
HAL Id: hal-03684239
https://hal.science/hal-03684239

Submitted on 1 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning on Data Words over Numeric Domains
Diego Figueira, Anthony Lin

To cite this version:
Diego Figueira, Anthony Lin. Reasoning on Data Words over Numeric Domains. Annual Symposium
on Logic in Computer Science (LICS), Aug 2022, Haifa, Israel. �hal-03684239�

https://hal.science/hal-03684239
https://hal.archives-ouvertes.fr


Reasoning on Data Words over Numeric Domains

Diego Figueira

diego.figueira@cnrs.fr
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800

Talence, France

Anthony W. Lin

awlin@mpi-sws.org
TU Kaiserslautern

Max Planck Institute for Software Systems

Kaiserslautern, Germany

Abstract

We introduce parametric semilinear data logic (pSDL) for

reasoning about data words with numeric data. The logic

allows parameters, and Presburger guards on the data and

on the Parikh image of equivalence classes (i.e. data count-

ing), allowing us to capture data languages like: (1) each data

value occurs at most once in the word and is an even num-

ber, (2) the subset of the positions containing data values

divisible by 4 has the same number of a’s and b’s, (3) the

data value with the highest frequency in the word is divisible

by 3, and (4) each data value occurs at most once, and the

set of data values forms an interval. We provide decidabil-

ity and complexity results for the problem of membership

and satisfiability checking over these models. In contrast to

two-variable logic of data words and data automata (which

also permit a form of data counting but no arithmetics over

numeric domains and have incomparable inexpressivity),

pSDL has elementary complexity of satisfiability checking.

We show interesting potential applications of our models in

databases and verification.

CCS Concepts: • Theory of computation→ Transduc-

ers; Automata over infinite objects; Logic and verifica-

tion; Modal and temporal logics; Regular languages;

Complexity theory and logic.

Keywords: Data words, logic and automata, Presburger

arithmetic, counting, complexity

1 Introduction

A data word is a word, each of whose positions contains a

label drawn from a finite alphabet (just like a normal word in

formal language theory), and a data value from some infinite

domain. An example of data word over the alphabet A =

{𝑎, 𝑏} and data domain D = Z is (𝑎, 7) (𝑏, 10) (𝑎, 3) (𝑎, 100).
The study of automata and logics over data words has

spanned across nearly three decades, starting from the study

of register automata [24] with a decidable emptiness prob-

lem. In addition to this basic register automata model, there

is nowadays a plethora of variants of register automata and

other different (and mostly incomparable) models of au-

tomata and logics over datawordswith a decidable emptiness

problem including automata with pebbles [33], deterministic

memory automata over ordered data [4], data automata and

two-variable first-order logic [6, 41], alternating 1-register

automata and LTL with freeze quantifiers [15], single-use

register automata [8], nominal automata [7], streaming data-

string acceptors [2] and its variant over rationals [10], and

symbolic finite automata [14] and their extension with reg-

isters [13].

Most of the automata models and logics over data words

with a decidable emptiness problem impose a severe restric-

tion on the operations that can be performed on the data

values, i.e., mostly only comparing data equalities is per-

mitted. In practice, however, we are interested in a specific

domain theory like the set of integers and permit operations

like those that are allowed in the theory of integer linear

arithmetic. For example, consider the (SMT) theories of ar-

rays (e.g. see [9, 28]). Structurally, arrays can be construed

as data words without a finite alphabet (or equivalently with

a unary finite alphabet) and integers as the data domain.

However, theories of arrays permit the full integer linear

arithmetic to express relationship among the data stored in

the arrays, for which there is only a very limited support by

any automata model and logic over data words. As we shall

soon see, certain types of arithmetic reasoning are also not

supported by array theories.

The main goal of this paper is to initiate an investigation

of how integer arithmetic reasoning can be incorporated into

automata models and logics over data words. In doing so,

our hope is to bring automata/logic over data words closer

to applications, e.g., in databases and verification.

What type of arithmetic reasoning? In the literature

of logic and automata, many types of integer arithmetic rea-

soning have been considered, which include the following:

(i) Integer arithmetic constraints on the data values

in the input word, e.g., two positions 𝑖 < 𝑗 in the

word 𝑤 = 𝑤1 · · ·𝑤𝑛 satisfy data(𝑤𝑖 ) > data(𝑤 𝑗 ),
data(𝑤𝑖 ) ≥ 100 and data(𝑤 𝑗 ) = 0 mod 2.

(ii) Letter counting and length, e.g., accept only words

whose numbers of 𝑎s and 𝑏s coincide.

(iii) Data counting, e.g., every data value occurs at most

once in the input word.

(iv) Aggregation, e.g., the 𝑘-th largest (or most frequent)

data value is even.

Existing models supporting arithmetic reasoning usually

permit one but not other types of arithmetic reasoning. In

practice, we are often interested in combining two such types

of reasoning, as explicated in Example 1.1 and Example 1.2.

https://orcid.org/0000-0003-0114-2257
https://orcid.org/1234-5678-9012


Figueira and Lin

Example 1.1. We have a daily log file containing a se-

quence of events of the form (𝑎, 𝑖), where 𝑖 is the user ID and

𝑎 ∈ {−1, +1} denoting that a dollar has been either spent (−1)

or earned (+1). Suppose that we want to ensure that each

person earns at least as much as he spends. Such a property

combines (ii) and (iii), and is to the best of our knowledge

not expressible in any existing model with decidable satisfia-

bility/emptiness on data words.

Example 1.2. We have a log file contining a sequence of

pairs of the form (𝑖𝑑, ℎ𝑒𝑖𝑔ℎ𝑡) ∈ N2
, where 𝑖𝑑 is an id of a

person in a group and height the integer round-off of the

height of the person. For example, wewant to check that each

𝑖𝑑 appears exactly once and that the median of the heights

in the sequence is between 170-180. This property makes

use of (i), (ii), and (iv) and, to the best of our knowledge, is

not expressible in existing decidable models.

State-of-the-art. As we mentioned, most existing models

for reasoning over data words do not support arithmetic

reasoning over numeric data domains. For example, guards

over linear arithmetic (i.e. (i) above) are not allowed in mod-

els like two-variable logics FO
2 (<, +1,∼) and data automata

[5, 6]; this is FO
2
over data words with the order (<), suc-

cessor (+1) and equal data-value (∼) binary relations. Here,

one can talk about two positions 𝑖 < 𝑗 in the input word

having the same data value 𝑑𝑎𝑡𝑎(𝑖) = 𝑑𝑎𝑡𝑎( 𝑗), but for ex-
ample not 𝑑𝑎𝑡𝑎(𝑖) < 𝑑𝑎𝑡𝑎( 𝑗). This limitation is partially

lifted by Schwentick and Zeume [41], in that two data val-

ues can now be checked for inequality in their logic (e.g.

𝑑𝑎𝑡𝑎(𝑖) < 𝑑𝑎𝑡𝑎( 𝑗)), at the expense of disallowing the suc-

cessor relation +1 over positions in the input word (e.g. one

cannot say now that 𝑗 = 𝑖 + 1, which can be done in [6]). The

strengths of these formalisms lie in data counting, e.g., every

datum occurs at most once in the word, or an even number

of times; the latter can be done in data automata, but not in

FO
2
.

Relaxing the ability (iii) to perform data counting, more

models can come into consideration. Array Property Frag-

ment (APF) [9, 28] supports a full integer linear arithmetic

reasoning on the array indices as well as the elements (i.e.

(i)). In an APF formula, universal quantifiers are restricted,

so as to allow decidability of satisfiability. APF can express,

for instance, that an array is ordered. Array Folds Logic

(AFL) [12] addresses the limitations of APF in performing

length reasoning and aggregation (i.e. (iv)) at the expense

of disallowing universal quantification. Unlike APF, how-

ever, AFL cannot express properties like an array is ordered.

We also mention the model of nondeterministic looping word
automata with arithmetic [19], which input 𝜔-words and

consider the theory of rational linear arithmetic. If one con-

siders instead finite words and the theory of integer linear

arithmetic, this model is strictly subsumed by AFL. Another

noteworthy model is that of Symbolic Register Automata

(SRA), which are an extension of symbolic automata [14] by

registers that can be checked for equality. Such a model is a

one-way automata model allowing Presburger guards on the

currently seen data value, and can for example express that

all seen data are even, and that two data in every two con-

secutive positions are different (which is not expressible in

AFL). We finally mention the register automata model of [10]

over rational linear arithmetic (inspired by the streaming

transducer model in [3]), extending the original model [24]

of Kaminski and Francez. Here, the registers are separated

into control registers (on which guards comprising order

comparisons can be applied) and data registers (allowing

general arithmetic operations). The model supports rational

arithmetic operations (i) and aggregation (iv), but not data

counting (iii).

In summary, existing logic and automata models on data

words still have limited support of arithmetic reasoning.

In particular, models that support data counting (e.g. two-

variable data logic and data automata [5, 6, 41]) typically

do not permit arithmetics on numeric data domain, letter

counting and length reasoning, and aggregation. Our goal is

to identify a model that supports these four features, while

admitting decidable emptiness with elementary complexity

(unlike the case of FO
2 (<, +1,∼) and data automata) and in-

teresting potential applications in databases and verification.

Contributions. We propose in this paper Parametric

Semilinear Data Logic (pSDL), which is an extension of Lin-

ear Temporal Logic (LTL) for reasoning about data words

with numeric data (i.e. the data domain is the set of integers).

Aiming to address the four types of arithmetic reasoning

(i)–(iv), we extend the standard LTL with four features: (a)

Presburger formulas, which serve two purposes, namely to

check the data value located at a certain position, as well

as to perform letter/data counting and length reasoning, (b)

parameters (a form of read-only variables), which can be

used in the Presburger formulas, (c) additional modalities

of the form ⟨=⟩𝛽 (resp. ⟨≠⟩𝛽 ) with ⟨=⟩𝛽 (𝑦1,...,𝑦𝑛 ) (𝜑1, . . . , 𝜑𝑛)
(resp. ⟨≠⟩𝛽 (𝑦1,...,𝑦𝑛 ) (𝜑1, . . . , 𝜑𝑛)) carrying the meaning that

one can jump to precisely 𝑦𝑖 different positions (other than

the current position) of the same data value satisfying 𝜑𝑖
(resp. different data value to the current position), where

the integer linear arithmetic constraint 𝛽 (𝑦1, . . . , 𝑦𝑛) holds.
The resulting logic strictly extends LTL and the modal logic

fragment of FO
2 (<, +1,∼) (essentially, an extension of unary

temporal logic [18] with the ⟨=⟩ and ⟨≠⟩ modalities). More

concretely, pSDL can express the property in Example 1.1.

Moreover, in the process of proving decidability for pSDL

satisfiability, we introduce the automata counterpart called

Parametric Semilinear Data Automata (pSDA), whose expres-

sivity strictly subsumes pSDL, as well as Parikh automata

[25], symbolic automata [14], and nondeterministic looping

word automata with integer linear arithmetic [19].

The following is the main result of the paper:



Reasoning on Data Words over Numeric Domains

Theorem 1.3. Satisfiability for pSDL is in 2-NEXP and is
NEXP-hard. Satisfiability for the fragment SDLMNF of pSDL
without parameters and linear arithmetic constraints on data
values in minterm normal form is NEXP-complete.

Note that k-NEXP means “𝑘-fold nondeterministic expo-

nential time”. The decidability and the complexity results go

through a translation to pSDA, whose decidability and com-

plexity of emptiness we also determine in this paper. Here,

SDL denotes the fragment of pSDL without parameters. The

restriction to minterm normal form (MNF) is one that is often

applied in the literature of symbolic automata [14] — which

enforces constraints on data values to be the same if they in-

tersect — and does not decrease the expressivity of the model.

For example, the constraints 𝑝 (𝑥) := 𝑥 > 7 and 𝑞(𝑥) := 𝑥 ≡ 3

(mod 4) have common solutions, but they can be turned into

four constraints in MNF of the form (¬)𝑝 (𝑥) ∧ (¬)𝑞(𝑥). Our
theorem also implies that the aforementioned modal logic

fragment of FO
2 (<, +1,∼) is decidable in elementary time

(more precisely, in NEXP), unlike the case of FO
2 (<, +1,∼).

This is the modal logic on data words having the successor,

predecessor, future, and past binary relations as modalities,

as well as the “equal data value” and the “distinct data value”

relations. As an aside, our proofs establish interesting connec-

tions to Presburger Arithmetic with star operations [23, 36]

and unary counting quantifiers [40].

Our logic pSDL has NP-complete membership (since sat-

isfiability of quantifier-free Presburger formulas can be re-

duced to it), though it becomes solvable in polynomial-time

when we restrict to SDL. We believe that these complexity

classes could still allow efficient query evaluation (e.g. on

our log file examples) with the help of SMT-solvers.

Last but not least, our results can be lifted to the data

domain Z𝑘 and N𝑘 using a standard “flattening trick”, e.g.,

(𝑎, 7, 8) (𝑏, 7, 9) (𝑎, 3, 100) over the alphabet A = {𝑎, 𝑏} can
be mapped to (𝑎1, 7) (𝑎2, 8), (𝑏1, 7) (𝑏2, 9) (𝑎1, 3) (𝑎2, 100) over
the alphabet A′ = {𝑎1, 𝑎2, 𝑏1, 𝑏2}. This allows us to encode

the property in Example 1.2. More generally, this allows

us to reason about a sequence of events with applications

(e.g. querying/static analysis over a time series data), and

verifying invariants of array-manipulating programs.

Organization. We provide a more detailed exposition of

SDL through examples and potential applications in Section

2. We fix notation and basic terminologies in Section 3. For

readability, we start with the simpler fragment, i.e., SDL with

1-ary modalities, i.e., ⟨=⟩𝛽 (𝑦) and ⟨≠⟩𝛽 (𝑦) with |𝑦 | = 1. We

define this logic in Section 4, provide the automata counter-

part (called SDA), for which decidability and complexity of

nonemptiness are proven in Section 5. Translation from SDL

to SDA is in Section 6. We then provide the extensions to

the general case — with parameters, and 𝑘-ary modalities —

in Section 7. We conclude in Section 8.

2 pSDL: examples and applications

We provide here an overview of our logic pSDL by means of

examples, and discuss potential applications thereof. In the

sequel, we work with the data domain N of natural numbers,

but our results easily extend to the data domain Z of all

integers.

Querying log files. We now discuss Example 1.1 and Ex-

ample 1.2. We first show how to express the property in

Example 1.1. This example can already be done in SDL with

2-ary modalities. In particular, the formula expressing it is

G(−1 → ⟨=⟩𝑦2>𝑦1
(−1, +1)) .

Intuitively, the formula says that it is globally the case that

if a user (say with a user ID 𝑖𝑑) spends $1 (i.e. -1) at a par-

ticular time point on the day, then the user earns $ 𝑦2 on

that day, which is at least the total spending (i.e. $ 𝑦1 + 1).

In particular, 𝑦2 here counts the number of occurrences of

positions labeled by (+1, 𝑖𝑑), while 𝑦1 counts the number of

positions (other than the current position, which is labeled

by (−1, 𝑖𝑑)) labeled by (−1, 𝑖𝑑). The above formula is in fact

in SDLMNF because no parameters are used and that no arith-

metic constraints on the current data values are applied.

We now proceed to the property in Example 1.2, which is

a simple reasoning over a relational table. For simplicity, we

will assume that only one person has the median height; this

is easily extendable to the case when there are more persons

with the median height, but will make the formula messier.

Using the flattening trick, we consider the finite alphabet

A = {1, 2} indicating the first/second arguments in the tuple

(𝑖𝑑, ℎ𝑒𝑖𝑔ℎ𝑡). Thus, we ensure that the input word is of the

form ((1, ?), (2, ?))∗, where ? can indicate any number. This

can be enforced easily in LTL, e.g.,G((1 → X2) ∧ (2∧X⊤ →
X1)). Next, we enforce that each ID occurs uniquely in the

sequence. This can be enforced by the formula

G(1 → ¬ ⟨=⟩𝑦≥1 1)
which says that globally one cannot jump to another tu-

ple whose first argument has the same ID as the current

one. Indeed, when parameterized with 𝑦 ≥ 1, the construct

⟨=⟩𝑦≥1𝜓 can be regarded as the modality “jump to a position

with the same data value satisfying 𝜓”. Finally, we use the

parameter 𝑝𝑚𝑒𝑑 to determine the median

F(2∧170 ≤ 𝑥 = 𝑝𝑚𝑒𝑑 ≤ 180∧⟨≠⟩𝑦1=𝑦2
(𝑥 < 𝑝𝑚𝑒𝑑 , 𝑥 > 𝑝𝑚𝑒𝑑 )) .

The formula first finds the second argument of a tuple in the

table. Here, 𝑥 denotes the current data value that is “saved”

into 𝑝𝑚𝑒𝑑 . [In the sequel, 𝑥 is mostly used to denote the cur-

rent data value.] This is required since our modality “forgets”

the current data value, which has to then be alleviated by

the use of parameters. The final conjunct simply says that

there are the same number 𝑦1 = 𝑦2 of people who are shorter

than the person with the median height and those who are

taller than the person with the median height. Observe that

linear arithmetic constraints are used for two purposes in



Figueira and Lin

the above formula: as counting constraints (e.g. 𝑦1 = 𝑦2), as

well as for limiting the values that certain locations in the

input word can take (e.g. 𝑥 < 𝑝𝑚𝑒𝑑 ).

We show that the first query above can be checked in

polynomial-time. The second query, on the other hand, can

be written in pSDL, whose membership problem is NP-

complete (cf. Theorem 7.3). We leave it for future work

to determine whether SMT-solvers could be used to effec-

tively perform such a query evaluation for pSDL. On the side

of static analysis, Theorem 1.3 implies that vacuity of our

queries can be automatically checked.

Array-manipulating programs. We now show a simple

application of pSDL for verifying that the bubble sort pre-

serves the invariant 𝐼𝑛𝑣 that “every value occurs precisely

once”. We will model the bubble sort algorithm as a repeated

nondeterministic application of swapping the element 𝑥𝑖 at

position 𝑖 and the element 𝑥 𝑗 at position 𝑗 such that 𝑖 < 𝑗

and 𝑥𝑖 > 𝑥 𝑗 . To treat this more formally, we need to model a

transduction 𝑇 for this swap relation.

Wemodel𝑇 as the data language over the boosted alphabet

A = {𝑎, 𝑏, 𝑐} containing all words 𝑤 obtained by replacing

the 𝑖th position (𝑎, 𝑑𝑖 ) (resp. 𝑗th position (𝑎, 𝑑 𝑗 )) in the data

word (𝑎, 𝑑1) · · · (𝑎, 𝑑𝑛) by (𝑏, 𝑑𝑖 ) (𝑐, 𝑑 𝑗 ) (resp. (𝑏, 𝑑 𝑗 ) (𝑐, 𝑑𝑖 )),
for some 𝑖 < 𝑗 and 𝑑𝑖 > 𝑑 𝑗 . Observe that the subsequence𝑤1

of𝑤 whose first components are 𝑎 or 𝑏 represents the initial

array content, while the subsequence 𝑤2 of 𝑤 whose first

components are 𝑎 or 𝑐 represents the result of applying 𝑇 .

