those values as the values assigned by 𝜇.

The NL algorithm initially guesses the length function 𝑓 of 𝜇 (𝑝𝑖 )
for each 𝑖 , let R be the corresponding relation on the By Lemma H.9
the set of positions Last(𝐸) ∪ Letters(𝐸) fixes the solution 𝜇 (𝑝).
Then by Lemma H.13 there is a subsystem 𝐸0 ⊆ 𝐸 of this system of
equations of size O(𝑘𝑚) such that 𝐸0 has at least one occurrence
of each 𝑝𝑖 and Last(𝐸0) ∪ Letters(𝐸0) fix the solution for 𝐸0 (in
particular, fix the 𝜇 (𝑝)). We guess the letters (over the 𝜌-closed
alphabet) that are on the last positions of each parameter.

Finally, by Lemma H.8 in NL space we can answer queries con-
cerning letters of 𝜇 (𝑝). □

We can now prove Theorem 5.2. First, by Lemma H.2, we can
consider valuation of P from cl𝜌 (Γ), as an existence of solutions
of word equations (with regular constraints) over Γ and cl𝜌 (Γ) is
equivalent. Suppose that there is an accepting path for the input
query. Then by Lemma H.14 there are values of the parameters
that are of polynomial length (in the graph size), we guess those



lengths, and there is an NL algorithm that returns a given position
of the value of 𝑝𝑖 ; we guess this algorithm as well (inspection of the
proof of Lemma H.14 shows that it applies Lemma H.8 to a guessed
small subset of equations, for which the last letters of parameters
are guessed). Now we follow the accepting path, nondeterminis-
tically guessing consecutive vertices in G and verifying that they
are connected by a view, and transitions of the A and changes in
the registers. Given a guard 𝜑 we can evaluate each of its atomic
formula in NL: first, we treat the active domain quantifiers as con-
junction/disjunction over whole adom(S), those can be enumerated
and accessed in NL. The length function is known and polynomial
in 𝑛, and the substitution for the variables are accessible in NL,
so this follows from Lemma H.8 (note that there are no variables
except P). Hence also 𝜑 can be evaluated in NL.

I REDUCTION FROM CRDPQ(L,T, 𝜎) TO
RDPQ(L,T, 𝜎)

Assume a CRDPQ(L,T, 𝜎)-query:

𝑄 (𝑧) ←
𝑛∧
𝑖=1

𝑥𝑖 →A𝑖
𝑦𝑖 ∧ 𝜑 (P, 𝑥,𝑦) .

Assume w.l.o.g. that eachA𝑖 has precisely 𝑙 active-domain registers
R := {𝑟1, . . . , 𝑟𝑙 }. Let G be the graph consisting of view definitions

(𝑉 , {𝐸𝑎}𝑎∈Σ) and the underlying T-structure S. Finally, let 𝜇 be the
given instantiation of 𝑧. We construct a new A with 𝑙 + 2𝑛 active-
domain registersR1 := R∪𝑥∪𝑦. Let𝑄𝑖 be the set of states ofA𝑖 . The
set 𝑄 of states of A is defined to be {𝑞0} union a disjoint union of
all𝑄𝑖 , say, consisting of states of the form (𝑞, 𝑖) for each 𝑞 ∈ 𝑄𝑖 . For
each 𝑧 ∈ 𝑧, we add the new unary relation 𝑆𝑧 = {𝜇 (𝑧)} to S. Let Σ′ :=
Σ
⋃[1, 𝑛]} (assume [1, 𝑛] ∩Σ = ∅). Define 𝐸𝑖 (𝑧, 𝑧′) := 𝜃𝑖 (𝑧) ∧𝜃𝑖 (𝑧′).

Here, 𝜃 (𝑧) := 𝑉 (𝑧) if 𝑖 = 1 or 𝑖 > 1 and 𝑦𝑖−1 ∉ 𝑧; otherwise,
𝜃 (𝑧) := ∃𝑦 ∈ 𝑎𝑑𝑜𝑚(𝑧 = 𝑦 ∧ 𝑆𝑦𝑖−1 (𝑦)). Similarly, 𝜃 ′ (𝑧) := 𝑉 (𝑧) if
𝑥𝑖 ∉ 𝑧; otherwise, 𝜃 ′ (𝑧) := ∃𝑥 ∈ 𝑎𝑑𝑜𝑚(𝑧 = 𝑥 ∧ 𝑆𝑥𝑖 (𝑥)). The output
RDPQ(L,T, 𝜎) query evaluation problem is 𝑄 ′ := 𝑥 →A 𝑦 with
two arbitrary start and final nodes 𝑠, 𝑡 . The automaton A starts
with 𝑞0, from which there is a transition (𝑞0, (1, 𝜑 (P, 𝑥,𝑦), 𝑞1

0), for
each start state 𝑞1

0 of A1. A will then simulate A1, . . . ,A𝑛 in this
order, while transitioning from A𝑖 to A𝑖+1 using 𝐸𝑖+1. To keep the
instantiations of 𝑥 and 𝑦 consistent, we do a check 𝑐𝑢𝑟𝑟 = 𝑥𝑖 in any
outgoing transition from (𝑞𝑖0, 𝑖), for each start state 𝑞𝑖0 of A𝑖 , and
𝑐𝑢𝑟𝑟 = 𝑦𝑖 in any incoming transition to (𝑞𝐹 , 𝑖), for each final state
𝑞𝐹 ofA𝑖 . [WLOG, we assume that each start state has no incoming
transitions, and each final state has no outgoing transitions.]

It is easy to see that the above reduction can be performed in
logspace, and the output query 𝑄 ′ depends only on 𝑄 .


	Abstract
	1 Introduction
	2 Data model and queries
	3 Reals and Linear Arithmetics
	4 Theory of automatic relations
	5 Word equations
	6 Generalizations and Conclusions
	Acknowledgments
	References
	A Proof of Proposition 2.3
	B Proof of Proposition 2.4
	C RRC for linear arithmetics
	D Proof of Lemma 3.5
	E Proof of Lemma 4.6
	F Proof of Lemma 4.4
	G Proof of Lemma 4.3
	H Word equations: Proof of Theorem 5.2
	I Reduction from CRDPQ(L,T,) to RDPQ(L,T,)

