Diego Figueira
email: diego.figueira@cnrs.fr

Anthony W Lin
email: awlin@mpi-sws.org

Reasoning on Data Words over Numeric Domains

Keywords: CCS Concepts:, Theory of computation → Transducers, Automata over infinite objects, Logic and verification, Modal and temporal logics, Regular languages, Complexity theory and logic Data words, logic and automata, Presburger arithmetic, counting, complexity

We introduce parametric semilinear data logic (pSDL) for reasoning about data words with numeric data. The logic allows parameters, and Presburger guards on the data and on the Parikh image of equivalence classes (i.e. data counting), allowing us to capture data languages like: (1) each data value occurs at most once in the word and is an even number, (2) the subset of the positions containing data values divisible by 4 has the same number of a's and b's, (3) the data value with the highest frequency in the word is divisible by 3, and (4) each data value occurs at most once, and the set of data values forms an interval. We provide decidability and complexity results for the problem of membership and satisfiability checking over these models. In contrast to two-variable logic of data words and data automata (which also permit a form of data counting but no arithmetics over numeric domains and have incomparable inexpressivity), pSDL has elementary complexity of satisfiability checking. We show interesting potential applications of our models in databases and verification.

Introduction

A data word is a word, each of whose positions contains a label drawn from a finite alphabet (just like a normal word in formal language theory), and a data value from some infinite domain. An example of data word over the alphabet A = {𝑎, 𝑏} and data domain D = Z is (𝑎, 7) (𝑏, 10) (𝑎, 3) (𝑎, 100). The study of automata and logics over data words has spanned across nearly three decades, starting from the study of register automata [START_REF] Kaminski | Finite-Memory Automata[END_REF] with a decidable emptiness problem. In addition to this basic register automata model, there is nowadays a plethora of variants of register automata and other different (and mostly incomparable) models of automata and logics over data words with a decidable emptiness problem including automata with pebbles [START_REF] Neven | Finite state machines for strings over infinite alphabets[END_REF], deterministic memory automata over ordered data [START_REF] Benedikt | What You Must Remember When Processing Data Words[END_REF], data automata and two-variable first-order logic [START_REF] Bojańczyk | Two-variable logic on data words[END_REF][START_REF] Schwentick | Two-Variable Logic with Two Order Relations[END_REF], alternating 1-register automata and LTL with freeze quantifiers [START_REF] Demri | LTL with the freeze quantifier and register automata[END_REF], single-use register automata [START_REF] Bojańczyk | Single-Use Automata and Transducers for Infinite Alphabets[END_REF], nominal automata [START_REF] Bojańczyk | Automata theory in nominal sets[END_REF], streaming datastring acceptors [START_REF] Alur | Streaming transducers for algorithmic verification of single-pass list-processing programs[END_REF] and its variant over rationals [START_REF] Chen | Register automata with linear arithmetic[END_REF], and symbolic finite automata [START_REF] Antoni | The Power of Symbolic Automata and Transducers[END_REF] and their extension with registers [START_REF] Antoni | Symbolic Register Automata[END_REF].

Most of the automata models and logics over data words with a decidable emptiness problem impose a severe restriction on the operations that can be performed on the data values, i.e., mostly only comparing data equalities is permitted. In practice, however, we are interested in a specific domain theory like the set of integers and permit operations like those that are allowed in the theory of integer linear arithmetic. For example, consider the (SMT) theories of arrays (e.g. see [START_REF] Bradley | What's Decidable About Arrays?[END_REF][START_REF] Kroening | Decision Procedures[END_REF]). Structurally, arrays can be construed as data words without a finite alphabet (or equivalently with a unary finite alphabet) and integers as the data domain. However, theories of arrays permit the full integer linear arithmetic to express relationship among the data stored in the arrays, for which there is only a very limited support by any automata model and logic over data words. As we shall soon see, certain types of arithmetic reasoning are also not supported by array theories.

The main goal of this paper is to initiate an investigation of how integer arithmetic reasoning can be incorporated into automata models and logics over data words. In doing so, our hope is to bring automata/logic over data words closer to applications, e.g., in databases and verification.

What type of arithmetic reasoning? In the literature of logic and automata, many types of integer arithmetic reasoning have been considered, which include the following:

(i) Integer arithmetic constraints on the data values in the input word, e.g., two positions 𝑖 < 𝑗 in the word 𝑤 = 𝑤 1 • • • 𝑤 𝑛 satisfy data(𝑤 𝑖) > data(𝑤 𝑗), data(𝑤 𝑖) ≥ 100 and data(𝑤 𝑗) = 0 mod 2. (ii) Letter counting and length, e.g., accept only words whose numbers of 𝑎s and 𝑏s coincide. (iii) Data counting, e.g., every data value occurs at most once in the input word. (iv) Aggregation, e.g., the 𝑘-th largest (or most frequent) data value is even.

Existing models supporting arithmetic reasoning usually permit one but not other types of arithmetic reasoning. In practice, we are often interested in combining two such types of reasoning, as explicated in Example 1.1 and Example 1.2.

Example 1.1. We have a daily log file containing a sequence of events of the form (𝑎, 𝑖), where 𝑖 is the user ID and 𝑎 ∈ {-1, +1} denoting that a dollar has been either spent (-1) or earned (+1). Suppose that we want to ensure that each person earns at least as much as he spends. Such a property combines (ii) and (iii), and is to the best of our knowledge not expressible in any existing model with decidable satisfiability/emptiness on data words.

Example 1.2. We have a log file contining a sequence of pairs of the form (𝑖𝑑, ℎ𝑒𝑖𝑔ℎ𝑡) ∈ N 2 , where 𝑖𝑑 is an id of a person in a group and height the integer round-off of the height of the person. For example, we want to check that each 𝑖𝑑 appears exactly once and that the median of the heights in the sequence is between 170-180. This property makes use of (i), (ii), and (iv) and, to the best of our knowledge, is not expressible in existing decidable models.

State-of-the-art. As we mentioned, most existing models for reasoning over data words do not support arithmetic reasoning over numeric data domains. For example, guards over linear arithmetic (i.e. (i) above) are not allowed in models like two-variable logics FO 2 (<, +1, ∼) and data automata [START_REF] Björklund | On notions of regularity for data languages[END_REF][START_REF] Bojańczyk | Two-variable logic on data words[END_REF]; this is FO 2 over data words with the order (<), successor (+1) and equal data-value (∼) binary relations. Here, one can talk about two positions 𝑖 < 𝑗 in the input word having the same data value 𝑑𝑎𝑡𝑎(𝑖) = 𝑑𝑎𝑡𝑎(𝑗), but for example not 𝑑𝑎𝑡𝑎(𝑖) < 𝑑𝑎𝑡𝑎(𝑗). This limitation is partially lifted by Schwentick and Zeume [START_REF] Schwentick | Two-Variable Logic with Two Order Relations[END_REF], in that two data values can now be checked for inequality in their logic (e.g. 𝑑𝑎𝑡𝑎(𝑖) < 𝑑𝑎𝑡𝑎(𝑗)), at the expense of disallowing the successor relation +1 over positions in the input word (e.g. one cannot say now that 𝑗 = 𝑖 + 1, which can be done in [START_REF] Bojańczyk | Two-variable logic on data words[END_REF]). The strengths of these formalisms lie in data counting, e.g., every datum occurs at most once in the word, or an even number of times; the latter can be done in data automata, but not in FO 2 .

Relaxing the ability (iii) to perform data counting, more models can come into consideration. Array Property Fragment (APF) [START_REF] Bradley | What's Decidable About Arrays?[END_REF][START_REF] Kroening | Decision Procedures[END_REF] supports a full integer linear arithmetic reasoning on the array indices as well as the elements (i.e. (i)). In an APF formula, universal quantifiers are restricted, so as to allow decidability of satisfiability. APF can express, for instance, that an array is ordered. Array Folds Logic (AFL) [START_REF] Daca | Array Folds Logic[END_REF] addresses the limitations of APF in performing length reasoning and aggregation (i.e. (iv)) at the expense of disallowing universal quantification. Unlike APF, however, AFL cannot express properties like an array is ordered. We also mention the model of nondeterministic looping word automata with arithmetic [START_REF] Faran | On Synthesis of Specifications with Arithmetic[END_REF], which input 𝜔-words and consider the theory of rational linear arithmetic. If one considers instead finite words and the theory of integer linear arithmetic, this model is strictly subsumed by AFL. Another noteworthy model is that of Symbolic Register Automata (SRA), which are an extension of symbolic automata [START_REF] Antoni | The Power of Symbolic Automata and Transducers[END_REF] by registers that can be checked for equality. Such a model is a one-way automata model allowing Presburger guards on the currently seen data value, and can for example express that all seen data are even, and that two data in every two consecutive positions are different (which is not expressible in AFL). We finally mention the register automata model of [START_REF] Chen | Register automata with linear arithmetic[END_REF] over rational linear arithmetic (inspired by the streaming transducer model in [START_REF] Alur | Streaming transducers for algorithmic verification of single-pass list-processing programs[END_REF]), extending the original model [START_REF] Kaminski | Finite-Memory Automata[END_REF] of Kaminski and Francez. Here, the registers are separated into control registers (on which guards comprising order comparisons can be applied) and data registers (allowing general arithmetic operations). The model supports rational arithmetic operations (i) and aggregation (iv), but not data counting (iii).

In summary, existing logic and automata models on data words still have limited support of arithmetic reasoning. In particular, models that support data counting (e.g. twovariable data logic and data automata [START_REF] Björklund | On notions of regularity for data languages[END_REF][START_REF] Bojańczyk | Two-variable logic on data words[END_REF][START_REF] Schwentick | Two-Variable Logic with Two Order Relations[END_REF]) typically do not permit arithmetics on numeric data domain, letter counting and length reasoning, and aggregation. Our goal is to identify a model that supports these four features, while admitting decidable emptiness with elementary complexity (unlike the case of FO 2 (<, +1, ∼) and data automata) and interesting potential applications in databases and verification.

Contributions. We propose in this paper Parametric Semilinear Data Logic (pSDL), which is an extension of Linear Temporal Logic (LTL) for reasoning about data words with numeric data (i.e. the data domain is the set of integers). Aiming to address the four types of arithmetic reasoning (i)-(iv), we extend the standard LTL with four features: (a) Presburger formulas, which serve two purposes, namely to check the data value located at a certain position, as well as to perform letter/data counting and length reasoning, (b) parameters (a form of read-only variables), which can be used in the Presburger formulas, (c) additional modalities of the form ⟨=⟩ 𝛽 (resp. ⟨≠⟩ 𝛽) with ⟨=⟩ 𝛽 (𝑦 1 ,...,𝑦 𝑛) (𝜑 1 , . . . , 𝜑 𝑛) (resp. ⟨≠⟩ 𝛽 (𝑦 1 ,...,𝑦 𝑛) (𝜑 1 , . . . , 𝜑 𝑛)) carrying the meaning that one can jump to precisely 𝑦 𝑖 different positions (other than the current position) of the same data value satisfying 𝜑 𝑖 (resp. different data value to the current position), where the integer linear arithmetic constraint 𝛽 (𝑦 1 , . . . , 𝑦 𝑛) holds. The resulting logic strictly extends LTL and the modal logic fragment of FO 2 (<, +1, ∼) (essentially, an extension of unary temporal logic [START_REF] Etessami | First-Order Logic with Two Variables and Unary Temporal Logic[END_REF] with the ⟨=⟩ and ⟨≠⟩ modalities). More concretely, pSDL can express the property in Example 1.1. Moreover, in the process of proving decidability for pSDL satisfiability, we introduce the automata counterpart called Parametric Semilinear Data Automata (pSDA), whose expressivity strictly subsumes pSDL, as well as Parikh automata [START_REF] Klaedtke | Monadic Second-Order Logics with Cardinalities[END_REF], symbolic automata [START_REF] Antoni | The Power of Symbolic Automata and Transducers[END_REF], and nondeterministic looping word automata with integer linear arithmetic [START_REF] Faran | On Synthesis of Specifications with Arithmetic[END_REF].

The following is the main result of the paper:

Theorem 1.3. Satisfiability for pSDL is in 2-NEXP and is NEXP-hard. Satisfiability for the fragment SDL MNF of pSDL without parameters and linear arithmetic constraints on data values in minterm normal form is NEXP-complete.

Note that k-NEXP means "𝑘-fold nondeterministic exponential time". The decidability and the complexity results go through a translation to pSDA, whose decidability and complexity of emptiness we also determine in this paper. Here, SDL denotes the fragment of pSDL without parameters. The restriction to minterm normal form (MNF) is one that is often applied in the literature of symbolic automata [START_REF] Antoni | The Power of Symbolic Automata and Transducers[END_REF] -which enforces constraints on data values to be the same if they intersect -and does not decrease the expressivity of the model. For example, the constraints 𝑝 (𝑥) := 𝑥 > 7 and 𝑞(𝑥) := 𝑥 ≡ 3 (mod 4) have common solutions, but they can be turned into four constraints in MNF of the form (¬)𝑝 (𝑥) ∧ (¬)𝑞(𝑥). Our theorem also implies that the aforementioned modal logic fragment of FO 2 (<, +1, ∼) is decidable in elementary time (more precisely, in NEXP), unlike the case of FO 2 (<, +1, ∼). This is the modal logic on data words having the successor, predecessor, future, and past binary relations as modalities, as well as the "equal data value" and the "distinct data value" relations. As an aside, our proofs establish interesting connections to Presburger Arithmetic with star operations [START_REF] Haase | Presburger arithmetic with stars, rational subsets of graph groups, and nested zero tests[END_REF][START_REF] Piskac | Linear Arithmetic with Stars[END_REF] and unary counting quantifiers [START_REF] Schweikardt | Arithmetic, first-order logic, and counting quantifiers[END_REF].

Our logic pSDL has NP-complete membership (since satisfiability of quantifier-free Presburger formulas can be reduced to it), though it becomes solvable in polynomial-time when we restrict to SDL. We believe that these complexity classes could still allow efficient query evaluation (e.g. on our log file examples) with the help of SMT-solvers.

Last but not least, our results can be lifted to the data domain Z 𝑘 and N 𝑘 using a standard "flattening trick", e.g., (𝑎, 7, 8) (𝑏, 7, 9) (𝑎, 3, 100) over the alphabet A = {𝑎, 𝑏} can be mapped to (𝑎 1 , 7) (𝑎 2 , 8), (𝑏 1 , 7) (𝑏 2 , 9) (𝑎 1 , 3) (𝑎 2 , 100) over the alphabet A ′ = {𝑎 1 , 𝑎 2 , 𝑏 1 , 𝑏 2 }. This allows us to encode the property in Example 1.2. More generally, this allows us to reason about a sequence of events with applications (e.g. querying/static analysis over a time series data), and verifying invariants of array-manipulating programs.

