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Abstract. Explainable AI is gaining traction because of the widespread
use of black box models in the industry. Many explanation methods are
proposed to explain models without impacting their design. The litera-
ture describes a new architecture where an explainable model interacts
with an explanation interface to generate explanations tailored for a user.
We propose a novel image classification system that combines an ontol-
ogy with machine learning models based on this architecture. It uses
an ontology to add different labels to the same dataset and generates
machine learning models to assess the class of an object and its differ-
ent properties listed in the ontology. The outputs of these models are
added to the ontology to verify that these predictions are consistent, us-
ing logical reasoning. The ontology can then be explored to understand
the prediction and why it is consistent or not. This system can warn the
user when a prediction is uncertain, which will help users to trust it.

Keywords: XAI · Ontology · Classification.

1 Introduction

The Explainable AI (XAI) field is rapidly rising in popularity. Numerous meth-
ods and tools are being developed to explain black-boxes [3] and create inter-
pretable and accurate models [2,14]. The main goals of XAI are yet to be clearly
defined, but some seem to make a consensus. These goals include a more trust-
worthy and robust AI [4] or including humans in the loop [1]. Gunning et al. [8]
proposed an architecture for an explainable system where an explainable model
is trained with a new machine learning process and interacts with an explanation
interface to generate explanations. According to them, “systems will have the
ability to explain their rationale, characterize their strengths and weaknesses,
and convey an understanding of how they will behave in the future”.

In this paper, we propose a new machine learning process and an explainable
model by adding knowledge to the training and inference processes. This knowl-
edge takes the form of an ontology. We specifically build several image classifiers
capable of recognizing some properties in an image. These observed properties
are represented in the ontology’s TBox. They link two classes together, which
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will allow the system to classify an object in an image based on what these mod-
els observed. We also use these links to relabel an image and train models with
these new labels. An individual that represents the image is added to the ABox.
It is linked to the predicted target classes for each observed property. A consis-
tency check is then done using logical reasoning to verify that the classification
is consistent with what was observed by the different models. This consistency
check allows the system to warn the user when a prediction is uncertain and say
why it is uncertain, which is a step towards what Gunning et al. [8] described
as new machine learning systems.

In section 2 we review the literature, especially the use of semantic web
technologies to build explainable systems. Then in section 3 we describe our
proposed architecture. In section 4 we apply and test this system to the case of
musical instruments classification. Finally in section 5 we discuss this approach,
its limitations and future works.

2 Related works

There exists a plethora of methods that explain black box models, mainly using
a technical analysis. Arya et al. [3] categorise them and propose a decision tree to
choose the most suitable for the task and the type of explanation needed. Most
of these methods function by perturbing the inputs of a model to understand
their impact on the output thus determining which features are important for
a given model. Rudin [13] advocates against using these methods, arguing that
their explanations are not reliable and can be misleading. In the same paper,
it is discussed that interpretable models should be preferred. Bellucci et al. [5]
discuss the issue of the terminology in the XAI field and the lack of explicit
definitions in the literature. They propose some definitions for different terms
that we use in this paper. They define interpretability as “the ability of a system
to be seen, understood and studied by a user with a reasonable cognitive effort”.

Ontologies and specifically semantic web technologies represent knowledge
in both a human-understandable and machine-readable way. Using such tech-
nologies may help design a system that can be seen, understood and studied
by a human, making it interpretable. Seeliger et al. [15] provide a literature
review of semantic web technologies for explainable machine learning models.
They argue that explainability is dependent on the use of domain knowledge
and that semantic web technologies might be a key to achieve truly explainable
AI systems. For instance, Geng et al. [7] use a knowledge graph to automatically
generate a classification model for an unseen class. It can justify the predictions
by combining attention mechanisms with a knowledge graph.

Semantic web technologies can also be used to generate explanations. Futia
and Vetrò [6] examine the advantages of integrating knowledge graphs into deep
learning models. They claim that combining them enables the creation of inter-
active and cross-disciplinary explanations. Phan et al. [11] propose a system that
learns user representation from health ontologies; explanations consist in show-
ing which characteristics extracted from the ontologies have the largest influence



Ontologies to build a predictive architecture to classify and explain 3

on the prediction. Halliwel et al. [9] propose a method to find the most intuitive
explanations using facts of an ontology and evaluate the quality of these explana-
tions. Rožanec et al. [12] propose feature-based explanations to extract the most
important features and then use an ontology to get the context of these features
and retrieve higher level concepts that describe these features. The context and
higher level concepts are then combined to create an explanation.