Example 2.1. Suppose 𝑇 is to swap the 2nd and 4th ele-

ments in the array [4, 7, 1, 2, 0]. We represent this array the

word𝑤 = (𝑎, 4) (𝑏, 7) (𝑐, 2) (𝑎, 1) (𝑏, 2) (𝑐, 7) (𝑎, 0).
Thus, 𝑤1 = (𝑎, 4) (𝑏, 7) (𝑎, 1) (𝑏, 2) (𝑎, 0) gives the original

array, while𝑤2 = (𝑎, 4) (𝑐, 2) (𝑎, 1) (𝑐, 7) (𝑎, 0) represents the
array obtained after applying the swap. □

Note that we can express 𝑇 quite easily in pSDL. First

we express that the projection to the first components is

in 𝑎∗𝑏𝑐𝑎∗𝑏𝑐𝑎∗, which is easily expressible in LTL (and so in

pSDL). The following formula 𝜑 expresses that the swap

takes place:

F(𝑏∧𝑝 = 𝑥∧X((𝑝′ = 𝑥∧𝑝 > 𝑝′)∧F(𝑏∧𝑝′ = 𝑥∧X(𝑝 = 𝑥)))).

Note that 𝑥 is used to record the current data value, while

the parameter 𝑝 (resp. 𝑝′) is used to save 𝑑𝑖 (resp. 𝑑 𝑗 ).

To disprove that 𝐼𝑛𝑣 is an invariant, we need to show that,

there exists an input data word𝑤 such that𝑤1 satisfies 𝐼𝑛𝑣

but𝑤2 satisfies¬𝐼𝑛𝑣 . The following SDL formula𝜓 expresses

this:

G((𝑎∨𝑏) ∧¬ ⟨=⟩𝑦≥1 (𝑎∨𝑏)) ∧¬G((𝑎∨𝑐) ∧¬ ⟨=⟩𝑦≥1 (𝑎∨𝑐)) .

The final formula is 𝜑 ∧𝜓 , which is unsatisfiable since 𝐼𝑛𝑣 is

an invariant under 𝑇 . The decidability of pSDL implies that

this satisfiability can be algorithmically checked.

Other properties. We conclude this section by collecting

a few examples that can be expressed in pSDL. As far as we

are aware, these cannot be expressed in other formalisms

with decidable satisfiability/emptiness problem.

(P1) Each data value occurs at most once in the word

and is an even number.

(P2) Property (P1) and the subset of the positions con-

taining data values divisible by 4 has the same number

of 𝑎’s and 𝑏’s.

(P3) Each data value occurs an even number of times,

and a most frequent data is even.

(P4) Each data value occurs at most once, and the set of

data values forms an interval.

(P5) Each data occurs at most once, and the 𝑘-th biggest

value is the length of the word.

(P6) Each data value occurs the same number of times.

For example, (P3) can be expressed in pSDL as the conjunc-

tion of

G(⟨=⟩1≤𝑦<𝑝∧𝑦≡1 (mod 2) ⊤).

and

F(𝑥 ≡ 0 (mod 2) ∧ ⟨=⟩𝑝−1=𝑦≥0 ⊤)

(Recall that ⟨=⟩ is ‘strict’, in the sense that it only counts

occurrences different from the current position’s.) Note that

the parameter 𝑝 is used as a placeholder for themost frequent

data value in the input word. As another example, assuming

that each data value occurs in the input at most once (which

we saw is expressible in pSDL), (P4) can be expressed as a

conjunction of F(𝑥 = 𝑝𝑚𝑎𝑥 ) ∧ F(𝑥 = 𝑝𝑚𝑖𝑛) and

G(𝑝𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑝𝑚𝑎𝑥 ) ∧ ⟨≠⟩𝑦=𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛
⊤.

Here, we save the maximum and minimum data values into

parameters, and say that there are precisely 𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛 + 1

data values in the input word. Because of uniqueness of data

values in the input word, we are guaranteed to have every

data value between [𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 ] in the input word. Note,

however, that this trick does not apply when we allow each

data value to occur more than once.

3 Preliminaries

Basic notation. Let N = {0, 1, 2, . . . }. We write 𝑘 to de-

note the set {1, . . . , 𝑘}. The set of finite words over a domain

𝐴 is denoted by 𝐴∗
. We will often work with finite words

over the cartesian product of pairwise disjoint alphabets,

e.g., 𝑤 ∈ (𝐴 × 𝐵 ×𝐶)∗. We use letters A, B to denote finite
alphabets. For𝑤 ∈ (A×N)∗, we write data(𝑤) and lab(𝑤) to
denote the projection of𝑤 onto N and A respectively. Given

a word 𝑤 ∈ 𝐴∗
and a set 𝐼 ⊆ {1, . . . , |𝑤 |}, we write 𝑤 [𝐼 ]

to denote the subword of 𝑤 given by the indices in 𝐼 (e.g.,
𝑤 [{1, . . . , |𝑤 |}] = 𝑤,𝑤 [∅] = 𝜀). We write 𝑤 [𝑖] as short for
𝑤 [{𝑖}]. We write |𝑤 | to denote the length of𝑤 .



Reasoning on Data Words over Numeric Domains

Parikh images, semilinear sets, Presburger arithmetic.
The Parikh image of a word𝑤 ∈ A∗

over a finite alphabet

A, is a function Π(𝑤) : A → N assigning to each 𝑎 ∈ A
the number of appearances of 𝑎 in𝑤 . The Parikh image of a

language 𝐿 ⊆ A∗
is Π(𝐿) = {Π(𝑤) : 𝑤 ∈ 𝐿} ⊆ N𝐴.

A linear set is a subset of N𝑘 that can be described as an

arithmetic progression {𝑣0+𝛼1𝑣1+· · ·+𝛼𝑛𝑣𝑛 | 𝛼1, . . . , 𝛼𝑛 ∈ N}
for some 𝑛 ∈ N and 𝑣0, . . . , 𝑣𝑛 ∈ N𝑘 . A semilinear set is a

finite union of linear sets. Linear sets are represented by the

offset 𝑣0 and the generators 𝑣1, . . . , 𝑣𝑛 , where numbers are

represented in binary. Presburger arithmetic refers to first-

order logic in the language of addition (+), inequality (≤),
and modulo 𝑘 (mod 𝑘) operators for every 𝑘 > 1, evaluated

over the natural numbers (this is sometimes called extended
Presburger arithmetic). For example, ∃𝑥 (𝑥 ≥ 𝑦+𝑦)∧ ((𝑦+𝑥)
mod 19 = 𝑦) is a Presburger formula with one free variable.

Each Presburger formula 𝜑 (𝑥1, . . . , 𝑥𝑘 ) with 𝑘 free variables

denotes a set [[𝜑]] def

= {(𝑛1, . . . , 𝑛𝑘 ) ∈ N𝑘 : (𝑛1, . . . , 𝑛𝑘 ) |= 𝜑}.
It is well-known that semilinear sets correspond precisely

to Presburger arithmetic [20] and to Parikh images of con-

text free (or regular) languages by Parikh’s Theorem [34].

A quantifier-free Presburger formula is any Presburger

formulawith no quantifiers. Presburger formulas admit quan-

tifier elimination [22, 37]: for every Presburger formula there

exists an equivalent quantifier-free formula. An existential

formula is a Presburger formula of the form ∃𝑥1, . . . , 𝑥𝑛𝜑 ,

where 𝜑 is quantifier-free.

We extend now Presburger Arithmetic with the star opera-
tor

∗
. For any formula𝜑 (𝑥1, . . . , 𝑥𝑛) and𝑚 ≥ 0, we permit for-

mulas 𝜑≤𝑚
and 𝜑∗

with semantics [[𝜑≤𝑚]] := {𝑡1 + · · · + 𝑡𝑚′ :

𝑚′ ≤ 𝑚 and 𝑡𝑖 |= 𝜑 for every 𝑖} ⊆ N𝑛 (or ∅ if 𝑚 = 0), and

[[𝜑∗]] :=
⋃

𝑚≥0
[[𝜑≤𝑚]]. We define, in an analogous way, sets

𝑆∗ and 𝑆≤𝑚 for any set 𝑆 ⊆ N𝑛 . It is known that, for every

existential Presburger formula 𝜑 , 𝜑∗
is also expressible by an

existential Presburger arithmetic formula of at most expo-

nential size [36], and hence that 𝑆∗ is semilinear assuming 𝑆

is too. Observe that 𝜑≤𝑚
can be expressed as follows:

𝜑≤𝑚(𝑥) = ∃𝑦 𝜓 ∗ (𝑥𝑦)∧𝑦 ≤ 𝑚, where𝜓 (𝑥𝑦) = 𝜑 (𝑥) ∧ 𝑦 = 1.

(★)

Note that variable 𝑦 is used to ‘count’ the number of ap-

plications of𝜓 ∗
. Observe that in the translation above, the

resulting formula is of size logarithmic in𝑚. Piskac and Kun-

cak [36] have shown that existential Presburger formulas

with star is NP-complete, so long as they are of star-height 1

(i.e. no nesting of the star operator is allowed). As recently

shown in [23], this NP upper bound can be generalized to

any fixed star-height.

Complexity classes We use standard notations for com-

plexity classes [27], including NP, PSPACE, 𝑘-NEXP, #P, PP,

P
#P
, and NP

NP
. For example, 2-NEXP is the class of problems

solvable by a nondeterministic Turing machine in double

exponential time. The class #P is the class of counting prob-

lems, whose solutions correspond to the number of accepting

paths of a nondeterministic polynomial-time Turingmachine.

Some of these classes have also oracle access. For example,

P
#P = P

PP
(e.g. see [43]) corresponds to the class of problems

solvable in polynomial time with access to a #P oracle. By

Toda’s theorem ([42], see also [27]), P
#P

contains the entire

polynomial hierarchy (PH). The class NP
NP

corresponds to

the second-level of PH. Finally, we use the class P
NP[log]

[46]

of problems solvable in polynomial-time with logarithmi-

cally many calls to an NP oracle. It is known that P
NP[log]

contains the entire boolean hierarchy, which in turn contains

NP, co-NP, DP, etc.

4 Semilinear Data Logic

We now formally define Semilinear Data Logic (SDL). For

readability, we disallow parameters and restrict to 1-ary

modalities. This will be generalized in Section 7. SDL has an

LTL-navigational flavor, featuring common modalities such

as Next, Future, Until, Since, etc. On top of that, it has two

kinds of extra modalities. One modality ⟨=⟩𝛽 𝜓 which allows

to state that 𝛽 satisfies 𝑛, for 𝑛 the number of positions 𝑗

different from the current one with the same data value and

a certain property 𝜓 . And another modality ⟨≠⟩𝛽 𝜓 which

works similarly but for positions with different data values.
We use quantifier-free Presburger formulas for testing for

such properties 𝛽 . Further, we allow Presburger guards on

data values.

The logic can express the following properties:

• “for every 𝑎-position there is a 𝑏-position with the

same value”,

• “there are no two 𝑎-positions with the same value”, or

• “there are no two consecutive positions with the same

value”.

The first two properties above can be expressed with previ-

ously studied logics such as FO
2 (<,∼), and the last one with

FO
2 (+1, <,∼) logics of [6], using register automata [24] or

freeze-LTL [16]. Further, using the linear arithmetic power,

we can ‘count’ the number of positions with the same data

value as the current one. One can then express properties

like “for every 𝑎-position with an even data value there is

an odd number of 𝑏-positions with the same value”.

Definition. The syntax of Semilinear Data Logic (SDL)

over words𝑤 ∈ (A×N)∗ is given by the following grammar:

𝜑 F 𝑎 | 𝛼 | 𝜑 ∧ 𝜑 | ¬𝜑 | 𝜑 U 𝜑 | 𝜑 S 𝜑 | ⟨=⟩𝛽 𝜑 | ⟨≠⟩𝛽 𝜑,
where 𝑎 ∈ A, and 𝛼, 𝛽 are quantifier-free Presburger formu-

las with one free variable 𝑥 . We call 𝑎 and 𝛼 base formulas

of the logic since they correspond to leaves in the grammar

derivations. As usual, we write⊥ as short for 𝑎∧¬𝑎 for some

𝑎 ∈ A; ⊤ for ¬⊥; and 𝜑 ∨𝜓 for ¬(¬𝜑 ∧ ¬𝜓 ).
For base formulas, we define the satisfaction relation on

a word 𝑤 ∈ (A × N)∗ as 𝑤, 𝑖 |= 𝛼 if 𝑧 |= 𝛼 , where 𝑧 =



Figueira and Lin

data(𝑤 [𝑖]); and𝑤, 𝑖 |= 𝑎 if𝑎 = lab(𝑤 [𝑖]). TheU, Smodalities

have the expected LTL semantics, where we define them as

‘strict’ modalities: 𝑤, 𝑖 |= 𝜑 U𝜓 (resp. 𝑤, 𝑗 |= 𝜑 S𝜓 ) if there
is 𝑗 > 𝑖 such that 𝑤, 𝑗 |= 𝜓 and for every 𝑖 < ℓ < 𝑗 we

have𝑤, ℓ |= 𝜑 . As it is customary, we use the standard LTL

modalities as shorthands: F𝜑 def

= ⊤U𝜑 , X𝜑 def

= ⊥U𝜑 , G𝜑 def

=

¬F¬𝜑 , F−1𝜑
def

= ⊤S𝜑 , X−1𝜑
def

= ⊥S𝜑 ,G−1𝜑
def

= ¬F−1¬𝜑 . The
remaining modalities are the key constructs for testing for

data values. Given a word 𝑤 ∈ (A × N)∗, for any position

1 ≤ 𝑖 ≤ |𝑤 |, we have 𝑤, 𝑖 |= ⟨=⟩𝛽 𝜑 (resp. 𝑤, 𝑖 |= ⟨≠⟩𝛽 𝜑)
if the number 𝑛 ∈ N of positions 𝑗 ∈ {1, . . . , |𝑤 |} distinct
from 𝑖 such that (i) 𝑤, 𝑗 |= 𝜑 , (ii) data(𝑤) [ 𝑗] = data(𝑤) [𝑖]
(resp. (i)𝑤, 𝑗 |= 𝜑 and (ii) data(𝑤) [ 𝑗] ≠ data(𝑤) [𝑖]) is such
that 𝑛 |= 𝛽 . Analogously,𝑤, 𝑖 |= ⟨≠⟩𝛽 𝜑 if the number 𝑛 ∈ N
of positions 𝑗 ∈ {1, . . . , |𝑤 |} distinct from 𝑖 such that (i)

𝑤, 𝑗 |= 𝜑 and (ii) data(𝑤) [ 𝑗] ≠ data(𝑤) [𝑖] is such that 𝑛 |= 𝛽 .

Observe that we have opted for a ‘strict’ version of the

⟨=⟩ modality, in which we count positions different from the

current one, to be in line with the semantics ofU and S. How-
ever, a non-strict version ⟨⟨=⟩⟩ of the modality is definable

by ⟨⟨=⟩⟩𝛽 (𝑦) (𝜓 ) def

= (¬𝜓 ∧ ⟨=⟩𝛽 (𝑦) (𝜓 )) ∨ (𝜓 ∧ ⟨=⟩𝛽 (𝑦+1) (𝜓 )).

Remark. Notice that data modalities are closed under tak-
ing dual, in the sense: ¬ ⟨=⟩𝛽 𝜓 ≡ ⟨=⟩¬𝛽 𝜓 . Observe also that,
for 𝛽 (𝑥) := 𝑥 ≥ 1, the formula ⟨=⟩𝛽 𝜓 evaluated at position
𝑖 of 𝑤 tests whether there exists some other position 𝑗 with
the same data value satisfying 𝜓 . In a similar way, we can
test that there are at least ℓ (using 𝛽 (𝑥) := 𝑥 ≥ ℓ) or that
there are an even number of such positions 𝑗 (with 𝛽 (𝑥) := (𝑥
mod 2 = 0)). Indeed, SDL allows for counting properties for
each data equivalence class. This particular restriction in fact
subsumes the modal logic fragment of FO2 (<, +1,∼). As we
shall see later, our logic has the advantage of admitting ele-
mentary complexity, in contrast to that FO2 (<, +1,∼) being
not primitive-recursive. This is because FO2 (<, +1,∼) satisfia-
bility can capture reachability of Petri nets, which is decidable
[26, 29, 31, 32] but not primitive-recursive [11, 30].

Model checking. The model checking problem for this

logic, that is, the problem of given a formula 𝜑 and a word

𝑤 ∈ (A × N)∗ whether𝑤, 1 |= 𝜑 is in polynomial time.

Proposition 4.1. The model checking problem for SDL is in
polynomial time.

Proof. Given𝑤 ∈ (A × N)∗ and 𝜑 ∈ SDL, we use the follow-

ing standard algorithm to mark each position 1 ≤ 𝑖 ≤ |𝑤 |
with the set of subformulas 𝜓 of 𝜑 such that 𝑤, 𝑖 |= 𝜓 . We

proceed by induction: we first treat base formulas, and then

formulas containing already treated subformulas.

For each base subformula 𝜓 of 𝜑 , we can mark each po-

sition 𝑖 such that 𝑤, 𝑖 |= 𝜓 in linear time (remember that

formulas are quantifier-free). For each subformula 𝜓 U 𝜓 ′

or𝜓 S𝜓 ′
we can also mark which positions satisfy the for-

mula in linear time, assuming𝜓,𝜓 ′
have been already treated.

Similarly for ¬𝜓 and 𝜓 ∧𝜓 ′
. For a subformula of the form

⟨=⟩𝛽 𝜓 we proceed as follows: For each data value 𝑑 of𝑤 , we

first count the number 𝑛 of positions of𝑤 having data 𝑑 and

satisfying𝜓 , and we then mark each position 𝑖 with data 𝑑

as satisfying ⟨=⟩𝛽 𝜓 iff

• the position is marked as satisfying𝜓 and 𝑛 − 1 |= 𝛽 ,

or

• the position is marked as not satisfying𝜓 and 𝑛 |= 𝛽 .

Observe that this takes quadratic time. Finally, for a subfor-

mula of the form ⟨≠⟩𝛽 𝜓 we proceed similarly: For each data

value 𝑑 of 𝑤 , we count the number 𝑛 of positions having

data different from 𝑑 and satisfying 𝜓 , and we mark each

position 𝑖 with data 𝑑 as satisfying ⟨≠⟩𝛽 𝜓 iff 𝑛 |= 𝛽 .