Organization. We provide a more detailed exposition of SDL through examples and potential applications in Section 2. We fix notation and basic terminologies in Section 3. For readability, we start with the simpler fragment, i.e., SDL with 1-ary modalities, i.e., ⟨=⟩ 𝛽 (ȳ) and ⟨≠⟩ 𝛽 (ȳ) with | ȳ| = 1. We define this logic in Section 4, provide the automata counterpart (called SDA), for which decidability and complexity of nonemptiness are proven in Section 5. Translation from SDL to SDA is in Section 6. We then provide the extensions to the general case -with parameters, and 𝑘-ary modalitiesin Section 7. We conclude in Section 8.

pSDL: examples and applications

We provide here an overview of our logic pSDL by means of examples, and discuss potential applications thereof. In the sequel, we work with the data domain N of natural numbers, but our results easily extend to the data domain Z of all integers.

Querying log files. We now discuss Example 1.1 and Example 1.2. We first show how to express the property in Example 1.1. This example can already be done in SDL with 2-ary modalities. In particular, the formula expressing it is

G(-1 → ⟨=⟩ 𝑦 2 >𝑦 1 (-1, +1)).
Intuitively, the formula says that it is globally the case that if a user (say with a user ID 𝑖𝑑) spends $1 (i.e. -1) at a particular time point on the day, then the user earns $ 𝑦 2 on that day, which is at least the total spending (i.e. $ 𝑦 1 + 1).

In particular, 𝑦 2 here counts the number of occurrences of positions labeled by (+1, 𝑖𝑑), while 𝑦 1 counts the number of positions (other than the current position, which is labeled by (-1, 𝑖𝑑)) labeled by (-1, 𝑖𝑑). The above formula is in fact in SDL MNF because no parameters are used and that no arithmetic constraints on the current data values are applied. We now proceed to the property in Example 1.2, which is a simple reasoning over a relational table. For simplicity, we will assume that only one person has the median height; this is easily extendable to the case when there are more persons with the median height, but will make the formula messier. Using the flattening trick, we consider the finite alphabet A = {1, 2} indicating the first/second arguments in the tuple (𝑖𝑑, ℎ𝑒𝑖𝑔ℎ𝑡). Thus, we ensure that the input word is of the form ((1, ?), (2, ?)) * , where ? can indicate any number. This can be enforced easily in LTL, e.g., G((1 → X2) ∧ (2 ∧ X⊤ → X1)). Next, we enforce that each ID occurs uniquely in the sequence. This can be enforced by the formula

G(1 → ¬ ⟨=⟩ 𝑦 ≥1 1)
which says that globally one cannot jump to another tuple whose first argument has the same ID as the current one. Indeed, when parameterized with 𝑦 ≥ 1, the construct ⟨=⟩ 𝑦 ≥1 𝜓 can be regarded as the modality "jump to a position with the same data value satisfying 𝜓 ". Finally, we use the parameter 𝑝 𝑚𝑒𝑑 to determine the median

F(2∧170 ≤ 𝑥 = 𝑝 𝑚𝑒𝑑 ≤ 180∧⟨≠⟩ 𝑦 1 =𝑦 2 (𝑥 < 𝑝 𝑚𝑒𝑑 , 𝑥 > 𝑝 𝑚𝑒𝑑)).
The formula first finds the second argument of a tuple in the table . Here, 𝑥 denotes the current data value that is "saved" into 𝑝 𝑚𝑒𝑑 . [In the sequel, 𝑥 is mostly used to denote the current data value.] This is required since our modality "forgets" the current data value, which has to then be alleviated by the use of parameters. The final conjunct simply says that there are the same number 𝑦 1 = 𝑦 2 of people who are shorter than the person with the median height and those who are taller than the person with the median height. Observe that linear arithmetic constraints are used for two purposes in the above formula: as counting constraints (e.g. 𝑦 1 = 𝑦 2), as well as for limiting the values that certain locations in the input word can take (e.g. 𝑥 < 𝑝 𝑚𝑒𝑑). We show that the first query above can be checked in polynomial-time. The second query, on the other hand, can be written in pSDL, whose membership problem is NPcomplete (cf. Theorem 7.3). We leave it for future work to determine whether SMT-solvers could be used to effectively perform such a query evaluation for pSDL. On the side of static analysis, Theorem 1.3 implies that vacuity of our queries can be automatically checked.

Array-manipulating programs. We now show a simple application of pSDL for verifying that the bubble sort preserves the invariant 𝐼𝑛𝑣 that "every value occurs precisely once". We will model the bubble sort algorithm as a repeated nondeterministic application of swapping the element 𝑥 𝑖 at position 𝑖 and the element 𝑥 𝑗 at position 𝑗 such that 𝑖 < 𝑗 and 𝑥 𝑖 > 𝑥 𝑗 . To treat this more formally, we need to model a transduction 𝑇 for this swap relation.

We model𝑇 as the data language over the boosted alphabet A = {𝑎, 𝑏, 𝑐} containing all words 𝑤 obtained by replacing the 𝑖th position (𝑎, 𝑑 𝑖) (resp. 𝑗th position (𝑎, 𝑑 𝑗)) in the data word (𝑎, 𝑑 1) • • • (𝑎, 𝑑 𝑛) by (𝑏, 𝑑 𝑖) (𝑐, 𝑑 𝑗) (resp. (𝑏, 𝑑 𝑗) (𝑐, 𝑑 𝑖)), for some 𝑖 < 𝑗 and 𝑑 𝑖 > 𝑑 𝑗 . Observe that the subsequence 𝑤 1 of 𝑤 whose first components are 𝑎 or 𝑏 represents the initial array content, while the subsequence 𝑤 2 of 𝑤 whose first components are 𝑎 or 𝑐 represents the result of applying 𝑇 .

Example 2.1. Suppose 𝑇 is to swap the 2nd and 4th elements in the array [4, 7, 1, 2, 0]. We represent this array the word 𝑤 = (𝑎, 4) (𝑏, 7) (𝑐, 2) (𝑎, 1) (𝑏, 2) (𝑐, 7) (𝑎, 0). Thus, 𝑤 1 = (𝑎, 4) (𝑏, 7) (𝑎, 1) (𝑏, 2) (𝑎, 0) gives the original array, while 𝑤 2 = (𝑎, 4) (𝑐, 2) (𝑎, 1) (𝑐, 7) (𝑎, 0) represents the array obtained after applying the swap. □ Note that we can express 𝑇 quite easily in pSDL. First we express that the projection to the first components is in 𝑎 * 𝑏𝑐𝑎 * 𝑏𝑐𝑎 * , which is easily expressible in LTL (and so in pSDL). The following formula 𝜑 expresses that the swap takes place:

F(𝑏 ∧𝑝 = 𝑥 ∧X((𝑝 ′ = 𝑥 ∧𝑝 > 𝑝 ′) ∧F(𝑏 ∧𝑝 ′ = 𝑥 ∧X(𝑝 = 𝑥)))).
Note that 𝑥 is used to record the current data value, while the parameter 𝑝 (resp. 𝑝 ′) is used to save 𝑑 𝑖 (resp. 𝑑 𝑗).

To disprove that 𝐼𝑛𝑣 is an invariant, we need to show that, there exists an input data word 𝑤 such that 𝑤 1 satisfies 𝐼𝑛𝑣 but 𝑤 2 satisfies ¬𝐼𝑛𝑣. The following SDL formula 𝜓 expresses this:

G((𝑎 ∨𝑏) ∧ ¬ ⟨=⟩ 𝑦 ≥1 (𝑎 ∨𝑏)) ∧ ¬G((𝑎 ∨𝑐) ∧ ¬ ⟨=⟩ 𝑦 ≥1 (𝑎 ∨𝑐)).
The final formula is 𝜑 ∧ 𝜓 , which is unsatisfiable since 𝐼𝑛𝑣 is an invariant under 𝑇 . The decidability of pSDL implies that this satisfiability can be algorithmically checked.

Other properties. We conclude this section by collecting a few examples that can be expressed in pSDL. As far as we are aware, these cannot be expressed in other formalisms with decidable satisfiability/emptiness problem.

(P1) Each data value occurs at most once in the word and is an even number. (P2) Property (P1) and the subset of the positions containing data values divisible by 4 has the same number of 𝑎's and 𝑏's. (P3) Each data value occurs an even number of times, and a most frequent data is even. (P4) Each data value occurs at most once, and the set of data values forms an interval. (P5) Each data occurs at most once, and the 𝑘-th biggest value is the length of the word. (P6) Each data value occurs the same number of times.

For example, (P3) can be expressed in pSDL as the conjunction of

G(⟨=⟩ 1≤𝑦<𝑝∧𝑦≡1 (mod 2) ⊤).
and

F(𝑥 ≡ 0 (mod 2) ∧ ⟨=⟩ 𝑝 -1=𝑦 ≥0 ⊤)
(Recall that ⟨=⟩ is 'strict', in the sense that it only counts occurrences different from the current position's.) Note that the parameter 𝑝 is used as a placeholder for the most frequent data value in the input word. As another example, assuming that each data value occurs in the input at most once (which we saw is expressible in pSDL), (P4) can be expressed as a conjunction of F(𝑥 = 𝑝 𝑚𝑎𝑥) ∧ F(𝑥 = 𝑝 𝑚𝑖𝑛) and

G(𝑝 𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑝 𝑚𝑎𝑥) ∧ ⟨≠⟩ 𝑦=𝑝 𝑚𝑎𝑥 -𝑝 𝑚𝑖𝑛 ⊤.
Here, we save the maximum and minimum data values into parameters, and say that there are precisely 𝑝 𝑚𝑎𝑥 -𝑝 𝑚𝑖𝑛 + 1 data values in the input word. Because of uniqueness of data values in the input word, we are guaranteed to have every data value between [𝑝 𝑚𝑖𝑛 , 𝑝 𝑚𝑎𝑥] in the input word. Note, however, that this trick does not apply when we allow each data value to occur more than once.

Preliminaries

Basic notation. Let N = {0, 1, 2, . . . }. We write 𝑘 to denote the set {1, . . . , 𝑘 }. The set of finite words over a domain 𝐴 is denoted by 𝐴 * . We will often work with finite words over the cartesian product of pairwise disjoint alphabets, e.g., 𝑤 ∈ (𝐴 × 𝐵 × 𝐶) * . We use letters A, B to denote finite alphabets. For 𝑤 ∈ (A×N) * , we write data(𝑤) and lab(𝑤) to denote the projection of 𝑤 onto N and A respectively.

language 𝐿 ⊆ A * is Π(𝐿) = {Π(𝑤) : 𝑤 ∈ 𝐿} ⊆ N 𝐴 .
A linear set is a subset of N 𝑘 that can be described as an arithmetic progression {v 0 +𝛼 1 v1 +• • •+𝛼 𝑛 v𝑛 | 𝛼 1 , . . . , 𝛼 𝑛 ∈ N} for some 𝑛 ∈ N and v0 , . . . , v𝑛 ∈ N 𝑘 . A semilinear set is a finite union of linear sets. Linear sets are represented by the offset v0 and the generators v1 , . . . , v𝑛 , where numbers are represented in binary. Presburger arithmetic refers to firstorder logic in the language of addition (+), inequality (≤), and modulo 𝑘 (mod 𝑘) operators for every 𝑘 > 1, evaluated over the natural numbers (this is sometimes called extended Presburger arithmetic). For example, ∃𝑥 (𝑥 ≥ 𝑦 +𝑦) ∧ ((𝑦 +𝑥) mod 19 = 𝑦) is a Presburger formula with one free variable. Each Presburger formula 𝜑 (𝑥 1 , . . . , 𝑥 𝑘) with 𝑘 free variables denotes a set

[[𝜑]] def = {(𝑛 1 , . . . , 𝑛 𝑘) ∈ N 𝑘 : (𝑛 1 , . . . , 𝑛 𝑘) |= 𝜑 }.
It is well-known that semilinear sets correspond precisely to Presburger arithmetic [START_REF] Ginsburg | Semigroups, Presburger formulas, and languages[END_REF] and to Parikh images of context free (or regular) languages by Parikh's Theorem [START_REF] Parikh | On Context-Free Languages[END_REF]. A quantifier-free Presburger formula is any Presburger formula with no quantifiers. Presburger formulas admit quantifier elimination [START_REF] Haase | A survival guide to presburger arithmetic[END_REF][START_REF] Presburger | On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation[END_REF]: for every Presburger formula there exists an equivalent quantifier-free formula. An existential formula is a Presburger formula of the form ∃𝑥 1 , . . . , 𝑥 𝑛 𝜑, where 𝜑 is quantifier-free.

We extend now Presburger Arithmetic with the star operator * . For any formula 𝜑 (𝑥 1 , . . . , 𝑥 𝑛) and 𝑚 ≥ 0, we permit formulas 𝜑 ≤𝑚 and 𝜑 * with semantics

[[𝜑 ≤𝑚]] := { t1 + • • • + t𝑚 ′ : 𝑚 ′ ≤ 𝑚 and t𝑖 |= 𝜑 for every 𝑖} ⊆ N 𝑛 (or ∅ if 𝑚 = 0), and [[𝜑 *]] := 𝑚≥0 [[𝜑 ≤𝑚]].
We define, in an analogous way, sets 𝑆 * and 𝑆 ≤𝑚 for any set 𝑆 ⊆ N 𝑛 . It is known that, for every existential Presburger formula 𝜑, 𝜑 * is also expressible by an existential Presburger arithmetic formula of at most exponential size [START_REF] Piskac | Linear Arithmetic with Stars[END_REF], and hence that 𝑆 * is semilinear assuming 𝑆 is too. Observe that 𝜑 ≤𝑚 can be expressed as follows:

𝜑 ≤𝑚 (x) = ∃𝑦 𝜓 * (x𝑦) ∧𝑦 ≤ 𝑚, where 𝜓 (x𝑦) = 𝜑 (x) ∧ 𝑦 = 1. (★)
Note that variable 𝑦 is used to 'count' the number of applications of 𝜓 * . Observe that in the translation above, the resulting formula is of size logarithmic in 𝑚. Piskac and Kuncak [START_REF] Piskac | Linear Arithmetic with Stars[END_REF] have shown that existential Presburger formulas with star is NP-complete, so long as they are of star-height 1 (i.e. no nesting of the star operator is allowed). As recently shown in [START_REF] Haase | Presburger arithmetic with stars, rational subsets of graph groups, and nested zero tests[END_REF], this NP upper bound can be generalized to any fixed star-height.

Complexity classes

We use standard notations for complexity classes [START_REF] Dexter | Theory of Computation[END_REF], including NP, PSPACE, 𝑘-NEXP, #P, PP, P #P , and NP NP . For example, 2-NEXP is the class of problems solvable by a nondeterministic Turing machine in double exponential time. The class #P is the class of counting problems, whose solutions correspond to the number of accepting paths of a nondeterministic polynomial-time Turing machine. Some of these classes have also oracle access. For example, P #P = P PP (e.g. see [START_REF] Torán | Complexity Classes Defined by Counting Quantifiers[END_REF]) corresponds to the class of problems solvable in polynomial time with access to a #P oracle. By Toda's theorem ([START_REF] Toda | PP is as Hard as the Polynomial-Time Hierarchy[END_REF], see also [START_REF] Dexter | Theory of Computation[END_REF]), P #P contains the entire polynomial hierarchy (PH). The class NP NP corresponds to the second-level of PH. Finally, we use the class P NP[log] [START_REF] Wagner | More Complicated Questions About Maxima and Minima, and Some Closures of NP[END_REF] of problems solvable in polynomial-time with logarithmically many calls to an NP oracle. It is known that P NP [log] contains the entire boolean hierarchy, which in turn contains NP, co-NP, DP, etc.

