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Abstract

Given some observed data and a probabilistic generative model, Bayesian inference
aims at obtaining the distribution of a model’s latent parameters that could have
yielded the data. This task is challenging for large population studies where
thousands of measurements are performed over a cohort of hundreds of subjects,
resulting in a massive latent parameter space. This large cardinality renders off-
the-shelf Variational Inference (VI) computationally impractical. In this work, we
design structured VI families that can efficiently tackle large population studies.
To this end, our main idea is to share the parameterization and learning across the
different i.i.d. variables in a generative model -symbolized by the model’s plates.
We name this concept plate amortization, and illustrate the powerful synergies
it entitles, resulting in expressive, parsimoniously parameterized and orders of
magnitude faster to train large scale hierarchical variational distributions. We
illustrate the practical utility of PAVI through a challenging Neuroimaging example
featuring a million latent parameters, demonstrating a significant step towards
scalable and expressive Variational Inference.

1 Introduction

Population studies correspond to the analysis of measurements over large cohorts of human subjects.
These studies are ubiquitous in health care (Fayaz et al., 2016; Towsley et al., 2011), and can
typically involve hundreds of subjects and thousands of measurements per subject. For instance in the
context of Neuroimaging (Kong et al., 2019), measurements X can correspond to signals measured
in hundreds of locations in the brain for a thousand subjects. Given this observed data X , and a
generative model that can produce data given some model parameters Θ, we want to recover the
latent Θ that could have yielded the observed X . In our Neuroimaging example, Θ can be local
labels for each location and subject, together with global parameters common to all subjects –such as
the brain connectivity corresponding to each label. We are interested in recovering the distribution
of the Θ that could have produced X . Following the Bayesian inference formalism (Gelman et al.,
2004), we cast both Θ and X as sets of Random Variables (RVs) and our goal is to recover the
posterior distribution: p(Θ|X). Due to the nested structure of the considered applications we will
focus on the case where p corresponds to a Hierarchical Bayesian Model (HBM) (Gelman et al.,
2004). In the particular context of population studies, the multitude of subjects and measurements per
subject implies a large dimensionality for both Θ and X . This large dimensionality in turn creates
computational hurdles that we wish to overcome through our method.
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To tackle Bayesian inference, several methods have been proposed in the literature. Earliest works
resorted Markov Chain Monte Carlo (Koller & Friedman, 2009), which tend to be slow in high
dimensional settings (Blei et al., 2017). Recent approaches, coined Variational Inference (VI), cast the
inference as an optimization problem (Blei et al., 2017; Zhang et al., 2019). Within this framework,
inference reduces to finding the parametric distribution q(Θ;φ) ∈ Q closest to the unknown posterior
p(Θ|X) in a variational family Q chosen by the experimenter. In recent years, VI has benefited from
the advent of automatic differentiation (Kucukelbir et al., 2016) and the automatic derivation of the
variational family Q based on the structure of the HBM p (Ambrogioni et al., 2021a,b).

To achieve competitive inference quality, VI requires the variational family Q to contain distributions
closely approximating p(Θ|X) (Blei et al., 2017). Yet the form of p(Θ|X) is usually unknown to the
experimenter. To forgo a lengthy search for a valid family, one can instead resort to universal density
approximators, such as normalizing flows (Papamakarios et al., 2019). To achieve this generality,
normalizing flows are highly parameterized and consequently scale poorly with the dimensionality
of Θ. In large populations studies, as this dimensionality grows to the million, the parameterization
of normalizing flows can in turn become prohibitively large. This creates a detrimental trade-off
between expressivity and scalability (Rouillard & Wassermann, 2022). To tackle this challenge,
Rouillard & Wassermann (2022) recently proposed –in the ADAVI architecture– to partially share
the parameterization of normalizing flows across the hierarchies of a generative model. ADAVI
had several limitations we improve upon in this work: removing the Mean Field approximation
(Blei et al., 2017); treating arbitrary HBMs instead of pyramidal HBMs only; and introducing
non-sample-amortized variants. Critically, while ADAVI tackled the over-parameterization of VI in
population studies, it still could not perform inference in very large data regimes due to computational
limits. Indeed, as the size of Θ increases, the evaluation of a single gradient over the entirety of the
architecture’s weights quickly required too much memory and compute. To overcome this second
challenge, stochastic VI (Hoffman et al., 2013) subsamples the parameters Θ inferred for at each
optimization step. However, using SVI, the weights for the posterior of a given local parameter θ ∈ Θ
are only updated when θ is visited by the algorithm. In the presence of hundreds of thousands of such
local parameters, stochastic VI can become prohibitively slow.

In this work, we introduce the concept of plate amortization (PAVI) for fast and universal inference
in large scale HBMs. Instead of considering the inference over local parameters θ as separate
problems, our main idea is to share both the parameterization and learning across those local
parameters –or equivalently across a model’s plates. We first propose an algorithm to automatically
derive an expressive yet parsimoniously-parameterized variational family from a plate-enriched
HBM. We then propose a hierarchical stochastic optimization scheme to train this architecture
efficiently, obtaining orders of magnitude faster convergence. Leveraging the repeated structure of
plate-enriched HBMs, PAVI is able to perform inference over arbitrarily large population studies,
with constant parameterization and training time as the cardinality of the problem augments. We
illustrate this by applying PAVI to a challenging human brain cortex parcellation, featuring inference
of a million parameters over a cohort of 1000 subjects, demonstrating a significant step towards
scalable, expressive and fast VI.

2 PAVI architecture

2.1 Hierarchical Bayesian Models (HBMs), templates and plates

Our objective is to perform inference in the context of large population studies modelled using plate-
enriched Hierarchical Bayesian Models (HBMs). These HBMs feature conditionally i.i.d. samples
from a common conditional distribution at multiple levels, translating the graphical notion of plates
(Gilks et al., 1994). fig. 1 displays 2 toy instances of this i.i.d sampling: in our target applications, the
total number of samples approaches the million (Kong et al., 2019).

HBMs can be compactly represented via a Directed Acyclic Graphs (DAG) template T (Koller
& Friedman, 2009) with vertices –corresponding to RV templates– X and Θ = {θi}i=1..I and
plates {Pp}p=0..P . We denote as Plates(θi) the set of plates a given RV template θi belongs to. X
corresponds to the sets of RVs observed during inference, and Θ to the parameters we want to infer.
Our goal is therefore to approximate the posterior distribution p(Θ|X). In fig. 1, there are 2 latent
RV templates: θ1 and θ2, two plates P0,P1 and we want to approximate p(θ1, θ2|X).
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A graph template T can be grounded into a HBM M given some plate cardinalities
{Card(Pp)}p=0..P . This grounding operation instantiates the repeated structures symbolized by the
plates: a given RV template θi now corresponds to multiple similar ground RVs {θi,n}n=0..Ni with
the same parametric form, where Ni =

∏
P∈Plates(θi)

Card(P). Template grounding is illustrated in
fig. 1, where T is instantiated intoMfull. We wish to exploit the repeated structure induced by plates.