Once all the markings are done, we answer ‘yes’ if the

first position is marked with the input formula 𝜑 , and ‘no’

otherwise. □

Satisfiability. Herewe focus on the satisfiability problem,

that is, the problem of, given a formula 𝜑 whether there is

some𝑤 ∈ (A × N)∗ such that𝑤, 1 |= 𝜑 .

We say that the formula 𝜓 of SDL is in minterm nor-

mal form (MNF) if for every pair of distinct Presburger

base subformulas 𝛼, 𝛼 ′
thereof, we have that 𝛼 (𝑥) ∧ 𝛼 ′ (𝑥)

is unsatisfiable.
1
In particular, (𝑥 ≥ 2) ∧ F(𝑥 ≤ 5) is not in

MNF, but ⟨=⟩𝑥≥2 ⊤∧ F ⟨=⟩𝑥≤5 ⊤ is. Let SDLMNF be the set of

formulas in MNF. We will show the following in the next

couple of sections.

Theorem 4.2.

(1) The satisfiability problem for SDL is in 2NEXP.
(2) The satisfiability problem for SDLMNF is NEXP-complete.

The gap between 2NEXP and NEXP is due to the cost

of bringing the logic to minterm normal form. Closing the

gap seems to be a difficult problem, which underlies also

the difficulties that are dealt with in practice by symbolic

automata algorithms [14]. We leave this as an open problem.

The NEXP-hardness proof is relegated to Appendix C, it fol-

lows by a reduction from the exponential tiling problem [44].

We will show the upper bound of items 1 and 2 by reduction

to an automata model ‘SDA’, or Semilinear Data Automata,

that we introduce in the next section. In fact, SDA is consider-

ably more expressive than SDL. The remaining sections will

be dedicated first to defining and showing decidability for

SDA, and then to prove the upper bound for the satisfiability

of SDL, via an effective language-preserving translation to

SDA.

5 Semilinear Data Automata

We present an automata model which we call Semilinear

Data Automata (SDA) and prove some basic properties (e.g.

closures, decidability) about them. We will show in Section

6 that it captures SDL.

1
Note that we do not include formulas 𝛽 of the ⟨=⟩𝛽 and ⟨≠⟩𝛽 modalities.



Reasoning on Data Words over Numeric Domains

5.1 Definition

For a finite alphabet A, we define a language acceptor of

words over A × N. A Semilinear Data Automaton (SDA)

over A is a pair (𝑇, 𝑆) where, for a finite alphabet B, we
have:

(1) 𝑆 is a semilinear set over NB × NB;
(2) 𝑇 ⊆ (A × N)∗ × B∗ is a length-preserving transducer,

defined via a regular language 𝐿𝑇 ⊆ (A × Ψ × B)∗ for a
finite set Ψ of quantifier-free Presburger formulas 𝜑 (𝑥)
with one free variable 𝑥 , and some finite alphabet B. 𝑇
denotes the set of all pairs (𝑤,𝑤 ′) ∈ (A × N)∗ × B∗
such that there exist a sequence𝜓1, . . . ,𝜓ℓ of Ψ-formulas

where:

(i) |𝑤 | = |𝑤 ′ | = ℓ ,

(ii) data(𝑤) [𝑖] |= 𝜓𝑖 for all 𝑖 ∈ ℓ , and

(iii) (lab(𝑤) [1],𝜓1,𝑤
′ [1]) · · · (lab(𝑤) [ℓ],𝜓ℓ ,𝑤

′ [ℓ]) is

in 𝐿𝑇 .

We call B the output alphabet of 𝑇 and Ψ its Pres-

burger alphabet.

A word 𝑤 ∈ (A × N)∗ is accepted by such an SDA if there

exists some𝑤 ′ ∈ B∗ such that

(i) (𝑤,𝑤 ′) ∈ 𝑇 , and

(ii) for every 𝑛 ∈ N, (Π(𝑤 ′ [𝐼𝑛]),Π(𝑤 ′ [𝐼𝑛])) ∈ 𝑆 ,

where 𝐼𝑛 = {1 ≤ 𝑗 ≤ |𝑤 | : data(𝑤) [ 𝑗] = 𝑛} and 𝐼𝑛 =

{1, . . . , |𝑤 |} \ 𝐼𝑛 .
Henceforth, we assume that semilinear sets 𝑆 ⊆ NB ×

N𝐵
as above are represented as quantifier-free Presburger

formulas, using variables 𝑥=
𝑏
for each 𝑏 ∈ B for the first B-

components, and variables 𝑥≠
𝑏
for each 𝑏 ∈ B for the last

B-components. Similarly, regular languages are represented

as non-deterministic finite automata (NFA). We say that an

SDA is in minterm normal form (MNF) if, for every pair

of transitions (𝑝, (𝑎, 𝜑, 𝑏), 𝑞), (𝑝′, (𝑎′, 𝜑 ′, 𝑏′), 𝑞′) of the NFA
representing its transducer 𝑇 , either 𝜑 ∧ 𝜑 ′

is unsatisfiable

or 𝜑 = 𝜑 ′
.

The definition of SDA is inspired by the Data Automata

(DA) model introduced in [6]. However, it is incomparable in

expressive power. On the one hand DAwork with an abstract

infinite domain equipped with an equivalence relation, and

the transducer part of DA is just a letter-to-letter transducer

𝑇 ⊆ A∗ × B∗. It cannot express, e.g., the SDA property “each

datum associatedwith the letter𝑎 is even”. On the other hand,

DA can test for regular properties of equivalence classes (e.g.,
“every class is a word in (𝑎𝑏)∗”) which cannot be expressed

by SDA, whereas SDA can test for semilinear constraints on

the Parikh-image of equivalence classes (e.g., “for every class
there are as many 𝑎’s as 𝑏’s”) which cannot be expressed by

DA. Unfortunately, a generalization of both DA and SDA is

infeasible: in Appendix A, we show that generalizing both

mechanisms (i.e., DA extended with semilinear constraints)

would result in a model with undecidable emptiness problem.

Proposition 5.1.

(1) SDA are effectively closed under union and intersection.
(2) SDA are not closed under complement.
(3) The universality, equivalence and containment problems

for SDA are undecidable.

Proof of item (1). Assume (𝑇1, 𝑆1) and (𝑇2, 𝑆2) are SDA. We

assume without any loss of generality that the output alpha-

bet B1 of 𝑇1 and B2 of 𝑇2 are disjoint. Let B1 = {𝑎1, . . . , 𝑎ℓ1 }
and B2 = {𝑏1, . . . , 𝑏ℓ2 }.
(∪) Assuming 𝑆1 and 𝑆2 are given by Presburger formulas

𝜑𝑆1
(𝑥𝑎1

, . . . , 𝑥𝑎ℓ
1

, 𝑦𝑎1
, . . . , 𝑦𝑎ℓ

1

) and
𝜑𝑆2

(𝑥𝑏1
, . . . , 𝑥𝑏ℓ

2

, 𝑦𝑏1
, . . . , 𝑦𝑏ℓ

2

),
we simply define 𝑆 = [[𝜑𝑆 ]], where 𝜑𝑆 = 𝜑𝑆1

∨ 𝜑𝑆2
. Finally,

let 𝑇 = 𝑇1 ∪𝑇2 —whence having an output alphabet B1
¤∪B2.

It then follows that the language of (𝑇, 𝑆) is the union of the

languages of the two input SDA.

(∩) For intersection, we essentially build the product of

both automata, which here implies considering the cartesian

product of the alphabets (in the same way as intersection of

DFA implies considering the cartesian product of the states).

This time we define 𝑆 as a set over NB1×B2 × NB1×B2
. As-

suming 𝑆1, 𝑆2 are given by formulas 𝜑𝑆1
, 𝜑𝑆2

as before, we

define 𝑆 as 𝜑𝑆 ({𝑥𝑎𝑖 ,𝑏 𝑗
, 𝑦𝑎𝑖 ,𝑏 𝑗

}𝑖∈ℓ1, 𝑗∈ℓ2 ) = 𝜑1 ∧ 𝜑2, where

𝜑𝛼 = 𝜑𝑆𝛼 (𝑡𝑥𝑎1

, . . . , 𝑡𝑥𝑎ℓ𝛼
, 𝑡

𝑦
𝑎1
, . . . , 𝑡

𝑦
𝑎ℓ𝛼

),

for 𝛼 ∈ {1, 2}, 𝑡𝑥𝑎𝑖 =
∑

𝑗∈ℓ3−𝛼 𝑥𝑎𝑖 ,𝑏 𝑗
, 𝑡

𝑦
𝑎𝑖 =

∑
𝑗∈ℓ3−𝛼 𝑦𝑎𝑖 ,𝑏 𝑗

for

every 𝑖 ∈ ℓ𝛼 . We finally define 𝑇 = 𝑇1 ×𝑇2, that is, given 𝑤

it outputs 𝑢 ∈ (B1 × B2)∗ iff (𝑤,𝑢B1
) ∈ 𝑇1 and (𝑤,𝑢B2

) ∈ 𝑇2.

We then have that (𝑇, 𝑆) denotes the intersection of the

languages of the two SDA. □

Proof of items (2) and (3). It is easy to see that SDA is effec-

tively equivalent in expressive power to Parikh automata

[25] when disregarding the numeric domain N. Since the lat-
ter has an undecidable universality problem, it follows that

the universality problem for SDA is also undecidable. The

undecidability for the equivalence and containment prob-

lems follow thus as corollaries. Analogously, the fact that

SDA are not closed under complement can be seen also as

a consequence of Parikh automata not being closed under

complement. □

5.2 The Emptiness Problem for SDA

Theorem 5.2. The emptiness problem for
(1) . . .SDA is decidable in NEXP.
(2) . . .SDA in minterm normal form is in P

#P and P
NP[log]-

hard.
(3) . . .SDA in minterm normal form whose transducers use no

modular predicates is NP-complete.

We will first show decidability, and then explain how the

bounds follow from the proof.

Lemma 5.3. The emptiness problem for SDA is decidable.



Figueira and Lin

Proof. Let A = (𝑇, 𝑆) be a SDA. Let Φ be the Presburger

alphabet of 𝑇 . For 𝑃 ⊆ Φ, we say that 𝑥 ∈ N has profile 𝑃 if

it satisfies the formula 𝜋𝑃 (𝑥) def

=
∧

𝜓 ∈𝑃 𝜓 (𝑥)∧
∧

𝜓 ∈Φ\𝑃 ¬𝜓 (𝑥).
Let P∞ be the set of profiles 𝑃 such that | [[𝜋𝑃 ]] | = ∞ and

let P<∞ be the remaining ones. For 𝑃 ∈ P<∞, let 𝑛𝑃 be the

number of 𝑥 ∈ N with profile 𝑃 . Observe that

𝑛𝑃 = | [[𝜋𝑃 ]] |. (†)
Consider 𝑇 seen as a regular language over A × Φ × B. By
Parikh’s Theorem [35], its Parikh image is semilinear, and

an existential Presburger formula 𝜑𝑇 (𝑥) representing it can

be produced, even in linear time [45]. Assume that 𝑥 (i.e., the
free variables of 𝜑𝑇 (𝑥)) has a variable 𝑥𝑎,𝜑,𝑏 for every 𝑎 ∈
A, 𝑏 ∈ B and 𝜑 ∈ Φ, representing the number of appearances

of (𝑎, 𝜑, 𝑏) ∈ A × Φ × B in the word; and let us assume

B = {𝑏1, . . . , 𝑏𝑚}.
We now need to verify whether a given satisfying valua-

tion for 𝑥 in 𝜑𝑇 is such that one can produce a word in the

language ofA. For this, we will need to first guess how each

number denoted by the 𝑥𝑎,𝜑,𝑏 variables is distributed across

profiles. Then we have to check, separately for each profile

𝑃 , that the guessed number of elements with profile 𝑃 is in

agreement with the bound 𝑛𝑃 as defined above. Concretely,

for a valuation of 𝑥 , consider the property 𝜇∼ stating that

(1) there exists a number 𝑥𝑃
𝑎,𝜑,𝑏

∈ N for every possible

𝑎 ∈ A, 𝑏 ∈ B, profile 𝑃 , and 𝜑 ∈ 𝑃 , such that 𝑥𝑎,𝜑,𝑏 =∑
𝑃∋𝜑 𝑥

𝑃
𝑎,𝜑,𝑏

, and

(2) letting 𝑡𝑖 =
∑

𝜑∈Φ,𝑎∈A 𝑥𝑎,𝜑,𝑏𝑖 (𝑖 ∈ 𝑚) and 𝑆 ⊆ NB be

{(𝑥1, . . . , 𝑥𝑚) : (𝑥1, . . . , 𝑥𝑚, (𝑡1 −𝑥1), . . . , (𝑡𝑚 −𝑥𝑚)) ∈ 𝑆},
(i) for every 𝑃 ∈ P∞, we have©­«

∑︁
𝑎∈A,𝜑∈𝑃

𝑥𝑃
𝑎,𝜑,𝑏1

, . . . ,
∑︁

𝑎∈A,𝜑∈𝑃
𝑥𝑃
𝑎,𝜑,𝑏𝑚

ª®¬ ∈ 𝑆∗; and

(ii) for every 𝑃 ∈ P<∞, we have©­«
∑︁

𝑎∈A,𝜑∈𝑃
𝑥𝑃
𝑎,𝜑,𝑏1

, . . . ,
∑︁

𝑎∈A,𝜑∈𝑃
𝑥𝑃
𝑎,𝜑,𝑏𝑚

ª®¬ ∈ 𝑆≤𝑛𝑃 .

The idea is that (1) checks that the partitioning of each 𝑥𝑎,𝜑,𝑏

into profiles 𝑥𝑃
𝑎,𝜑,𝑏

is consistent, and (2) guarantees that the

numbers are such that: for those profiles for which we can

generate as many data tuples as we want, the sum of vectors

belongs to 𝑆∗, and for profiles containing only 𝑛𝑃 -many data

tuples, the sum of vectors belongs to 𝑆≤𝑛𝑃
. Formally, we

obtain the following.

Claim 1. There exists 𝑥 ∈ NA×Φ×B such that 𝑥 |= 𝜑𝑇 and
𝑥 |= 𝜇∼ if, and only if, A has a non-empty language.

(⇐) We first show the right-to-left direction of Claim 1.

Assume 𝑤 ∈ (A × N)∗ is in the language of A, let 𝑤 ′ ∈
(A × Φ × B)∗ be the witnessing word of the transducer.

We show that 𝑥 = Π(𝑤 ′) satisfies both properties. The

fact that 𝑥 |= 𝜑𝑇 goes by definition. For the satisfaction

of 𝜇∼, assume 𝑥𝑃
𝑎,𝜑,𝑏

is the number of positions 𝑖 of 𝑤 ′

such that 𝑤 ′ [𝑖] = (𝑎, 𝜑, 𝑏) and data(𝑤) [𝑖] has profile 𝑃 (i.e.

data(𝑤) [𝑖] |= 𝜋𝑃 ). It follows that it is a partition of 𝑥 satisfy-

ing item (1) of 𝜇∼. We now proceed to show item (2). Let𝑤 ′
B

be the projection of𝑤 ′
onto its B component. For 𝑑 ∈ N, let

𝐼𝑑 = {1 ≤ 𝑖 ≤ |𝑤 | : data(𝑤) [𝑖] = 𝑑} and 𝐼𝑑 = {1, . . . , |𝑤 |}\𝐼𝑑 .
For every 𝑗 ∈ 𝑚 and 𝑑 ∈ N, let 𝑥𝑑𝑗 be the number of indices

𝑖 such that data(𝑤) [𝑖] = 𝑑 and 𝑤 ′
B [𝑖] = 𝑏 𝑗 ; in other words

(𝑥𝑑
1
, . . . , 𝑥𝑑𝑚) = Π(𝑤 ′

B [𝐼𝑑 ]) for every𝑑 . Observe that for every
𝑗 , ∑︁

𝑎∈A,𝜑∈𝑃
𝑥𝑃
𝑎,𝜑,𝑏 𝑗

=
∑︁

𝑑∈N s.t. 𝑑 |=𝜋𝑃

𝑥𝑑𝑗 . (†)

Now, let us fix some 𝑑 ∈ N appearing in 𝑤 , and suppose it

has profile 𝑃 . We show that (𝑥𝑑
1
, . . . , 𝑥𝑑𝑚) ∈ 𝑆 . By definition of

𝑆 , this happens if, and only if, (𝑥𝑑
1
, . . . , 𝑥𝑑𝑚, (𝑡1−𝑥𝑑1 ), . . . , (𝑡𝑚−

𝑥𝑑𝑚)) ∈ 𝑆 , where (𝑡1, . . . , 𝑡𝑚) = Π(𝑤 ′
B). Hence, (𝑡 𝑗 − 𝑥𝑑𝑗 ) is

the number of positions 1 ≤ 𝑖 ≤ |𝑤 | such that 𝑤 ′
B [𝑖] = 𝑏 𝑗

and data(𝑤) [𝑖] ≠ 𝑑 (i.e., the number of 𝑏 𝑗 ’s in 𝑤 ′
B [𝐼𝑑 ]).

In other words, ((𝑡1 − 𝑥𝑑
1
), . . . , (𝑡𝑚 − 𝑥𝑑𝑚)) = Π(𝑤 ′

B [𝐼𝑑 ]).
Since 𝑤 ′

is a witness for non-emptiness of A, it follows

that (Π(𝑤 ′
B [𝐼𝑑 ]),Π(𝑤 ′

B [𝐼𝑑 ])) ∈ 𝑆 , and by the remarks above

(𝑥𝑑
1
, . . . , 𝑥𝑑𝑚) ∈ 𝑆 . In view of (†), we must then have that

©­«
∑︁

𝑎∈A,𝜑∈𝑃
𝑥𝑃
𝑎,𝜑,𝑏1

, . . . ,
∑︁

𝑎∈A,𝜑∈𝑃
𝑥𝑃
𝑎,𝜑,𝑏𝑚

ª®¬ ∈ 𝑆≤𝛼 ,

for some 𝛼 ∈ N which cannot be greater than the number

of elements from N with profile 𝑃 . This shows that both

conditions (2i) and (2ii) must hold true.