Semilinear Data Logic

We now formally define Semilinear Data Logic (SDL). For readability, we disallow parameters and restrict to 1-ary modalities. This will be generalized in Section The logic can express the following properties:

• "for every 𝑎-position there is a 𝑏-position with the same value", • "there are no two 𝑎-positions with the same value", or • "there are no two consecutive positions with the same value". The first two properties above can be expressed with previously studied logics such as FO 2 (<, ∼), and the last one with FO 2 (+1, <, ∼) logics of [START_REF] Bojańczyk | Two-variable logic on data words[END_REF], using register automata [START_REF] Kaminski | Finite-Memory Automata[END_REF] or freeze-LTL [START_REF] Demri | LTL with the freeze quantifier and register automata[END_REF]. Further, using the linear arithmetic power, we can 'count' the number of positions with the same data value as the current one. One can then express properties like "for every 𝑎-position with an even data value there is an odd number of 𝑏-positions with the same value".

Definition. The syntax of Semilinear Data Logic (SDL) over words 𝑤 ∈ (A × N) * is given by the following grammar:

𝜑 𝑎 | 𝛼 | 𝜑 ∧ 𝜑 | ¬𝜑 | 𝜑 U 𝜑 | 𝜑 S 𝜑 | ⟨=⟩ 𝛽 𝜑 | ⟨≠⟩ 𝛽 𝜑,
where 𝑎 ∈ A, and 𝛼, 𝛽 are quantifier-free Presburger formulas with one free variable 𝑥. We call 𝑎 and 𝛼 base formulas of the logic since they correspond to leaves in the grammar derivations. As usual, we write ⊥ as short for 𝑎 ∧¬𝑎 for some 𝑎 ∈ A; ⊤ for ¬⊥; and 𝜑 ∨ 𝜓 for ¬(¬𝜑 ∧ ¬𝜓).

For base formulas, we define the satisfaction relation on a word 𝑤 ∈ (A × N) *

F𝜑 def = ⊤ U 𝜑, X𝜑 def = ⊥ U 𝜑, G𝜑 def = ¬F¬𝜑, F -1 𝜑 def = ⊤ S𝜑, X -1 𝜑 def = ⊥ S𝜑, G -1 𝜑 def = ¬F -1 ¬𝜑.
The remaining modalities are the key constructs for testing for data values. Given a word 𝑤 ∈ (A × N) * , for any position

1 ≤ 𝑖 ≤ |𝑤 |, we have 𝑤, 𝑖 |= ⟨=⟩ 𝛽 𝜑 (resp. 𝑤, 𝑖 |= ⟨≠⟩ 𝛽 𝜑) if the number 𝑛 ∈ N of positions 𝑗 ∈ {1, . . . , |𝑤 |} distinct from 𝑖 such that (i) 𝑤, 𝑗 |= 𝜑, (ii) data(𝑤) [𝑗] = data(𝑤) [𝑖] (resp. (i) 𝑤, 𝑗 |= 𝜑 and (ii) data(𝑤) [𝑗] ≠ data(𝑤) [𝑖]) is such that 𝑛 |= 𝛽. Analogously, 𝑤, 𝑖 |= ⟨≠⟩ 𝛽 𝜑 if the number 𝑛 ∈ N of positions 𝑗 ∈ {1, . . . , |𝑤 |} distinct from 𝑖 such that (i) 𝑤, 𝑗 |= 𝜑 and (ii) data(𝑤) [𝑗] ≠ data(𝑤) [𝑖] is such that 𝑛 |= 𝛽.
Observe that we have opted for a 'strict' version of the ⟨=⟩ modality, in which we count positions different from the current one, to be in line with the semantics of U and S. However, a non-strict version ⟨⟨=⟩⟩ of the modality is definable by

⟨⟨=⟩⟩ 𝛽 (𝑦) (𝜓) def = (¬𝜓 ∧ ⟨=⟩ 𝛽 (𝑦) (𝜓)) ∨ (𝜓 ∧ ⟨=⟩ 𝛽 (𝑦+1) (𝜓)).
Remark. Notice that data modalities are closed under taking dual, in the sense: ¬ ⟨=⟩ 𝛽 𝜓 ≡ ⟨=⟩ ¬𝛽 𝜓 . Observe also that, for 𝛽 (𝑥) := 𝑥 ≥ 1, the formula ⟨=⟩ 𝛽 𝜓 evaluated at position 𝑖 of 𝑤 tests whether there exists some other position 𝑗 with the same data value satisfying 𝜓 . In a similar way, we can test that there are at least ℓ (using 𝛽 (𝑥) := 𝑥 ≥ ℓ) or that there are an even number of such positions 𝑗 (with 𝛽 (𝑥) := (𝑥 mod 2 = 0)). Indeed, SDL allows for counting properties for each data equivalence class. This particular restriction in fact subsumes the modal logic fragment of FO 2 (<, +1, ∼). As we shall see later, our logic has the advantage of admitting elementary complexity, in contrast to that FO 2 (<, +1, ∼) being not primitive-recursive. This is because FO 2 (<, +1, ∼) satisfiability can capture reachability of Petri nets, which is decidable [START_REF] Kosaraju | Decidability of Reachability in Vector Addition Systems (Preliminary Version)[END_REF][START_REF] Lambert | A Structure to Decide Reachability in Petri Nets[END_REF][START_REF] Mayr | An Algorithm for the General Petri Net Reachability Problem[END_REF][START_REF] Mayr | An Algorithm for the General Petri Net Reachability Problem[END_REF] but not primitive-recursive [START_REF] Czerwinski | Reachability in Vector Addition Systems is Ackermann-complete[END_REF][START_REF] Leroux | The Reachability Problem for Petri Nets is Not Primitive Recursive[END_REF].

Model checking. The model checking problem for this logic, that is, the problem of given a formula 𝜑 and a word 𝑤 ∈ (A × N) * whether 𝑤, 1 |= 𝜑 is in polynomial time. For each base subformula 𝜓 of 𝜑, we can mark each position 𝑖 such that 𝑤, 𝑖 |= 𝜓 in linear time (remember that formulas are quantifier-free). For each subformula 𝜓 U 𝜓 ′ or 𝜓 S 𝜓 ′ we can also mark which positions satisfy the formula in linear time, assuming 𝜓,𝜓 ′ have been already treated.

Similarly for ¬𝜓 and 𝜓 ∧ 𝜓 ′ . For a subformula of the form ⟨=⟩ 𝛽 𝜓 we proceed as follows: For each data value 𝑑 of 𝑤, we first count the number 𝑛 of positions of 𝑤 having data 𝑑 and satisfying 𝜓 , and we then mark each position 𝑖 with data 𝑑 as satisfying ⟨=⟩ 𝛽 𝜓 iff

• the position is marked as satisfying 𝜓 and 𝑛 -1 |= 𝛽, or • the position is marked as not satisfying 𝜓 and 𝑛 |= 𝛽.

Observe that this takes quadratic time. Finally, for a subformula of the form ⟨≠⟩ 𝛽 𝜓 we proceed similarly: For each data value 𝑑 of 𝑤, we count the number 𝑛 of positions having data different from 𝑑 and satisfying 𝜓 , and we mark each position 𝑖 with data 𝑑 as satisfying ⟨≠⟩ 𝛽 𝜓 iff 𝑛 |= 𝛽.

Once all the markings are done, we answer 'yes' if the first position is marked with the input formula 𝜑, and 'no' otherwise. □

Satisfiability. Here we focus on the satisfiability problem, that is, the problem of, given a formula 𝜑 whether there is some 𝑤 ∈ (A × N) * such that 𝑤, 1 |= 𝜑.

We say that the formula 𝜓 of SDL is in minterm normal form (MNF) if for every pair of distinct Presburger base subformulas 𝛼, 𝛼 ′ thereof, we have that 𝛼 (𝑥) ∧ 𝛼 ′ (𝑥) is unsatisfiable. 1 In particular, (𝑥 ≥ 2) ∧ F(𝑥 ≤ 5) is not in MNF, but ⟨=⟩ 𝑥 ≥2 ⊤ ∧ F ⟨=⟩ 𝑥 ≤5 ⊤ is. Let SDL MNF be the set of formulas in MNF. We will show the following in the next couple of sections. Theorem 4.2.

(1) The satisfiability problem for SDL is in 2NEXP.

(2) The satisfiability problem for SDL MNF is NEXP-complete.

The gap between 2NEXP and NEXP is due to the cost of bringing the logic to minterm normal form. Closing the gap seems to be a difficult problem, which underlies also the difficulties that are dealt with in practice by symbolic automata algorithms [START_REF] Antoni | The Power of Symbolic Automata and Transducers[END_REF]. We leave this as an open problem. The NEXP-hardness proof is relegated to Appendix C, it follows by a reduction from the exponential tiling problem [START_REF] Van | The convenience of tilings[END_REF]. We will show the upper bound of items 1 and 2 by reduction to an automata model 'SDA', or Semilinear Data Automata, that we introduce in the next section. In fact, SDA is considerably more expressive than SDL. The remaining sections will be dedicated first to defining and showing decidability for SDA, and then to prove the upper bound for the satisfiability of SDL, via an effective language-preserving translation to SDA.

Semilinear Data Automata

We present an automata model which we call Semilinear Data Automata (SDA) and prove some basic properties (e.g. closures, decidability) about them. We will show in Section 6 that it captures SDL.

Definition

For a finite alphabet A, we define a language acceptor of words over A × N. A Semilinear Data Automaton (SDA) over A is a pair (𝑇 , 𝑆) where, for a finite alphabet B, we have:

(1) 𝑆 is a semilinear set over N B × N B ;

(2) 𝑇 ⊆ (A × N) * × B * is a length-preserving transducer, defined via a regular language 𝐿 𝑇 ⊆ (A × Ψ × B) * for a finite set Ψ of quantifier-free Presburger formulas 𝜑 (𝑥) with one free variable 𝑥, and some finite alphabet B. 𝑇 denotes the set of all pairs (𝑤, 𝑤 ′) ∈ (A × N) * × B * such that there exist a sequence 𝜓 1 , . . . ,𝜓 ℓ of Ψ-formulas where:

(i) |𝑤 | = |𝑤 ′ | = ℓ, (ii) data(𝑤) [𝑖] |= 𝜓 𝑖 for all 𝑖 ∈ ℓ, and (iii) (lab(𝑤) [1],𝜓 1 , 𝑤 ′ [1]) • • • (lab(𝑤) [ℓ],𝜓 ℓ , 𝑤 ′ [ℓ]
) is in 𝐿 𝑇 . We call B the output alphabet of 𝑇 and Ψ its Presburger alphabet.

A word 𝑤 ∈ (A × N) * is accepted by such an SDA if there exists some 𝑤 ′ ∈ B * such that (i) (𝑤, 𝑤 ′) ∈ 𝑇 , and (ii) for every

𝑛 ∈ N, (Π(𝑤 ′ [𝐼 𝑛]), Π(𝑤 ′ [Ī𝑛])) ∈ 𝑆,
where

𝐼 𝑛 = {1 ≤ 𝑗 ≤ |𝑤 | : data(𝑤) [𝑗] = 𝑛} and Ī𝑛 = {1, . . . , |𝑤 |} \ 𝐼 𝑛 .
Henceforth, we assume that semilinear sets 𝑆 ⊆ N B × N 𝐵 as above are represented as quantifier-free Presburger formulas, using variables 𝑥 = 𝑏 for each 𝑏 ∈ B for the first Bcomponents, and variables 𝑥 ≠ 𝑏 for each 𝑏 ∈ B for the last B-components. Similarly, regular languages are represented as non-deterministic finite automata (NFA). We say that an SDA is in minterm normal form (MNF) if, for every pair of transitions (𝑝, (𝑎, 𝜑, 𝑏), 𝑞), (𝑝 ′ , (𝑎 ′ , 𝜑 ′ , 𝑏 ′), 𝑞 ′) of the NFA representing its transducer 𝑇 , either 𝜑 ∧ 𝜑 ′ is unsatisfiable or 𝜑 = 𝜑 ′ .

The definition of SDA is inspired by the Data Automata (DA) model introduced in [START_REF] Bojańczyk | Two-variable logic on data words[END_REF]. However, it is incomparable in expressive power. On the one hand DA work with an abstract infinite domain equipped with an equivalence relation, and the transducer part of DA is just a letter-to-letter transducer 𝑇 ⊆ A * × B * . It cannot express, e.g., the SDA property "each datum associated with the letter 𝑎 is even". On the other hand, DA can test for regular properties of equivalence classes (e.g., "every class is a word in (𝑎𝑏) * ") which cannot be expressed by SDA, whereas SDA can test for semilinear constraints on the Parikh-image of equivalence classes (e.g., "for every class there are as many 𝑎's as 𝑏's") which cannot be expressed by DA. Unfortunately, a generalization of both DA and SDA is infeasible: in Appendix A, we show that generalizing both mechanisms (i.e., DA extended with semilinear constraints) would result in a model with undecidable emptiness problem. Proposition 5.1.

(1) SDA are effectively closed under union and intersection.

(2) SDA are not closed under complement.

(3) The universality, equivalence and containment problems for SDA are undecidable.

Proof of item (1). Assume (𝑇 It then follows that the language of (𝑇 , 𝑆) is the union of the languages of the two input SDA.

(∩) For intersection, we essentially build the product of both automata, which here implies considering the cartesian product of the alphabets (in the same way as intersection of DFA implies considering the cartesian product of the states). This time we define 𝑆 as a set over

N B 1 ×B 2 × N B 1 ×B 2 .
Assuming 𝑆 1 , 𝑆 2 are given by formulas 𝜑 𝑆 1 , 𝜑 𝑆 2 as before, we define 𝑆 as

𝜑 𝑆 ({𝑥 𝑎 𝑖 ,𝑏 𝑗 , 𝑦 𝑎 𝑖 ,𝑏 𝑗 } 𝑖 ∈ℓ 1 ,𝑗 ∈ℓ 2) = 𝜑 1 ∧ 𝜑 2 ,
where

𝜑 𝛼 = 𝜑 𝑆 𝛼 (𝑡 𝑥 𝑎 1 , . . . , 𝑡 𝑥 𝑎 ℓ𝛼 , 𝑡 𝑦 𝑎 1 , . . . , 𝑡 𝑦 𝑎 ℓ𝛼), for 𝛼 ∈ {1, 2}, 𝑡 𝑥 𝑎 𝑖 = 𝑗 ∈ℓ 3-𝛼 𝑥 𝑎 𝑖 ,𝑏 𝑗 , 𝑡 𝑦 𝑎 𝑖 = 𝑗 ∈ℓ 3-𝛼 𝑦 𝑎 𝑖 ,𝑏 𝑗 for every 𝑖 ∈ ℓ 𝛼 . We finally define 𝑇 = 𝑇 1 × 𝑇 2 , that is, given 𝑤 it outputs 𝑢 ∈ (B 1 × B 2) * iff (𝑤, 𝑢 B 1) ∈ 𝑇 1 and (𝑤, 𝑢 B 2) ∈ 𝑇 2 .
We then have that (𝑇 , 𝑆) denotes the intersection of the languages of the two SDA. □

Proof of items (2) and (3). It is easy to see that SDA is effectively equivalent in expressive power to Parikh automata [START_REF] Klaedtke | Monadic Second-Order Logics with Cardinalities[END_REF] when disregarding the numeric domain N. Since the latter has an undecidable universality problem, it follows that the universality problem for SDA is also undecidable. The undecidability for the equivalence and containment problems follow thus as corollaries. Analogously, the fact that SDA are not closed under complement can be seen also as a consequence of Parikh automata not being closed under complement. □

5.2

The Emptiness Problem for SDA Theorem 5.2. The emptiness problem for (1) . . . SDA is decidable in NEXP.