Gunning et al. [8] propose a framework to design explainable systems, as we
have already discussed. However, they do not mention the use of semantics to
design these explainable models or explanation interfaces. From this review, we
observe that existing systems cannot warn users when there is an uncertainty
in their prediction, which prevents them from being trusted. In this paper, we
propose a design for an explainable model and a machine learning process that
incorporates semantic web technologies, in the form of an ontology, to advance
towards an interpretable model. A logical reasoner can then be used to look
for inconsistencies in the ontology which will detect problematic predictions and
warn the user.

3 Ontology-based Image Classifier

We propose an ontology-based image classifier, which combines machine learning
with an ontology. As we mentioned in section 1, we intend to use the architecture
described in [8], that is to say, an explainable model interacting with an expla-
nation interface. The following system is the explainable model and its training
process. The goals of this classifier are to propose an explainable system for
image classification that is trustworthy and robust. It is able to tell when a
prediction is uncertain and inform the user if the prediction can be trusted.

The system trains multiple machine learning models, each capable of detect-
ing one property visible in the image. For instance, one model will be tasked with
detecting the texture in the image and another with detecting particular shapes.
Then, a machine learning model that we call the global classifier is trained to di-
rectly classify the data. To make an inference, an image is given to every model.
An individual is created and added to the ABox. This individual is linked by
observable properties to instances of target classes that were detected in the
image by the corresponding models. Finally, a logical reasoner is used to verify
the consistency of the ontology. If the ontology is consistent, the prediction is
considered valid. Otherwise, the user is warned that the prediction is uncertain.

In this section, we first define the vocabulary used in the rest of the paper to
describe ontology elements. Then, we discuss the ontology architecture needed to
make this system work. Finally, we describe the training and inference processes.

3.1 Vocabulary

In the following paper, the classes and object properties of an ontology are
written in the following style: MyClass for classes and myObjectProperty for
object properties. Class restrictions are presented as such: “myObjectProperty
constraint TargetClass”, where TargetClass is part of the range of myObject-
Property . In this restriction, we refer to myObjectProperty as the property of
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the restriction and TargetClass as its target or target class. Negative restrictions
are restrictions that mention what a class is not. They take the form “Not
myObjectProperty constraint TargetClass”. The other ontology related terms
such as domain and range are defined in the W3C recommendation for the Web
Ontology Language (OWL) [16] Model refers to any machine learning model,
such as a neural network or a decision tree. We use the terms dataset class and
dataset label interchangeably. We do so to align the dataset vocabulary with the
ontology vocabulary. We use the definitions proposed in [5] for XAI terms.

3.2 Ontology building

This system uses the open-world assumption and the Web Ontology Language
version 2 [16] (OWL 2). It requires the ontology to formally describe the data
available. In order to exploit the data, object properties that describe observable
characteristics in the data should be added to the TBox of the ontology. Their
domain and range should not be empty sets. If that is the case, new classes should
be declared and added to the empty domain or range. These observable charac-
teristics or properties are declared as subproperties of observableProperty in
the ontology, so that the system can identify and exploit them. The domain of
these properties is the classes present in the dataset. The range can be any class
or set of classes defined in the ontology.

The dataset classes must match with ontology classes. These classes must
be defined with restrictions whose properties are subproperties of observable-
Property . If a class does not have a restriction with this kind of property, it
can not be used to train the models, rendering a part of the dataset unused.
The class definitions should be as precise as possible to maximize the accuracy
and diversity of the labels. Negative restrictions should also be used whenever
possible to help the system find inconsistencies.

To summarize, dataset classes must be defined in the ontology. Their def-
initions should use subproperties of observableProperty in restrictions and
be as precise as possible, using negative restrictions when feasible. Algorithm 1
illustrates a class definition for wooden chairs where its texture is an observable
property. Here, wooden chairs are made of wood and cannot be made of metal.
This algorithm is an excerpt of a larger ontology that can be found in our code1.