(⇒) For the left-to-right direction of Claim 1, suppose 𝜑𝑇 ∧
𝜇∼ has a satisfying assignment 𝑥 ∈ NA×Φ×B. We show how to

build aword𝑤 ∈ (A×N)∗ in the language ofA. Since𝑥 |= 𝜑𝑇
there must be some𝑤 ′ = (𝑐1,𝜓1, 𝑐

′
1
) · · · (𝑐ℓ ,𝜓ℓ , 𝑐

′
ℓ ) ∈ 𝐿𝑇 such

that Π(𝑤 ′) = 𝑥 . Since 𝑥 |= 𝜇∼ each index 1 ≤ 𝑗 ≤ |𝑤 ′ | can
be assigned a profile 𝑃𝑟 𝑗 so that the word restricted to any

fixed profile 𝑃 satisfies

∑
𝑎∈A,𝜑∈𝑃 (𝑥𝑃𝑎,𝜑,𝑏1

, . . . , 𝑥𝑃
𝑎,𝜑,𝑏𝑚

) ∈ 𝑆≤𝛼

for some 𝛼 ∈ N such that 𝛼 ≤ 𝑛𝑃 if | [[𝜋𝑃 ]] | < ∞. For

any such profile 𝑃 , we can then take any 𝛼-many pairwise

distinct elements 𝑑𝑃
1
, . . . , 𝑑𝑃𝛼 ∈ N with profile 𝑃 , and assign

to each index 𝑗 ∈ {1 ≤ 𝑗 ≤ ℓ : 𝑃𝑟 𝑗 = 𝑃} some value

𝑑𝑃𝑖 𝑗 so that the Parikh image restricted to each 𝑑𝑃𝑖 is in 𝑆 .

The final word 𝑤 in the language of A is then any word

𝑤 = (𝑐1, 𝑑1) · · · (𝑐ℓ , 𝑑ℓ ) ∈ (A × N)∗ such that 𝑑 𝑗 = 𝑑
𝑃𝑟 𝑗
𝑖 𝑗

for

every 1 ≤ 𝑗 ≤ ℓ . This concludes the proof of Claim 1.

We finally show that these properties can be expressed in

Presburger arithmetic. Since as already discussed 𝜑𝑇 (𝑥) is
an existential Presburger formula, it only remains to show:

Claim 2. 𝜇∼ (𝑥) is expressible by a Presburger formula.



Reasoning on Data Words over Numeric Domains

Let 𝜒𝑆 be a formula having, besides 𝑥 , some extra free

variables 𝑥1, . . . , 𝑥𝑚 , defined as

𝜒𝑆 (𝑥1, . . . , 𝑥𝑚, 𝑥) def

= (𝑥1, . . . , 𝑥𝑚, (𝑡1−𝑥1), . . . , (𝑡𝑚−𝑥𝑚)) ∈ 𝑆,

where 𝑡𝑖 =
∑

𝜑∈Φ,𝑎∈A 𝑥𝑎,𝜑,𝑏𝑖 for every 𝑖 ∈𝑚. For 𝛼 ∈ {∗} ∪N,
let 𝜑

⟨𝛼 ⟩
𝑆

be the formula expressing that there exist variables𝑦

(one for each 𝑥𝑎,𝜑,𝑏𝑖 ) such that 𝜒≤𝛼
𝑆

(𝑥1, . . . , 𝑥𝑚, 𝑦) holds.2 For
the sake of brevity we will henceforth abuse notation writing

∃cond(𝑃,𝑎,𝜑,𝑏 )𝑥
𝑃
𝑎,𝜑,𝑏

𝜓 to denote ∃𝑥𝑃1

𝑎1,𝜑1,𝑏1

· · · ∃𝑥𝑃𝑧
𝑎𝑧 ,𝜑𝑧 ,𝑏𝑧

𝜓 for all

the triples 𝑃𝑖 , 𝑎𝑖 , 𝜑𝑖 , 𝑏𝑖 satisfying the condition cond. Now we

define 𝜇∼ (𝑥) def

= ∃𝑎∈A,𝑏∈B,𝑃⊆Φ,𝜑∈𝑃 𝑥𝑃
𝑎,𝜑,𝑏

𝐴 ∧ 𝐵 ∧𝐶 , where

𝐴 =
∧
𝑎∈A,
𝜑∈Φ,
𝑏∈B

©­«𝑥𝑎,𝜑,𝑏 =
∑︁
𝑃∋𝜑

𝑥𝑃
𝑎,𝜑,𝑏

ª®¬ ,
𝐵 =

∧
𝑃∈P∞

𝜑
⟨∗⟩
𝑆

©­«
∑︁

𝑎∈A,𝜑∈𝑃
𝑥𝑃
𝑎,𝜑,𝑏1

, . . . ,
∑︁

𝑎∈A,𝜑∈𝑃
𝑥𝑃
𝑎,𝜑,𝑏𝑚

, 𝑥
ª®¬ ,

𝐶 =
∧

𝑃∈P<∞

𝜑
⟨𝑛𝑃 ⟩
𝑆

©­«
∑︁

𝑎∈A,𝜑∈𝑃
𝑥𝑃
𝑎,𝜑,𝑏1

, . . . ,
∑︁

𝑎∈A,𝜑∈𝑃
𝑥𝑃
𝑎,𝜑,𝑏𝑚

, 𝑥
ª®¬ .

It is straightforward to see that 𝜇∼ is an existential Pres-

burger formula expressing properties (1) and (2). Hence, de-

cidability follows from decidability of the satisfiability prob-

lem for Presburger formulas. □

Corollary 5.4. For every SDA recognizable language 𝐿 ⊆
(A × N)∗, we have Π({lab(𝑤) : 𝑤 ∈ 𝐿}) ⊆ NA is semilinear.

As a corollary of the previous proof we obtain the bounds

of Theorem 5.2.

Proof of Theorem 5.2. First observe that, in the proof of

Lemma 5.3, 𝜇∼ uses 𝑆∗ in its definition. As already mentioned

this star operator preserves semilinearity [36], but the equiv-

alent existential Presburger formulas without star may be of

exponential size. However, in [23] it is shown that the satisfi-

ability problem for existential Presburger formulas with star

operators which happen to be of star-height 1 (as is our case)

is decidable in NP. Observe that, in light of the translation (★),

𝑆≤𝑛𝑃
can be written as an existential formula of star-height

1 of size logarithmic in 𝑛𝑃 and polynomial in the formula

expressing 𝑆 . On the other hand, counting the number of

satisfying assignments of an existential Presburger formula

𝜑 is in the counting hierarchy [1], in particular in #P
NP
. This

is because if [[𝜑]] is finite, then any satisfying assignment

for 𝜑 use numbers which are at most exponential [38]; hence

an NP Turing machine can guess an assignment 𝑥 ∈ N𝑘
and accept iff 𝑥 |= 𝜑 , which necessitates a call to an NP pro-

cedure for existential Presburger satisfiability. The number

of accepting runs will then correspond to the number of

satisfying assignments.

2
Recall the definition of ·∗ and ·≤𝑚 of (★).

Proposition 5.5 ([38, 47]). For any quantifier-free formula
𝜑 we have the following bounds. | [[𝜑]] | and ∥ [[𝜑]] ∥∞ are
bounded by some singly exponential function [38].3 Further, if
𝜑 does not use modular predicates, | [[𝜑]] | can be computed in
polynomial time [47].4

In view of Proposition 5.5, observe that we can compute,

in #P, | [[𝜋𝑃 ]] | for every profile 𝑃 . Further, if no formula of the

transducer uses modular predicates, | [[𝜋𝑃 ]] | can be computed

in polynomial time.

Bearing all this in mind, we now proceed to extract the

stated upper bounds.

(1) Let (𝑇, 𝑆) be a SDA.We compute, in exponential time, all

the𝑛𝑃 ’s andwe produce a singly exponential sized existential

formula 𝜑𝑇 ∧ 𝜇∼ of star-height 1, whose satisfiability can be

checked in NEXP (in the size of the automaton).

(2) Let (𝑇, 𝑆) be a SDA in MNF. Observe that in this case

the nonempty profiles are just singleton sets, and hence that

𝜋𝑃 can be equivalently expressed as 𝜋{𝜑 } (𝑥) = 𝜑 (𝑥). In this

case, we can compute in P
#P

the 𝑛𝑃 ’s according to (†). Thus,
the produced formula 𝜑𝑇 ∧𝜇∼ can be written as a polynomial

sized existential formula of star-height 1, which can be tested

in NP. This gives an P
#P

upper bound. The lower bound is

relegated to Appendix B.

(3) As already observed, in this case 𝑛{𝜑 } can be computed

in polynomial time, which was the bottleneck of the previous

case. Thus, we end up with an NP procedure.

NP-hardness follows by an easy reduction form SAT. Given

a Boolean formula 𝜑 in 𝑛 variables 𝑥1, . . . , 𝑥𝑛 we produce

the semilinear set 𝑆 ⊆ NB × NB for B = {𝑏1, . . . , 𝑏𝑛}, as a
quantifier-free formula with free variables {𝑦=𝑖 }𝑖∈𝑛, {𝑦≠𝑖 }𝑖∈𝑛
as the result of replacing each 𝑥𝑖 with 𝑦

=
𝑖 + 𝑦≠

𝑖
> 0 in 𝜑 . We

finally let the transducer 𝑇 be the set of all words (𝑤,𝑤 ′) ⊆
(A × N)∗ × B∗ such that 𝑤 ′ ∈ B |𝑤 |

. It is easy to check that

the resulting SDA (𝑇, 𝑆) is non-empty if, and only if, 𝜑 is

satisfiable. Observe that NP-hardness is independent of using

or not modular predicates in 𝑆 , and of data classes. □

6 Satisfiability of SDL

In order to prove decidability for SDL, we show an effective

translation from the logic to SDA.We focus here on the upper

bounds of items (1) and (2) from Theorem 4.2. The lower

bound of item (2) follows by a reduction from the exponential
tiling problem [44] and is relegated to Appendix C.

For a formula 𝜓 , we write 𝜓¬
to denote 𝜓 ′

if 𝜓 is of the

form ¬𝜓 ′
, or ¬𝜓 otherwise. Given a formula 𝜑 ∈ SDL, let

sub(𝜑) = {𝜓,𝜓¬
: 𝜓 a subformula of 𝜑}. A set 𝑆 ⊆ sub(𝜑) is

amaximally consistent set of 𝜑 on the alphabet A if it is

⊆-maximal with respect to the following properties

3 ∥𝑆 ∥∞ is the maximum value contained in any of the components of an

element of 𝑆 .
4
In fact, [47] shows that the number of solutions of an existential Presburger

formula with a fixed number of variables is polynomial-time computable.



Figueira and Lin

(1) for every𝜓 ∈ sub(𝜑),𝜓 ∈ 𝑆 iff𝜓¬ ∉ 𝑆 ,

(2) for every𝜓,𝜓 ′ ∈ sub(𝜑),𝜓 ∧𝜓 ′ ∈ 𝑆 iff𝜓 ∈ 𝑆 and𝜓 ′ ∈ 𝑆 ,

(3) there is 𝑎 ∈ A s.t. 𝑎 ∈ 𝑆 and for every 𝑏 ∈ A\ {𝑎}, ¬𝑏 ∈ 𝑆 .

Let us write MCS(𝜑) to denote the set of all maximally

consistent sets of 𝜑 (the alphabet being implicit). Two sets

𝑆, 𝑆 ′ ∈ MCS(𝜑) are one-step consistent if they satisfy

(a) 𝜓1 U𝜓2 ∈ 𝑆 iff {𝜓1 U𝜓2,𝜓1} ⊆ 𝑆 ′ or𝜓2 ∈ 𝑆 ′;
(b) 𝜓1 S𝜓2 ∈ 𝑆 ′ iff {𝜓1 S𝜓2,𝜓1} ⊆ 𝑆 or𝜓2 ∈ 𝑆 .

We define an exponential-sized SDA A𝜑 = (𝑇,S), whose
language consists of all data words that satisfy 𝜑 . We de-

fine 𝑇 ⊆ (A × N)∗ × B∗ as a transducer over the output

alphabet B = MCS(𝜑). 𝑇 is defined as the set of all pairs

((𝑎1, 𝑑1) · · · (𝑎𝑛, 𝑑𝑛), 𝑆1 · · · 𝑆𝑛) such that

(i) 𝜑 ∈ 𝑆1;

(ii) for every 1 ≤ 𝑖 < 𝑛 we have that 𝑆𝑖 , 𝑆𝑖+1 are one-step

consistent;

(iii) for every 1 ≤ 𝑖 ≤ 𝑛 we have that 𝑎𝑖 ∈ 𝑆𝑖 ;

(iv) for every 1 ≤ 𝑖 ≤ 𝑛 and Presburger formula 𝛼 ∈ 𝑆𝑖 , we

have 𝑑𝑖 |= 𝛼 .

We define S ⊆ NB ×NB as the set denoted by the quantifier-

free formula with variables {𝑥=,𝑆 }𝑆∈B ∪ {𝑥≠,𝑆 }𝑆∈B consisting
on the conjunction of:

(I) 𝑥=,𝑆 > 0 → 𝛼 ((∑𝑆 ′∈B,𝜓 ∈𝑆 ′ 𝑥=,𝑆 ′ ) − 𝑟 ) for every 𝛼,𝜓, 𝑆

such that ⟨=⟩𝛼 𝜓 ∈ 𝑆 , where 𝑟 = 1 if 𝜓 ∈ 𝑆 or 𝑟 = 0

otherwise;

(II) 𝑥=,𝑆 > 0 → ¬𝛼 ((∑𝑆 ′∈B,𝜓 ∈𝑆 ′ 𝑥=,𝑆 ′ ) − 𝑟 ) for every 𝛼,𝜓, 𝑆
such that ¬ ⟨=⟩𝛼 𝜓 ∈ 𝑆 , where 𝑟 = 1 if 𝜓 ∈ 𝑆 or 𝑟 = 0

otherwise;

(III) 𝑥=,𝑆 > 0 → 𝛼 ((∑𝑆 ′∈B,𝜓 ∈𝑆 ′ 𝑥≠,𝑆 ′ )) for every 𝛼,𝜓, 𝑆 with

⟨≠⟩𝛼 𝜓 ∈ 𝑆 ; and

(IV) 𝑥=,𝑆 > 0 → ¬𝛼 ((∑𝑆 ′∈B,𝜓 ∈𝑆 ′ 𝑥≠,𝑆 ′ )) for every 𝛼,𝜓, 𝑆

with ¬ ⟨≠⟩𝛼 𝜓 ∈ 𝑆 .

Observe that S is a single exponential quantifier-free for-

mula. Therefore A𝜑 is computable in exponential time.

Hence, in the light of Theorem 5.2–(1) we obtain a 2NEXP

upper bound as stated in item (1) of Theorem 4.2. Further, if

𝜑 is in MNF, then A𝜑 is too. Observe that the size of base

formulas in 𝜑 is logarithmic in terms of the size of A𝜑 . This

means that the cardinalities | [[𝜋𝑃 ]] | that need to be com-

puted for every profile 𝑃 (which are singleton since we are

in MNF) are at most polynomial in A𝜑 , and can then be

computed in space logarithmic in A𝜑 . With this in mind,

following the upper bound proof of Theorem 5.2–(2), we

obtain a non-deterministic polynomial time algorithm in the

size of A𝜑 for its non-emptiness. This then yields the NEXP

upper bound of Theorem 4.2–(2).

Lemma 6.1. A word is accepted by A𝜑 if, and only if, it
satisfies 𝜑 .

Proof. (⇐) Suppose first𝑤, 1 |= 𝜑 and let us show that𝑤

is accepted byA𝜑 . Let𝑤
′
be a word of length |𝑤 | whose 𝑖-th

position is labelled with {𝜓 ∈ sub(𝜑) : 𝑤, 𝑖 |= 𝜓 }, for every 𝑖 .

It is easy to verify that (i)𝑤 ′ ∈ B∗, (ii) (𝑤,𝑤 ′) ∈ 𝑇 , and (iii)

(Π(𝑤 ′ [𝐼𝑑 ]),Π(𝑤 ′ [𝐼𝑑 ])) ∈ S for every 𝑑 ∈ N, 𝐼𝑑 = {1 ≤ 𝑖 ≤
|𝑤 | : data(𝑤) [𝑖] = 𝑑}, and 𝐼𝑑 = {1, . . . , |𝑤 |} \ 𝐼𝑑 .
(⇒) Suppose now that𝑤 ∈ (A×N)∗ is accepted byA𝜑 , and

let us show that𝑤, 1 |= 𝜑 . Let𝑤 ′ ∈ B∗ be thewitnessingword
used for the acceptance of 𝑤 . We will show that for every

position 𝑖 and subformula𝜓 :𝜓 ∈ 𝑤 ′ [𝑖] iff𝑤, 𝑖 |= 𝜓 . We show

this by induction on the size of𝜓 . The base case is when𝜓 is

either (a) a letter 𝑎 ∈ Awhich follows by condition (iii) in the

definition of 𝑇 , or (b) a Presburger formula 𝛼 which follows

by condition (iv). Boolean combinations follow by induction

as a direct consequence of the definition of MCS(𝜑).
The Until modality follows by applying the the one-step-

consistency:𝜓 U𝜓 ′ ∈ 𝑤 ′ [𝑖] iff there is some 𝑖′ > 𝑖 such that

𝜓 ′ ∈ 𝑤 ′ [𝑖′] and for every 𝑖 < 𝑗 < 𝑖′ we have𝜓 ∈ 𝑤 ′ [ 𝑗]. The
Since modality follows analogously.

Consider finally a subformula of the form ⟨=⟩𝛼 𝜓 ∈ sub(𝜑),
and let 𝑑 = 𝑤N [𝑖]. By the semilinear constraint S, we have
⟨=⟩𝛼 𝜓 ∈ 𝑤 ′ [𝑖] if, and only if, the number 𝑛 of distinct posi-

tions of𝑤 ′ [𝐼𝑑 ] containing𝜓 is such that 𝑛 |= 𝛼 . By induction,

this happens iff there are𝑛 positions 1 ≤ 𝑖1 < · · · < 𝑖𝑛 ≤ |𝑤 ′ |
such that 𝑤, 𝑖 𝑗 |= 𝜓 for all 𝑗 ∈ {1, . . . , 𝑛}. Hence, ⟨=⟩𝛼 𝜓 ∈
𝑤 ′ [𝑖] iff𝑤, 𝑖 |= ⟨=⟩𝛼 𝜓 . The case of ⟨≠⟩𝛼 𝜓 is analogous. □

Corollary 6.2 (of Lemma 6.1 and Corollary 5.4). The spec-
trum (i.e. the set of sizes of models) of any SDL formula is
semilinear.

7 Extensions

We show in in this section how to extend our results with

parameters and 𝑘-ary modalities.