(2) . . . SDA in minterm normal form is in P #P and P NP[log]hard. (3) . . . SDA in minterm normal form whose transducers use no modular predicates is NP-complete.

We will first show decidability, and then explain how the bounds follow from the proof.

Lemma 5.3. The emptiness problem for SDA is decidable.

Figueira and Lin

Proof. Let A = (𝑇 , 𝑆) be a SDA. Let Φ be the Presburger alphabet of 𝑇 . For 𝑃 ⊆ Φ, we say that 𝑥 ∈ N has profile 𝑃 if it satisfies the formula 𝜋 𝑃 (𝑥) def = 𝜓 ∈𝑃 𝜓 (𝑥) ∧ 𝜓 ∈Φ\𝑃 ¬𝜓 (𝑥). Let P ∞ be the set of profiles 𝑃 such that | [[𝜋 𝑃]] | = ∞ and let P <∞ be the remaining ones. For 𝑃 ∈ P <∞ , let 𝑛 𝑃 be the number of 𝑥 ∈ N with profile 𝑃. Observe that

𝑛 𝑃 = | [[𝜋 𝑃]] |. (†)
Consider 𝑇 seen as a regular language over A × Φ × B. By Parikh's Theorem [START_REF] Parikh | On Context-Free Languages[END_REF], its Parikh image is semilinear, and an existential Presburger formula 𝜑 𝑇 (x) representing it can be produced, even in linear time [START_REF] Kumar | On the Complexity of Equational Horn Clauses[END_REF]. Assume that x (i.e., the free variables of 𝜑 𝑇 (x)) has a variable 𝑥 𝑎,𝜑,𝑏 for every 𝑎 ∈ A, 𝑏 ∈ B and 𝜑 ∈ Φ, representing the number of appearances of (𝑎, 𝜑, 𝑏) ∈ A × Φ × B in the word; and let us assume B = {𝑏 1 , . . . , 𝑏 𝑚 }.

We now need to verify whether a given satisfying valuation for x in 𝜑 𝑇 is such that one can produce a word in the language of A. For this, we will need to first guess how each number denoted by the 𝑥 𝑎,𝜑,𝑏 variables is distributed across profiles. Then we have to check, separately for each profile 𝑃, that the guessed number of elements with profile 𝑃 is in agreement with the bound 𝑛 𝑃 as defined above. Concretely, for a valuation of x, consider the property 𝜇 ∼ stating that [START_REF] Allender | Counting Hierarchies: Polynomial Time and Constant Depth Circuits[END_REF]

𝑥 𝑃 𝑎,𝜑,𝑏 𝑚 ∈ Ŝ ≤𝑛 𝑃 .
The idea is that (1) checks that the partitioning of each 𝑥 𝑎,𝜑,𝑏 into profiles 𝑥 𝑃 𝑎,𝜑,𝑏 is consistent, and (2) guarantees that the numbers are such that: for those profiles for which we can generate as many data tuples as we want, the sum of vectors belongs to Ŝ * , and for profiles containing only 𝑛 𝑃 -many data tuples, the sum of vectors belongs to Ŝ ≤𝑛 𝑃 . Formally, we obtain the following. Claim 1. There exists x ∈ N A×Φ×B such that x |= 𝜑 𝑇 and x |= 𝜇 ∼ if, and only if, A has a non-empty language.

(⇐) We first show the right-to-left direction of Claim 1.

Assume 𝑤 ∈ (A × N) * is in the language of A, let 𝑤 ′ ∈ (A × Φ × B) * be the witnessing word of the transducer. We show that x = Π(𝑤 ′) satisfies both properties. for some 𝛼 ∈ N which cannot be greater than the number of elements from N with profile 𝑃. This shows that both conditions (2i) and (2ii) must hold true.

(⇒) For the left-to-right direction of Claim 1, suppose 𝜑 𝑇 ∧ 𝜇 ∼ has a satisfying assignment x ∈ N A×Φ×B . We show how to build a word 𝑤 ∈ (A×N) * in the language of A. Since x |= 𝜑 𝑇 there must be some

𝑤 ′ = (𝑐 1 ,𝜓 1 , 𝑐 ′ 1) • • • (𝑐 ℓ ,𝜓 ℓ , 𝑐 ′ ℓ) ∈ 𝐿 𝑇 such that Π(𝑤 ′) = x. Since x |= 𝜇 ∼ each index 1 ≤ 𝑗 ≤ |𝑤 ′ |
can be assigned a profile 𝑃 𝑟 𝑗 so that the word restricted to any fixed profile 𝑃 satisfies 𝑎∈A,𝜑 ∈𝑃 (𝑥 𝑃 𝑎,𝜑,𝑏 1 , . . . , 𝑥 𝑃 𝑎,𝜑,𝑏 𝑚) ∈ Ŝ ≤𝛼 for some

𝛼 ∈ N such that 𝛼 ≤ 𝑛 𝑃 if | [[𝜋 𝑃]] | < ∞.
For any such profile 𝑃, we can then take any 𝛼-many pairwise distinct elements 𝑑 𝑃 1 , . . . , 𝑑 𝑃 𝛼 ∈ N with profile 𝑃, and assign to each index 𝑗 ∈ {1 ≤ 𝑗 ≤ ℓ : 𝑃 𝑟 𝑗 = 𝑃 } some value 𝑑 𝑃 𝑖 𝑗 so that the Parikh image restricted to each 𝑑 𝑃 𝑖 is in Ŝ. The final word 𝑤 in the language of A is then any word

𝑤 = (𝑐 1 , 𝑑 1) • • • (𝑐 ℓ , 𝑑 ℓ) ∈ (A × N) * such that 𝑑 𝑗 = 𝑑 𝑃 𝑟 𝑗
𝑖 𝑗 for every 1 ≤ 𝑗 ≤ ℓ. This concludes the proof of Claim 1.

We finally show that these properties can be expressed in Presburger arithmetic. Since as already discussed 𝜑 𝑇 (x) is an existential Presburger formula, it only remains to show: Claim 2. 𝜇 ∼ (x) is expressible by a Presburger formula.

Let 𝜒 𝑆 be a formula having, besides x, some extra free variables 𝑥 1 , . . . , 𝑥 𝑚 , defined as 𝜒 𝑆 (𝑥 1 , . . . , 𝑥 𝑚 , x) def = (𝑥 1 , . . . , 𝑥 𝑚 , (𝑡 1 -𝑥 1), . . . , (𝑡 𝑚 -𝑥 𝑚)) ∈ 𝑆, where 𝑡 𝑖 = 𝜑 ∈Φ,𝑎∈A 𝑥 𝑎,𝜑,𝑏 𝑖 for every 𝑖 ∈ 𝑚. For 𝛼 ∈ { * } ∪ N, let 𝜑 ⟨𝛼 ⟩ 𝑆 be the formula expressing that there exist variables ȳ (one for each 𝑥 𝑎,𝜑,𝑏 𝑖) such that 𝜒 ≤𝛼 𝑆 (𝑥 1 , . . . , 𝑥 𝑚 , ȳ) holds. 2 For the sake of brevity we will henceforth abuse notation writing ∃ cond(𝑃,𝑎,𝜑,𝑏) 𝑥 𝑃 𝑎,𝜑,𝑏 𝜓 to denote ∃𝑥 𝑃 1 𝑎 1 ,𝜑 1 ,𝑏 It is straightforward to see that 𝜇 ∼ is an existential Presburger formula expressing properties (1) and (2). Hence, decidability follows from decidability of the satisfiability problem for Presburger formulas. □ Corollary 5.4. For every SDA recognizable language 𝐿 ⊆ (A × N) * , we have Π({lab(𝑤) : 𝑤 ∈ 𝐿}) ⊆ N A is semilinear.

As a corollary of the previous proof we obtain the bounds of Theorem 5.2.

Proof of Theorem 5.2. First observe that, in the proof of Lemma 5.3, 𝜇 ∼ uses Ŝ * in its definition. As already mentioned this star operator preserves semilinearity [START_REF] Piskac | Linear Arithmetic with Stars[END_REF], but the equivalent existential Presburger formulas without star may be of exponential size. However, in [START_REF] Haase | Presburger arithmetic with stars, rational subsets of graph groups, and nested zero tests[END_REF] it is shown that the satisfiability problem for existential Presburger formulas with star operators which happen to be of star-height 1 (as is our case) is decidable in NP. Observe that, in light of the translation (★), Ŝ ≤𝑛 𝑃 can be written as an existential formula of star-height 1 of size logarithmic in 𝑛 𝑃 and polynomial in the formula expressing Ŝ. On the other hand, counting the number of satisfying assignments of an existential Presburger formula 𝜑 is in the counting hierarchy [START_REF] Allender | Counting Hierarchies: Polynomial Time and Constant Depth Circuits[END_REF], in particular in #P NP . This is because if [[𝜑]] is finite, then any satisfying assignment for 𝜑 use numbers which are at most exponential [START_REF] Scarpellini | Complexity of subcases of Presburger arithmetic[END_REF]; hence an NP Turing machine can guess an assignment x ∈ N 𝑘 and accept iff x |= 𝜑, which necessitates a call to an NP procedure for existential Presburger satisfiability. The number of accepting runs will then correspond to the number of satisfying assignments. Bearing all this in mind, we now proceed to extract the stated upper bounds.

(1) Let (𝑇 , 𝑆) be a SDA. We compute, in exponential time, all the 𝑛 𝑃 's and we produce a singly exponential sized existential formula 𝜑 𝑇 ∧ 𝜇 ∼ of star-height 1, whose satisfiability can be checked in NEXP (in the size of the automaton).

(2) Let (𝑇 , 𝑆) be a SDA in MNF. Observe that in this case the nonempty profiles are just singleton sets, and hence that 𝜋 𝑃 can be equivalently expressed as 𝜋 {𝜑 } (𝑥) = 𝜑 (𝑥). In this case, we can compute in P #P the 𝑛 𝑃 's according to (†). Thus, the produced formula 𝜑 𝑇 ∧ 𝜇 ∼ can be written as a polynomial sized existential formula of star-height 1, which can be tested in NP. This gives an P #P upper bound. The lower bound is relegated to Appendix B.

(3) As already observed, in this case 𝑛 {𝜑 } can be computed in polynomial time, which was the bottleneck of the previous case. Thus, we end up with an NP procedure.

NP-hardness follows by an easy reduction form SAT. Given a Boolean formula 𝜑 in 𝑛 variables 𝑥 1 , . . . , 𝑥 𝑛 we produce the semilinear set 𝑆 ⊆ N B × N B for B = {𝑏 1 , . . . , 𝑏 𝑛 }, as a quantifier-free formula with free variables {𝑦 = 𝑖 } 𝑖 ∈𝑛 , {𝑦 ≠ 𝑖 } 𝑖 ∈𝑛 as the result of replacing each 𝑥 𝑖 with 𝑦 = 𝑖 + 𝑦 ≠ 𝑖 > 0 in 𝜑. We finally let the transducer 𝑇 be the set of all words (𝑤, 𝑤 ′) ⊆ (A × N) * × B * such that 𝑤 ′ ∈ B |𝑤 | . It is easy to check that the resulting SDA (𝑇 , 𝑆) is non-empty if, and only if, 𝜑 is satisfiable. Observe that NP-hardness is independent of using or not modular predicates in 𝑆, and of data classes. □

Satisfiability of SDL

In order to prove decidability for SDL, we show an effective translation from the logic to SDA. We focus here on the upper bounds of items (1) and (2) from Theorem 4.2. The lower bound of item (2) follows by a reduction from the exponential tiling problem [START_REF] Van | The convenience of tilings[END_REF] and is relegated to Appendix C.

For a formula 𝜓 , we write 𝜓 ¬ to denote 𝜓 ′ if 𝜓 is of the form ¬𝜓 ′ , or ¬𝜓 otherwise. Given a formula 𝜑 ∈ SDL, let sub(𝜑) = {𝜓,𝜓 ¬ : 𝜓 a subformula of 𝜑 }. A set 𝑆 ⊆ sub(𝜑) is a maximally consistent set of 𝜑 on the alphabet A if it is ⊆-maximal with respect to the following properties 3 ∥𝑆 ∥ ∞ is the maximum value contained in any of the components of an element of 𝑆. 4 In fact, [START_REF] Woods | Presburger Arithmetic, Rational Generating Functions, and quasi-polynomials[END_REF] shows that the number of solutions of an existential Presburger formula with a fixed number of variables is polynomial-time computable.