Figure 1: Plate Amortized Variational
Inference (PAVI) working principle.
Starting on the left, the graph template
T is grounded into 2 separate HBMs:
Mfull (top) andMredu (down) of respec-
tive plate cardinalities (3, 2) –large– and
(2, 1) –small. Based on Mredu, the re-
duced distribution qredu is constructed.
We train qredu over data slices of small
cardinality, before performing inference
over the full model of large cardinality.

Given a graph template T , we will instantiate two
HBMs. One is our target –or "full"– model denoted
Mfull. This model typically features large plate cardinal-
ities Cardfull(P), making it computationally intractable.
Instead of tackling inference directly for this model, we
will instantiate the same template T into a second HBM
Mredu, the "reduced" model, of tractable plate cardinal-
ities Cardredu(P) � Cardfull(P). Mredu has the same
template asMfull, meaning the same dependency struc-
ture and the same parametric form for its conditional dis-
tributions. The only difference lies in Mredu’s reduced
cardinalities, resulting in fewer ground RVs, as visible
in fig. 1. Our goal is to train over the tractable reduced
modelMredu to obtain a variational distribution q usable to
perform inference over the intractable target modelMfull.

2.2 Plate amortization

In this section we introduce the notion of plate amortiza-
tion: sharing the parameterization of a conditional density
estimator across a model’s plates to reduce the parameter-
ization of inference. Traditional VI aims at searching for a
parametric distribution q(Θ;φ) that will best approximate
the posterior distribution of Θ given a value X0 for the X:
q(Θ;φ0) ' p(Θ|X = X0) where φ0 are the optimal weights corresponding to X0. When presented
with a new value X1 for X, optimization has to be performed again to search for the weights φ1,
such that q(Θ;φ1) ' p(Θ|X = X1). Sample amortized inference (Zhang et al., 2019; Cremer et al.,
2018) aims instead at performing inference in the general case, regressing the weights φ using an
encoder f of the observed data X: q(Θ;φ = f(X)) ' p(Θ|X = X). The cost of learning the
weights of the encoder is amortized since inference can be performed for any new sample X with
no additional optimization. We propose to exploit the concept of amortization, but to apply it at a
different granularity, leading to our notion of plate amortization.

Instead of amortizing across the different samples X of the observed RV template X we will perform
inference amortization across the different ground RVs {θi,n}n=0..Ni

corresponding to the same
RV template θi. Specifically, to a RV template θi, we will associate a conditional density estimator
qi,•(θi,•;φi, •) with weights φi shared across all the ground RVs {θi,n}n=0..Ni

. The variational
posterior for a given ground RV θi,n will be an instance of this conditional density estimator,
conditioned by an encoding Ei,n: qi,n(θi,n;φi,Ei,n).

The resulting distributions qi,n thus have 2 sets of weights, φi and Ei,n, creating a parameterization
trade-off. Concentrating all of qi,n’s parameterization into φi results in all the ground RVs θi,n having
almost the same posterior distribution. On the contrary, concentrating all of qi,n’s parameterization
into Ei,n allows the θi,n to have completely different posterior distributions. But in a large cardinality
setting, this freedom can result in a massive number of weights, proportional to the number of
ground RVs times the encoding size. This double parameterization is therefore efficient when the
majority of the weights for the density estimator qi,n is concentrated into φi. For instance, casting
qi,n as a conditional normalizing flow (Papamakarios et al., 2019), the burden of approximating the
correct parametric form for the posterior is placed onto φi, while Ei,n can be a lightweight vector of
summary statistics specific to each ground RV θi,n. In section 3, we will also see that this shared
parameterization has synergies with stochastic training.
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2.3 Variational family design

To define our variational family, we will push forward the prior p(Θ) into the variational distribution
q(Θ). This push-forward will be implemented using conditional normalizing flows defined at the
graph template level, conditioned by encodings defined at the ground HBM level. Consider a RV
template θi, corresponding to the ground RVs θi,n. In the full HBMMfull, the plate structure indicates
that θi is associated to a unique conditional distribution pi shared across all ground RVs:

log pfull(Θ, X) =

N full
X∑

n=0

log pX(xn|π(xn)) +

I∑
i=1

N full
i∑

n=0

log pi(θi,n|π(θi,n)) , (1)

where π(θni ) are the parents of the RV θni , whose value condition θni ’s distribution. We indicate with
a •X index all variables related to the observed RVs X . The number of ground RVs N full

i is the
product of the plate cardinalities {Cardfull(P)}P∈Plates(θi). To every parameter RV template θi, we
associate a conditional normalizing flow Fi, parameterized by the weights φi. Every ground RV θi,n
is in turn associated to a separate encoding Ei,n. In fig. 2, θ1 is associated to the flow F1 pushing
forward 2 different ground RVs. This results in the variational distribution:

log qfull(Θ) =

I∑
i=1

N full
i∑

n=0

log qi,n(θi,n|π(θi,n)) ,

log qi,n(θi,n|π(θi,n)) = − log |det JFi
(ui,n;φi,Ei,n)|+ log pi(ui,n|π(θi,n)) ,

ui,n = F−1
i (θi,n;φi,Ei,n) ,

(2)

where the distribution qi,n is the push-forward of the prior distribution pi through the conditional
normalizing flow Fi, conditioned by the encoding Ei,n. This push-forward is illustrated in fig. 2,
where flows F push the RVs u into the RVs θ. This "cascading" scheme was first introduced by
Ambrogioni et al. (2021b), and makes qfull inherit the conditional dependencies of the prior p.

2.4 Encoding schemes

The distributions qi,n(θi,n|π(θi,n);φi,Ei,n) with different ground index n only vary through the
value of the encodings Ei,n. We detail two different schemes to derive those encodings:

Free plate encodings (PAVI-F) In this scheme, Ei,n are free weights. We define encodings arrays
with the cardinality of the full modelMfull, one array Ei = [Ei,n]n=0..N full per RV template θi. Using
this scheme, the encoding values have the most flexibility, but as a result the variational family’s
parameterization scales linearly with the cardinalities Cardfull(P). Indeed, an additional ground RV
in an existing plate necessitates an additional encoding vector. The resulting weights increment is
nevertheless far lighter than the addition of a fully parameterized normalizing flow, as would be the
case in the non-plate-amortized regime. The PAVI-F scheme cannot be sample amortized: when
presented with an unseen sample X, though the value of the weights φi could be kept as an efficient
warm start, the optimal value for the encodings Ei,n would have to be searched again.

Deep set encoder (PAVI-E) In this scheme the encodings are no longer free weights but obtained
processing the observed data X through an encoder f : E = f(X; η). As encoder f we use a
deep-set architecture exploiting the data’s plate-induced permutation invariance –detailed in our
supplemental material (Zaheer et al., 2018; Lee et al., 2019). Encodings Ei,n no longer are weights
for the variational family, and are replaced by the encoder’s weights η. This scheme furthermore
allows for sample amortization across different data samples X0,X1, ... –see section 2.2. Note that an
encoder will be used to generate the encodings whether the inference is sample amortized or not.