7.1 Adding parameters

Adding parameters to SDL. We use pSDL to denote the

extension of SDL with parameters. The definition is the same

as before but now all Presburger formulas (base formulas and

formulas used in modalities) may use some extra free vari-

ables 𝑝1, . . . , 𝑝𝑡 which correspond to the parameters. Now the

satisfaction relation𝑤, 𝑖 |=𝜎 𝜑 is defined relative to some pa-

rameter valuation 𝜎 : {𝑝1, . . . , 𝑝𝑡 } → N. For any Presburger

base formula 𝛼 , we define 𝑤, 𝑖 |=𝜎 𝛼 iff 𝑥, 𝜎 |= 𝛼 , where

𝑥 = data(𝑤 [𝑖]). Given a word 𝑤 ∈ (A × N)∗, for any posi-

tion 1 ≤ 𝑖 ≤ |𝑤 |, we have𝑤, 𝑖 |=𝜎 ⟨=⟩𝛽 𝜑 (resp.𝑤, 𝑖 |= ⟨≠⟩𝛽 𝜑)
iff the number 𝑛 ∈ N of positions 1 ≤ 𝑗 ≤ |𝑤 | such that

(i) 𝑤, 𝑗 |=𝜎 𝜑 , (ii) data(𝑤 [ 𝑗]) = data(𝑤 [𝑖]) and (iii) 𝑗 ≠ 𝑖

(resp. (i)𝑤, 𝑗 |= 𝜑 and (ii) data(𝑤 [ 𝑗]) ≠ data(𝑤 [𝑖])) is such
that 𝑛, 𝜎 |= 𝛽 . Finally, 𝑤, 𝑖 |= 𝜑 holds if there exists some 𝜎

such that𝑤, 𝑖 |=𝜎 𝜑 .

Adding parameters to SDA. To derive decidability and

complexity of pSDL, we extend SDA with parameters, which

we call parametric SDA (pSDA). A parametric SDA (pSDA)

with 𝑡 parameters, is a tuple (𝑇, 𝑆) as before, but the formu-

las in the transitions of 𝑇 may also use some parameters



Reasoning on Data Words over Numeric Domains

𝑝1, . . . , 𝑝𝑡 . Now 𝑇 is a regular language over A × Ψ × B,
where Ψ a finite set of quantifier-free Presburger formulas

with free variables 𝑥, 𝑝1, . . . , 𝑝𝑡 , and 𝑆 is a semilinear set over

NB × NB × N{𝑝1,...,𝑝𝑡 }
. Acceptance is defined analogously: A

word𝑤 ∈ (A ×N)∗ is accepted by (𝑇, 𝑆) if for some𝑤 ′ ∈ B∗
and valuation 𝜎 ∈ N{𝑝1,...,𝑝𝑡 }

, we have

(i) (𝑤,𝑤 ′) ∈ 𝑇𝜎 , where 𝑇𝜎 is the transducer without pa-

rameters obtained by replacing each 𝑝𝑖 with 𝜎 (𝑝𝑖 ),
(ii) for every 𝑥 ∈ N, (Π(𝑤 ′ [𝐼𝑥 ]),Π(𝑤 ′ [𝐼𝑥 ]), 𝜎) ∈ 𝑆 .

where 𝐼𝑥 = {1 ≤ 𝑗 ≤ |𝑤 | : data(𝑤 [ 𝑗]) = 𝑥} and 𝐼𝑥 =

{1, . . . , |𝑤 |} \ 𝐼𝑥 .
This model is still closed under union and intersection.

The construction is exactly as in Proposition 5.1 (item (1))

assuming, without any loss of generality, that the parameter

names used by both automata are disjoint.

We show that the decidability proof of Lemma 5.3 can be

adapted to having parameters.

Theorem 7.1. The emptiness problem for pSDA is in NEXP

and NPNP-hard.

Proof. For the upper bound, suppose the pSDA automaton

A = (𝑇, 𝑆) has 𝑡 parameters 𝑝1, . . . , 𝑝𝑡 and 𝑇 is in minterm

normal form (that is, in minterm normal form for every

possible instantiation of the parameters). We follow closely

the proof of Lemma 5.3. The first difference being that now

𝜑𝑇 has some 𝑡 extra free variables 𝑝1, . . . , 𝑝𝑡 . We will need

to adjust 𝜇∼ to take into account the parameter valuations.

Observe that each 𝑛𝑃 may depend on the assignment of

parameters 𝑝1, . . . , 𝑝𝑡 . The crux of the proof will still be to

produce a Presburger formula 𝜑 such that 𝜑 is satisfiable if

and only if A has a non-empty language. But in order to

do this, we need to use two constructs in the logic, which

preserve semilinearity, and which we describe next.

Given a Presburger formula 𝜑 (𝑥) and a fresh variable 𝑦

let 𝜑≤𝑦 (𝑥) be a formula with free variables 𝑥𝑦. Its semantics

is such that 𝜑≤𝑦 (𝑥) is satisfied by a valuation 𝑦 of 𝑦 and 𝑛 of

𝑥 if 𝑛 |= [[𝜑]]≤𝑦̃ where, recall,

𝐶≤𝑦̃ = {𝑥1 + · · · + 𝑥𝑦̃′ : 𝑦′ ≤ 𝑦 and 𝑥𝑖 ∈ 𝐶 for every 𝑖}.

Observe that [[𝜑≤𝑦]] is effectively semilinear, definable

by the same star-height 1 formula of (★): 𝜑≤𝑦 (𝑥) =

∃𝑦′𝜓 ∗ (𝑥𝑦′) ∧ 𝑦′ ≤ 𝑦, where𝜓 (𝑥𝑦′) = 𝜑 (𝑥) ∧ 𝑦′ = 1. It then

follows that 𝜑
⟨𝑦⟩
𝑆

(𝑥) is definable as a star-height 1 existential
formula.

Consider the following unary counting quantifier

∃=𝑥𝑦 𝜓 (𝑦, 𝑝1, . . . , 𝑝𝑡 ) having 𝑥, 𝑝1, . . . , 𝑝𝑡 as free variables,

which expresses that, for a given assignment 𝑝1, . . . , 𝑝𝑡 ∈ N
of 𝑝1, . . . , 𝑝𝑡 and 𝑥 ∈ N of 𝑥 , there are exactly 𝑥 many differ-

ent valuations 𝑦 ∈ N of variable 𝑦 such that (𝑦, 𝑝1, . . . , 𝑝𝑡 ) |=
𝜓 . It was shown in [40] that such a quantifier preserves

semilinearity. Although the complexity was not explicitly

mentioned in the paper, the algorithm of [40] could be eas-

ily adapted to produce an equivalent existential Presburger

formula (without counting quantifiers) in single exponential

time. See Appendix D for more details. Observe that given an

assignment of 𝑝1, . . . , 𝑝𝑡 , the number of equivalence classes

with profile 𝑃 ⊆ Φ is given by the satisfying valuation of 𝑦

in the formula

𝜌𝑃 (𝑦, 𝑝1, . . . , 𝑝𝑡 ) def

= ∃=𝑦𝑥
∧
𝜑∈𝑃

𝜑 (𝑥, 𝑝1, . . . , 𝑝𝑡 ) ∧∧
𝜑∈Φ\𝑃

¬𝜑 (𝑥, 𝑝1, . . . , 𝑝𝑡 ).

Hence, for a given assignment 𝜎 ∈ N{𝑝1,...,𝑝𝑡 }
we have that

there are finitely many distinct equivalence classes with

profile 𝑃 ⊆ Φ if, and only if, 𝜎 |= ∃𝑦 𝜌𝑃 .

We also define the infinite version 𝜌∞
𝑃
of 𝜌𝑃 :

𝜌∞𝑃 (𝑝1, . . . , 𝑝𝑡 ) def

= ∃∞𝑥
∧
𝜑∈𝑃

𝜑 (𝑥, 𝑝1, . . . , 𝑝𝑡 ) ∧∧
𝜑∈Φ\𝑃

¬𝜑 (𝑥, 𝑝1, . . . , 𝑝𝑡 ).

The quantifier ∃∞𝑥 𝜓 (𝑥, 𝑧) simply says there are infinitely

many 𝑥 ’s such that 𝜑 (𝑥, 𝑧) is true. By standard results for

quantifier-free and Presburger arithmetic [38], we could re-

place ∃∞𝑥 𝜓 with ∃𝑥 (𝑥 > 𝐶 ∧ 𝜓 ) for some constant 𝐶

that is exponential in the size of𝜓 (which can therefore be

represented in polynomial size in binary).

Then, the final formula is

𝜇∼ (𝑥, 𝑝) def

= ∃𝑎∈A,𝑏∈B,𝑃⊆Φ,𝜑∈𝑃 𝑥𝑃
𝑎,𝜑,𝑏

𝐴 ∧
∧
𝑃⊆Φ

𝐵𝑃 , where

𝐴 =
∧

𝑎∈A,𝜑∈Φ,𝑏∈B

©­«𝑥𝑎,𝜑,𝑏 =
∑︁
𝑃∋𝜑

𝑥𝑃
𝑎,𝜑,𝑏

ª®¬ ,
𝐵𝑃 =

(
𝜌∞𝑃 ∧ 𝜑

⟨∗⟩
𝑆

(𝜏1, . . . , 𝜏𝑚, 𝑥)
)
∨(

∃𝑦 𝜌𝑃 ∧ 𝜑
⟨𝑦⟩
𝑆

(𝜏1, . . . , 𝜏𝑚, 𝑥)
)
, and

𝜏𝑖 =
∑︁

𝑎∈A,𝜑∈𝑃
𝑥𝑃
𝑎,𝜑,𝑏𝑖

for every 𝑖 ∈𝑚.

As before, the language is non-empty if, and only if,

𝜑𝑇 (𝑥, 𝑝) ∧ 𝜇∼ (𝑥, 𝑝) is satisfiable. Note that now any satis-

fying assignment does not only yield the Parikh image un-

der 𝑇 of the witnessing word but also the valuation for all

parameters. Since the ∃=𝑦
quantifier can be eliminated in

exponential time, 𝜌𝑃 can be translated into an equivalent,

single-exponential size existential Presburger formula . Thus,

𝜑𝑇 (𝑥, 𝑝)∧𝜇∼ (𝑥, 𝑝) is an exponential sized existential formula

of star-height 1, whose satisfiability can be checked in NP.

Thus, the upper bound follows.

We now prove that pSDA emptiness is NP
NP
-hard. The

reduction is from the standard NP
NP
-complete problem [27,

39] of satisfiability for quantified Boolean formulas of the

form

𝐹 := ∃𝑦1, . . . , 𝑦𝑛∀𝑧1, . . . , 𝑧𝑛𝐺 (𝑦, 𝑧)



Figueira and Lin

where 𝐺 is a quantifier-free Boolean formula. The corre-

sponding pSDA (𝑇, 𝑆) will use the parameter 𝑝 for encoding

assignments to 𝑦, and will only have one state 𝑞, which is

both initial and final. The assignments to 𝑦 will be stored

as the data values of the pSDA. Let 1 < 𝑟1 < · · · < 𝑟𝑛 be

the first 𝑛 primes. We use the Gödel encoding techniques for

encoding𝐺 as a Presburger formula𝜑𝐺 . Namely by recursive

definition:

(1) 𝜑𝐺 := 0 = 𝑝 mod 𝑟𝑖 if 𝐺 = 𝑦𝑖 ,

(2) 𝜑𝐺 := 0 = 𝑥 mod 𝑟𝑖 if 𝐺 = 𝑧𝑖 ,

(3) 𝜑𝐺 := 𝜑𝐺1
∧ 𝜑𝐺2

if 𝐺 = 𝐺1 ∧𝐺2, and

(4) 𝜑𝐺 := ¬𝜑𝐺1
if 𝐺 = ¬𝐺1.

To finish the reduction, let A = B = {𝑎}, and 𝑅 :=
∏𝑛

𝑖=1
𝑟𝑖 .

The only transition of 𝑇 is

(𝑞, (𝑎, 𝜑𝐺 ∧ 0 < 𝑥 ≤ 𝑅, 𝑎), 𝑞)
Finally, the semilinear set 𝑆 is given by the quantifier-free

formula 𝑥=𝑎 = 1∧𝑥≠𝑎 = 𝑅−1. These enforce that only permuta-

tions of the word (𝑎, 1) · · · (𝑎, 𝑅) could be accepted by (𝑇, 𝑆),
i.e., must contain each of the Gödel encoding of assignments

for 𝑧 restricted to the interval {1, . . . , 𝑅} exactly once as data
values. Therefore, 𝐹 is true iff (𝑇, 𝑆) is nonempty. □

Satisfiability of SDL. It is easy to see that the reduction

of SDL to SDA can be adapted to work also in the case of

parameters, which yields decidabilty for the satisfiability

problem. We comment more on this adaptation below when

discussing extensions with 𝑘-ary modalities.

Theorem 7.2. The satisfiability problem for pSDL is in
2NEXP.

7.2 SDL with 𝑘-ary modalities

The logic SDL (with or without parameters) can be also ex-

tended with 𝑘-ary versions of the (unary) data modalities

⟨=⟩𝛽 (𝑦,𝑝 ) (𝜑) and ⟨≠⟩𝛽 (𝑦,𝑝 ) (𝜑). We consider now formulas

with 𝑘-ary modalities of the form ⟨=⟩𝛽 (𝑦1,...,𝑦𝑘 ,𝑝 ) (𝜑1, . . . , 𝜑𝑘 )
and ⟨≠⟩𝛽 (𝑦1,...,𝑦𝑘 ,𝑝 ) (𝜑1, . . . , 𝜑𝑘 ).
Given a parameter valuation 𝜎 : 𝑝 → N, a word 𝑤 ∈

(A × N)∗, and a position 1 ≤ 𝑖 ≤ |𝑤 |, we define the satisfac-
tion relation𝑤, 𝑖 |=𝜎 ⟨=⟩𝛽 (𝑦1,...,𝑦𝑘 ,𝑝 ) (𝜑1, . . . , 𝜑𝑘 ) (resp.𝑤, 𝑖 |=
⟨≠⟩𝛽 (𝑦1,...,𝑦𝑘 ,𝑝 ) (𝜑1, . . . , 𝜑𝑘 )) iff 𝑛1, . . . , 𝑛𝑘 , 𝜎 |= 𝛽 , where each

𝑛ℓ (for ℓ ∈ 𝑘) is the number of positions 1 ≤ 𝑗 ≤ |𝑤 | such
that (i) 𝑤, 𝑗 |=𝜎 𝜑ℓ , (ii) data(𝑤 [ 𝑗]) = data(𝑤 [𝑖]) and (iii)

𝑗 ≠ 𝑖 (resp. (i)𝑤, 𝑗 |=𝜎 𝜑ℓ and (ii) data(𝑤 [ 𝑗]) ≠ data(𝑤 [𝑖])).
As before, 𝑤, 𝑖 |= 𝜑 holds if 𝑤, 𝑖 |=𝜎 𝜑 for some 𝜎 . Let us

call SDL
+
and pSDL

+
the extensions of SDL and pSDL with

𝑘-ary modalities (for every 𝑘), respectively.

The exponential-time translation from this further exten-

sion to SDA can be adapted, and we obtain the following.

Theorem 7.3.

• Satisfiability for pSDL+ is in 2NEXP.
• Model-checking for SDL+ is in PTIME.
• Model-checking for pSDL+ and pSDL is NP-complete.

Proof. For satisfiability, we can translate in exponential time

from the logic to pSDA. The translation is exactly as de-

fined in Section 6 but now the semilinear set S needs to

be updated to take into account the 𝑘-ary modalities se-

mantics. That is, we define S ⊆ NB × NB × N𝑝
as the

set denoted by the quantifier-free formula with variables

{𝑥=,𝑆 }𝑆∈B ∪ {𝑥≠,𝑆 }𝑆∈B ∪ 𝑝 consisting on the conjunction of:

(I) 𝑥=,𝑆 > 0 → 𝛼 (𝑡1, . . . , 𝑡𝑘 , 𝑝) for every 𝛼,𝜓1, . . . ,𝜓𝑘 , 𝑆

such that ⟨=⟩𝛼 (𝑦1,...,𝑦𝑘 ,𝑝 ) (𝜓1, . . . ,𝜓𝑘 ) ∈ 𝑆 , where for

each 𝑖 ∈ 𝑘 , 𝑡𝑖 = (∑𝑆 ′∈B,𝜓𝑖 ∈𝑆 ′ 𝑥=,𝑆 ′ ) − 𝑟𝑖 and 𝑟𝑖 = 1 if

𝜓𝑖 ∈ 𝑆 or 𝑟𝑖 = 0 otherwise;

(II) 𝑥=,𝑆 > 0 → ¬𝛼 (𝑡1, . . . , 𝑡𝑘 , 𝑝) for every 𝛼,𝜓1, . . . ,𝜓𝑘 , 𝑆

such that ¬ ⟨=⟩𝛼 (𝑦1,...,𝑦𝑘 ,𝑝 ) (𝜓1, . . . ,𝜓𝑘 ) ∈ 𝑆 , where for

each 𝑖 ∈ 𝑘 , 𝑡𝑖 = (∑𝑆 ′∈B,𝜓𝑖 ∈𝑆 ′ 𝑥=,𝑆 ′ ) − 𝑟𝑖 and 𝑟𝑖 = 1 if

𝜓𝑖 ∈ 𝑆 or 𝑟𝑖 = 0 otherwise;

(III) 𝑥=,𝑆 > 0 → 𝛼 (𝑡1, . . . , 𝑡𝑘 , 𝑝) for every 𝛼,𝜓1, . . . ,𝜓𝑘 , 𝑆

such that ⟨≠⟩𝛼 (𝑦1,...,𝑦𝑘 ,𝑝 ) (𝜓1, . . . ,𝜓𝑘 ) ∈ 𝑆 , where for

each 𝑖 ∈ 𝑘 , 𝑡𝑖 =
∑

𝑆 ′∈B,𝜓𝑖 ∈𝑆 ′ 𝑥≠,𝑆 ′ ;
(IV) 𝑥=,𝑆 > 0 → ¬𝛼 (𝑡1, . . . , 𝑡𝑘 , 𝑝) for every 𝛼,𝜓1, . . . ,𝜓𝑘 , 𝑆

such that ¬ ⟨≠⟩𝛼 (𝑦1,...,𝑦𝑘 ,𝑝 ) (𝜓1, . . . ,𝜓𝑘 ) ∈ 𝑆 , where for

each 𝑖 ∈ 𝑘 , 𝑡𝑖 =
∑

𝑆 ′∈B,𝜓𝑖 ∈𝑆 ′ 𝑥≠,𝑆 ′ ;

Observe that S is still a singly-exponential-sized quantifier-

free formula. A similar argument as shown in Lemma 6.1 still

applies to show that the reduction preserves the language.

Regarding model-checking, the same model-checking al-

gorithm as shown in Proposition 4.1 works for SDL
+
. To

treat a subformula of the form ⟨=⟩𝛽 (𝑦1,...,𝑦𝑘 ) (𝜓1, . . . ,𝜓𝑘 ), we
first count, for each data value 𝑑 of 𝑤 and 𝑗 ∈ 𝑘 , the num-

ber 𝑛 𝑗 of positions of 𝑤 having data 𝑑 and satisfying 𝜓 𝑗 ,

and we then mark each position 𝑖 with data 𝑑 as satis-

fying ⟨=⟩𝛽 (𝑦1,...,𝑦𝑘 ) (𝜓1, . . . ,𝜓𝑘 ) iff (𝑛′1, . . . , 𝑛′𝑘 ) |= 𝛽 , where

𝑛′𝑗 = 𝑛 𝑗 − 1 if position 𝑖 is marked as satisfying𝜓 , or 𝑛′𝑗 = 𝑛 𝑗

otherwise. Observe that this still takes polynomial time. The

treatment of ⟨≠⟩ is similar.