Figueira and Lin

(1) for every 𝜓 ∈ sub(𝜑), 𝜓 ∈ 𝑆 iff 𝜓 ¬ ∉ 𝑆, (2) for every 𝜓,𝜓 ′ ∈ sub(𝜑), 𝜓 ∧ 𝜓 ′ ∈ 𝑆 iff 𝜓 ∈ 𝑆 and 𝜓 ′ ∈ 𝑆, (3) there is 𝑎 ∈ A s.t. 𝑎 ∈ 𝑆 and for every 𝑏 ∈ A \ {𝑎}, ¬𝑏 ∈ 𝑆. Let us write MCS(𝜑) to denote the set of all maximally consistent sets of 𝜑 (the alphabet being implicit). Two sets 𝑆, 𝑆 ′ ∈ MCS(𝜑) are one-step consistent if they satisfy (a)

𝜓 1 U 𝜓 2 ∈ 𝑆 iff {𝜓 1 U 𝜓 2 ,𝜓 1 } ⊆ 𝑆 ′ or 𝜓 2 ∈ 𝑆 ′ ; (b) 𝜓 1 S 𝜓 2 ∈ 𝑆 ′ iff {𝜓 1 S 𝜓 2 ,𝜓 1 } ⊆ 𝑆 or 𝜓 2 ∈ 𝑆.
We define an exponential-sized SDA A 𝜑 = (𝑇 , S), whose language consists of all data words that satisfy 𝜑. We define 𝑇 ⊆ (A × N) * × B * as a transducer over the output alphabet B = MCS(𝜑). 𝑇 is defined as the set of all pairs

((𝑎 1 , 𝑑 1) • • • (𝑎 𝑛 , 𝑑 𝑛), 𝑆 1 • • • 𝑆 𝑛) such that (i) 𝜑 ∈ 𝑆 1 ;
(ii) for every 1 ≤ 𝑖 < 𝑛 we have that 𝑆 𝑖 , 𝑆 𝑖+1 are one-step consistent; (iii) for every 1 ≤ 𝑖 ≤ 𝑛 we have that 𝑎 𝑖 ∈ 𝑆 𝑖 ; (iv) for every 1 ≤ 𝑖 ≤ 𝑛 and Presburger formula 𝛼 ∈ 𝑆 𝑖 , we have 𝑑 𝑖 |= 𝛼. We define S ⊆ N B × N B as the set denoted by the quantifierfree formula with variables {𝑥 =,𝑆 } 𝑆 ∈B ∪ {𝑥 ≠,𝑆 } 𝑆 ∈B consisting on the conjunction of:

(

I) 𝑥 =,𝑆 > 0 → 𝛼 ((𝑆 ′ ∈B,𝜓 ∈𝑆 ′ 𝑥 =,𝑆 ′) -𝑟) for every 𝛼,𝜓, 𝑆 such that ⟨=⟩ 𝛼 𝜓 ∈ 𝑆, where 𝑟 = 1 if 𝜓 ∈ 𝑆 or 𝑟 = 0 otherwise; (II) 𝑥 =,𝑆 > 0 → ¬𝛼 ((𝑆 ′ ∈B,𝜓 ∈𝑆 ′ 𝑥 =,𝑆 ′) -𝑟) for every 𝛼,𝜓, 𝑆
such that ¬ ⟨=⟩ 𝛼 𝜓 ∈ 𝑆, where 𝑟 = 1 if 𝜓 ∈ 𝑆 or 𝑟 = 0 otherwise; (III) 𝑥 =,𝑆 > 0 → 𝛼 ((𝑆 ′ ∈B,𝜓 ∈𝑆 ′ 𝑥 ≠,𝑆 ′)) for every 𝛼,𝜓, 𝑆 with ⟨≠⟩ 𝛼 𝜓 ∈ 𝑆; and (IV) 𝑥 =,𝑆 > 0 → ¬𝛼 ((𝑆 ′ ∈B,𝜓 ∈𝑆 ′ 𝑥 ≠,𝑆 ′)) for every 𝛼,𝜓, 𝑆 with ¬ ⟨≠⟩ 𝛼 𝜓 ∈ 𝑆. Observe that S is a single exponential quantifier-free formula. Therefore A 𝜑 is computable in exponential time. Hence, in the light of Theorem 5.2-(1) we obtain a 2NEXP upper bound as stated in item (1) of Theorem 4.2. Further, if 𝜑 is in MNF, then A 𝜑 is too. Observe that the size of base formulas in 𝜑 is logarithmic in terms of the size of A 𝜑 . This means that the cardinalities | [[𝜋 𝑃]] | that need to be computed for every profile 𝑃 (which are singleton since we are in MNF) are at most polynomial in A 𝜑 , and can then be computed in space logarithmic in A 𝜑 . With this in mind, following the upper bound proof of Theorem 5.2-(2), we obtain a non-deterministic polynomial time algorithm in the size of A 𝜑 for its non-emptiness. This then yields the NEXP upper bound of Theorem 4.2-(2). (⇒) Suppose now that 𝑤 ∈ (A×N) * is accepted by A 𝜑 , and let us show that 𝑤, 1 |= 𝜑. Let 𝑤 ′ ∈ B * be the witnessing word used for the acceptance of 𝑤. We will show that for every position 𝑖 and subformula 𝜓 : 𝜓 ∈ 𝑤 ′ [𝑖] iff 𝑤, 𝑖 |= 𝜓 . We show this by induction on the size of 𝜓 . The base case is when 𝜓 is either (a) a letter 𝑎 ∈ A which follows by condition (iii) in the definition of 𝑇 , or (b) a Presburger formula 𝛼 which follows by condition (iv). Boolean combinations follow by induction as a direct consequence of the definition of MCS(𝜑).

The Until modality follows by applying the the one-stepconsistency:

𝜓 U 𝜓 ′ ∈ 𝑤 ′ [𝑖] iff there is some 𝑖 ′ > 𝑖 such that 𝜓 ′ ∈ 𝑤 ′ [𝑖 ′]
1 ≤ 𝑖 1 < • • • < 𝑖 𝑛 ≤ |𝑤 ′ | such that 𝑤, 𝑖 𝑗 |= 𝜓 for all 𝑗 ∈ {1, . . . , 𝑛}. Hence, ⟨=⟩ 𝛼 𝜓 ∈ 𝑤 ′ [𝑖] iff 𝑤, 𝑖 |= ⟨=⟩ 𝛼 𝜓 .
The case of ⟨≠⟩ 𝛼 𝜓 is analogous. □ Corollary 6.2 (of Lemma 6.1 and Corollary 5.4). The spectrum (i.e. the set of sizes of models) of any SDL formula is semilinear.

Extensions

We show in in this section how to extend our results with parameters and 𝑘-ary modalities.

Adding parameters

Adding parameters to SDL. We use pSDL to denote the extension of SDL with parameters. The definition is the same as before but now all Presburger formulas (base formulas and formulas used in modalities) may use some extra free variables 𝑝 1 , . . . , 𝑝 𝑡 which correspond to the parameters. Now the satisfaction relation 𝑤, 𝑖 |= 𝜎 𝜑 is defined relative to some parameter valuation 𝜎 : {𝑝 1 , . . . , 𝑝 𝑡 } → N. For any Presburger base formula 𝛼, we define 𝑤, 𝑖 |= 𝜎 𝛼 iff 𝑥, 𝜎 |= 𝛼, where

𝑥 = data(𝑤 [𝑖]). Given a word 𝑤 ∈ (A × N) * , for any posi- tion 1 ≤ 𝑖 ≤ |𝑤 |, we have 𝑤, 𝑖 |= 𝜎 ⟨=⟩ 𝛽 𝜑 (resp. 𝑤, 𝑖 |= ⟨≠⟩ 𝛽 𝜑) iff the number 𝑛 ∈ N of positions 1 ≤ 𝑗 ≤ |𝑤 | such that (i) 𝑤, 𝑗 |= 𝜎 𝜑, (ii) data(𝑤 [𝑗]) = data(𝑤 [𝑖]) and (iii) 𝑗 ≠ 𝑖 (resp. (i) 𝑤, 𝑗 |= 𝜑 and (ii) data(𝑤 [𝑗]) ≠ data(𝑤 [𝑖]
)) is such that 𝑛, 𝜎 |= 𝛽. Finally, 𝑤, 𝑖 |= 𝜑 holds if there exists some 𝜎 such that 𝑤, 𝑖 |= 𝜎 𝜑.

Adding parameters to SDA. To derive decidability and complexity of pSDL, we extend SDA with parameters, which we call parametric SDA (pSDA). A parametric SDA (pSDA) with 𝑡 parameters, is a tuple (𝑇 , 𝑆) as before, but the formulas in the transitions of 𝑇 may also use some parameters 𝑝 1 , . . . , 𝑝 𝑡 . Now 𝑇 is a regular language over A × Ψ × B, where Ψ a finite set of quantifier-free Presburger formulas with free variables 𝑥, 𝑝 1 , . . . , 𝑝 𝑡 , and 𝑆 is a semilinear set over N B × N B × N {𝑝 1 ,...,𝑝 𝑡 } . Acceptance is defined analogously: A word 𝑤 ∈ (A × N) * is accepted by (𝑇 , 𝑆) if for some 𝑤 ′ ∈ B * and valuation 𝜎 ∈ N {𝑝 1 ,...,𝑝 𝑡 } , we have (i) (𝑤, 𝑤 ′) ∈ 𝑇 𝜎 , where 𝑇 𝜎 is the transducer without parameters obtained by replacing each 𝑝 𝑖 with 𝜎 (𝑝 𝑖), (ii) for every 𝑥 ∈ N, (Π(𝑤 ′ [𝐼 𝑥]), Π(𝑤 ′ [Ī𝑥]), 𝜎) ∈ 𝑆.

where

𝐼 𝑥 = {1 ≤ 𝑗 ≤ |𝑤 | : data(𝑤 [𝑗]) = 𝑥 } and Ī𝑥 = {1, . . . , |𝑤 |} \ 𝐼 𝑥 .
This model is still closed under union and intersection. The construction is exactly as in Proposition 5.1 (item (1)) assuming, without any loss of generality, that the parameter names used by both automata are disjoint.

We show that the decidability proof of Lemma 5.3 can be adapted to having parameters.

Theorem 7.1. The emptiness problem for pSDA is in NEXP and NP NP -hard.

Proof. For the upper bound, suppose the pSDA automaton A = (𝑇 , 𝑆) has 𝑡 parameters 𝑝 1 , . . . , 𝑝 𝑡 and 𝑇 is in minterm normal form (that is, in minterm normal form for every possible instantiation of the parameters). We follow closely the proof of Lemma 5.3. The first difference being that now 𝜑 𝑇 has some 𝑡 extra free variables 𝑝 1 , . . . , 𝑝 𝑡 . We will need to adjust 𝜇 ∼ to take into account the parameter valuations. Observe that each 𝑛 𝑃 may depend on the assignment of parameters 𝑝 1 , . . . , 𝑝 𝑡 . The crux of the proof will still be to produce a Presburger formula 𝜑 such that 𝜑 is satisfiable if and only if A has a non-empty language. But in order to do this, we need to use two constructs in the logic, which preserve semilinearity, and which we describe next.

Given a Presburger formula 𝜑 (x) and a fresh variable 𝑦 let 𝜑 ≤𝑦 (x) be a formula with free variables x𝑦. Its semantics is such that 𝜑 ≤𝑦 (x) is satisfied by a valuation ỹ of 𝑦 and n of x if n |= [[𝜑]] ≤ ỹ where, recall,

𝐶 ≤ ỹ = { x1 + • • • + x ỹ′ : ỹ′ ≤ ỹ and x𝑖 ∈ 𝐶 for every 𝑖}.
Observe that [[𝜑 ≤𝑦]] is effectively semilinear, definable by the same star-height 1 formula of (★):

𝜑 ≤𝑦 (x) = ∃𝑦 ′ 𝜓 * (x𝑦 ′) ∧ 𝑦 ′ ≤ 𝑦, where 𝜓 (x𝑦 ′) = 𝜑 (x) ∧ 𝑦 ′ = 1. It then follows that 𝜑 ⟨𝑦⟩ 𝑆 (x) is definable as a star-height 1 existential formula.
Consider the following unary counting quantifier ∃ =𝑥 𝑦 𝜓 (𝑦, 𝑝 1 , . . . , 𝑝 𝑡) having 𝑥, 𝑝 1 , . . . , 𝑝 𝑡 as free variables, which expresses that, for a given assignment p1 , . . . , p𝑡 ∈ N of 𝑝 1 , . . . , 𝑝 𝑡 and x ∈ N of 𝑥, there are exactly x many different valuations ỹ ∈ N of variable 𝑦 such that (ỹ, p1 , . . . , p𝑡) |= 𝜓 . It was shown in [START_REF] Schweikardt | Arithmetic, first-order logic, and counting quantifiers[END_REF] that such a quantifier preserves semilinearity. Although the complexity was not explicitly mentioned in the paper, the algorithm of [START_REF] Schweikardt | Arithmetic, first-order logic, and counting quantifiers[END_REF] could be easily adapted to produce an equivalent existential Presburger formula (without counting quantifiers) in single exponential time. See Appendix D for more details. Observe that given an assignment of 𝑝 1 , . . . , 𝑝 𝑡 , the number of equivalence classes with profile 𝑃 ⊆ Φ is given by the satisfying valuation of 𝑦 in the formula

𝜌 𝑃 (𝑦, 𝑝 1 , . . . , 𝑝 𝑡) def = ∃ =𝑦 𝑥 𝜑 ∈𝑃 𝜑 (𝑥, 𝑝 1 , . . . , 𝑝 𝑡) ∧ 𝜑 ∈Φ\𝑃 ¬𝜑 (𝑥, 𝑝 1 , . . . , 𝑝 𝑡).
Hence, for a given assignment 𝜎 ∈ N {𝑝 1 ,...,𝑝 𝑡 } we have that there are finitely many distinct equivalence classes with profile 𝑃 ⊆ Φ if, and only if, 𝜎 |= ∃𝑦 𝜌 𝑃 .

We also define the infinite version 𝜌 ∞ 𝑃 of 𝜌 𝑃 :

𝜌 ∞ 𝑃 (𝑝 1 , . . . , 𝑝 𝑡) def = ∃ ∞ 𝑥 𝜑 ∈𝑃 𝜑 (𝑥, 𝑝 1 , . . . , 𝑝 𝑡) ∧ 𝜑 ∈Φ\𝑃 ¬𝜑 (𝑥, 𝑝 1 , . . . , 𝑝 𝑡).
The quantifier ∃ ∞ 𝑥 𝜓 (𝑥, z) simply says there are infinitely many 𝑥's such that 𝜑 (𝑥, z) is true. By standard results for quantifier-free and Presburger arithmetic [START_REF] Scarpellini | Complexity of subcases of Presburger arithmetic[END_REF], we could replace ∃ ∞ 𝑥 𝜓 with ∃𝑥 (𝑥 > 𝐶 ∧ 𝜓) for some constant 𝐶 that is exponential in the size of 𝜓 (which can therefore be represented in polynomial size in binary). Then, the final formula is

𝜇 ∼ (x, p) def = ∃ 𝑎∈A,
𝜏 𝑖 = ∑︁ 𝑎∈A,𝜑 ∈𝑃
𝑥 𝑃 𝑎,𝜑,𝑏 𝑖 for every 𝑖 ∈ 𝑚.

As before, the language is non-empty if, and only if, 𝜑 𝑇 (x, p) ∧ 𝜇 ∼ (x, p) is satisfiable. Note that now any satisfying assignment does not only yield the Parikh image under 𝑇 of the witnessing word but also the valuation for all parameters. Since the ∃ =𝑦 quantifier can be eliminated in exponential time, 𝜌 𝑃 can be translated into an equivalent, single-exponential size existential Presburger formula . Thus, 𝜑 𝑇 (x, p) ∧𝜇 ∼ (x, p) is an exponential sized existential formula of star-height 1, whose satisfiability can be checked in NP. Thus, the upper bound follows.