We have defined the architecture qfull to perform inference over the target modelMfull. Due to the
large plate cardinalities Cardfull(P), it is however computationally impossible to optimize directly
over the distribution qfull. In the next section we present a stochastic scheme to overcome this
computational hurdle.

3 PAVI stochastic training

4



3.1 Reduced distribution and loss

Instead of optimizing over the computationally intractable distribution qfull, we will use a distribution
that has the cardinalities of the reduced model Cardredu(P). At each optimization step t, we will
randomly select inside Mfull paths of reduced cardinality, as visible in fig. 2. Selecting paths is
equivalent to selecting from X a RV subset of size N redu

X , denoted X redu[t]. We subsequently select
from Θ the RV set Θredu[t] of ascendants and descendants of X redu[t]. For a given θi, we denote as
Bredu
i [t] the resulting batch of selected ground RVs, of size N redu

i . Inferring over Θredu[t], we will
simulate the fact that we train over the distribution qfull, resulting in the distribution:

log qredu(Θredu[t]) =

I∑
i=1

N full
i

N redu
i

∑
n∈Bredu

i [t]

log qi,n(θi,n|π(θi,n)) (3)

where the factor N full
i /N redu

i simulates that we observe as many ground RVs as in the full HBM
Mfull by repeating the ground RVs fromMredu (Hoffman et al., 2013). Similarly, the loss used at the
optimization step t is the reduced ELBO constructed using X redu[t] as observed RVs:

log predu(X redu[t],Θredu[t]) =
N full
X

N redu
X

∑
n∈Bredu

X [t]

log pX(xn|π(xn)) +

I∑
i=1

N full
i

N redu
i

∑
n∈Bredu

i [t]

log pi(θi,n|π(θi,n))

ELBOredu[t] = EΘredu∼qredu

[
log predu(X redu[t],Θredu[t])− log qredu(Θredu[t])

]
(4)

Figure 2: PAVI stochastic training
scheme The reduced distribution qredu

features 2 conditional normalizing flows
F1 and F2 respectively associated to
the RV templates θ1 and θ2. During
the stochastic training, qredu is instanti-
ated over different branchings of the full
modelMfull –highlighted in blue on the
left. The branchings have the cardinali-
ties ofMredu and change at each stochas-
tic training step t = 0, 1. The branching
determine the encodings E conditioning
the flowsF –as symbolised by the letters
A, B, C– and the observed data slice –as
symbolised by the letters D, E.

This scheme can be viewed as the instantiation ofMredu

over batches ofMredu’s ground RVs. In fig. 2 we can see
that qredu has the cardinalities ofMredu, and replicates its
conditional dependencies. The resulting training is anal-
ogous to the usage of stochastic VI (Hoffman et al., 2013)
overMfull, generalized with multiple hierarchies and us-
ing minibatches of ground RVs. Our novelty lies in the
interaction of this stochastic scheme with plate amortiza-
tion, as explained in the next section.

3.2 Sharing learning across plates

In a traditional stochastic VI training, every ground RV
θi,n corresponding to the same template θi is associated to
individual weights. Those weights are trained only when
θi,n is visited by the algorithm, that is to say at an opti-
mization step t when n ∈ Bredu

i [t]. In the context of very
large model plates, this event can become rare. If θi,n is
furthermore associated to a highly-parameterized density
estimator –such as a normalizing flow– many optimization
steps can be required for the distribution qi,n to converge.
The combination of those two items can lead to a slow
training.

Instead, our idea is to share the learning across the ground
RVs θi,n. Indeed, due to the problem’s plate structure, we
consider the inference over those ground RVs as different
instances of a common density estimation task. The pre-
cise implementation of this shared learning depends on
the chosen encoding scheme –as described in section 2.4:

Conditional flow weight sharing (PAVI-F) As seen in
section 2.3, a large part of the parameterization of the den-
sity estimators qi,n(θi,n|π(θi,n);φi,Ei,n) is mutualized
via the plate-wide-shared weights φi. At each optimization
step t, the encodings Ei,n corresponding to n ∈ Bredu

i [t]
are sliced from larger encoding arrays Ei = [Ei,n]n=0..N full and are optimized for along with the
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weights φi. This means that most of the weights of the flows Fi –concentrated in φi– are trained at
every optimization step, across all the selected batches Bredu

i [t]. This can result in drastically faster
convergence, as demonstrated in our experiments. In fig. 2, at t = 0, Bredu

1 [0] = {1, 2} and the
trained encodings are therefore {E1,1,E1,2}, and at t = 1 Bredu

1 [1] = {0, 1} and the used encodings
are {E0

1,E
1
1}. The weights φ1 and φ2 of the flows F1 and F2 are trained at both steps t = 1 and

t = 2. At inference, instead of slicing the encoding arrays, the full arrays Ei are used to obtain the
distribution qfull.

Encoder set size generalization (PAVI-E) The PAVI-E scheme also benefits from the sharing of
the weights φi. In addition, it doesn’t cast the encodings Ei,n as free weights, but as the output of a
parametric encoder f(•; η). As a result, at training all the architecture’s weights –φi and η– are trained
at every optimization step t. At inference, to generate the full encoding arrays Ei = [Ei,n]n=0..N full

to plug into qfull, this scheme builds up on a property of the particular deep-set-like architecture we
use for the encoder f : set size generalization (Zaheer et al., 2018). Through training, the encoder f
learnt a hierarchy of permutation-invariant functions over Cardredu(P)-sized sets of data points. At
inference, we instead apply the trained encoder to sets of size Cardfull(P):

At training: Ei,n = fi,n(Xredu[t]) for n ∈ Bredu
i [t]

At inference: Ei,n = fi,n(X) for n = 0..N full
i

(5)

where Xredu[t] denotes the observed data corresponding toX redu[t]. This property –learning an encoder
over small sets to use it over large sets– is very strong, especially in the sample amortized context.
Benefiting from set size generalization, we can effectively train a sample amortized variational family
over the lightweight modelMredu, and obtain "for free" a sample amortized variational family for the
heavyweight modelMfull.

Summary In section 2 we proposed an architecture sharing its parameterization across a model’s
plates. In section 3 we proposed a stochastic scheme to train this architecture over batches of data of
reduced cardinality. Across those data batches, we share the learning of density estimators, resulting
in the fast training of a variational posterior qfull, as demonstrated in the following experiments.

4 Results and discussion

All experiments were performed using the Tensorflow Probability library (Dillon et al., 2017), on
computational cluster nodes equipped with a Tesla V100-16Gb GPU and 4 AMD EPYC 7742 64-Core
processors. VRAM intensive experiments in fig. 4 were performed on an Ampere 100 PCIE-40Gb
GPU. Throughout this section we focus on the usage of the ELBO metric, as a proxy to the KL
divergence between the variational posterior and the unknown true posterior. ELBO is measured
across 20 different data samples X, with 5 random seeds per sample. The ELBO allows to compare
the relative performance of different architectures on a given inference problem. In our supplemental
material we also provide with sanity checks to assess the quality of the obtained results.