On the other hand, it is easy to see that model-checking of

pSDL is NP-hard, by reduction from the satisfiability prob-

lem for existential Presburger formulas. Indeed, an existen-

tial Presburger formula ∃𝑝1, . . . , 𝑝𝑡 𝜑 (𝑝1, . . . , 𝑝𝑡 ) (where 𝜑
is a quantifier-free formula) is satisfiable iff the pSDL for-

mula 𝛼 (𝑥, 𝑝1, . . . , 𝑝𝑡 ) with 𝑡 parameters 𝑝1, . . . , 𝑝𝑡 is satisfi-

able, where 𝛼 is defined as (𝑥 = 𝑥) ∧ 𝜑 (𝑝1, . . . , 𝑝𝑡 ).
For the NP upper bound, suppose we are given a word

𝑤 and a pSDL
+
formula 𝜑 . We first guess a function 𝑓 :

{1, . . . , |𝑤 |} → MCS(𝜑), where MCS(𝜑) is the set of max-

imally consistent sets of subformulas of 𝜑 , as defined in

Section 6. We verify that the guessing is consistent with the

semantics of the logic:

1. 𝜑 ∈ 𝑓 (1);
2. for every 1 ≤ 𝑖 < |𝑤 | we have that 𝑓 (𝑖), 𝑓 (𝑖 + 1) are

one-step consistent (cf. §6);

3. for every 1 ≤ 𝑖 ≤ |𝑤 | we have that ¬lab(𝑤) [𝑖] ∉ 𝑓 (𝑖).
Now we can instantiate non-parametric free variables of

Presburger formulas with their corresponding value:



Reasoning on Data Words over Numeric Domains

• For every base subformula 𝛼 (𝑦, 𝑝) and position 𝑖 , let

𝛾𝑖𝛼 (𝑝) be the result of replacing 𝑦 with data(𝑤) [𝑖] in
𝛼 .

• For every subformula𝜓 := ⟨=⟩𝛽 (𝑦1,...,𝑦𝑘 ,𝑝 ) (𝜓1, . . . ,𝜓𝑘 )
and position 𝑖 , let 𝛾𝑖

𝜓
(𝑝) be the result of replacing in

𝛽 (𝑦1, . . . , 𝑦𝑘 , 𝑝) each 𝑦ℓ with the number of positions

𝑗 ≠ 𝑖 of 𝑤 such that data(𝑤) [ 𝑗] = data(𝑤) [𝑖] and
𝜓ℓ ∈ 𝑓 (𝑖).

• For every subformula𝜓 := ⟨≠⟩𝛽 (𝑦1,...,𝑦𝑘 ,𝑝 ) (𝜓1, . . . ,𝜓𝑘 )
and position 𝑖 , let 𝛾𝑖

𝜓
(𝑝) be the result of replacing in

𝛽 (𝑦1, . . . , 𝑦𝑘 , 𝑝) each 𝑦ℓ with the number of positions

𝑗 ≠ 𝑖 of 𝑤 such that data(𝑤) [ 𝑗] ≠ data(𝑤) [𝑖] and
𝜓ℓ ∈ 𝑓 (𝑖).

Let Ψ be the set of all 𝛾𝑖
𝜓
(𝑝) formulas (for every 1 ≤ 𝑖 ≤ |𝑤 |

and𝜓 ∈ 𝑓 (𝑖) of the form above) and all the formulas ¬𝛾𝑖
𝜓
(𝑝)

(for every 1 ≤ 𝑖 ≤ |𝑤 | and ¬𝜓 ∈ 𝑓 (𝑖)). Observe that Ψ is of

polynomial size. Finally, we check that the quantifier-free

Presburger formula

∧
Ψ(𝑝) is satisfiable, which is in NP. □

8 Conclusions

In this paper, we have introduced parametric semilinear data

logic (pSDL), which allows different types of arithmetic rea-

soning (constraints on data values, letter/length counting,

data counting, and aggregation) on data words. We have

provided decidability and a thorough complexity analysis of

the satisfiability problem for the logic, and shown that it can

express many interesting properties that cannot be expressed

in existing decidable formalisms on data words, potentially

leading to interesting applications (e.g., on querying log files

and verification of array-manipulating programs). Our proof

introduces also the automata counterpart of pSDL called pa-

rameteric semilinear data automata (pSDA), which subsume

known models like Parikh automata [25], symbolic automata

[14], and nondeterministic looping word automata with inte-

ger linear arithmetic [19]. We have derived decidability and

complexity of emptiness for pSDA, which are of independent

interests.

We would like to conclude with several open problems.

Firstly, the complexity gap between 2-NEXP and NEXP of

pSDL should be filled. At themoment, we can only bridge this

gap when pSDL is restricted to SDLMNF, which subsumes the

modal logic fragment of FO
2 (<, +1,∼). Similarly, the com-

plexity gap for SDA and pSDA should be filled (e.g. between

NP
NP

and NEXP). This, in turn, raises interesting open ques-

tions on the complexity of existential Presburger Arithmetic

with unary counting quantifiers and star, which (to the best

of our knowledge) is not yet studied in the literature. Sec-

ondly, can we adapt pSDL to other infinite domains and other

decidable theories, e.g., real linear arithmetic? The answer

is far from obvious: our proof exploits heavy machinery on

Presburger Arithmetic and semilinear sets, which include

closure under star [23, 36] and closure under unary count-

ing quantifiers [40], which does not hold in every decidable

quantifier-free theories. Thirdly, we believe that it is highly

crucial to understand further the relationships among exist-

ing models over data words, as well as array theories, with

respect to their expressive power. We conjecture, among

others, that our logic (or maybe a slight variant thereof)

subsumes Array Folds Logic [12]. Finally, it would be inter-

esting to investigate if the idea of using parameters could

further be exploited in other logic/automata models over

data words. For example, can one still extend two-variable

logics [6, 41] with parameters while preserving decidability

of satisfiability?

Acknowledgments

We are extremely grateful to the anonymous reviewers

for their valuable comments. We would also like to thank

Christoph Haase, Rupak Majumdar, Alessio Mansutti, and

Philipp Rümmer for productive discussions. Diego Figueira

is partially supported by ANR QUID, grant ANR-18-CE40-

0031. Anthony Lin was supported by the ERC Starting Grant

759969 (AV-SMP) and a Max-Planck Society Fellowship.

References

[1] Eric Allender and Klaus W. Wagner. 1993. Counting Hierarchies:

Polynomial Time and Constant Depth Circuits. In Current Trends in
Theoretical Computer Science - Essays and Tutorials, Grzegorz Rozen-
berg and Arto Salomaa (Eds.). World Scientific Series in Computer

Science, Vol. 40. World Scientific, 469–483. https://doi.org/10.1142/
9789812794499_0035

[2] Rajeev Alur and Pavol Cerný. 2011. Streaming transducers for algo-

rithmic verification of single-pass list-processing programs. In An-
nual Symposium on Principles of Programming Languages (POPL),
Thomas Ball and Mooly Sagiv (Eds.). ACM Press, 599–610. https:
//doi.org/10.1145/1926385.1926454

[3] Rajeev Alur and Pavol Cerný. 2011. Streaming transducers for algo-

rithmic verification of single-pass list-processing programs. In Annual
Symposium on Principles of Programming Languages (POPL), Thomas

Ball and Mooly Sagiv (Eds.). ACM, 599–610. https://doi.org/10.1145/
1926385.1926454

[4] Michael Benedikt, Clemens Ley, and Gabriele Puppis. 2010. What

You Must Remember When Processing Data Words. In Proceedings
of the Alberto Mendelzon International Workshop on Foundations of
Data Management (AMW) (CEUR Workshop Proceedings, Vol. 619),
Alberto H. F. Laender and Laks V. S. Lakshmanan (Eds.). CEUR-WS.org.

http://ceur-ws.org/Vol-619/paper11.pdf
[5] Henrik Björklund and Thomas Schwentick. 2010. On notions of regu-

larity for data languages. Theoretical Computer Science 411, 4-5 (2010),
702–715. https://doi.org/10.1016/j.tcs.2009.10.009

[6] Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick,

and Luc Segoufin. 2011. Two-variable logic on data words. ACM
Transactions on Computational Logic 12, 4 (2011), 27:1–27:26. https:
//doi.org/10.1145/1970398.1970403

[7] Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. 2014. Automata

theory in nominal sets. Logical Methods in Computer Science (LMCS)
10, 3 (2014). https://doi.org/10.2168/LMCS-10(3:4)2014

[8] Mikolaj Bojańczyk and Rafal Stefanski. 2020. Single-Use Automata

and Transducers for Infinite Alphabets. In International Colloquium on
Automata, Languages and Programming (ICALP) (Leibniz International

https://doi.org/10.1142/9789812794499_0035
https://doi.org/10.1142/9789812794499_0035
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
https://doi.org/10.1145/1926385.1926454
http://ceur-ws.org/Vol-619/paper11.pdf
https://doi.org/10.1016/j.tcs.2009.10.009
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.2168/LMCS-10(3:4)2014


Figueira and Lin

Proceedings in Informatics (LIPIcs), Vol. 168), Artur Czumaj, Anuj Dawar,

and Emanuela Merelli (Eds.). Leibniz-Zentrum für Informatik, 113:1–

113:14. https://doi.org/10.4230/LIPIcs.ICALP.2020.113
[9] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s

Decidable About Arrays?. In International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI) (LNCS, Vol. 3855),
E. Allen Emerson and Kedar S. Namjoshi (Eds.). Springer, 427–442.

https://doi.org/10.1007/11609773_28
[10] Yu-Fang Chen, Ondrej Lengál, Tony Tan, and ZhilinWu. 2017. Register

automata with linear arithmetic. In Annual Symposium on Logic in
Computer Science (LICS). IEEE Computer Society Press, 1–12. https:
//doi.org/10.1109/LICS.2017.8005111

[11] Wojciech Czerwinski and Lukasz Orlikowski. 2021. Reachabil-

ity in Vector Addition Systems is Ackermann-complete. CoRR
abs/2104.13866 (2021). arXiv:2104.13866 https://arxiv.org/abs/2104.
13866

[12] Przemyslaw Daca, Thomas A. Henzinger, and Andrey Kupriyanov.

2016. Array Folds Logic. In International Conference on Computer
Aided Verification (CAV). 230–248.

[13] Loris D’Antoni, Tiago Ferreira, Matteo Sammartino, and Alexandra

Silva. 2019. Symbolic Register Automata. In International Conference
on Computer Aided Verification (CAV) (LNCS, Vol. 11561), Isil Dillig and
Serdar Tasiran (Eds.). Springer, 3–21. https://doi.org/10.1007/978-3-
030-25540-4_1

[14] Loris D’Antoni and Margus Veanes. 2017. The Power of Symbolic

Automata and Transducers. In International Conference on Computer
Aided Verification (CAV). 47–67. https://doi.org/10.1007/978-3-319-
63387-9_3

[15] Stéphane Demri and Ranko Lazić. 2009. LTL with the freeze quantifier

and register automata. ACM Transactions on Computational Logic 10,
3 (2009), 16:1–16:30. https://doi.org/10.1145/1507244.1507246

[16] Stéphane Demri and Ranko Lazic. 2009. LTL with the freeze quantifier

and register automata. ACM Transactions on Computational Logic 10,
3 (2009), 16:1–16:30. https://doi.org/10.1145/1507244.1507246

[17] Herbert Enderton. 2001. A mathmeatical introduction to logic (2 ed.).
Academic Press.

[18] Kousha Etessami,Moshe Y. Vardi, and ThomasWilke. 2002. First-Order

Logic with Two Variables and Unary Temporal Logic. Inf. Comput.
179, 2 (2002), 279–295. https://doi.org/10.1006/inco.2001.2953

[19] Rachel Faran and Orna Kupferman. 2020. On Synthesis of Specifica-

tions with Arithmetic. In International Conference on Current Trends in
Theory and Practice of Informatics (SOFSEM) (LNCS, Vol. 12011), Alexan-
der Chatzigeorgiou, RiccardoDondi, Herodotos Herodotou, Christos A.

Kapoutsis, Yannis Manolopoulos, George A. Papadopoulos, and Flo-

rian Sikora (Eds.). Springer, 161–173. https://doi.org/10.1007/978-3-
030-38919-2_14

[20] Seymour Ginsburg and Edwin H. Spanier. 1966. Semigroups, Pres-

burger formulas, and languages. Pacific J. Math. 16, 2 (1966), 285–296.
[21] Stefan Göller, Richard Mayr, and Anthony Widjaja To. 2009. On the

Computational Complexity of Verifying One-Counter Processes. In

Proceedings of the 24th Annual IEEE Symposium on Logic in Computer
Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA. 235–244.
https://doi.org/10.1109/LICS.2009.37

[22] Christoph Haase. 2018. A survival guide to presburger arithmetic.

ACM SIGLOG News 5, 3 (2018), 67–82. https://dl.acm.org/citation.
cfm?id=3242964

[23] Christoph Haase and Georg Zetzsche. 2019. Presburger arithmetic

with stars, rational subsets of graph groups, and nested zero tests. In

Annual Symposium on Logic in Computer Science (LICS). IEEE Com-

puter Society Press, 1–14. https://doi.org/10.1109/LICS.2019.8785850
[24] Michael Kaminski and Nissim Francez. 1994. Finite-Memory Automata.

Theoretical Computer Science 134, 2 (1994), 329–363. https://doi.org/
10.1016/0304-3975(94)90242-9

[25] Felix Klaedtke and Harald Rueß. 2003. Monadic Second-Order Logics

with Cardinalities. In International Colloquium on Automata, Lan-
guages and Programming (ICALP) (Lecture Notes in Computer Science,
Vol. 2719). Springer, 681–696. https://doi.org/10.1007/3-540-45061-
0_54

[26] S. Rao Kosaraju. 1982. Decidability of Reachability in Vector Addition

Systems (Preliminary Version). In Symposium on Theory of Computing
(STOC), Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and

Lawrence H. Landweber (Eds.). ACM, 267–281. https://doi.org/10.
1145/800070.802201

[27] Dexter C. Kozen. 2006. Theory of Computation. Springer.
[28] Daniel Kroening and Ofer Strichman. 2008. Decision Procedures.

Springer.

[29] Jean-Luc Lambert. 1992. A Structure to Decide Reachability in Petri

Nets. Theor. Comput. Sci. 99, 1 (1992), 79–104. https://doi.org/10.1016/
0304-3975(92)90173-D

[30] Jérôme Leroux. 2021. The Reachability Problem for Petri Nets is Not

Primitive Recursive. CoRR abs/2104.12695 (2021). arXiv:2104.12695

https://arxiv.org/abs/2104.12695
[31] Ernst W. Mayr. 1981. An Algorithm for the General Petri Net Reacha-

bility Problem. In Symposium on Theory of Computing (STOC). ACM,

238–246. https://doi.org/10.1145/800076.802477
[32] Ernst W. Mayr. 1984. An Algorithm for the General Petri Net Reach-

ability Problem. SIAM J. Comput. 13, 3 (1984), 441–460. https:
//doi.org/10.1137/0213029

[33] Frank Neven, Thomas Schwentick, and Victor Vianu. 2004. Finite

state machines for strings over infinite alphabets. ACM Transactions
on Computational Logic 5, 3 (2004), 403–435. https://doi.org/10.1145/
1013560.1013562

[34] Rohit Parikh. 1966. On Context-Free Languages. J. ACM 13, 4 (1966),

570–581. https://doi.org/10.1145/321356.321364
[35] Rohit Parikh. 1966. On Context-Free Languages. J. ACM 13, 4 (1966),

570–581. https://doi.org/10.1145/321356.321364
[36] Ruzica Piskac and Viktor Kunčak. 2008. Linear Arithmetic with

Stars. In International Conference on Computer Aided Verification
(CAV) (Lecture Notes in Computer Science, Vol. 5123). Springer, 268–280.
https://doi.org/10.1007/978-3-540-70545-1_25

[37] Mojżesz Presburger and Dale Jabcquette. 1991. On the completeness

of a certain system of arithmetic of whole numbers in which addition

occurs as the only operation. History and Philosophy of Logic 12, 2
(1991), 225–233.

[38] Bruno Scarpellini. 1984. Complexity of subcases of Presburger arith-

metic. Trans. Amer. Math. Soc. 284, 1 (1984), 203–218.
[39] Marcus Schaefer and Christopher Umans. 2002. Completeness in the

polynomial-time hierarchy: A compendium. SIGACT News (2002).
[40] Nicole Schweikardt. 2005. Arithmetic, first-order logic, and counting

quantifiers. ACM Transactions on Computational Logic 6, 3 (2005),

634–671. https://doi.org/10.1145/1071596.1071602
[41] Thomas Schwentick and Thomas Zeume. 2012. Two-Variable Logic

with TwoOrder Relations. Logical Methods in Computer Science (LMCS)
8, 1 (2012). https://doi.org/10.2168/LMCS-8(1:15)2012

[42] Seinosuke Toda. 1991. PP is as Hard as the Polynomial-Time Hierarchy.

SIAM Journal on computing 20, 5 (1991), 865–877. https://doi.org/10.
1137/0220053

[43] Jacobo Torán. 1991. Complexity Classes Defined by Counting Quanti-

fiers. J. ACM 38, 3 (1991), 753–774. https://doi.org/10.1145/116825.
116858

[44] Peter van Emde Boas. 1997. The convenience of tilings. Complexity,
Logic, and Recursion Theory (1997), 331–363.

[45] Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. 2005.

