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This paper proposes a general formula of the p-order derivate for an univariate polynomial function, i.e. a polynomial of only one variable, of degree n. Based on a simple algebraic manipulation of the general formula, we show that it's now easier to deduce the derivative of any order of any polynomial without passing through the (p-1) successive derivations. Finally, we consider an appropriate illustration in order to show that the successive derivations of the polynomial function and our general formula yield same results.

Introduction

A function or mapping from the set A to the set B, denoted by : f : A → B, is a triplet (A, B, graph(f )) where A and B are two sets and graph(f ) is a subset of A × B such that for every a ∈ A, there is one and only one b ∈ B sucht that (a, b) ∈ graph(f ) :

[∀x ∈ A, ∃y ∈ B : (x, y) ∈ graph(f )]∧{[(a, b) ∈ graph(f )∧(a, c) ∈ graph(f )] ⇒ (b = c)}.
In other words, for every a ∈ A there is exactely one element denoted f (a) ∈ B such that the ordered pair (a, f (a)) ∈ graph(f ).

• The set A is called the Domain of f ;

• The set B is called the codomain of f ;

• The set graph(f ) is called the graph of f (:= {(a, b) ∈ A × B|b = f (a)});

• The unique element f (a) such that (a, f (a)) ∈ graph(f ) is called the image of a by f .

Propositions

• Proposition 1 :

A 1 ⊂ A 2 ⇒ f (A 1 ) ⊂ f (A 2 ) Proof : Consider y ∈ f (A 2 ) ⇒ ∃x ∈ A 1 : y = f (x) Since A 1 ⊂ A 2 ⇒ x ∈ A 1 ⇒ x ∈ A 2 ⇒ f (x) ∈ f (A 2 ) ⇒ y ∈ f (A 2 ) • Proposition 2 : f (A 1 ∪ A 2 ) = f (A 1 ) ∪ f (A 2 ) Proof : f (A 1 ∪ A 2 ) = f (A 1 ) ∪ f (A 2 ) ⇐⇒ f (A 1 ∪ A 2 ) ⊂ f (A 1 ) ∪ f (A 2 ) ∧ f (A 1 ∪ A 2 ) ⊃ f (A 1 ) ∪ f (A 2 ) Let's consider first f (A 1 ∪ A 2 ) ⊂ f (A 1 ) ∪ f (A 2 ) Now let's take y ∈ f (A 1 ∪ A 2 ) ⇒ ∃x ∈ A 1 ∪ A 2 : y = f (x) Therefore x ∈ A 1 ∪ A 2 ⇔ x ∈ A 1 ∨ x ∈ A 2 ⇔ f (x) ∈ f (A 1 ) ∨ f (x) ∈ f (A 2 ) ⇔ y ∈ f (A 1 ) ∨ y ∈ f (A 2 ) ⇔ y ∈ f (A 1 ) ∪ f (A 2 ) Let's consider secondly f (A 1 ∪ A 2 ) ⊃ f (A 1 ) ∪ f (A 2 ) Now let's take y ∈ f (A 1 ) ∪ f (A 2 ) ⇔ y ∈ f (A 1 ) ∨ y ∈ f (A 2 ) ⇒ ∃x ∈ A 1 ∨ x ∈ A 2 : y = f (x) Therefore x ∈ A 1 ∨ x ∈ A 2 ⇔ x ∈ A 1 ∪ A 2 ⇔ f (x) ∈ f (A 1 ∪ A 2 ) ⇔ y ∈ f (A 1 ∪ A 2 ) • Proposition 3 : f (A 1 ∩ A 1 ) ⊂ f (A 1 ) ∩ f (A 2 ) Proof : Consider y ∈ f (A 1 ∩ A 2 ) ⇒ ∃x ∈ A 1 ∩ A 2 : y = f (x) Since x ∈ A 1 ∩ A 2 ⇔ x ∈ A 1 ∧ x ∈ A 2 ⇔ f (x) ∈ f (A 1 ) ∧ f (x) ∈ f (A 2 ) ⇔ y ∈ f (A 1 ) ∧ y ∈ f (A 2 ) ⇔ y ∈ f (A 1 ) ∩ f (A 2 )

Exemples of functions

The identity mapping on A, denoted by id A , is the mapping from A to A defined by id A (a) = a for every a ∈ A.