4.1 Plate amortization and convergence speed

In this experiment, we illustrate how plate amortization results in faster convergence. We consider
the following Gaussian Random Effects model (GRE):

∀n1=1..Card(P1)
∀n0=1..Card(P0) Xn1,n0 |θ1,n1 ∼ N (θ1,n1 , σ

2
x)

∀n1 = 1..Card(P1) θ1,n1 |θ2,0 ∼ N (θ2,0, σ
2
1) θ2,0 ∼ N (~0D, σ

2
2) ,

(6)

where D represents the feature size of the data X, determining the dimensionality of the group means
θ1 and of the population means θ2 as D-dimensional Gaussians. We opted in this equation for a
more practical double indexing scheme instead of a simple indexing as in our methods. The GRE
model features two nested plates: the group plate P1 and the sample plate P0 as in fig. 1. Performing
inference over this HBM, the objective is to retrieve the posterior distribution of the group means θ1

and the population mean θ2 given the observed sample X .

Here we set D = 8, Cardfull(P1) = 100 and Cardredu(P1) = 2. We compare our PAVI architecture
to a stochastic non-plate-amortized baseline with the same architecture as PAVI (Hoffman et al.,
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Figure 3: Left panel: Plate amortization increases convergence speed Plot of the ELBO (higher
is better) as a function of the optimization steps (log-scale) for our methods PAVI-F (in green) and
PAVI-E (in blue) versus a non-plate-amortized baseline (in purple). Due to plate amortization, our
method converges orders of magnitude faster to the same asymptotic ELBO as its non-plate-amortized
counterpart.; Right panel: Encodings as ground RVs summary statistics Plot of the ELBO (higher
is better) as a function of the optimization steps for the PAVI-F architecture with increasing encoding
sizes. As the encoding size augments, so does the asymptotic performance, until reaching the
dimensionality of the posterior’s sufficient statistics (D = 8), after which performance plateaus.
Encoding size allows for a clear trade-off between memory footprint and inference quality.

2013). The main difference is that every ground RV θni is associated in the baseline to an individual
flow Fi,n instead of sharing the same flow Fi –as described in section 2.3. Figure 3 (left) displays
the evolution of the ELBO for the baseline and PAVI with free encoding (PAVI-F) and with deep
set encoders (PAVI-E). We see that for both plate amortized methods, the convergence speed to an
asymptotic ELBO equals to the one of the non-plate-amortized baseline is orders of magnitudes faster,
and numerically more stable. This stems from the individual flows Fi,n only being trained when the
corresponding θi,n is visited by the stochastic training, while the shared flow Fi is updated at every
optimization step in PAVI. We also note that the PAVI-E scheme has a faster convergence than the
PAVI-F scheme, sharing not only the training of the conditional flows, but also of the encoder through
the stochastic optimization steps. In practice however, the additional compute implied by the encoder
results step of longer duration, and ultimately in slower convergence, as illustrated in section 4.3.

4.2 Impact of encoding size

Now we illustrate the role of encodings as ground RV’s posterior summary statistics –as described
in section 2.2. We use the GRE HBM detailed in eq. (6), using D = 8, Cardfull(P1) = 20 and
Cardredu(P1) = 2. We use a single PAVI-F architecture, varying the dimensionality of the encodings
Ei,n –see section 2.3. Due to plate amortization, this encoding size determines how much individual
information each ground RV θi,n is associated to. The size of the encodings –varying from 2 to 16–
is to be compared with the dimensionality of the problem, in this case D = 8. Indeed, in the GRE
context, D = 8 corresponds to the dimensionality of the sufficient statistics needed to reconstruct the
posterior distribution of a given group mean –all other statistics such as the posterior variance being
shared between all the group means. Figure 3 (right) shows how the asymptotic performance steadily
increases when the encoding size augments, before plateauing once reaching the sufficient summary
statistic size D = 8. Interestingly, increasing the encoding size also leads to faster convergence:
redundancy in the encoding can likely be exploited in the optimization. Encoding size appears as
a straightforward hyperparameter allowing to trade inference quality for computational efficiency.
It is also interesting to notice that increasing the encoding size leads experimentally to diminishing
returns in terms of performance. This property can be exploited in large dimensionality settings to
drastically reduce the memory footprint of inference while maintaining acceptable performance.

4.3 Scaling with plate cardinalities

Now we put in perspective the gains from plate amortization when scaling up an inference problem’s
cardinality. We consider the GRE model in eq. (6) with D = 2 and augment the plate cardinalities
(Cardfull(P1),Cardredu(P1)) : (2, 1)→ (20, 5)→ (200, 20). In doing so, we augment the number
of estimated parameters Θ : 6→ 42→ 402.
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Figure 4: PAVI provides with favorable parameterization and training time as the cardinality
of the target model augments Our architecture PAVI is displayed on the right of each panel. We
augment the cardinality Cardfull(P1) of the GRE model –described in eq. (6). While doing so,
we compare 3 different metrics: In the first panel: inference quality, as measured by the ELBO.
None of the presented SOTA architecture’s performance degrades as the cardinality of the problem
augments. In the second pannel: parameterization, comparing the number of trainable weights of
each architecture. PAVI –similar to ADAVI– displays a constant number of weights as the cardinality
of the problem increases –or almost constant for PAVI-F. Third panel: GPU training time. Benefiting
from learning across plates, PAVI has a short and almost constant training time as the cardinality
of the problem augments. At Cardfull(P1) = 200, CF and ADAVI required large GPU memory, a
constraint absent from PAVI due to its stochastic training.

Baselines We compare our PAVI architecture against 2 state-of-the-art baselines: Cascading Flows
(CF) (Ambrogioni et al., 2021b) is a non-plate-amortized structured VI architecture improving
on the baseline presented in section 4.1; ADAVI (Rouillard & Wassermann, 2022) is a structured
VI architecture with constant parameterization with respect to a problem’s cardinality, but large
training times and memory footprint. For all architectures, we indicate with the suffix (sa) sample
amortization, corresponding to the classical meaning of amortization, as detailed in section 2.2. More
details can be found in our supplemental material.