On the Complexity of Equational Horn Clauses. In International Con-
ference on Automated Deduction (CADE) (Lecture Notes in Computer Sci-
ence, Vol. 3632). Springer, 337–352. https://doi.org/10.1007/11532231_
25

https://doi.org/10.4230/LIPIcs.ICALP.2020.113
https://doi.org/10.1007/11609773_28
https://doi.org/10.1109/LICS.2017.8005111
https://doi.org/10.1109/LICS.2017.8005111
https://arxiv.org/abs/2104.13866
https://arxiv.org/abs/2104.13866
https://arxiv.org/abs/2104.13866
https://doi.org/10.1007/978-3-030-25540-4_1
https://doi.org/10.1007/978-3-030-25540-4_1
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1006/inco.2001.2953
https://doi.org/10.1007/978-3-030-38919-2_14
https://doi.org/10.1007/978-3-030-38919-2_14
https://doi.org/10.1109/LICS.2009.37
https://dl.acm.org/citation.cfm?id=3242964
https://dl.acm.org/citation.cfm?id=3242964
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1145/800070.802201
https://doi.org/10.1145/800070.802201
https://doi.org/10.1016/0304-3975(92)90173-D
https://doi.org/10.1016/0304-3975(92)90173-D
https://arxiv.org/abs/2104.12695
https://arxiv.org/abs/2104.12695
https://doi.org/10.1145/800076.802477
https://doi.org/10.1137/0213029
https://doi.org/10.1137/0213029
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/321356.321364
https://doi.org/10.1007/978-3-540-70545-1_25
https://doi.org/10.1145/1071596.1071602
https://doi.org/10.2168/LMCS-8(1:15)2012
https://doi.org/10.1137/0220053
https://doi.org/10.1137/0220053
https://doi.org/10.1145/116825.116858
https://doi.org/10.1145/116825.116858
https://doi.org/10.1007/11532231_25
https://doi.org/10.1007/11532231_25


Reasoning on Data Words over Numeric Domains

[46] Klaus W. Wagner. 1987. More Complicated Questions About Maxima

and Minima, and Some Closures of NP. Theoretical Computer Science
51 (1987), 53–80. https://doi.org/10.1016/0304-3975(87)90049-1

[47] Kevin Woods. 2015. Presburger Arithmetic, Rational Generating Func-

tions, and quasi-polynomials. Journal of Symbolic Logic 80, 2 (2015),
433–449. https://doi.org/10.1017/jsl.2015.4

A Extending Data Automata with

semilinear constraints

As already mentioned, SDA and Data Automata (DA) as

introduced in [6], are incomparable in expressive power.

Here we explore the question: Can DA be extended with
semilinear constraints while preserving the decidability for the
emptiness problem? We consider two ways of extending DA

with semilinear constraints. The first one, SDA
+
, naturally

extending both DA and SDA is undecidable, the second one,

SDA
±
, extends DA but it is still incomparable in expressive

power with respect to SDA.

Let SDA
+
be the natural common ancestor of SDA and DA

in terms of expressive power. An SDA
+
is a triple (𝑇, 𝐿, 𝑆)

where

• 𝑇 ⊆ (A × N)∗ × B∗ and 𝑆 ⊆ NB × NB are as before,
• 𝐿 ⊆ B∗ is a regular language, specified as an NFA.

A word𝑤 ∈ (A × N)∗ is accepted by such an SDA
+
if there

exists some𝑤 ′ ∈ B∗ such that

(i) (𝑤,𝑤 ′) ∈ 𝑇 ,

(ii) for every 𝑛 ∈ N, (Π(𝑤 ′ [𝐼𝑛]),Π(𝑤 ′ [𝐼𝑛])) ∈ 𝑆 , and

(iii) for every 𝑛 ∈ N,𝑤 ′ [𝐼𝑛] ∈ 𝐿.

where 𝐼𝑛 = {1 ≤ 𝑗 ≤ |𝑤 | : 𝑤N [ 𝑗] = 𝑛} and 𝐼𝑛 = {1, . . . , |𝑤 |}\
𝐼𝑛 . In particular, the language of an SDA

+ (𝑇, 𝐿, 𝑆) is a subset
of the intersection between the language of the SDA (𝑇, 𝑆)
and the language of the DA

5 (𝑇, 𝐿).
By following the same lines as Proposition 5.1, one can

show that SDA
+
is effectively closed under union and inter-

section. However, its emptiness problem is undecidable.

Proposition A.1. The emptiness problem for SDA+ is unde-
cidable.

Proof. We show undecidability by reduction from the halting

problem of a 2-counter Minsky machine. Given a Minsky

machine 𝑀 over two counters 𝑎 and 𝑏, we show that the

following properties can be expresssed by SDA
+
over the

alphabet A = {𝑎, 𝑎′, 𝑏, 𝑏′} ∪𝑇𝑀 where 𝑇𝑀 is the set of transi-

tions of𝑀 . (For simplicity and without any loss of generality,

we assume that there is a transition 𝑞
𝑖𝑛𝑐 (𝑎)
−−−−−→ 𝑞 ∈ 𝑇𝑀 for

every final state 𝑞 of𝑀 .)

(a) The word is a non-empty sequence of ‘blocks’, where

a block is a word 𝑤 ∈ (A × N)∗ such that 𝑤 =

(𝑡, 𝑑) · ((𝑎, 𝑑) (𝑎′, 𝑑 ′))𝑛𝑎 · ((𝑏, 𝑑) (𝑏′, 𝑑 ′))𝑛𝑏 for some 𝑡 ∈
𝑇𝑀 , 𝑛𝑎, 𝑛𝑏 ∈ N and distinct 𝑑,𝑑 ′ ∈ N.

5
Strictly speaking, DA cannot test for semilinear guards, the transducer

𝑇 should then be interpreted as the one resulting from replacing every

formula with ⊤.

(b) Every two consecutive blocks 𝐵𝐵̂ where 𝐵 = (𝑡, 𝑑) ·
((𝑎, 𝑑) (𝑎′, 𝑑 ′))𝑛𝑎 · ((𝑏, 𝑑) (𝑏′, 𝑑 ′))𝑛𝑏 and 𝐵̂ = (𝑡, ˆ𝑑) ·
((𝑎, ˆ𝑑) (𝑎′, ˆ𝑑 ′))𝑛̂𝑎 · ((𝑏, ˆ𝑑) (𝑏′, ˆ𝑑 ′))𝑛̂𝑏 are such that 𝑑 = ˆ𝑑 ′.

(c) The target state of the transition of a block coincides

with the origin state of next block. The origin state of

the first block is the starting state of 𝑀 , and the origin

state of the last block is a final state of𝑀 .

(d) Every data class is of the form 𝑡𝑎𝑛𝑏𝑚𝑎′𝑛
′
𝑏′𝑚

′
for some

𝑛,𝑚,𝑛′,𝑚′ ∈ N and 𝑡 ∈ 𝑇𝑀 such that

(1) if 𝑡 = 𝑞
𝑡𝑧 (𝑎)
−−−−→ 𝑞′ for some 𝑞, 𝑞′, then 𝑛 = 𝑛′ = 0 and

𝑚 = 𝑚′
, and if 𝑡 = 𝑞

𝑡𝑧 (𝑏 )
−−−−→ 𝑞′ for some 𝑞, 𝑞′, then

𝑚 =𝑚′ = 0 and 𝑛 = 𝑛′;

(2) if 𝑡 = 𝑞
𝑖𝑛𝑐 (𝑎)
−−−−−→ 𝑞′ then 𝑛′ = 𝑛 + 1 and𝑚′ =𝑚, and if

𝑡 = 𝑞
𝑖𝑛𝑐 (𝑏 )
−−−−−→ 𝑞′ then𝑚′ =𝑚 + 1 and 𝑛′ = 𝑛;

(3) if 𝑡 = 𝑞
𝑑𝑒𝑐 (𝑎)
−−−−−→ 𝑞′ then 𝑛′ = 𝑛 − 1 and𝑚′ =𝑚, and if

𝑡 = 𝑞
𝑑𝑒𝑐 (𝑏 )
−−−−−→ 𝑞′ then𝑚′ =𝑚 − 1 and 𝑛′ = 𝑛;

Claim 3. 𝑀 has an accepting run if, and only if, there exists
a word𝑤 ∈ (A × N)∗ satisfying properties (a)–(d).
The left-to-right direction is straightforward. For the

right-to-left direction, it is worth observing that, in the

light of properties (a)–(b), every data class 𝑑 of the form

𝑡𝑎𝑛𝑏𝑚𝑎′𝑛
′
𝑏′𝑚

′
referred to in property (d) must be such that

(i) the block of (𝑡, 𝑑) has exactly 𝑛 𝑎’s and𝑚 𝑏’s, and (ii) the

next block has exactly 𝑛′ 𝑎’s and𝑚′ 𝑏’s. It is then easy to ver-

ify that the sequence of transitions 𝑡1, . . . , 𝑡ℓ , 𝑡ℓ+1 seen in any

word 𝑤 ∈ (A × N)∗ satisfying (a)–(d) is such that 𝑡1, . . . , 𝑡ℓ
is an accepting run.

Claim 4. Properties (a)–(d) are effectively expressible by a
SDA

+.

It is easy to check that (a) can be expressed in the logic

FO
2 (∼, <, +𝜔) of first-order logic with two variables, an

“equal data” relation ∼, order < and the 𝑘-th successor rela-

tion for every 𝑘 . The expressive power of this logic is, in turn,

captured by Data Automata [6], and thus also by SDA
+
. Sim-

ilarly, (b) can also be expressed by a FO
2 (∼, <, +𝜔) formula.

Condition (c) is just a regular property on the labels, which

can be obviously expressed by an SDA
+
automaton. For con-

dition (d), a Data Automaton can state that all data classes are

in the language𝑇𝑀 ·𝑎∗ ·𝑏∗ ·𝑎′∗ ·𝑏′∗. The properties (d1)–(d3)
can be assured by the semilinear conditions. For example,

for every transition 𝑡 = 𝑞
𝑖𝑛𝑐 (𝑎)
−−−−−→ 𝑞′ there is a linear set given

by the Presburger formula 𝑥𝑡 = 1 ∧ 𝑥𝑎 + 1 = 𝑥𝑎′ ∧ 𝑥𝑏 = 𝑥𝑏′ .

Finally, the statement follows by closure under intersection

of SDA
+
. □

However, adding semilinear constraints to whole words

does not pose problems.

Let SDA
±
be a triple (𝑇, 𝐿, 𝑆) where

• 𝑇 ⊆ (A × N)∗ × B∗ is a length-preserving transducer

as before,

https://doi.org/10.1016/0304-3975(87)90049-1
https://doi.org/10.1017/jsl.2015.4


Figueira and Lin

• 𝑆 ⊆ NB is semilinear, and

• 𝐿 ⊆ B∗ is a regular language.
A word𝑤 ∈ (A × N)∗ is accepted by such an SDA

±
if there

exists some𝑤 ′ ∈ B∗ such that

(i) (𝑤,𝑤 ′) ∈ 𝑇 ,

(ii) Π(𝑤 ′) ∈ 𝑆 , and

(iii) for every 𝑛 ∈ N,𝑤 ′ [𝐼𝑛] ∈ 𝐿.

where 𝐼𝑛 = {1 ≤ 𝑗 ≤ |𝑤 | : 𝑤N [ 𝑗] = 𝑛}. As before this is

an extension of DA: the language of an SDA
± (𝑇, 𝐿, 𝑆) is a

subset of the language of the DA (𝑇, 𝐿).

Proposition A.2. The emptiness problem for SDA± is decid-
able.

Proof sketch. As shown in [6], there is a direct translation

from DA to reachability of multi-counter automata which

preserves the language projection onto the finite alphabet A.
Such a translation can be extended in such a way that

• the multi counter automaton has now one counter 𝑐𝑏
for every letter 𝑏 ∈ B of the output alphabet;

• every time the transducer reads a letter 𝑎 which is

translated into a 𝑏, the multi counter automaton in-

crements 𝑐𝑏 ;

• at the end of the computation the multi counter au-

tomaton decreases the counters {𝑐𝑏 : 𝑏 ∈ B} in such

a way as to reach the all-0 configuration if, and only

if, the Parikh image on B is in the semilinear set 𝑆 .

This is straightforward to implement once we have 𝑆

represented as arithmetic progressions.

□

B Proof of lower bound of Theorem 5.2–(2)

We prove that SDA emptiness is P
NP[log]

-hard. This is done

by a reduction from the problem INDEX-ODD: given a list

𝐹1, . . . , 𝐹𝑚 of boolean formulas in 3-CNF, does there exist an

odd index 𝑗 ∈ 𝑚 such that 𝐹1, . . . , 𝐹 𝑗 are all satisfiable and

𝐹 𝑗+1, . . . , 𝐹𝑚 are all unsatisfiable. This problem is P
NP[log]

-

complete [21, 46]. Without loss of generality, one could also

assume that each 𝐹𝑖 is over the same variables 𝑧1, . . . , 𝑧𝑛 .

The SDA (𝑇, 𝑆) has states𝑞0, 𝑠1, . . . , 𝑠𝑚, 𝑡2, . . . , 𝑡𝑚 , where𝑞0

is initial. If𝑚 is odd, the only final state is 𝑠𝑚 ; if𝑚 is even, the

only final state is 𝑡𝑚 . We set A = B = {𝑎1, 𝑏1, . . . , 𝑎𝑚, 𝑏𝑚, ?}.
We now define the transitions of𝑇 . Let 1 < 𝑟1 < · · · < 𝑟𝑛 ·𝑚

be the first 𝑛 ·𝑚 primes. We use the Gödel encoding tech-

niques for encoding Boolean formulas. We use the definition

of a quantifier-free Presburger formula 𝜑𝐹𝑖 from a Boolean

formula 𝐹𝑖 from the proof of the lower bound proof of Theo-

rem 7.1, using the primes 𝑃𝑖 = {𝑝𝑛 · (𝑖−1)+1, . . . , 𝑝𝑛 ·𝑖 }. In par-

ticular, 𝜑𝐹𝑖 accepts all the Gödel encodings on 𝑃𝑖 of satisfying

assignments to 𝐹𝑖 . The transitions from 𝑠𝑖 to 𝑠𝑖+1 guesses a

satisfying assignment of 𝐹𝑖+1:

(𝑠𝑖 , (𝑎𝑖+1, 𝜑𝐹𝑖+1
, 𝑎𝑖+1), 𝑠𝑖+1).

From 𝑞0, we also could guess a satisfying assignment of 𝐹1:

(𝑞0, (𝑎1, 𝜑𝐹1
, 𝑎1), 𝑠1).

The transitions from 𝑡𝑖 to 𝑡𝑖 guesses all satisfying assignment

of ¬𝐹𝑖 within the interval {1, . . . , 𝑅𝑖 }, for 𝑅0 = 0 and 𝑅𝑖 =∏
𝑝∈⋃𝑖

𝑗=1
𝑃 𝑗
𝑝 (𝑖 ∈𝑚):

(𝑡𝑖 , (𝑎𝑖 ,¬𝜑𝐹𝑖 ∧ 𝑅𝑖−1 < 𝑥 ≤ 𝑅𝑖 , 𝑎𝑖 ), 𝑡𝑖 ).
Furthermore, we introduce the following extra transitions:

(𝑡𝑖 , (?, 𝑥 = 0, ?), 𝑡𝑖+1),
for all 𝑖 ∈𝑚, and

(𝑠𝑖 , (𝑏𝑖 , 𝑥 = 0, 𝑏𝑖 ), 𝑡𝑖+1)
for each odd 𝑖 ∈𝑚.

To finish off the proof, we need to ensure that all the

satisfying assignments of each ¬𝐹 𝑗+1, . . . ,¬𝐹𝑚 have been

enumerated. To this end, we assert an appropriate constraint

𝑆 . The following constraint now is added as a conjunct for

each odd 𝑖 = 1, . . . ,𝑚 and each number 𝑗 ∈ {𝑖 + 1, . . . ,𝑚}:
𝑥=
𝑏𝑖
+ 𝑥≠

𝑏𝑖
= 1 → 𝑥≠𝑎 𝑗

= 𝑅 𝑗 − 𝑅 𝑗−1

We of course need to ensure that each data value appears

uniquely for any given letter 𝑎𝑖 :

𝑥=𝑎𝑖 ≤ 1.

It is easy now to see that the reduction is correct and runs

in polynomial time. Further, the resulting SDA is in minterm

normal form. □

C NEXP-hardness of Theorem 4.2–(2)

We show hardness for the fragment in which the only data

modality used is ⟨=⟩𝑦≥1, which we will simply write as ⟨=⟩
for economy of space. We reduce from the exponential tiling
problem [44], which is well-known to be NEXP-complete.

The problem is defined as follows. The input is a number 𝑛 in

unary, a set of possible tiles 𝑇 ⊆ {𝑡1, . . . , 𝑡𝑘 }, and horizontal

and vertical constraints 𝐻,𝑉 ⊆ 𝑇 × 𝑇 . An instance 𝐼 =

⟨𝑛,𝑇 , 𝐻,𝑉 ⟩ of this problem is said to be solvable if there is
a mapping 𝑠 : [0, 2𝑛 − 1] × [0, 2𝑛 − 1] → 𝑇 such that the

horizontal constraint is satisfied (i.e. (𝑠 (𝑎, 𝑏), 𝑠 (𝑎 + 1, 𝑏)) ∈ 𝐻

for each 𝑎 ∈ [0, 2𝑛 − 2] and 𝑏 ∈ [0, 2𝑛 − 1]) and the vertical

constraint is satisfied ((𝑠 (𝑎, 𝑏), 𝑠 (𝑎, 𝑏 + 1)) ∈ 𝑉 for each 𝑎 ∈
[0, 2𝑛 − 1] and 𝑏 ∈ [0, 2𝑛 − 2]). Such a mapping 𝑠 is said to

be a solution to 𝐼 .

Given 𝐼 = ⟨𝑛,𝑇 , 𝐻,𝑉 ⟩, we will compute a formula 𝜓 in

SDLmin,k (for any 𝑘 ≥ 2), which is satisfiable iff 𝐼 is solvable.

The alphabet 𝐴 contains the following letters

𝑥𝑖 ,−𝑥𝑖 , 𝑦𝑖 ,−𝑦𝑖 , 𝑥 ′𝑖 ,−𝑥 ′𝑖 , 𝑦′𝑖 ,−𝑦′𝑖
for each 𝑖 = 1, . . . , 𝑛. These will be used to indicate binary

encodings of positions in the 2
𝑛 × 2

𝑛
grid. In addition 𝐴 also

contains the letters

𝑡𝑖 , 𝑡
′
𝑖



Reasoning on Data Words over Numeric Domains

for each 𝑖 = 1, . . . , 𝑘 , which will be used to indicate the tiles

that are placed on certain cells. Let 𝑋𝑖 = {𝑥𝑖 ,−𝑥𝑖 }, 𝑌𝑖 =

{𝑦𝑖 ,−𝑦𝑖 }, 𝑋 ′
𝑖 = {𝑥 ′𝑖 ,−𝑥 ′𝑖 }, and 𝑌 ′

𝑖 = {𝑦′𝑖 ,−𝑦′𝑖 }. Also, let 𝑇 =

{𝑡1, . . . , 𝑡𝑘 } and 𝑇 ′ = {𝑡 ′
1
, . . . , 𝑡 ′

𝑘
}. We now fix the following

regular expressions

X = 𝑋1 . · · · .𝑋𝑛

Y = 𝑌1. · · · .𝑌𝑛
X′ = 𝑋 ′

1
. · · · .𝑋 ′

𝑛

Y′ = 𝑌 ′
1
. · · · .𝑌 ′

𝑛

We first enforce that only words 𝜋 of the form 𝜋1𝜋2, where

𝜋1 ∈ (𝑇XY)∗

𝜋2 ∈ (𝑇 ′X′Y′)∗

are accepted. This can be done easily by an LTL formula

𝜓𝜋 . Below we will only care about the data values that are

associated with the𝑇 -labeled or𝑇 ′
-labeled positions. We call

these relevant data values.
We add further constraints now to the relevant data values.