Algorithm 1 Example of class definition, using OWL2 Manchester Syntax [17]

ObjectProperty: hasTexture , SubPropertyOf : observableProperty
Class: WoodenChair, SubClassOf : Chair that hasTexture some Wood,
SubClassOf : not hasTexture Metal

3.3 Training

A model per property The training process builds a model per subproperty of
observableProperty They use the same unique dataset purposely relabelled for

1 https://git.litislab.fr/s4xai/ontology-based-image-classifier/ contains the code for
the whole system and the ontology used for this paper.

https://git.litislab.fr/s4xai/ontology-based-image-classifier/
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each model using the ontology and all take the same image as input. The labels
for each model correspond to the classes in the range of the object property.
A class can be defined by multiple restrictions with the same object property
but different target classes. The model needs to be able to reflect this in its
prediction; therefore, the labels are one-hot encoded, and the output of each
model is a vector containing the probability of having each class as target of a
restriction with the selected object property. This is a multi-label classification
problem. For instance, for the object property hasTexture , a chair of class Chair
with a class definition containing “hasTexture some Metal” and “hasTexture
some Wood” has the label (1, 1) where the first item corresponds to the class Wood
and the second to Metal. Based on the definitions described in algorithm 1, this
chair couldn’t be classified as a WoodenChair even if the chair is mostly made
of wood with some metallic parts. The definition should be refined to take this
case into account. A plastic chair would have the label (0, 0) since it is neither
made of wood nor metal.

Some object properties are functional, meaning that for each individual x,
there can be at most one distinct individual y such that x is connected by a
functional property to y [18]. Thus, we simplify the training problem into a
multi-class classification problem, where the output’s sum should equal 1. To
handle the case where the label is a zero vector, we need to add a temporary
class that will be predicted when the image does not contain any target class of
the object property. Finally, a model is built to classify the images directly. This
model that we call global classifier in the following is trained using the original
labels of the dataset.

Labelling the data Each model predicts the classes that are targets of an
object property for a given image. Therefore, the dataset needs to be relabelled
accordingly which is done by using the class definitions in the ontology. We
describe how the system finds the new labels for a given class named MyClass

and a given object property named myProperty .
In the class definition of MyClass, the system searches for restrictions con-

taining the object property myProperty , i.e. restrictions of the form “MyClass
myProperty some TargetClass”. If some are found, the target classes of these
restrictions will be the new labels for the image. This process is done for each
subproperty of observableProperty and each class of the dataset.

When a subproperty of observableProperty is found in a class definition,
the system maps this class to the targets of this property, e.g. if class MyClass
is a subclass of “hasTexture some Wood” and “hasTexture some Metal”, the
system will store that if the label of the image is MyClass, then the label for
the model of hasTexture is (Wood,Metal).

3.4 Inference

The inference part of the system uses the machine learning models discussed in
section 3.3 to predict the class and object properties of a data point. Algorithm
2 describes the different steps of an inference. Functions with an uppercase first
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Algorithm 2 Inference algorithm

1: function Infer(x, onto, observablePropertiesSet, threshold+, threshold−) ▷ x a
data point, onto the ontology

Ensure: isConsistent(onto)
2: class← globalClassifier(x) ▷ Corresponds to the class predicted by the

global classifier
3: Declaration (NamedIndividual(indiv))
4: ClassAssertion (class, indiv)
5: for all property in observablePropertiesSet do
6: y ← propertyClassifier(property, x) ▷ y is the vector of predictions.
7: for i← 0, length(y) do
8: Declaration (NamedIndividual(targeti))
9: ClassAssertion (classi, targeti) ▷ classi is the i-th class in the labels

for the classifier of property.
10: if yi ≥ threshold+ then
11: ObjectPropertyAssertion(property, indiv, targeti)
12: else if yi ≤ threshold− then
13: ClassAssertion (Not(property, classi), indiv)
14: end if
15: if not isConsistent(onto) then
16: return False
17: end if
18: end for
19: end for
20: return True
21: end function

letter are functions that modify the ontology, as described in functional syntax
[18]. The other functions are designed by us.