As the cardinality of the problem augments, fig. 4 shows how PAVI maintains a state-of-the-art infer-
ence quality, while being more computationally attractive. Specifically, in terms of parameterization,
both ADAVI and PAVI-E provide with a heavyweight but constant parameterization as the cardinality
Cardfull(P1) of the problem augments. Comparatively, both CF and PAVI-F’s parameterization
scale linearly with Cardfull(P1), but with a drastically lighter augmentation for PAVI-F. Indeed, for
an additional ground RV, CF requires an additional fully parameterized normalizing flow, whereas
PAVI-F only requires an additional lightweight encoding vector. In detail, PAVI-F’s parameterization
due to the plate-wide-shared φ1 represents a constant ≈ 2k weights, while the part due to the encod-
ings E1,n grows linearly from 16 to 160 to 1.6k weights. Note that PAVI’s stochastic training also
allows for a controlled GPU memory during optimization, removing the need for a larger memory
as the cardinality of the problem augments –a hardware constraint that can become unaffordable
at very large cardinalities. In terms of convergence speed, PAVI benefits from plate amortization
to have orders of magnitude faster convergence. Plate amortization is particularly significant for
the PAVI-E(sa) scheme, in which a sample-amortized variational family is trained over a dataset
of reduced cardinality, yet performs "for free" inference over a HBM of large cardinality. Main-
taining Cardredu(P1) constant while Cardfull(P1) augments allows for a constant parameterization
and training time as the cardinality of the problem augments. The effect of plate amortization is
particularly noticeable at Cardfull(P1) = 200 between the PAVI(sa) and CF(sa) architectures, where
PAVI performs amortized inference with 10× fewer weights and 100× lower training time. Scaling
even higher the cardinality of the problem –Cardfull(P1) = 2000 for instance– renders ADAVI and
CF computationally intractable to use, while PAVI maintains a light memory footprint, and a short
training time, as exemplified in the next experiment.
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Figure 5: Probabilistic parcellation of Brocas’s area PAVI can be applied in the challenging context
of Neuroimaging population studies. For a cohort of 1000 subjects, 2 of which are represented
here –in the bottom 2 items– we present 2 results. First, connectivity networks with the brain’s
left hemisphere –left purple items: this represents the zones of the brain to which the vertices with
each label are "wired" to. Second, Broca’s area probabilistic parcellation –rightmost orange items:
we cluster the brain’s vertices, associating them to a given connectivity network. Our Bayesian
method features a notion of uncertainty: coloring transitions from red to an uncertain white to blue,
representing the probability of a given vertex to belong to one connectivity network or the other.

4.4 Application: fMRI – parcellation of Broca’s area over a large subject cohort

To illustrate the usefulness of our method, we apply PAVI to a challenging Neuroimaging example: a
population study for Broca’s area’s functional parcellation. A parcellation of a brain region aims
at clustering brain vertices into different connectivity networks: labels describing the vertices’ co-
activation with the rest of the brain –as measured using functional Magnetic Resonance Imaging
(fMRI). Different subjects can exhibit a strong variability, as visible in fig. 5. However, fMRI has
a costly acquisition –meaning that few noisy data is usually gathered for a given subject. It is thus
essential to combine the information from different subjects and to have a notion of uncertainty
in the obtained results. Those 2 points motivate our usage of Hierarchical Bayesian Models and
VI in the Neuroimaging context (Kong et al., 2019): we wish to obtain the posterior distribution
of connectivity networks and vertex labels, combining fMRI measurement over a large cohort of
subjects. In practice, we use the HCP dataset (Van Essen et al., 2012): 2 acquisition sessions for a
cohort of 1000 subjects, with thousands of measurements per subject, for a total parameter space Θ
of over a million parameters. We use a model with 3 plates: subjects, measurement sessions and
brain vertices. In this high plate cardinality regime, none of the state-of-the-art baselines presented
in section 4.3 –CF, ADAVI– can computationally tackle inference. In terms of convergence speed,
despite the massive dimensionality of the problem, thanks to plate amortization PAVI converges in a
dozen epochs, under an hour of GPU time. The results of our method are visible in fig. 5, supporting
the hypothesis of a functional bi-partition of Broca’s area into a posterior part involved in phonology
and an anterior part involved in lexical/semantic processing - following the anatomical partition
between pars opercularis and pars triangularis (Heim et al., 2009; Zhang et al., 2020).

4.5 Conclusion

In this work we present the novel PAVI architecture, combining a structured variational family and
a stochastic training scheme. PAVI is based the concept of plate amortization, allowing to share
parameterization and learning across a model’s plates. We demonstrated the positive impact of plate
amortization on training speed and scaling to large plate cardinality regimes, making a significant
step towards scalable, expressive Variational Inference.
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Supplemental Material

A Supplemental methods

A.1 PAVI implementation details

A.1.1 Plate branchings and stochastic training

As exposed in section 3.1, at each optimization step t we randomly select branchings inside the full
modelMfull, branchings over which we "instantiate" the reduced modelMredu. In doing so, we
define batches Bi[t] for the RV templates θi. Those batches have to be "coherent" with one another:
they have to respect the conditional dependencies of the original modelMfull. To ensure this, during
the stochastic training we do not sample RVs directly but plates:

1. For every plate Pp, we sample without replacement Cardredu(Pp) indices amongst the
Cardfull(Pp) possible indices.

2. Then, for every RV template θi, we select the ground RVs θi,n corresponding to the sampled
indices for the plates Plates(θi).

3. The selected ground RVs θi,n constitute the set Θredu[t] of parameters appearing in eq. (3).
The same procedure yields the RV subset X redu[t] and the data slice Xredu[t].

This stochastic strategy also applies to the selected encoding scheme –described in section 2.4– as
detailed in the next sections.

A.1.2 PAVI-F details

In section 2.4 we refer to encodings Ei = [Ei,n]n=0..N full corresponding to RV templates θi. In
practice, we have some amount of sharing for those encodings: instead of defining separate encodings
for every RV template, we define encodings for every plate level. A plate level is a combination of
plates with at least one parameter RV template θi belonging to it:

PlateLevels = {(Pk..Pl) = Plates(θi)}θi∈Θ (A.1)

For every plate level, we construct a large encoding array with the cardinalities of the full model
Mfull:

Encodings = {(Pk..Pl) 7→ RCardfull(Pk)×..×Cardfull(Pl)×D}(Pk..Pl)∈PlateLevels

Ei = Encodings(Plates(θi))
(A.2)

Where D is an encoding size that we kept constant to de-clutter the notation but can vary between
plate levels. The encodings for a given ground RV θi,n then correspond to an element from the
encoding array Ei.

A.1.3 PAVI-E details

In the PAVI-E scheme, encodings are not free weights but the output of en encoder f(•, η) applied to
the observed data X. In this section we detail the design of this encoder.