Firstly, we say that the relevant data values positions appear

uniquely in the word:

𝜓𝑢 = G

(
𝑘∨
𝑖=1

𝑡𝑖 → ¬ ⟨=⟩ ⊤
)
,

𝜓 ′
𝑢 = G(

(
𝑘∨
𝑖=1

𝑡 ′𝑖 → ¬ ⟨=⟩ ⊤
)
.

We now say that each relevant data value appears once in a

position labeled by some 𝑡𝑖 and once in a position labeled by

𝑡 ′𝑖 :

𝜓𝑐 =

𝑘∧
𝑖=1

G
(
(𝑡𝑖 → ⟨=⟩ 𝑡 ′𝑖 ) ∧ (𝑡 ′𝑖 → ⟨=⟩ 𝑡𝑖 )

)
.

We now say that 𝑥𝑖 and𝑦
′
𝑖 (resp. 𝑥

′
𝑖 and𝑦𝑖 ) agree on each rele-

vant data value. This corresponds to that we are enumerating

the cells of the grid in two different ways: horizontal first

then vertical in the first segment 𝜋1 of 𝜋 , and vertical first

then horizontal in the second segment 𝜋2 of 𝜋 . The formulas

are easy to write:

𝜓𝑎 = G
(∨𝑘

𝑖=1
𝑡𝑖 →

∧𝑘
𝑖=1

(X𝑖𝑥𝑖 ↔ ⟨=⟩ X𝑛+𝑖𝑦′𝑖 )

∧(X𝑛+𝑖𝑦𝑖 ↔ ⟨=⟩ X𝑖𝑥 ′𝑖 )
)
.

Note that X𝑖 simply means 𝑖 nestings X · · · X of X.
We now enforce that 𝜋1 is a valid enumeration of the cells

in the grid horizontal first and then vertical. This is done

by a standard binary counting trick relating each segment

𝑢 ∈ (𝑇XY)2
in the input word. The corresponding formula

𝜑ℎ,𝑣 is as follows:

𝜑ℎ,𝑣 := 𝜑ℎ,𝑣,𝑖𝑛𝑖𝑡 ∧ 𝜑ℎ,𝑣,𝑐𝑜𝑛𝑠 .

Here, 𝜑ℎ,𝑣,𝑖𝑛𝑖𝑡 initializes the counter:

𝜑ℎ,𝑣,𝑖𝑛𝑖𝑡 :=

𝑛∧
𝑖=1

(
X𝑖¬𝑥𝑖

)
∧

(
X𝑛+𝑖¬𝑦𝑖

)
,

which in other words says that the first cell has coordinate

(0, 0). Next we describe consecution constraint 𝜑ℎ,𝑣,𝑐𝑜𝑛𝑠 . In

order to describe this, we first define the formula:

𝜑ℎ,𝑣,𝑒𝑛𝑑 :=

𝑛∧
𝑖=1

(
X𝑖𝑥𝑖

)
∧

(
X𝑛+𝑖𝑦𝑖

)
,

which says that the current position is the end of the first

part 𝜋1 of 𝜋 . Here is the formula 𝜑ℎ,𝑣,𝑐𝑜𝑛𝑠 :

𝜑ℎ,𝑣,𝑐𝑜𝑛𝑠 := G

(
𝑘∨
𝑖=1

𝑡𝑖 ∧ ¬𝜑ℎ,𝑣,𝑒𝑛𝑑 → 𝜃1 ∧ 𝜃2

)
.

Here 𝜃1 =
∧𝑛

𝑖=1
𝜃 𝑖

1
, where 𝜃 𝑖

1
is defined as follows:

𝜃 𝑖
1

:=

(
𝑖−1∧
𝑗=1

X𝑗𝑥 𝑗 ∧ X𝑖¬𝑥𝑖

)
→(

𝑖−1∧
𝑗=1

X2𝑛+1+𝑗¬𝑥 𝑗 ∧ X2𝑛+1+𝑖𝑥𝑖

)
∧

(
𝑛∧

𝑗=𝑖+1

X𝑗𝑥 𝑗 ↔ X2𝑛+1+𝑗𝑥 𝑗

)
∧

(
𝑛∧
𝑗=1

X𝑛+𝑗𝑦𝑖 ↔ X3𝑛+1+𝑗𝑦𝑖

)
.

Notice that the number 1 in 2𝑛 + 1 + 𝑗 indicates that we

must jump over the 𝑇 -labeled position. Thus, 𝜃 𝑖
1
simply says

that the overflow occurs at position 𝑥𝑖−1. The formula 𝜃2 =∧𝑛
𝑖=1

𝜃 𝑖
2
is similar except that 𝜃 𝑖

2
says that the overflow occurs

at position 𝑦𝑖−1. That is 𝜃
𝑖
2

:=

(∧𝑛
𝑗=1

X𝑗𝑥 𝑗 ∧ X2𝑛+𝑗¬𝑥 𝑗
)
∧ 𝜒𝑖 ,

where

𝜒𝑖 :=

(
𝑖−1∧
𝑗=1

X𝑛+𝑗𝑦 𝑗 ∧ X𝑛+𝑖¬𝑦𝑖

)
→(

𝑖−1∧
𝑗=1

X3𝑛+1+𝑗¬𝑦 𝑗 ∧ X3𝑛+1+𝑖𝑦𝑖

)
∧

(
𝑛∧

𝑗=𝑖+1

X𝑛+𝑗𝑦 𝑗 ↔ X3𝑛+1+𝑗𝑦 𝑗

)
∧

(
𝑛∧
𝑗=1

X𝑛+𝑗𝑦𝑖 ↔ X3𝑛+1+𝑗𝑦𝑖

)
.

We can in a similar way enforce that 𝜋1 is a valid enumer-

ation of the cells in the grid vertical first and then horizontal.

The corresponding formula is denoted 𝜑𝑣,ℎ .

Finally, we create two formulas 𝜓𝐻 and 𝜓𝑉 , where 𝜓𝐻

checks that the horizontal constraint 𝐻 is observed by 𝜋1,

whereas𝜓𝑉 checks that the vertical constraint 𝑉 is satisfied



Figueira and Lin

by 𝜋2. We will only specify this in detail for𝜓𝐻 ; the formula

𝜓𝑉 is similar:

𝜓𝐻 := G ©­«
𝑛∨
𝑖=1

𝑡𝑖 ∧ ¬
𝑛∧
𝑖=1

X𝑖𝑥𝑖 → (
∨
(𝑡,𝑡 ′ )

𝑡 ∧ X2𝑛𝑡 ′)ª®¬ .
Note that 𝜓𝐻 avoids testing 𝐻 whenever one resets the

counter for the 𝑥-coordinate.

The final formula is

𝜓 := 𝜓𝜋 ∧𝜓𝑢 ∧𝜓 ′
𝑢 ∧𝜓𝑐 ∧𝜓𝑎 ∧ 𝜑ℎ,𝑣 ∧ 𝜑𝑣,ℎ ∧𝜓𝐻 ∧𝜓𝑉

This reduction runs in time polynomial in the size of 𝐼 . Finally,

𝜓 is easily seen to be satisfiable iff 𝐼 is solvable. This com-

pletes the reduction, proving that satisfiability for SDL𝑀𝑁𝐹

is also NEXP-complete. □

D Eliminating unary counting quantifiers

Proposition D.1 ([40]). There exists an algorithm, which
given a formula 𝜑 (𝑦, 𝑧) := ∃=𝑦𝑥𝜓 (𝑥, 𝑧) with 𝜓 quantifier-
free, outputs an existential Presburger formula 𝜃 (𝑦, 𝑧) (without
counting quantifiers) equivalent to 𝜑 (𝑥, 𝑧) in exponential time.

This proposition can be derived rather easily from

Schweikardt’s original proof [40] with a few minor mod-

ifications, which we will remark below. We refer the reader

to the paper itself for the detail; below, we follow the ArXiv

version https://arxiv.org/pdf/cs/0211022.pdf.
A standard quantifier-elimination algorithm (e.g. for Pres-

burger, see [17]) typically proceeds by assuming that the

quantifier-free part of the formula is a conjunction of atomic

formulas. This can be achieved easily by first converting

the quantifier-free part 𝜒 (𝑥, 𝑧) of a formula ∃𝑥 𝜒 (𝑥, 𝑧) to
its DNF form

∨
𝑖∈𝐼 𝜒𝑖 (𝑥, 𝑧), where 𝜒𝑖 is a conjunction of

atomic formulas, and then handling each ∃𝑥 𝜒𝑖 (𝑥, 𝑧) sepa-
rately. In Schweikardt’s algorithm [40] for removing ∃=𝑦𝑥

from ∃=𝑦𝑥𝜓 (𝑥, 𝑧), similar steps are also applied, each of

which we will modify slightly.

Firstly, the catch of converting the quantifier-free part

𝜓 (𝑦, 𝑧) of ∃=𝑦
to any equivalent formula

∨
𝑖∈𝐼 𝜓𝑖 (𝑥, 𝑧) in DNF

(i.e., where 𝜓𝑖 is a conjunction of atomic formulas) is that

two pairwise distict𝜓 𝑗 and𝜓𝑘 might be satisfied by the same

value of 𝑥 . This means that one cannot simply just deal with

∃=𝑦𝑖𝜓𝑖 (𝑥, 𝑧) and then add the sum constraint sum𝑦 =
∑

𝑖∈𝐼 𝑦𝑖
because this would result in double counting. Schweikardt

[40] resolves this problem by applying the standard principle

of inclusion and exclusion. The catch with this is that this

would result in an extra exponential on top of the exponential

blow-up caused by converting𝜓 to DNF. There is an easy fix

to this. A DNF-term (i.e. conjunction of formulas) is said to

be complete (with respect to𝜓 ) if, for each atomic formula 𝛼

in𝜓 , it contains 𝛼 or ¬𝛼 . The first modification is to convert

𝜓 into an equivalent formula

∨
𝑖∈𝐼 𝜓𝑖 (𝑥, 𝑧) in DNF, where𝜓𝑖

is a complete DNF-term. In particular, removing redundant

DNF-terms, we would now be able to simply just rewrite

∃𝑦𝜓 (𝑦, 𝑧) as:

𝑦 =
∑︁
𝑖∈𝐼

𝑦𝑖 ∧
∧
𝑖∈𝐼

∃=𝑦𝑖𝑥𝜓𝑖 (𝑥, 𝑧),

since the 𝜓𝑖 ’s are pairwise disjoint, i.e., they do not admit

the same values of 𝑥 . Conversion into this special type of

DNF formula is easily achieved by a standard technique from

boolean logic. As an example, suppose the atomic formulas

in𝜓 are 𝑃1, 𝑃2, 𝑃3 and a conversion of𝜓 into DNF results in a

DNF-term 𝛼 := 𝑃1∧¬𝑃2, i.e., the atomic formula 𝑃3 is missing.

We could simply rewrite 𝛼 as (𝛼 ∧ 𝑃3) ∨ (𝛼 ∧ ¬𝑃3). Further-
more, the resulting algorithm still runs in exponential-time

(i.e. no worse than the standard conversion to a formula in

DNF). This result is summarized in the following lemma.

Lemma D.2. The formula 𝜑 (𝑦, 𝑧) := ∃=𝑦𝑥𝜓 (𝑥, 𝑧) with 𝜓

quantifier-free could be converted in exponential time into the
equivalent formula

𝑦 =
∑︁
𝑖∈𝐼

𝑦𝑖 ∧
∧
𝑖∈𝐼

∃=𝑦𝑖𝑥𝜓𝑖 (𝑥, 𝑧),

where𝜓𝑖 is a conjunction of atomic subformulas in𝜓 .

Proposition D.1 now follows from the following lemma;

the reason being that each ∃=𝑦𝑖𝑥𝜓𝑖 (𝑥, 𝑧) in Lemma D.2 can

now be rewritten as an existential formula of size 2
𝑂 ( |𝜑 |𝑘 )

for some constant 𝑘 and, since 𝐼 = 𝑂 (2 |𝜑 | ), it follows that
the resulting existential formula corresponding to 𝜑 can be

produced in time 2
|𝜑 | × 2

𝑂 ( |𝜑 |𝑘 ) = 2
𝑂 ( |𝜑 |𝑘 )

.

Lemma D.3. There exists a exponential-time algorithm,
which given a formula 𝜑 (𝑦, 𝑧) := ∃=𝑦𝑥 𝜒 (𝑥, 𝑧) with 𝜒 is a
conjunction of atomic formulas, outputs an existential Pres-
burger formula (without counting quantifiers) equivalent to
𝜑 (𝑦, 𝑧).

The proof of this lemma follows very much from

Schweikardt’s original proof [40] except that two universal

quantifiers have to be removed from the produced formula

from Schweikardt’s algorithm. We provide details below.

The proof of Lemma D.3 proceeds as follows. Let

𝜒 (𝑥, 𝑧) :=

𝑛∧
𝑖=1

𝛼𝑖 (𝑥, 𝑧)

Firstly, by standard rewritings for Presburger Arithmetic

(Fact 5.3 from [40], also see [17]), we may assume that each

𝛼𝑖 is one of the following kinds of atomic formulas:

1. 𝑥 > 𝑡 (𝑧) (lower bound on 𝑥 )

2. 𝑥 < 𝑡 (𝑧) (upper bound on 𝑥 )

3. 𝑥 ≡𝑚 𝑡 (𝑧) (residue class for 𝑥 )

4. 𝑥 = 𝑡 (𝑧) (equation for 𝑥 ), or

5. 𝛽 (𝑧) (independent of 𝑥 )

The required rewriting would transform the original 𝜒 (𝑥, 𝑧)
into a disjunction

∨
𝑗∈ 𝐽 𝜎 𝑗 (𝑥, 𝑧) of conjunctions 𝜎 𝑗 ’s of

atomic formulas of Types (1)–(5), such that 𝜎 𝑗 ’s are pair-
wise disjoint. Furthermore, we have |𝐽 | = 𝑂 (2𝑛) and each 𝜎 𝑗

https://arxiv.org/pdf/cs/0211022.pdf


Reasoning on Data Words over Numeric Domains

is a conjunction of at most 𝑂 (𝑛) atomic formulas. For this

reason, one can apply the same formula as in Lemma D.2,

provided that we can eliminate the counting quantifier from

each ∃=𝑦𝑥𝜎 𝑗 (𝑥, 𝑧) in exponential time. Below we assume

that 𝜒 (𝑥, 𝑧) is a conjunction of atomic formulas of Types

(1)–(5).

As in [40], we partition {𝛼1, . . . , 𝛼𝑛} into
• a set 𝐿 consisting of all atoms 𝛼𝑖 which express a lower

bound of the form 𝑥 > 𝑡𝑖 (𝑧),
• a set 𝑈 consisting of all atoms 𝛼𝑖 which express an

upper bound of the form 𝑥 < 𝑡𝑖 (𝑧)
• a set 𝑅 consisting of all atoms 𝛼𝑖 which express a

residue class of the form 𝑥 ≡𝑛𝑖 𝑡𝑖 (𝑧),
• a set 𝐸 consisting of all atoms 𝛼𝑖 which express an

equation of the form 𝑥 = 𝑡𝑖 (𝑧).
• a set 𝐼 consisting of all atoms 𝛼𝑖 which is independent

of 𝑥 , i.e., it is of the form 𝛽 (𝑧) with no 𝑥 occuring.

One first divides into two cases: 𝐸 ≠ ∅ or 𝐸 = ∅. The former

case is easy — one finds in the proof in [40] a quantifier-free

formula equivalent to ∃=𝑦𝑥 𝜒 (𝑥, 𝑧) of linear size.
We now consider the case when 𝐸 = ∅. The equivalent

formula 𝜃 (𝑦, 𝑧) without counting quantifiers that is provided
in the proof in [40] is in this case also of a polynomial size,

except that at most two universal quantifiers are used. The

formula is as follows:

((¬
∧
𝑗 :𝛼 𝑗 ∈𝐼

𝛽 𝑗 (𝑧)) → 𝑦 = 0) ∧

(
∧
𝑗 :𝛼 𝑗 ∈𝐼

𝛽 𝑗 (𝑧) → ((¬∃res𝜓res (res, 𝑧)) → 𝑦 = 0) ∧

((∃res𝜓res (res, 𝑧)) → 𝜒 ′ (𝑦, 𝑧))),

where

𝜓res (res, 𝑧) := (0 ≤ res < 𝑙) ∧
∧

𝑗 :𝛼 𝑗 ∈𝑅
res ≡𝑛 𝑗

𝑡 𝑗 (𝑧)

and 𝑙 := lcm{𝑛𝑖 : 𝑖 s.t. 𝛼𝑖 ∈ 𝑅}. Here, 𝜒 ′ (𝑦, 𝑧) is ⊥ (i.e. false)

if 𝐿 or𝑈 are empty. Otherwise, 𝜒 ′ (𝑦, 𝑧) is

∃low ∃up ∃first ∃res
𝜓low (low, 𝑧) ∧𝜓up (up, 𝑧) ∧𝜓 (first, low, res) ∧
(up ≤ first → 𝑦 = 0) ∧

(up > first → 𝑦 = ⌈up − first
𝑙

⌉) .

Here,𝜓low,𝜓up are quantifier-free linear size formulas. The

formula𝜓first (first, low, res) is defined as

(first > low) ∧ (first ≡𝑙 res) ∧
(∀𝑣 (𝑣 > low ∧ 𝑣 ≡𝑙 res) → 𝑣 ≥ first).

Thus, two universal quantifiers appear in the subformula

(∃res𝜓 (res, 𝑧)) → 𝜒 ′ (𝑦, 𝑧). Both can be easily removed, as

we show next. First off, we can replace ∃res𝜓 (res, 𝑧) by
𝑙−1∨
ℎ=0

∧
ℎ ≡𝑛 𝑗

𝑡 𝑗 (𝑧).

This is at most exponential in the size of the given formula 𝜑 .

Second, the formula𝜓first says thatfirst is the smallest number

greater than low that is res modulo 𝑙 . One can therefore

simply rewrite𝜓first as:

first ≡𝑙 res ∧ low + 1 ≤ first ≤ low + 1 + 𝑙 .
This completes the removals of all the universal quantifiers.

The resulting formula is an existential Presburger formula

(without counting quantifier) of at most exponential size.


	Abstract
	1 Introduction
	2 pSDL: examples and applications
	3 Preliminaries
	4 Semilinear Data Logic
	5 Semilinear Data Automata
	5.1 Definition
	5.2 The Emptiness Problem for SDA

	6 Satisfiability of SDL
	7 Extensions
	7.1 Adding parameters
	7.2 SDL with k-ary modalities

	8 Conclusions
	Acknowledgments
	References
	A Extending Data Automata with semilinear constraints
	B Proof of lower bound of Theorem 5.2–(2)
	C NEXP-hardness of Theorem 4.2–(2)
	D Eliminating unary counting quantifiers