Polynomial function: Definitions and properties

In this paper, the focus will be on polynomial functions. In algebra, a one-indeterminate polynomial y is defined as an expression of the form:

y = a 0 X 0 + a 1 X 1 + a 2 X 2 + • • • + a n-2 X n-2 + a n-1 X n-1 + a n X n , ( [1] 
)

where n ∈ N, (a 0 , a 1 , a 2 , . . . , a n-2 , a n-1 , a n ) ∈ R n+1 and X is a formal symbol called the "indeterminate of the polynomial"1 . As shown in equation [START_REF] Tomasz | Solving Problems in Mathematical Analysis[END_REF], the polynomial is a null sequence of elements from a certain rank, i.e. a near-zero sequence because there are a finite number of coefficients a i [START_REF] Stetter | Numerical Polynomial Algebra[END_REF].

On the other hand, a polynomial function has the following general form:

y = a 0 x 0 + a 1 x 1 + a 2 x 2 + • • • + a n-2 x n-2 + a n-1 x n-1 + a n x n . ([2])
Concretely, in this document, we define a real polynomial function as following :

f : R -→ R x -→ y = f (x) = n i=0 a i x i
Now it is established above that a polynomial function is defined for any real. As main properties, it is continuous and derivable.

Contuinity

By definition, a function is continuous on its domaine D,

if ∀x 0 ∈ D, lim x→x 0 f (x) = f (x 0 )
Let's show by induction that the real polynomial function of degree n is continuous in R

Initial conditions :

For n = 0, we have a constant function define as f (x) = k with k ∈ R By definition a limit, it is established that lim

x→x 0 k = k
For n = 1, we have an identity function define as f (x) = x with k ∈ R By definition a limit, it is established that lim

x→x 0 x = x 0
Induction hypothesis : Now we assume that any polynomial h of degree n -1 is continuous in R and let f be a polynomial of degree n. Let x 0 be any arbitrary real number.

We have :

h(x) = n-1 i=0 a i x i is continuous by assumptions i.e. lim x→x 0 h(x) = h(x 0 ). Let's show that f (x) = n i=0 a i x i is also continous. lim x→x 0 f (x) = lim x→x 0 n i=0 a i x i = lim x→x 0 n-1 i=1 a i x i + a n x n = lim x→x 0 h(x) + a n x.x n-1 = lim x→x 0 h(x) + lim x→x 0 a n × lim x→x 0 x × lim x→x 0 x n-1 = h(x 0 ) + a n × x 0 × x n-1 0 = n-1 i=0 a i x i 0 + a n x n 0 = n i=0 a i x i 0 = f (x 0 )
Hence the real polynomial function f is continuous in R since this proof is true ∀x 0 ∈ R. By this principle of induction, every polynomial with real coefficients is continuous in R .

Derivability

In this paper, we study the derivatives of a polynomial function. Before doing so, it is useful to propose a formal definition of the derivative of a function f, both from an analytical and a geometrical point of view.

Geometrical definition

Let y = f (x) be a continuous function in x 0 . The derivative of y with respect to its explanatory variable x -noted f (x) -measures the slope of y at a point M of coordinates (x 0 , y 0 ) on the representative curve of y noted C f .

Figure 1: Geometrical interpretation of the derivative

If f is derivable in x 0 , then its representative curve C f admits a tangent T M at the point M (x 0 , y 0 ) whose angular coefficient is f (x 0 ). In other words, the derivative number is the angular coefficient of the tangent2 to the representative curve of a function at each point equal to the corresponding value of the derivative.

Analytical definition

Let y = f (x) be a continuous function in x 0 . We say that f is derivable in x 0 if its increasing rate: ∆y ∆x = y -y 0 x -x 0 admits a finite limit in x 0 . This limit, when it exists, is the derivative number of f. It is denoted

dy dx = f (x).
The derivative of y with respect to x thus corresponds to the limit of the increasing rate of y in x 0 as x tends to x 0 . This can be written:

dy dx = lim x→x 0 y -y 0 x -x 0 .
Given that ∆x = x -x 0 , the derivative can be rewritten such as:

dy dx = lim ∆x→0 f (x + ∆x) -f (x) ∆x . ([3])
The notion of derivative is very important in Economics because it allows us to analyze the marginal variations of economic quantities on the one hand, and to determine their extrema after optimization on the other hand (Sydsaeter et al., 2016).