As in the previous section, the role of the encoder will be to produce one encoding per plate level.
We start from a dependency structure for the plate levels:

∀(Pa..Pb) ∈ PlateLevels ,

∀(Pc..Pd) ∈ PlateLevels ,

(Pa..Pb) ∈ π((Pc..Pd))⇔ ∃θi/Plates(θi)=(Pa..Pb)
∃θj/Plates(θj)=(Pc..Pd)/θj ∈ π(θi)

(A.3)

note that this dependency structure is in the "backward" direction: a plate level will be the parent
of another plate level, if the former contains a RV who has a child in the latter. We therefore obtain
a plate level dependency structure that "reverts" the conditional dependency structure of the graph
template T . To avoid redundant paths in this dependency structure, we take the maximum branching
of the obtained graph.
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Given the plate level dependency structure, we will recursively construct the encodings, starting from
the observed data:

∀x ∈ X : Encodings(Plates(x)) = ρ(x) (A.4)

where x is the observed data for the RV x, and ρ is a simple encoder that processes every observed
ground RV’s value independently through an identical multi-layer perceptron. Then, until we have
exhausted all plate levels, we process existing encodings to produce new encodings:

∀(Pk..Pl) ∈ PlateLevels / 6 ∃x ∈ X,Plates(x) = (Pk..Pl) :

Encodings((Pk..Pl)) = g(Encodings(π(Pk..Pl)))
(A.5)

where g is the composition of attention-based deep-set networks called Set Transformers (Lee et al.,
2019; Zaheer et al., 2018). For every plate Pp present in the parent plate level but absent in the
child plate level, g will compute summary statistics across that plate, effectively contracting the
corresponding batch dimensionality in the parent encoding (Rouillard & Wassermann, 2022).

In the case of multiple observed RVs, we run this "backward pass" independently for each observed
data –with one encoder per observed RV. We then concatenate the resulting encodings corresponding
to the same plate level.

For more precise implementation details, we invite the reader to consult the codebase released with
this supplemental material.

A.2 PAVI algorithms

More technical details can be found in the codebase provided with this supplemental material.

A.2.1 Architecture build

Algorithm 1: PAVI architecture build

Input: Graph template T , plate cardinalities {(Cardfull(Pp),Cardredu(Pp))}p=0..P , encoding
scheme

Output: qfull distribution
for i = 1..I do

Construct conditional flow Fi;
Define conditional posterior distributions qi,n as the push-forward of the prior via Fi,

following eq. (2);
Combine the qi,n distributions following the cascading flows scheme, as in section 2.3
(Ambrogioni et al., 2021b) ;

if PAVI-F encoding scheme then
Construct encoding arrays {Ei = [Ei,n]n=0..N full

i
}i=1..I as in appendix A.1.2 ;

else if PAVI-E encoding scheme then
Construct encoder f as in appendix A.1.3 ;
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A.2.2 Stochastic training

Algorithm 2: PAVI stochastic training

Input: Untrained architecture qfull, observed data X, encoding scheme, number of steps T
Output: trained architecture qfull

for t = 0..T do
Sample plate indices to define the batches Bi[t], the latent Θredu[t] and the observed X redu[t]

and Xredu[t], following appendix A.1.1 ;
Define reduced distribution predu ;
if PAVI-F encoding scheme then

Collect encodings Ei,n by slicing from the arrays Ei the elements corresponding to the
batches Bi[t] ;

else if PAVI-E encoding scheme then
Compute encodings as E = f(Xredu[t]);

Feed obtained encodings into qredu ;
Compute reduced ELBO as in eq. (4), back-propagate its gradient ;
Update conditional flow weights {φi}i=1..I ;
if PAVI-F encoding scheme then

Update encodings {Ei,n}i=1..I,n∈Bi,t
;

else if PAVI-E encoding scheme then
Update encoder weights η;

A.2.3 Inference

Algorithm 3: PAVI inference

Input: trained architecture qfull, observed data X, encoding scheme
Output: approximate posterior distribution
if PAVI-F encoding scheme then

Collect full encoding arrays Ei ;
else if PAVI-E encoding scheme then

Compute encodings as E = f(X) using set size generalization ;

Feed obtained encodings into qfull ;

A.3 Inference gaps

In terms of inference quality, the impact of our architecture can be formalized following the gaps
terminology (Cremer et al., 2018). Consider a joint distribution p(Θ, X), and a value X for the RV
template X . We pick a variational family Q, and in this family look for the parametric distribution
q(Θ;φ) that best approximates p(Θ|X = X). Specifically, we want to minimize the Kulback-Leibler
divergence (Blei et al., 2017) between our variational posterior and the true posterior, that Cremer
et al. (2018) refer to as the gap G:

G = KL(q(Θ;φ)||p(Θ|X))

= log p(X)− ELBO(q;φ)
(A.6)

We denote q∗(Θ;φ∗) the optimal distribution inside Q that minimizes the KL divergence with the
true posterior:

Gapprox(Q;φ∗) = log p(X)− ELBO(q∗;φ∗)

≥ 0

Gvanilla VI = Gapprox

(A.7)

The approximation gap Gapprox depends on the expressivity of the variational family Q, specifically
whether Q contains distributions arbitrarily close to the posterior –in the KL sense. Cremer et al.
(2018) demonstrate that, in the case of sample amortized inference, when the weights φ no longer are
free but the output of an encoder f ∈ F , inference cannot be better than in the non-sample-amortized
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case, and a positive amortization gap is introduced:

Gsa(Q,F ; η∗) = Gapprox(Q; f(X, η∗))− Gapprox(Q;φ∗)

≥ 0

Gsample amortized VI = Gapprox + Gsa

(A.8)

Where we denote as η∗ the optimal weights for the encoder f inside the function family F . The gap
terminology can be interpreted as follow: "theoretically, sample amortization cannot be beneficial in
terms of KL divergence for the inference over a given sample X."

Using the same gap terminology, we can define gaps implied by our PAVI architecture. Instead of
picking the distribution q inside the family Q, consider picking q from the plate-amortized family
Qpa corresponding to Q. Distributions inQpa are distributions from Q with the additional constraints
that some weights have to be equal. Consequently, Qpa is a subset of Q:

Qpa ⊂ Q (A.9)

As such, looking for the optimal distribution inside Qpa instead of inside Q cannot result in better
performance, leading to a plate amortization gap:

Gpa(Q,Qpa;ψ
∗, φ∗) = Gapprox(Qpa;ψ

∗)− Gapprox(Q;φ∗)

≥ 0

GPAVI-F = Gapprox + Gpa

(A.10)

Where we denote as ψ∗ the optimal weights for a variational distribution q inside Qpa –in the KL
sense. The equation A.10 is valid for the PAVI-F scheme –see section 2.4. We can interpret it as
follow: "theoretically, plate amortization cannot be beneficial in terms of KL divergence for the
inference over a given sample X".

Now consider that encodings are no longer free parameters but the output of an encoder f . Similar to
the case presented in eq. (A.8), using an encoder cannot result in better performance, leading to an
encoder gap:

Gencoder(Qpa,F ;ψ∗, η∗) = Gapprox(Qpa; f(X, η∗))− Gapprox(Qpa;ψ
∗)

≥ 0

GPAVI-E = Gapprox + Gpa + Gencoder

(A.11)

The equation eq. (A.11) is valid for the PAVI-E scheme –see section 2.4.