We now prove that pSDA emptiness is NP NP -hard. The reduction is from the standard NP NP -complete problem [START_REF] Dexter | Theory of Computation[END_REF][START_REF] Schaefer | Completeness in the polynomial-time hierarchy: A compendium[END_REF] of satisfiability for quantified Boolean formulas of the form 𝐹 := ∃𝑦 1 , . . . , 𝑦 𝑛 ∀𝑧 1 , . . . , 𝑧 𝑛 𝐺 (ȳ, z)

where 𝐺 is a quantifier-free Boolean formula. The corresponding pSDA (𝑇 , 𝑆) will use the parameter 𝑝 for encoding assignments to ȳ, and will only have one state 𝑞, which is both initial and final. The assignments to ȳ will be stored as the data values of the pSDA. Let 1 < 𝑟 1 < • • • < 𝑟 𝑛 be the first 𝑛 primes. We use the Gödel encoding techniques for encoding 𝐺 as a Presburger formula 𝜑 𝐺 . Namely by recursive definition:

(1)

𝜑 𝐺 := 0 = 𝑝 mod 𝑟 𝑖 if 𝐺 = 𝑦 𝑖 , (2
) 𝜑 𝐺 := 0 = 𝑥 mod 𝑟 𝑖 if 𝐺 = 𝑧 𝑖 , (3
) 𝜑 𝐺 := 𝜑 𝐺 1 ∧ 𝜑 𝐺 2 if 𝐺 = 𝐺 1 ∧ 𝐺 2 , and (4)
𝜑 𝐺 := ¬𝜑 𝐺 1 if 𝐺 = ¬𝐺 1 .
To finish the reduction, let A = B = {𝑎}, and 𝑅 := 𝑛 𝑖=1 𝑟 𝑖 . The only transition of 𝑇 is (𝑞, (𝑎, 𝜑 𝐺 ∧ 0 < 𝑥 ≤ 𝑅, 𝑎), 𝑞)

Finally, the semilinear set 𝑆 is given by the quantifier-free formula 𝑥 = 𝑎 = 1∧𝑥 ≠ 𝑎 = 𝑅-1. These enforce that only permutations of the word (𝑎, 1) • • • (𝑎, 𝑅) could be accepted by (𝑇 , 𝑆), i.e., must contain each of the Gödel encoding of assignments for z restricted to the interval {1, . . . , 𝑅} exactly once as data values. Therefore, 𝐹 is true iff (𝑇 , 𝑆) is nonempty. □ Satisfiability of SDL. It is easy to see that the reduction of SDL to SDA can be adapted to work also in the case of parameters, which yields decidabilty for the satisfiability problem. We comment more on this adaptation below when discussing extensions with 𝑘-ary modalities.

Theorem 7.2. The satisfiability problem for pSDL is in 2NEXP.

SDL with 𝑘-ary modalities

The logic SDL (with or without parameters) can be also extended with 𝑘-ary versions of the (unary) data modalities ⟨=⟩ 𝛽 (𝑦, p) (𝜑) and ⟨≠⟩ 𝛽 (𝑦, p) (𝜑). We consider now formulas with 𝑘-ary modalities of the form ⟨=⟩ 𝛽 (𝑦 1 ,...,𝑦 𝑘 , p) (𝜑 1 , . . . , 𝜑 𝑘) and ⟨≠⟩ 𝛽 (𝑦 1 ,...,𝑦 𝑘 , p) (𝜑 1 , . . . , 𝜑 𝑘). As before, 𝑤, 𝑖 |= 𝜑 holds if 𝑤, 𝑖 |= 𝜎 𝜑 for some 𝜎. Let us call SDL + and pSDL + the extensions of SDL and pSDL with 𝑘-ary modalities (for every 𝑘), respectively.

The exponential-time translation from this further extension to SDA can be adapted, and we obtain the following. Theorem 7.3.

• Satisfiability for pSDL + is in 2NEXP.

• Model-checking for SDL + is in PTIME.

• Model-checking for pSDL + and pSDL is NP-complete.

Proof. For satisfiability, we can translate in exponential time from the logic to pSDA. The translation is exactly as defined in Section 6 but now the semilinear set S needs to be updated to take into account the 𝑘-ary modalities semantics. That is, we define S ⊆ N B × N B × N p as the set denoted by the quantifier-free formula with variables {𝑥 =,𝑆 } 𝑆 ∈B ∪ {𝑥 ≠,𝑆 } 𝑆 ∈B ∪ p consisting on the conjunction of:

(I) 𝑥 =,𝑆 > 0 → 𝛼 (𝑡 On the other hand, it is easy to see that model-checking of pSDL is NP-hard, by reduction from the satisfiability problem for existential Presburger formulas. Indeed, an existential Presburger formula ∃𝑝 1 , . . . , 𝑝 𝑡 𝜑 (𝑝 1 , . . . , 𝑝 𝑡) (where 𝜑 is a quantifier-free formula) is satisfiable iff the pSDL formula 𝛼 (𝑥, 𝑝 1 , . . . , 𝑝 𝑡) with 𝑡 parameters 𝑝 1 , . . . , 𝑝 𝑡 is satisfiable, where 𝛼 is defined as (𝑥 = 𝑥) ∧ 𝜑 (𝑝 1 , . . . , 𝑝 𝑡).

For the NP upper bound, suppose we are given a word 𝑤 and a pSDL + formula 𝜑. We first guess a function 𝑓 : {1, . . . , |𝑤 |} → MCS(𝜑), where MCS(𝜑) is the set of maximally consistent sets of subformulas of 𝜑, as defined in Section 6. We verify that the guessing is consistent with the semantics of the logic:

1. 𝜑 ∈ 𝑓 (1);

Conclusions

In this paper, we have introduced parametric semilinear data logic (pSDL), which allows different types of arithmetic reasoning (constraints on data values, letter/length counting, data counting, and aggregation) on data words. We have provided decidability and a thorough complexity analysis of the satisfiability problem for the logic, and shown that it can express many interesting properties that cannot be expressed in existing decidable formalisms on data words, potentially leading to interesting applications (e.g., on querying log files and verification of array-manipulating programs). Our proof introduces also the automata counterpart of pSDL called parameteric semilinear data automata (pSDA), which subsume known models like Parikh automata [START_REF] Klaedtke | Monadic Second-Order Logics with Cardinalities[END_REF], symbolic automata [START_REF] Antoni | The Power of Symbolic Automata and Transducers[END_REF], and nondeterministic looping word automata with integer linear arithmetic [START_REF] Faran | On Synthesis of Specifications with Arithmetic[END_REF]. We have derived decidability and complexity of emptiness for pSDA, which are of independent interests.

We would like to conclude with several open problems. Firstly, the complexity gap between 2-NEXP and NEXP of pSDL should be filled. At the moment, we can only bridge this gap when pSDL is restricted to SDL MNF , which subsumes the modal logic fragment of FO 2 (<, +1, ∼). Similarly, the complexity gap for SDA and pSDA should be filled (e.g. between NP NP and NEXP). This, in turn, raises interesting open questions on the complexity of existential Presburger Arithmetic with unary counting quantifiers and star, which (to the best of our knowledge) is not yet studied in the literature. Secondly, can we adapt pSDL to other infinite domains and other decidable theories, e.g., real linear arithmetic? The answer is far from obvious: our proof exploits heavy machinery on Presburger Arithmetic and semilinear sets, which include closure under star [START_REF] Haase | Presburger arithmetic with stars, rational subsets of graph groups, and nested zero tests[END_REF][START_REF] Piskac | Linear Arithmetic with Stars[END_REF] and closure under unary counting quantifiers [START_REF] Schweikardt | Arithmetic, first-order logic, and counting quantifiers[END_REF], which does not hold in every decidable quantifier-free theories. Thirdly, we believe that it is highly crucial to understand further the relationships among existing models over data words, as well as array theories, with respect to their expressive power. We conjecture, among others, that our logic (or maybe a slight variant thereof) subsumes Array Folds Logic [START_REF] Daca | Array Folds Logic[END_REF]. Finally, it would be interesting to investigate if the idea of using parameters could further be exploited in other logic/automata models over data words. For example, can one still extend two-variable logics [START_REF] Bojańczyk | Two-variable logic on data words[END_REF][START_REF] Schwentick | Two-Variable Logic with Two Order Relations[END_REF] The left-to-right direction is straightforward. For the right-to-left direction, it is worth observing that, in the light of properties (a)-(b), every data class 𝑑 of the form 𝑡𝑎 𝑛 𝑏 𝑚 𝑎 ′𝑛 ′ 𝑏 ′𝑚 ′ referred to in property (d) must be such that (i) the block of (𝑡, 𝑑) has exactly 𝑛 𝑎's and 𝑚 𝑏's, and (ii) the next block has exactly 𝑛 ′ 𝑎's and 𝑚 ′ 𝑏's. It is then easy to verify that the sequence of transitions 𝑡 1 , . . . , 𝑡 ℓ , 𝑡 ℓ+1 seen in any word 𝑤 ∈ (A × N) * satisfying (a)-(d) is such that 𝑡 1 , . . . , 𝑡 ℓ is an accepting run. It is easy to check that (a) can be expressed in the logic FO 2 (∼, <, +𝜔) of first-order logic with two variables, an "equal data" relation ∼, order < and the 𝑘-th successor relation for every 𝑘. The expressive power of this logic is, in turn, captured by Data Automata [START_REF] Bojańczyk | Two-variable logic on data words[END_REF], and thus also by SDA + . Similarly, (b) can also be expressed by a FO 2 (∼, <, +𝜔) formula. Condition (c) is just a regular property on the labels, which can be obviously expressed by an SDA + automaton. For condition (d), a Data Automaton can state that all data classes are in the language 𝑇 𝑀 • 𝑎 * • 𝑏 * • 𝑎 ′ * • 𝑏 ′ * . The properties (d1)-(d3) can be assured by the semilinear conditions. For example, for every transition 𝑡 = 𝑞 𝑖𝑛𝑐 (𝑎) -----→ 𝑞 ′ there is a linear set given by the Presburger formula

𝑥 𝑡 = 1 ∧ 𝑥 𝑎 + 1 = 𝑥 𝑎 ′ ∧ 𝑥 𝑏 = 𝑥 𝑏 ′ .
Finally, the statement follows by closure under intersection of SDA + . □ However, adding semilinear constraints to whole words does not pose problems.

Let SDA ± be a triple (𝑇 , 𝐿, 𝑆) where • 𝑇 ⊆ (A × N) * × B * is a length-preserving transducer as before,

for each 𝑖 = 1, . . . , 𝑘, which will be used to indicate the tiles that are placed on certain cells. Let 𝑋 𝑖 = {𝑥 𝑖 , -𝑥 𝑖 }, 𝑌 𝑖 = {𝑦 𝑖 , -𝑦 𝑖 }, 𝑋 ′ 𝑖 = {𝑥 ′ 𝑖 , -𝑥 ′ 𝑖 }, and 𝑌 ′ 𝑖 = {𝑦 ′ 𝑖 , -𝑦 ′ 𝑖 }. Also, let 𝑇 = {𝑡 1 , . . . , 𝑡 𝑘 } and 𝑇 ′ = {𝑡 ′ 1 , . . . , 𝑡 ′ 𝑘 }. We now fix the following regular expressions

X = 𝑋 1 . • • • .𝑋 𝑛 Y = 𝑌 1 . • • • .𝑌 𝑛 X ′ = 𝑋 ′ 1 . • • • .𝑋 ′ 𝑛 Y ′ = 𝑌 ′ 1 . • • • .𝑌 ′

𝑛

We first enforce that only words 𝜋 of the form 𝜋 1 𝜋 2 , where

𝜋 1 ∈ (𝑇 XY) * 𝜋 2 ∈ (𝑇 ′ X ′ Y ′) *
are accepted. This can be done easily by an LTL formula 𝜓 𝜋 . Below we will only care about the data values that are associated with the 𝑇 -labeled or 𝑇 ′ -labeled positions. We call these relevant data values.

We add further constraints now to the relevant data values. Firstly, we say that the relevant data values positions appear uniquely in the word: We now say that each relevant data value appears once in a position labeled by some 𝑡 𝑖 and once in a position labeled by 𝑡 ′ 𝑖 :

𝜓 𝑢 = G
𝜓 𝑐 = 𝑘 𝑖=1
G (𝑡 𝑖 → ⟨=⟩ 𝑡 ′ 𝑖) ∧ (𝑡 ′ 𝑖 → ⟨=⟩ 𝑡 𝑖) .

We now say that 𝑥 𝑖 and 𝑦 ′ 𝑖 (resp. 𝑥 ′ 𝑖 and 𝑦 𝑖) agree on each relevant data value. This corresponds to that we are enumerating the cells of the grid in two different ways: horizontal first then vertical in the first segment 𝜋 1 of 𝜋, and vertical first then horizontal in the second segment 𝜋 2 of 𝜋. The formulas are easy to write:

𝜓 𝑎 = G 𝑘 𝑖=1 𝑡 𝑖 → 𝑘 𝑖=1 (X 𝑖 𝑥 𝑖 ↔ ⟨=⟩ X 𝑛+𝑖 𝑦 ′ 𝑖) ∧(X 𝑛+𝑖 𝑦 𝑖 ↔ ⟨=⟩ X 𝑖 𝑥 ′ 𝑖) .
Note that X 𝑖 simply means 𝑖 nestings X • • • X of X.

We now enforce that 𝜋 1 is a valid enumeration of the cells in the grid horizontal first and then vertical. This is done by a standard binary counting trick relating each segment 𝑢 ∈ (𝑇 XY) 2 in the input word. The corresponding formula 𝜑 ℎ,𝑣 is as follows: 𝜑 ℎ,𝑣 := 𝜑 ℎ,𝑣,𝑖𝑛𝑖𝑡 ∧ 𝜑 ℎ,𝑣,𝑐𝑜𝑛𝑠 .

Here, 𝜑 ℎ,𝑣,𝑖𝑛𝑖𝑡 initializes the counter: 𝜑 ℎ,𝑣,𝑖𝑛𝑖𝑡 := 𝑛 𝑖=1 X 𝑖 ¬𝑥 𝑖 ∧ X 𝑛+𝑖 ¬𝑦 𝑖 , which in other words says that the first cell has coordinate (0, 0). Next we describe consecution constraint 𝜑 ℎ,𝑣,𝑐𝑜𝑛𝑠 . In order to describe this, we first define the formula: Here 𝜃 1 = 𝑛 𝑖=1 𝜃 𝑖 1 , where 𝜃 𝑖 1 is defined as follows:

𝜃 𝑖 1 := 𝑖 -1 𝑗=1 X 𝑗 𝑥 𝑗 ∧ X 𝑖 ¬𝑥 𝑖 → 𝑖 -1 𝑗=1 X 2𝑛+1+𝑗 ¬𝑥 𝑗 ∧ X 2𝑛+1+𝑖 𝑥 𝑖 ∧ 𝑛 𝑗=𝑖+1 X 𝑗 𝑥 𝑗 ↔ X 2𝑛+1+𝑗 𝑥 𝑗 ∧ 𝑛 𝑗=1
X 𝑛+𝑗 𝑦 𝑖 ↔ X 3𝑛+1+𝑗 𝑦 𝑖 .