Using this analytical definition [START_REF] Knut | Essential Mathematics for Economic Analysis[END_REF], we can prove easilly that real polynomial functions are derivable. Considering the polynomial function :

f (x) = n i=0 a i x i dy dx = lim ∆x→0 n i=0 a i (x + ∆x) i - n i=0 a i x i ∆x = lim ∆x→0 1 ∆x n i=0 a i i k=0 i k x k (∆x) i-k - n i=0 a i x i = lim ∆x→0 1 ∆x n i=0 a i i-1 k=0 i k x k (∆x) i-k + i i x i (∆x) i-i - n i=0 a i x i = lim ∆x→0 1 ∆x n i=0 a i i-1 k=0 i k x k (∆x) i-k + x i - n i=0 a i x i = lim ∆x→0 1 ∆x n i=0 a i i-1 k=0 i k x k (∆x) i-k + n i=0 a i x i - n i=0 a i x i = lim ∆x→0 1 ∆x n i=0 a i i-1 k=0 i k x k (∆x) i-k = lim ∆x→0 n i=0 a i i-1 k=0 i k x k (∆x) i-k-1 = lim ∆x→0 n i=0 a i i-2 k=0 i k x k (∆x) i-k-1 + i i -1 x i-1 = lim ∆x→0 n i=0 a i i-2 k=0 i k x k (∆x) i-k-1 + ix i-1 = lim ∆x→0 n i=0 a i i-2 k=0 i k x k (∆x) i-k-1 + lim ∆x→0 n i=1 a i (ix i-1 ) = n i=0 i × a i x i-1 = 0 + a 1 + 2a 2 x + 3a 3 x 2 + • • • + (n -2)a n-2 x n-3 + (n -1)a n-1 x n-2 + na n x n-1
This result shows that the derivative of a real polynominial function of degree n is a new polynomial of degree n -1. It is possible to proceed by the same way to find the derivative of this new polynomial which would be of degree n -2. The aim of this paper is to find a general formula to find the p-derivative of the polynomial function of degree n.

Development of the formula

In this article, we try to find a general formula for the derivative of any order of a univariate polynomial function. The latter is specified as follows:

y = f (x) = n i=0 a i x i , ([4])
where n is the order of the polynomial and a i the coefficients associated to the independent variable. Disaggregating the expression of equation 3 above, we obtain the following exploded form:

y = f (x) = a 0 + a 1 x + a 2 x 2 + • • • + a n-2 x n-2 + a n-1 x n-1 + a n x n .
Let us derivate this function successively. Using the definition of derivative etablished in equation [START_REF] Knut | Essential Mathematics for Economic Analysis[END_REF], we obtained the following results:

dy dx = a 1 + 2a 2 x + 3a 3 x 2 + • • • + (n -2)a n-2 x n-3 + (n -1)a n-1 x n-2 + na n x n-1
Proceeding in the same way, it is possible to find the remaining (n -1) successive derivatives. The final results are given as follows:

d 2 y dx 2 = 2a 2 +6a 3 x+• • •+(n-2)(n-3)a n-2 x n-4 +(n-1)(n-2)a n-1 x n-3 +n(n-1)a n x n-2 . . . . . . . . . d n-2 y dx n-2 = (n-2)(n-3) . . . [n-(n-1)]a n-2 x n-n +(n-1)(n-2) . . . [n-(n-2)]a n-1 x n-(n-1) +n(n-1) . . . [n-(n-3)]anx n-(n-2) d n-1 y dx n-1 = (n-1)(n-2) . . . [n-(n-2)][n-(n-1)]a n-1 x n-n +n(n-1) . . . [n-(n-3)][n-(n-2)]a n x n-(n-1) d n y dx n = n(n -1) . . . [n -(n -3)][n -(n -2)][n -(n -1)]a n x n-n .
If we take a closer look at these successive derivatives, we can see that it is possible to rewrite them in the following forms:

dy dx = 1! 0! a 1 + 2! 1! a 2 x+ 3! 2! a 3 x 2 +• • •+ (n -2)! (n -3)! a n-2 x n-3 + (n -1)! (n -2)! a n-1 x n-2 + n! (n -1)! a n x n-1 d 2 y dx 2 = 2! 0! a 2 + 3! 1! a 3 x + • • • + (n -2)! (n -4)! a n-2 x n-4 + (n -1)! (n -3)! a n-1 x n-3 + n! (n -2)! a n x n-2 . . . . . . . . . d n-2 y dx n-2 = (n -2)! (n -n)! a n-2 x n-n + (n -1)! [n -(n -1)]! a n-1 x n-(n-1) + n! [n -(n -2)]! a n x n-(n-2) d n-1 y dx n-1 = (n -1)! (n -n)! a n-1 x n-n + n! [n -(n -1)]! a n x n-(n-1) d n y dx n = n! (n -n)! a n x n-n .
From the logic of these n successive derivatives, we can therefore give a general formulation that allows us to easily find one of them without having to know those that preceded it:

d p y dx p = n i=p i! (i -p)! a i x i-p , with p ∈ [0, n]. ([5])
Equation [5] gives the general formula for the p-order derivative of a univariate polynomial function of degree n. This formula allows us to compute one of the successive derivatives of a polynomial function without having to compute all the other derivatives that came before the one we want to compute. It saves us from the tedious work of computing the (p -1) previous derivatives, especially when p is very close to n, the degree of the polynomial.

Two extreme cases can be observed when using this calculation formula:

• Case 1 : p = 0
If the order of the derivative is zero, then we will find the original polynomial function.

d 0 y dx 0 = n i=0 i! (i -0)! a i x i-0 ⇒ y = n i=0 a i x i .
"The derivative of order zero of a polynomial function is equal to the function itself ".

• Case 2 : p = n

If the order of the derivative is equal to the degree of the polynomial function, then we will find a constant function.

d n y dx n = n i=n i! (i -n)! a i x i-n ⇒ d n y dx n = n!a n .
"The n-derivative of a polynomial function of degree n is always equal to a constant".

Corollary

Note that if p > n, then d p y dx p = 0. For a polynomial function of degree n, its derivative of order greater than n will always be zero.

Proof of the general formula by induction

The general formula is :

d p y dx p = n i=p i! (i -p)! a i x i-p
Initial condition : let's replace p by some integers 1, 2 and 3. We get following results :

• p = 1 dy dx = n i=1 i! (i -1)! a i x i-1 dy dx = 1! 0! a 1 + 2! 1! a 2 x + • • • + (n -1)! (n -2)! a n-1 x n-2 + n! (n -1)! a n x n-1 • p = 2 d 2 y dx 2 = n i=2 i! (i -2)! a i x i-2 d 2 y dx 2 = 2! 0! a 2 + 3! 1! a 3 x + • • • + (n -1)! (n -3)! a n-1 x n-3 + n! (n -2)! a n x n-2 • p = 3 d 3 y dx 3 = n i=3 i! (i -3)! a i x i-3 d 3 y dx 3 = 3! 0! a 3 + 4! 1! a 4 x + • • • + (n -1)! (n -4)! a n-1 x n-4 + n! (n -3)! a n x n-3
Induction hypothesis : Since with p = 1, ..., p = 3, the general formula is true; let's suppose that it is true for every p ∈ N, in other words :

d p y dx p = n i=p i! (i -p)! a i x i-p
Induction process : Let's prove that this formula is true for every p + 1, i.e.

d p+1 y dx p+1 = n i=p+1 i! (i -p -1)! a i x i-p-1 d p+1 y dx p+1 = d d p y dx p dx = d n i=p i! (i -p)! a i x i-p dx = n i=p+1 (i -p)i! (i -p)! a i x i-p-1 = n i=p+1 (i -p)i! (i -p)(i -p -1)! a i x i-p-1 = n i=p+1 i! (i -p -1)! a i x i-p-1
It is clear that, both by successive derivatives and by the application of the general formula, the final results are not contradictory. The two methods are good for derivating a polynomial. The advantage with the general formula is that it is more appropriate for polynomial functions of very high degree, i.e. where n is very large.

Conclusion

In this paper, we proposed a general formula to calculate the p-derivative of a univariate polynomial function of degree n. Many Mathematics books mention the successive derivation to find the derivative of any order of a polynomial function. This can be inefficient when derivating polynomial functions of very high order.

Thus, the general formula has the advantage of making this task easy in the sense that it is not forced to go through the previous derivatives to calculate the one we are looking for. This is a saving of effort and a possibility to find the derivative of any order whatever the degree of the polynomial function one is dealing with.

It would have been more interesting to also find such a formula with integrals, the inverse operation of the derivation being the integration. We think that future research efforts along these lines will be very commendable. For our part, we have limited ourselves to suggest a general formula for the derivation of a polynomial function in order to facilitate the calculation of one of the successive derivatives of this univariate polynomial function.

  

X is not a variable that can take real values.

The equation of the tangent to C f is written: y = f (x 0 ) + f (x 0 )(x -x 0 ).