The most complex case is the PAVI-E(sa) scheme, where we combine both plate and sample amortiza-
tion. Our argument cannot account for the resulting GPAVI-E(sa) gap: both the PAVI-E and PAVI-E(sa)
schemes rely upon the same encoder f . In the PAVI-E scheme, f is overfit over a dataset composed of
the slices of a given data sample X. In the PAVI-E(sa) scheme, the encoder is trained over the whole
distribution of the samples of the reduced modelMredu. Intuitively, it is likely that the performance
of PAVI-E(sa) will always be dominated by the performance of PAVI-E, but –as far as we understand
it– the gap terminology cannot account for this discrepancy.

Comparing previous equations, we therefore have:

Gvanilla VI ≤ GPAVI-F ≤ GPAVI-E (A.12)

Note that those are theoretical results, that do not necessarily pertain to optimization in practice. In
particular, in section 4.1&4.3, this theoretical performance loss is not observed empirically over the
studied examples. On the contrary, in practice our results can actually be better than non-amortized
baselines, as is the case for the PAVI-F scheme in fig. 4. We interpret this as a result of a simplified
optimization problem due to plate amortization –with fewer parameters to optimize for, and mini-
batching effects across different ground RVs. A better framework to explain those discrepancies
could be the one from Bottou & Bousquet (2007): performance in practice is not only the reflection
of an approximation error, but also of an optimization error. A less expressive architecture –using
plate amortization– may in practice yield better performance. Furthermore, for the experimenter, the
theoretical gaps Gpa,Gencoder are likely to be well "compensated for" by the lighter parameterization
and faster convergence entitled by plate amortization.
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B Supplemental results

B.1 GRE results sanity check

As exposed in the introduction of section 4, in this work we focused on the usage of the ELBO as an
inference performance metric (Blei et al., 2017):

ELBO(q) = log p(X)−KL(q(Θ)||p(Θ|X)) (B.13)

Given that the likelihood term log p(X) does not depend on the variational family q, differences
in ELBOs directly transfer in differences in KL divergence, and provide with a straightforward
metric to compare different variational posteriors. Nonetheless, the ELBO doesn’t provide with an
absolute metric of quality. As a sanity check, we want to assert the quality of the results presented in
section 4.3 –that are transferable to section 4.1&4.2, based on the same model. In fig. B.1 we plot the
posterior samples of various methods against analytical ground truths, using the Cardfull(P1) = 20
case. All the method’s results are aligned with the analytical ground truth, with differences in ELBO
translating meaningful qualitative differences in terms of inference quality.

B.2 Experimental details - analytical examples

All experiments were performed in Python, using the Tensorflow Probability library (Dillon et al.,
2017). Throughout this section we refer to Masked Autoregressive Flows (Papamakarios et al.,
2018) as MAF. All experiments are performed using the Adam optimizer (Kingma & Ba, 2015). At
training, the ELBO was estimated using a Monte Carlo procedure with 8 samples. All architectures
were evaluated over a fixed set of 20 samples X, with 5 seeds per sample. Non-sample-amortized
architectures were trained and evaluated on each of those points. Sample amortized architectures
were trained over a dataset of 20, 000 samples separate from the 20 validation samples, then evaluated
over the 20 validation samples.

B.2.1 Plate amortization and convergence speed (4.1)

All 3 architectures (baseline, PAVI-F, PAVI-E) used:

• for the flows Fi, a MAF with [32, 32] hidden units;
• as encoding size, 128

For the encoder f in the PAVI-E scheme, we used a multi-head architecture with 4 heads of 32 units
each, 2 ISAB blocks with 64 inducing points.

B.2.2 Impact of encoding size (4.2)

All architectures used:

• for the flows Fi, a MAF with [32, 32] hidden units, after an affine block with triangular
scaling matrix.

• as encoding size, a value varying from 2 to 16

B.2.3 Scaling with plate cardinalities (4.3)

ADAVI (Rouillard & Wassermann, 2022) we used:

• for the flows Fi, a MAF with [32, 32] hidden units, after an affine block with triangular
scaling matrix.

• for the encoder, an encoding size of 8 with a multi-head architecture with 2 heads of 4 units
each, 2 ISAB blocks with 32 inducing points.

Cascading Flows (Ambrogioni et al., 2021b) we used:

• a mean-field distribution over the auxiliary variables r
• as auxiliary size, a fixed value of 8
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Figure B.1: GRE Sanity check Inference methods present qualitatively correct results, making
ELBO comparisons relevant in our experiments. On the topmost line, we represent 4 different X
samples for the GRE model described in eq. (6) with Cardfull(P1) = 20. Each set of colored points
represent the Xn1,• points belonging to one of the 20 groups. Bottom lines represent the posterior
samples for the methods used in section 4.3. Colored points are sampled from the posterior of the
groups means θ1, whereas black points are samples from the population mean θ2. We represent as
black circles an analytical ground truth, centered on the correct posterior mean, and with a radius
equal to 2 times the analytical posterior’s standard deviation. Correct posterior samples should be
centered on the same point as the corresponding black circle, and 95% of the points should fall
within the black circle. PAVI is represented on the 3 last lines, where we can observed a superior
quality for the PAVI-F scheme, rivaling ADAVI and CF’s performance with orders of magnitude less
parameters and training time, as visible in fig. 4.
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• as flows, Highway Flows as designed by the Cascading Flows authors

PAVI-F we used:

• for the flows Fi, a MAF with [32, 32] hidden units, after an affine block with triangular
scaling matrix.

• an encoding size of 8

PAVI-E we used:

• for the flows Fi, a MAF with [32, 32] hidden units, after an affine block with triangular
scaling matrix.

• for the encoder, an encoding size of 16 with a multi-head architecture with 2 heads of 8
units each, 2 ISAB blocks with 64 inducing points.

B.3 Details about our Neuroimaging experiment (4.4)

B.3.1 Data description

In this experiment we use data from the Human Connectome Project (HCP) dataset (Van Essen et al.,
2012). We randomly select a cohort of S = 1, 000 subjects from this dataset, each subject being
associated with T = 2 resting state fMRI sessions (Smith et al., 2013). We minimally pre-process the
signal using the nilearn python library (Abraham et al., 2014):

1. removing high variance confounds

2. detrending the data

3. band-filtering the data (0.01 to 0.1 Hz), with a repetition time of 0.74 seconds

4. spatially smoothing the data with a 4mm Full-Width at Half Maximum

For every subject, we extract the surface Blood Oxygenation Level Dependent (BOLD) signal of
N = 314 vertices corresponding to an average Broca’s area (Heim et al., 2009). We compare this
signal with the extracted signal of D = 64 DiFuMo components: a dictionary of brain spatial maps
allowing for an effective fMRI dimensionality reduction (Dadi et al., 2020). Specifically, we compute
the one-to-one Pearson’s correlation coefficient of every vertex with every DiFuMo component. The
resulting connectome, with S subjects, T sessions, N vertices and a connectivity signal with D
dimensions, is of shape (S × T ×N ×D). We project this data –correlation coefficients lying in
]−1; 1[– in an unbounded space using an inverse sigmoid function.