Notice that the number 1 in 2𝑛 + 1 + 𝑗 indicates that we must jump over the 𝑇 -labeled position. Thus, 𝜃 𝑖 1 simply says that the overflow occurs at position 𝑥 𝑖 -1 . The formula 𝜃 2 = 𝑛 𝑖=1 𝜃 𝑖 2 is similar except that 𝜃 𝑖 2 says that the overflow occurs at position 𝑦 𝑖 -1 . That is 𝜃 𝑖 2 := 𝑛 𝑗=1 X 𝑗 𝑥 𝑗 ∧ X 2𝑛+𝑗 ¬𝑥 𝑗 ∧ 𝜒 𝑖 , where

𝜒 𝑖 := 𝑖 -1 𝑗=1 X 𝑛+𝑗 𝑦 𝑗 ∧ X 𝑛+𝑖 ¬𝑦 𝑖 → 𝑖 -1 𝑗=1 X 3𝑛+1+𝑗 ¬𝑦 𝑗 ∧ X 3𝑛+1+𝑖 𝑦 𝑖 ∧ 𝑛 𝑗=𝑖+1 X 𝑛+𝑗 𝑦 𝑗 ↔ X 3𝑛+1+𝑗 𝑦 𝑗 ∧ 𝑛 𝑗=1 X 𝑛+𝑗 𝑦 𝑖 ↔ X 3𝑛+1+𝑗 𝑦 𝑖 .
We can in a similar way enforce that 𝜋 1 is a valid enumeration of the cells in the grid vertical first and then horizontal. The corresponding formula is denoted 𝜑 𝑣,ℎ .

Finally, we create two formulas 𝜓 𝐻 and 𝜓 𝑉 , where 𝜓 𝐻 checks that the horizontal constraint 𝐻 is observed by 𝜋 1 , whereas 𝜓 𝑉 checks that the vertical constraint 𝑉 is satisfied is a conjunction of at most 𝑂 (𝑛) atomic formulas. For this reason, one can apply the same formula as in Lemma D.2, provided that we can eliminate the counting quantifier from each ∃ =𝑦 𝑥𝜎 𝑗 (𝑥, z) in exponential time. Below we assume that 𝜒 (𝑥, z) is a conjunction of atomic formulas of Types (1)- [START_REF] Björklund | On notions of regularity for data languages[END_REF].

As in [START_REF] Schweikardt | Arithmetic, first-order logic, and counting quantifiers[END_REF], we partition {𝛼 1 , . . . , 𝛼 𝑛 } into • a set 𝐿 consisting of all atoms 𝛼 𝑖 which express a lower bound of the form 𝑥 > 𝑡 𝑖 (z), • a set 𝑈 consisting of all atoms 𝛼 𝑖 which express an upper bound of the form 𝑥 < 𝑡 𝑖 (z) • a set 𝑅 consisting of all atoms 𝛼 𝑖 which express a residue class of the form 𝑥 ≡ 𝑛 𝑖 𝑡 𝑖 (z), • a set 𝐸 consisting of all atoms 𝛼 𝑖 which express an equation of the form 𝑥 = 𝑡 𝑖 (z). • a set 𝐼 consisting of all atoms 𝛼 𝑖 which is independent of 𝑥, i.e., it is of the form 𝛽 (z) with no 𝑥 occuring.

One first divides into two cases: 𝐸 ≠ ∅ or 𝐸 = ∅. The former case is easy -one finds in the proof in [START_REF] Schweikardt | Arithmetic, first-order logic, and counting quantifiers[END_REF] a quantifier-free formula equivalent to ∃ =𝑦 𝑥 𝜒 (𝑥, z) of linear size. We now consider the case when 𝐸 = ∅. The equivalent formula 𝜃 (𝑦, z) without counting quantifiers that is provided in the proof in [START_REF] Schweikardt | Arithmetic, first-order logic, and counting quantifiers[END_REF] is in this case also of a polynomial size, except that at most two universal quantifiers are used. The formula is as follows: Thus, two universal quantifiers appear in the subformula (∃res𝜓 (res, z)) → 𝜒 ′ (𝑦, z). Both can be easily removed, as we show next. First off, we can replace ∃res𝜓 (res, z) by 𝑙 -1 ℎ=0 ℎ ≡ 𝑛 𝑗 𝑡 𝑗 (z). This is at most exponential in the size of the given formula 𝜑. Second, the formula𝜓 first says that first is the smallest number greater than low that is res modulo 𝑙. One can therefore simply rewrite 𝜓 first as:

first ≡ 𝑙 res ∧ low + 1 ≤ first ≤ low + 1 + 𝑙 .

This completes the removals of all the universal quantifiers. The resulting formula is an existential Presburger formula (without counting quantifier) of at most exponential size.

 Given a word 𝑤 ∈ 𝐴 * and a set 𝐼 ⊆ {1, . . . , |𝑤 |}, we write 𝑤 [𝐼] to denote the subword of 𝑤 given by the indices in 𝐼 (e.g., 𝑤 [{1, . . . , |𝑤 |}] = 𝑤, 𝑤 [∅] = 𝜀). We write 𝑤 [𝑖] as short for 𝑤 [{𝑖}]. We write |𝑤 | to denote the length of 𝑤. Parikh images, semilinear sets, Presburger arithmetic. The Parikh image of a word 𝑤 ∈ A * over a finite alphabet A, is a function Π(𝑤) : A → N assigning to each 𝑎 ∈ A the number of appearances of 𝑎 in 𝑤. The Parikh image of a

Proposition 4 . 1 .

 41 The model checking problem for SDL is in polynomial time.Proof. Given 𝑤 ∈ (A × N) * and 𝜑 ∈ SDL, we use the following standard algorithm to mark each position 1 ≤ 𝑖 ≤ |𝑤 | with the set of subformulas 𝜓 of 𝜑 such that 𝑤, 𝑖 |= 𝜓 . We proceed by induction: we first treat base formulas, and then formulas containing already treated subformulas.

Proposition 5 . 5 (

 55 [START_REF] Scarpellini | Complexity of subcases of Presburger arithmetic[END_REF][START_REF] Woods | Presburger Arithmetic, Rational Generating Functions, and quasi-polynomials[END_REF]). For any quantifier-free formula 𝜑 we have the following bounds. | [[𝜑]] | and ∥ [[𝜑]] ∥ ∞ are bounded by some singly exponential function [38]. 3 Further, if 𝜑 does not use modular predicates, | [[𝜑]] | can be computed in polynomial time [47]. 4 In view of Proposition 5.5, observe that we can compute, in #P, | [[𝜋 𝑃]] | for every profile 𝑃. Further, if no formula of the transducer uses modular predicates, | [[𝜋 𝑃]] | can be computed in polynomial time.

Lemma 6 . 1 .

 61 A word is accepted by A 𝜑 if, and only if, it satisfies 𝜑. Proof. (⇐) Suppose first 𝑤, 1 |= 𝜑 and let us show that 𝑤 is accepted by A 𝜑 . Let 𝑤 ′ be a word of length |𝑤 | whose 𝑖-th position is labelled with {𝜓 ∈ sub(𝜑) : 𝑤, 𝑖 |= 𝜓 }, for every 𝑖. It is easy to verify that (i) 𝑤 ′ ∈ B * , (ii) (𝑤, 𝑤 ′) ∈ 𝑇 , and (iii) (Π(𝑤 ′ [𝐼 𝑑]), Π(𝑤 ′ [Ī𝑑])) ∈ S for every 𝑑 ∈ N, 𝐼 𝑑 = {1 ≤ 𝑖 ≤ |𝑤 | : data(𝑤) [𝑖] = 𝑑 }, and Ī𝑑 = {1, . . . , |𝑤 |} \ 𝐼 𝑑 .

 Given a parameter valuation 𝜎 : p → N, a word 𝑤 ∈ (A × N) * , and a position 1 ≤ 𝑖 ≤ |𝑤 |, we define the satisfaction relation 𝑤, 𝑖 |= 𝜎 ⟨=⟩ 𝛽 (𝑦 1 ,...,𝑦 𝑘 , p) (𝜑 1 , . . . , 𝜑 𝑘) (resp. 𝑤, 𝑖 |= ⟨≠⟩ 𝛽 (𝑦 1 ,...,𝑦 𝑘 , p) (𝜑 1 , . . . , 𝜑 𝑘)) iff 𝑛 1 , . . . , 𝑛 𝑘 , 𝜎 |= 𝛽, where each 𝑛 ℓ (for ℓ ∈ 𝑘) is the number of positions 1 ≤ 𝑗 ≤ |𝑤 | such that (i) 𝑤, 𝑗 |= 𝜎 𝜑 ℓ , (ii) data(𝑤 [𝑗]) = data(𝑤 [𝑖]) and (iii) 𝑗 ≠ 𝑖 (resp. (i) 𝑤, 𝑗 |= 𝜎 𝜑 ℓ and (ii) data(𝑤 [𝑗]) ≠ data(𝑤 [𝑖])).

 -→ 𝑞 ′ for some 𝑞, 𝑞 ′ , then 𝑛 = 𝑛 ′ = 0 and𝑚 = 𝑚 ′ , and if 𝑡 = 𝑞 𝑡𝑧 (𝑏) ----→ 𝑞 ′ for some 𝑞, 𝑞 ′ , then 𝑚 = 𝑚 ′ = 0 and 𝑛 = 𝑛 ′ ; (2) if 𝑡 = 𝑞 𝑖𝑛𝑐 (𝑎) -----→ 𝑞 ′ then 𝑛 ′ = 𝑛 + 1 and 𝑚 ′ = 𝑚, and if 𝑡 = 𝑞 𝑖𝑛𝑐 (𝑏) -----→ 𝑞 ′ then 𝑚 ′ = 𝑚 + 1 and 𝑛 ′ = 𝑛; (3) if 𝑡 = 𝑞 𝑑𝑒𝑐 (𝑎) -----→ 𝑞 ′ then 𝑛 ′ = 𝑛 -1 and 𝑚 ′ = 𝑚, and if 𝑡 = 𝑞 𝑑𝑒𝑐 (𝑏) -----→ 𝑞 ′ then 𝑚 ′ = 𝑚 -1 and 𝑛 ′ = 𝑛; Claim 3. 𝑀 has an accepting run if, and only if, there exists a word 𝑤 ∈ (A × N) * satisfying properties (a)-(d).

Claim 4 .

 4 Properties (a)-(d) are effectively expressible by a SDA + .

X

 𝜑 ℎ,𝑣,𝑒𝑛𝑑 := 𝑛 𝑖=1 𝑖 𝑥 𝑖 ∧ X 𝑛+𝑖 𝑦 𝑖 , which says that the current position is the end of the first part 𝜋 1 of 𝜋. Here is the formula 𝜑 ℎ,𝑣,𝑐𝑜𝑛𝑠 :𝜑 ℎ,𝑣,𝑐𝑜𝑛𝑠 := G 𝑘 𝑖=1 𝑡 𝑖 ∧ ¬𝜑 ℎ,𝑣,𝑒𝑛𝑑 → 𝜃 1 ∧ 𝜃 2 .

 𝑗 ∈𝐼 𝛽 𝑗 (z)) → 𝑦 = 0) ∧ (𝑗:𝛼 𝑗 ∈𝐼 𝛽 𝑗 (z) → ((¬∃res 𝜓 res (res, z)) → 𝑦 = 0) ∧ ((∃res 𝜓 res (res, z)) → 𝜒 ′ (𝑦, z))), where 𝜓 res (res, z) := (0 ≤ res < 𝑙) ∧ 𝑗:𝛼 𝑗 ∈𝑅 res ≡ 𝑛 𝑗 𝑡 𝑗 (z) and 𝑙 := lcm{𝑛 𝑖 : 𝑖 s.t. 𝛼 𝑖 ∈ 𝑅}. Here, 𝜒 ′ (𝑦, z) is ⊥ (i.e. false) if 𝐿 or 𝑈 are empty. Otherwise, 𝜒 ′ (𝑦, z) is ∃low ∃up ∃first ∃res𝜓 low (low, z) ∧ 𝜓 up (up, z) ∧ 𝜓 (first, low, res) ∧ (up ≤ first → 𝑦 = 0) ∧ (up > first → 𝑦 = ⌈ upfirst 𝑙 ⌉).Here, 𝜓 low , 𝜓 up are quantifier-free linear size formulas. The formula 𝜓 first (first, low, res) is defined as (first > low) ∧ (first ≡ 𝑙 res) ∧ (∀𝑣 (𝑣 > low ∧ 𝑣 ≡ 𝑙 res) → 𝑣 ≥ first).

 as 𝑤, 𝑖 |= 𝛼 if 𝑧 |= 𝛼, where 𝑧 = data(𝑤 [𝑖]); and 𝑤, 𝑖 |= 𝑎 if 𝑎 = lab(𝑤 [𝑖]). The U, S modalities have the expected LTL semantics, where we define them as 'strict' modalities: 𝑤, 𝑖 |= 𝜑 U 𝜓 (resp. 𝑤, 𝑗 |= 𝜑 S 𝜓) if there is 𝑗 > 𝑖 such that 𝑤, 𝑗 |= 𝜓 and for every 𝑖 < ℓ < 𝑗 we have 𝑤, ℓ |= 𝜑. As it is customary, we use the standard LTL modalities as shorthands:

 1 , 𝑆 1) and (𝑇 2 , 𝑆 2) are SDA. We assume without any loss of generality that the output alphabet B 1 of 𝑇 1 and B 2 of 𝑇 2 are disjoint. Let B 1 = {𝑎 1 , . . . , 𝑎 ℓ 1 } and B 2 = {𝑏 1 , . . . , 𝑏 ℓ 2 }. (∪) Assuming 𝑆 1 and 𝑆 2 are given by Presburger formulas 𝜑 𝑆 1 (𝑥 𝑎 1 , . . . , 𝑥 𝑎 ℓ 1 , 𝑦 𝑎 1 , . . . , 𝑦 𝑎 ℓ 1) and 𝜑 𝑆 2 (𝑥 𝑏 1 , . . . , 𝑥 𝑏 ℓ 2 , 𝑦 𝑏 1 , . . . , 𝑦 𝑏 ℓ 2), we simply define 𝑆 = [[𝜑 𝑆]], where 𝜑 𝑆 = 𝜑 𝑆 1 ∨ 𝜑 𝑆 2 . Finally, let 𝑇 = 𝑇 1 ∪ 𝑇 2 -whence having an output alphabet B 1 ∪ B 2 .

 there exists a number 𝑥 𝑃 𝑎,𝜑,𝑏 ∈ N for every possible 𝑎 ∈ A, 𝑏 ∈ B, profile 𝑃, and 𝜑 ∈ 𝑃, such that 𝑥 𝑎,𝜑,𝑏 = 𝑃 ∋𝜑 𝑥 𝑃 𝑎,𝜑,𝑏 , and (2) letting 𝑡 𝑖 = 𝜑 ∈Φ,𝑎∈A 𝑥 𝑎,𝜑,𝑏 𝑖 (𝑖 ∈ 𝑚) and Ŝ ⊆ N