The inference process computes the predictions of each model, adds the cor-
responding restrictions to a new individual in the ABox of the ontology and
checks the consistency of the ontology with this new individual. The class of
the individual is given by the global classifier. When a prediction is inconsistent,
the system can warn the user when it believes it is wrong, which is a require-
ment of explainable systems highlighted by Gunning et al. [8]. Two parameters,
threshold+ and threshold− are introduced. They take advantage of the open-
world assumption. Indeed, if a probability is in-between these thresholds, the
system does not add a restriction and considers that the information is missing.

This architecture allows the generation of different types of explanations.
Indeed, counterfactual explanations can be provided by adding or modifying
restrictions in the ontology or modifying the thresholds. Using a logical reasoner
to check the consistency of the ontology allows the construction of explanations
based on this logical reasoning since it uses concepts defined in the ontology,
which are human-understandable. Finally, any machine learning model can be
used with this system. The ideal case would be to use interpretable models so
that the entire system can be explained.



Ontologies to build a predictive architecture to classify and explain 7

4 Experimentation

4.1 Problem description

We evaluate this system on a musical instrument classification task. We have
designed an ontology based on a simple hierarchy of instruments families. The
selected families of instruments are brass, woodwinds and strings. We also added
unrelated objects such as chairs, tables, and pipes to highlight this system’s
ability to classify a variety of items within the same ontology.

This task is well-suited for our system because there already exists a taxon-
omy of musical instruments which helped us design the ontology. Instruments
also have particular observable properties that enables us to distinguish them.
Woodwinds and brass instruments all have a single mouthpiece, which is visible
on most images. The different mechanisms of instruments can also be used to
differentiate them. For instance, most woodwinds use keys while most brass use
pistons. However, there are some overlaps, the serpent is from the brass family
because it has a brass mouthpiece but it has a wood texture and keys as mech-
anism. A single classifier would probably classify the serpent as a woodwind
because of its visual similarity with woodwinds.

We have gathered and handpicked images from Google Images that corre-
spond to some ontology classes for a total of 20 classes. The dataset contains
5642 images with an average of 250 images per class, resized to 224× 224 pixels.
This dataset is imbalanced; for instance, the class Serpent which corresponds
to an ancestor of the tuba, has 151 images, whereas Saxophone has 476 im-
ages. We have defined 5 subproperties of observableProperty : hasTexture ,
hasMechanism , hasMouthpiece , hasShape and hasApparentStrings . These
observable properties are based on what is visible in the majority of the im-
ages. To build the different models of the system, we use convolutional neural
networks, with the ResNet50 architecture [10]. These models are pretrained on
the ImageNet dataset, and only the last layer is modified and finetuned with our
dataset, using the labelling process described in section 3.3. The activation func-
tion for the last layer depends on the property. For functional object properties,
a softmax function is used. Otherwise, it is a sigmoid.

4.2 Evaluation and results

We want to evaluate the capacity of our system to accurately tell when a predic-
tion is correct or incorrect and compare it to the global classifier’s performance.
The correctness of a prediction corresponds to whether the class prediction
from the global classifier is correct or not. Therefore, we divide the predictions
into 4 categories: Correct Consistent (CC), Correct Inconsistent (CI), Incor-
rect Consistent (IC) and Incorrect Inconsistent (II). A 5-fold cross-validation
was performed on the system to compute evaluation metrics. Table 1 shows
a few metrics computed for each class then aggregated with the mean value,
the maximum and minimum values and the standard deviation to observe the
dispersion of the results for each class. The code and dataset is available at
https://git.litislab.fr/s4xai/ontology-based-image-classifier/ .

https://git.litislab.fr/s4xai/ontology-based-image-classifier/
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Table 1. Results of the experiment

Metric Mean Max Min Standard Deviation

Global classifier accuracy 0.80 0.97 0.34 0.19

System accuracy 0.75 0.95 0.33 0.18

Adjusted System accuracy 0.79 0.96 0.40 0.17

False Positive Rate 0.72 0.94 0.35 0.17

False Negative Rate 0.05 0.22 0 0.06

The system accuracy is computed as CC
n because inconsistent predictions

are marked as wrong. It is not a fair comparison with the global classifier accu-
racy because the latter is computed as CC+CI

n which is always greater than the
system’s accuracy. The system’s goal is to detect correct and incorrect predic-
tions. This is why the adjusted system accuracy shown in this table is computed
with the formula CC+II

n . The system accuracy is similar to the global classifier
accuracy, which means the impact of the consistency check is minimal on per-
formance. The accuracy is biased since a majority of the predictions are correct.
That is why we study the False Positive Rate (FPR) and False Negative Rate
(FNR), considering IC as false positives and CI as false negatives. The values
of FPR and FNR show that the system classifies most predictions as consistent,
regardless of the prediction’s correctness. This issue may come from two factors.