B.3.2 Model description

We use a model inspired from the work of Kong et al. (2019). We hypothesize that every vertex in
Broca’s area belongs to either one of L = 2 functional networks. This functional bi-partition would
reflect the anatomical partition between pars opercularis and pars triangularis (Heim et al., 2009;
Zhang et al., 2020).

Each network is a pattern of connectivity with the brain cortex, represented as a the correlation of
the BOLD signal with the signal from the D = 64 DiFuMo components. We define L = 2 such
functional networks at the population level, that correspond to some "average" across the cohort of
subjects. Every subject has an individual connectivity, and therefore individual L = 2 networks,
that are considered as a Gaussian perturbation of the population networks, with variance ε. The
connectivity of a given subject also evolves through time, giving rise to session-specific networks,
that are a Gaussian perturbation of the subject networks with variance σ. Finally, every vertex in
Broca’s area has its individual connectivity, and is a perturbation of one network’s connectivity or the
other’s. We model this last step as a Gaussian mixture distribution with variance κ. We explicitly
model the label label of a given vertex, and we consider this label constant across sessions.
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The resulting model can be described as:

Sfull, T full, N full, D, L = 1000, 2, 314, 64, 2

s−, s+ = −6, 0

∀l=1..L : µl ∼ Uniform(−4×~1D, 4×~1D)

∀l=1..L : log εl ∼ Uniform(s− ×~1D, s+ ×~1D)
∀l=1..L
∀s=1..S : µl,s|µl, εl ∼ N (µl, εl)

∀l=1..L : log σl ∼ Uniform(s− ×~1D, s+ ×~1D)
∀l=1..L
∀s=1..S
∀t=1..T

: µl,s,t|µl,s, σl ∼ N (µl,s, σl)

∀l=1..L : log κl ∼ Uniform(s− ×~1D, s+ ×~1D)

∀s=1..S
∀n=1..N : probss,n ∼ Dirichlet(1×~1L)

∀s=1..S
∀n=1..N : labels,n |probss,n ∼ Categorical(probss,n)

∀s=1..S
∀t=1..T
∀n=1..N

: Xs,t,n|[µl,s,t]l=1..L, [κl]l=1..L, labels,n ∼ N (µlabels,n,s,t, κlabels,n)

(B.14)

The model contains 4 plates: the network plate of full cardinality L (that we did not exploit in our
implementation), the subject plate of full cardinality Sfull, the session plate of full cardinality T full

and the vertex plate of full cardinality N full.

Our goal is to recover the posterior distribution of the networks µ –represented as networks in
fig. 5– and the labels label –represented as the parcellation in fig. 5– given the observed connectome
described in appendix B.3.1.

B.3.3 PAVI implementation

We used in this experiment the PAVI-F scheme, using:

• for the RVs µl, µl,s, µl,s,t:

– for the flows Fi, a MAF with [128, 128] hidden units, following an affine block with
diagonal scale

– for the encoding size: 128

• for the RVs εl, σl, κl,probss,n, labelss,n:

– for the flowsFi, a MAF with [8, 8] hidden units, following an affine block with diagonal
scale

– for the encoding size: 8

• for the reduced model, we used Sredu = 30, T redu = 1 and N redu = 32.

To allow for the optimization over the discrete labels,n RV, we used the Gumbell-Softmax trick,
using a fixed temperature of 1.0 (Jang et al., 2017; Maddison et al., 2016).

C Supplemental discussion

C.1 Plate amortization as a generalization of sample amortization

In section 2.2 we introduced plate amortization as the application of the generic concept of amortiza-
tion to the granularity of plates. Taking a step back, there is actually an even stronger connection
between sample amortization and plate amortization.

A HBM pmodels the distribution of a given observed RVX –jointly with the parameters Θ. Different
samples X0,X1, ... of the model p are i.i.d. draws from the distribution p(X). p can thus be considered
as the model for "one sample". Consider, instead of p, a "macro" model for the whole population
of samples one could draw from p. The observed RV of that macro model would be the infinite
collection of samples drawn from the same distribution p(X). In that light, the i.i.d. sampling of
differentX values from p could be interpreted as a plate of the macro model. Thus, we could consider
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sample amortization as a instance of plate amortization for the "sample plate". Or equivalently: plate
amortization can be seen as the natural generalization of amortization beyond the particular case of
sample amortization.

C.2 Alternate formalism for SVI – PAVI-E(sa) scheme

In this work, we propose a different formalism for SVI, based around the concept of full HBM
Mfull versus reduced HBMMredu sharing the same template T . This formalism is helpful to set up
GPU-accelerated stochastic VI (Dillon et al., 2017), as it entitles a fixed computation graph -with
the cardinality of the reduced modelMredu- in which encodings are "plugged in" -either sliced from
larger encoding arrays or as the output of an encoder applied to a data slice, see section 2.4&3.2.
Particularly, our formalism doesn’t entitle a control flow over models and distributions, which can be
hurtful in the context of compiled computation graphs such as in Tensorflow (Abadi et al., 2015).

The reduced model formalism is also meaningful in the PAVI-E(sa), where we train and amortized
variational posterior overMredu and obtain "for free" a variational posterior for the full modelMfull

–see section 3.2. In this context, our scheme is no longer a different take on hierarchical, batched SVI:
the cardinality of the full model is truly independent from the cardinality of the training, and is only
simulated as a scaling factor in the stochastic training –see section 3.1. We have the intuition that
fruitful research directions could stem from this concept.

C.3 Benefiting from structure in inference

Conceptually, all our contributions can be abstracted through the notion of plate amortization -see
section 2.2. Plate amortization is particularly useful in the context of heavily parameterized density
approximators such as normalizing flows, but is not tied to it: plate-amortized Mean Field (Blei et al.,
2017) or ASVI (Ambrogioni et al., 2021a) schemes are also possible to use. Plate amortization can
be viewed as the amortization of common density approximators across different sub-structures of a
problem. This general concept could have applications in other highly-structured problem classes
such as graphs or sequences (Wu et al., 2020; Salehinejad et al., 2018).

C.4 Towards user-friendly Variational Inference

By re-purposing the concept of amortization at the plate level, our goal is to propose clear computation
versus precision trade-offs in VI. Hyper-parameters such as the encoding size –as illustrated in fig. 3
(right)– allow to clearly trade inference quality in exchanged for a reduced memory footprint. On
the contrary, in classical VI, changing Q’s parametric form –for instance switching from Gaussian
to Student distributions– can have a strong and complex impact both on number of weights and
inference quality (Blei et al., 2017). By allowing the usage of normalizing flows in very large
cardinality regimes, our contribution aims at de-correlating approximation power and computational
feasibility. In particular, having access to expressive density approximators for the posterior can help
experimenters diversify the proposed HBMs, removing the need of properties such as conjugacy to
obtain meaningful inference (Gelman et al., 2004). Combining clear hyper-parameters and scalable
yet universal density approximators, we tend towards a user-friendly methodology in the context of
large population studies VI.
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