The first factor is the ontology’s design. Since the consistency is checked
using the open-world assumption, the predictions are unlikely to be inconsistent
if class definitions do not have strong restrictions, such as negative restrictions.
The open-world assumption is crucial for our system because it does not consider
that missing properties are proof of their absence, thus allowing the system to
handle the uncertainty of some predictions. Some classes also have the same
definitions that only use observable properties because of the low amount of
observable properties and the granularity of property ranges. The issue then
becomes the amount of data available to train the property models since the
smaller the granularity, the less data is available for training per target class.

A second factor is the values of the thresholds described in section 3.4. They
have a direct impact on FPR and FNR. Indeed, these thresholds decide whether
to add a restriction or not. When both thresholds are at 0.5, a restriction will
always be added to the individual, leading to a spike in inconsistent predictions
because the system will be highly sensitive to the performance of the property
models leading to a high FNR and low FPR. Threshold values at respectively
0 and 1 mean no restrictions will be added, making every prediction consistent
leading to a high FPR and low FNR.

In this experiment, these thresholds were 0.7 and 0.3 for threshold+ and
threshold− respectively. From our observations, it is clear that the thresholds
should be different per model to account for the variation in their performance.
We have a high FPR and low FNR, which means that not enough restrictions are
added; thus, we should probably decrease threshold+ and increase threshold−.

This experiment highlighted the challenges to make these consistency checks
as accurate as possible. A first challenge is the choice of thresholds. Many factors
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need to be taken into account to decide these thresholds, such as the performance
of each model, the sensitivity of the task and the cost of false positives and false
negatives. Another challenge is the definitions in the ontology’s TBox. There is
a trade-off in the precision of the definitions. Too precise definitions imply fewer
data for the training, but too broad definitions mean inconsistencies are unlikely
to be detected. Hence, data availability is an essential factor in the system’s
quality. We chose to relabel a dataset, but it is possible to gather different
datasets corresponding to the different object properties, which we believe would
lead to better performances. However, finding such specialized datasets is not
always possible, which is why we decided to showcase the ability of our system
to relabel existing data.

5 Conclusion and future work

This paper introduced a new system that combines ontologies with machine
learning models as well as a novel training process that exploits the ontology to
relabel a dataset. It is a step towards trustworthy and robust predictive systems
since it can detect and warn the user when predictions are inconsistent, based
on the ontology. We believe that the capacity of warning the user when a predic-
tion is inconsistent renders the system more transparent than a classic machine
learning model which makes it more trustworthy. Likewise, we argue that the
system is more robust than a single predictive model because it aggregates the
results of concurrent statistical models using logic. This system requires minimal
additional work to be implemented with regards to building a new ontology and
statistical models for a new task. Indeed, any existing ontology can be utilized,
only observable properties should be added and used in some class definitions.
Likewise, any statistical model architecture can be used, allowing the usage of
already trained models instead of training new ones. The system was evaluated
with a musical instruments classification task. The system’s capacity of detect-
ing incorrect predictions is not yet satisfying, but it demonstrated the feasibility
and should be seen as a proof of concept.

This paper presents this system as an image classifier, but we believe it could
be applied to any kind of data. Only observable properties should change based
on what information the data contains. We will implement this system to differ-
ent data types in future work. We highlighted challenges in the system’s design,
such as choosing the adequate thresholds. In our experiment, we arbitrarily chose
a single architecture for every model in our system. We would like to study and
improve our system by investigating the impact of the thresholds, how to find
their best values and how the system behaves with different model architectures.

We designed this system with explainability in mind. We believe that this
architecture enables the generation of counterfactual explanations. Indeed, it is
possible to modify the ontology or the thresholds to see how the system be-
haves. To fully verify this hypothesis and further explore the explainability of
our architecture, we intend to create an explanation interface that is capable of
interacting with the user to provide satisfying explanations.
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