B be {(𝑥 1 , . . . , 𝑥 𝑚) : (𝑥 1 , . . . , 𝑥 𝑚 , (𝑡 1 -𝑥 1), . . . , (𝑡 𝑚 -𝑥 𝑚)) ∈ 𝑆 }, (i) for every 𝑃 ∈ P ∞ , we have ∑︁ 𝑎∈A,𝜑 ∈𝑃 𝑥 𝑃 𝑎,𝜑,𝑏 1 , . . . , ∑︁ 𝑎∈A,𝜑 ∈𝑃 𝑥 𝑃 𝑎,𝜑,𝑏 𝑚 ∈ Ŝ * ; and (ii) for every 𝑃 ∈ P <∞ , we have ∑︁ 𝑎∈A,𝜑 ∈𝑃 𝑥 𝑃 𝑎,𝜑,𝑏 1 , . . . , ∑︁ 𝑎∈A,𝜑 ∈𝑃

 The fact that x |= 𝜑 𝑇 goes by definition. For the satisfaction of 𝜇 ∼ , assume 𝑥 𝑃 𝑎,𝜑,𝑏 is the number of positions 𝑖 of 𝑤 ′ such that 𝑤 ′ [𝑖] = (𝑎, 𝜑, 𝑏) and data(𝑤) [𝑖] has profile 𝑃 (i.e. data(𝑤) [𝑖] |= 𝜋 𝑃). It follows that it is a partition of x satisfying item (1) of 𝜇 ∼ . We now proceed to show item (2). Let 𝑤 ′ B be the projection of 𝑤 ′ onto its B component. For 𝑑 ∈ N, let 𝐼 𝑑 = {1 ≤ 𝑖 ≤ |𝑤 | : data(𝑤) [𝑖] = 𝑑 } and Ī𝑑 = {1, . . . , |𝑤 |}\𝐼 𝑑 . For every 𝑗 ∈ 𝑚 and 𝑑 ∈ N, let 𝑥 𝑑 𝑗 be the number of indices 𝑖 such that data(𝑤) [𝑖] = 𝑑 and 𝑤 ′ Now, let us fix some 𝑑 ∈ N appearing in 𝑤, and suppose it has profile 𝑃. We show that (𝑥 𝑑 1 , . . . , 𝑥 𝑑 𝑚) ∈ Ŝ. By definition of Ŝ, this happens if, and only if, (𝑥 𝑑 1 , . . . , 𝑥 𝑑 𝑥 𝑑 𝑗) is the number of positions 1 ≤ 𝑖 ≤ |𝑤 | such that 𝑤 ′ B [𝑖] = 𝑏 𝑗 and data(𝑤) [𝑖] ≠ 𝑑 (i.e., the number of 𝑏 𝑗 's in 𝑤 ′

	B [𝑖] = 𝑏 𝑗 ; in other words B [𝐼 𝑑]) for every 𝑑. Observe that for every 𝑚) = Π(𝑤 ′ 1 , . . . , 𝑥 𝑑 (𝑥 𝑑
	𝑗,				
	∑︁	𝑥 𝑃 𝑎,𝜑,𝑏 𝑗 =	∑︁	𝑥 𝑑 𝑗 .	(†)
	𝑎∈A,𝜑 ∈𝑃		𝑑 ∈N s.t. 𝑑 |=𝜋 𝑃		

𝑚 , (𝑡 1 -𝑥 𝑑 1), . . . , (𝑡 𝑚 -𝑥 𝑑 𝑚)) ∈ 𝑆, where (𝑡 1 , . . . , 𝑡 𝑚) = Π(𝑤 ′ B). Hence, (𝑡 𝑗 -B [Ī𝑑]). In other words, ((𝑡 1 -𝑥 𝑑 1), . . . , (𝑡 𝑚 -𝑥 𝑑 𝑚)) = Π(𝑤 ′ B [Ī𝑑]). Since 𝑤 ′ is a witness for non-emptiness of A, it follows that (Π(𝑤 ′ B [𝐼 𝑑]), Π(𝑤 ′ B [Ī𝑑])) ∈ 𝑆, and by the remarks above (𝑥 𝑑 1 , . . . , 𝑥 𝑑 𝑚) ∈ Ŝ. In view of (†), we must then have that ∑︁ 𝑎∈A,𝜑 ∈𝑃 𝑥 𝑃 𝑎,𝜑,𝑏 1 , . . . , ∑︁ 𝑎∈A,𝜑 ∈𝑃 𝑥 𝑃 𝑎,𝜑,𝑏 𝑚 ∈ Ŝ ≤𝛼 ,

 1• • • ∃𝑥 𝑃 𝑧 𝑎 𝑧 ,𝜑 𝑧 ,𝑏 𝑧 𝜓 for all the triples 𝑃 𝑖 , 𝑎 𝑖 , 𝜑 𝑖 , 𝑏 𝑖 satisfying the condition cond. Now we define 𝜇 ∼ (x) 𝑎∈A,𝑏 ∈B,𝑃 ⊆Φ,𝜑 ∈𝑃 𝑥 𝑃 𝑎,𝜑,𝑏 𝐴 ∧ 𝐵 ∧ 𝐶, where

		𝐴 =	𝑥 𝑎,𝜑,𝑏 =	∑︁	𝑥 𝑃 𝑎,𝜑,𝑏 ,
			𝑎∈A,		𝑃 ∋𝜑	
			𝜑 ∈Φ,			
			𝑏 ∈B			
	𝐵 =	𝜑 ⟨ * ⟩ 𝑆	∑︁	𝑥 𝑃 𝑎,𝜑,𝑏 1 , . . . ,	∑︁	𝑥 𝑃 𝑎,𝜑,𝑏 𝑚 , x ,
		𝑃 ∈ P ∞	𝑎∈A,𝜑 ∈𝑃	𝑎∈A,𝜑 ∈𝑃
	𝐶 =					

def = ∃ 𝑃 ∈ P <∞ 𝜑 ⟨𝑛 𝑃 ⟩ 𝑆 ∑︁ 𝑎∈A,𝜑 ∈𝑃 𝑥 𝑃 𝑎,𝜑,𝑏 1 , . . . ,

∑︁

𝑎∈A,𝜑 ∈𝑃 𝑥 𝑃 𝑎,𝜑,𝑏 𝑚 , x .

 and for every 𝑖 < 𝑗 < 𝑖 ′ we have 𝜓 ∈ 𝑤 ′ [𝑗]. The Since modality follows analogously. Consider finally a subformula of the form ⟨=⟩ 𝛼 𝜓 ∈ sub(𝜑), and let 𝑑 = 𝑤 N [𝑖]. By the semilinear constraint S, we have ⟨=⟩ 𝛼 𝜓 ∈ 𝑤 ′ [𝑖] if, and only if, the number 𝑛 of distinct positions of 𝑤 ′ [𝐼 𝑑] containing 𝜓 is such that 𝑛 |= 𝛼. By induction, this happens iff there are 𝑛 positions

 𝑏 ∈B,𝑃 ⊆Φ,𝜑 ∈𝑃 𝑥 𝑃 𝑎,𝜑,𝑏 𝐴 ∧

				𝐵 𝑃 , where
				𝑃 ⊆Φ
	𝐴 =	𝑥 𝑎,𝜑,𝑏 =	∑︁	𝑥 𝑃 𝑎,𝜑,𝑏 ,
	𝑎∈A,𝜑 ∈Φ,𝑏 ∈B		𝑃 ∋𝜑	
	𝐵			

𝑃 = 𝜌 ∞ 𝑃 ∧ 𝜑 ⟨ * ⟩ 𝑆 (𝜏 1 , . . . , 𝜏 𝑚 , x) ∨ ∃𝑦 𝜌 𝑃 ∧ 𝜑 ⟨𝑦⟩ 𝑆 (𝜏 1 , . . . , 𝜏 𝑚 , x) , and

 1 , . . . , 𝑡 𝑘 , p) for every 𝛼,𝜓 1 , . . . ,𝜓 𝑘 , 𝑆 such that ⟨=⟩ 𝛼 (𝑦 1 ,...,𝑦 𝑘 , p) (𝜓 1 , . . . ,𝜓 𝑘) ∈ 𝑆, where for each 𝑖 ∈ 𝑘, 𝑡 𝑖 = (𝑆 ′ ∈B,𝜓 𝑖 ∈𝑆 ′ 𝑥 =,𝑆 ′) -𝑟 𝑖 and𝑟 𝑖 = 1 if 𝜓 𝑖 ∈ 𝑆 or 𝑟 𝑖 = 0 otherwise; (II) 𝑥 =,𝑆 > 0 → ¬𝛼 (𝑡1 , . . . , 𝑡 𝑘 , p) for every 𝛼,𝜓 1 , . . . ,𝜓 𝑘 , 𝑆 such that ¬ ⟨=⟩ 𝛼 (𝑦 1 ,...,𝑦 𝑘 , p) (𝜓 1 , . . . ,𝜓 𝑘) ∈ 𝑆, where for each 𝑖 ∈ 𝑘, 𝑡 𝑖 = (𝑆 ′ ∈B,𝜓 𝑖 ∈𝑆 ′ 𝑥 =,𝑆 ′) -𝑟 𝑖 and 𝑟 𝑖 = 1 if 𝜓 𝑖 ∈ 𝑆 or 𝑟 𝑖 = 0 otherwise; (III) 𝑥 =,𝑆 > 0 → 𝛼 (𝑡 1 , . . . , 𝑡 𝑘 , p) for every 𝛼,𝜓 1 , . . . ,𝜓 𝑘 , 𝑆 such that ⟨≠⟩ 𝛼 (𝑦 1 ,...,𝑦 𝑘 , p) (𝜓 1 , . . . ,𝜓 𝑘) ∈ 𝑆, where for each 𝑖 ∈ 𝑘, 𝑡 𝑖 = 𝑆 ′ ∈B,𝜓 𝑖 ∈𝑆 ′ 𝑥 ≠,𝑆 ′ ; (IV) 𝑥 =,𝑆 > 0 → ¬𝛼 (𝑡 1 , . . . , 𝑡 𝑘 , p) for every 𝛼,𝜓 1 , . . . ,𝜓 𝑘 , 𝑆 such that ¬ ⟨≠⟩ 𝛼 (𝑦 1 ,...,𝑦 𝑘 , p) (𝜓 1 , . . . ,𝜓 𝑘) ∈ 𝑆, where for each 𝑖 ∈ 𝑘, 𝑡 𝑖 = 𝑆 ′ ∈B,𝜓 𝑖 ∈𝑆 ′ 𝑥 ≠,𝑆 ′ ; Observe that S is still a singly-exponential-sized quantifierfree formula. A similar argument as shown in Lemma 6.1 still applies to show that the reduction preserves the language. Regarding model-checking, the same model-checking algorithm as shown in Proposition 4.1 works for SDL + . To treat a subformula of the form ⟨=⟩ 𝛽 (𝑦 1 ,...,𝑦 𝑘) (𝜓 1 , . . . ,𝜓 𝑘), we first count, for each data value 𝑑 of 𝑤 and 𝑗 ∈ 𝑘, the number 𝑛 𝑗 of positions of 𝑤 having data 𝑑 and satisfying 𝜓 𝑗 , and we then mark each position 𝑖 with data 𝑑 as satisfying ⟨=⟩ 𝛽 (𝑦 1 ,...,𝑦 𝑘) (𝜓 1 , . . . ,𝜓 𝑘) iff (𝑛 ′ 1 , . . . , 𝑛 ′ 𝑘) |= 𝛽, where 𝑛 ′ 𝑗 = 𝑛 𝑗 -1 if position 𝑖 is marked as satisfying 𝜓 , or 𝑛 ′ 𝑗 = 𝑛 𝑗 otherwise. Observe that this still takes polynomial time. The treatment of ⟨≠⟩ is similar.

 2. for every 1 ≤ 𝑖 < |𝑤 | we have that 𝑓 (𝑖), 𝑓 (𝑖 + 1) are one-step consistent (cf. §6); 3. for every 1 ≤ 𝑖 ≤ |𝑤 | we have that ¬lab(𝑤) [𝑖] ∉ 𝑓 (𝑖). Now we can instantiate non-parametric free variables of Presburger formulas with their corresponding value: • For every base subformula 𝛼 (𝑦, p) and position 𝑖, let 𝛾 𝑖 𝛼 (p) be the result of replacing 𝑦 with data(𝑤) [𝑖] in 𝛼. • For every subformula 𝜓 := ⟨=⟩ 𝛽 (𝑦 1 ,...,𝑦 𝑘 , p) (𝜓 1 , . . . ,𝜓 𝑘) and position 𝑖, let 𝛾 𝑖 𝜓 (p) be the result of replacing in 𝛽 (𝑦 1 , . . . , 𝑦 𝑘 , p) each 𝑦 ℓ with the number of positions 𝑗 ≠ 𝑖 of 𝑤 such that data(𝑤) [𝑗] = data(𝑤) [𝑖] and 𝜓 ℓ ∈ 𝑓 (𝑖). • For every subformula 𝜓 := ⟨≠⟩ 𝛽 (𝑦 1 ,...,𝑦 𝑘 , p) (𝜓 1 , . . . ,𝜓 𝑘) and position 𝑖, let 𝛾 𝑖 𝜓 (p) be the result of replacing in 𝛽 (𝑦 1 , . . . , 𝑦 𝑘 , p) each 𝑦 ℓ with the number of positions 𝑗 ≠ 𝑖 of 𝑤 such that data(𝑤) [𝑗] ≠ data(𝑤) [𝑖] and 𝜓 ℓ ∈ 𝑓 (𝑖). Let Ψ be the set of all 𝛾 𝑖 𝜓 (p) formulas (for every 1 ≤ 𝑖 ≤ |𝑤 | and 𝜓 ∈ 𝑓 (𝑖) of the form above) and all the formulas ¬𝛾 𝑖 𝜓 (p) (for every 1 ≤ 𝑖 ≤ |𝑤 | and ¬𝜓 ∈ 𝑓 (𝑖)). Observe that Ψ is of polynomial size. Finally, we check that the quantifier-free Presburger formula Ψ(p) is satisfiable, which is in NP. □

 with parameters while preserving decidability of satisfiability? (b) Every two consecutive blocks 𝐵 B where 𝐵 = (𝑡, 𝑑) • ((𝑎, 𝑑) (𝑎 ′ , 𝑑 ′)) 𝑛 𝑎 • ((𝑏, 𝑑) (𝑏 ′ , 𝑑 ′)) 𝑛 𝑏 and B = (t, d) • ((𝑎, d) (𝑎 ′ , d′)) n𝑎 • ((𝑏, d) (𝑏 ′ , d′)) n𝑏 are such that 𝑑 = d′ . (c) The target state of the transition of a block coincides with the origin state of next block. The origin state of the first block is the starting state of 𝑀, and the origin state of the last block is a final state of 𝑀. (d) Every data class is of the form 𝑡𝑎 𝑛 𝑏 𝑚 𝑎 ′𝑛 ′ 𝑏 ′𝑚 ′ for some 𝑛, 𝑚, 𝑛 ′ , 𝑚 ′ ∈ N and 𝑡 ∈ 𝑇 𝑀 such that (1) if 𝑡 = 𝑞

Note that we do not include formulas 𝛽 of the ⟨=⟩ 𝛽 and ⟨≠⟩ 𝛽 modalities.

Recall the definition of • * and • ≤𝑚 of (★).

Strictly speaking, DA cannot test for semilinear guards, the transducer 𝑇 should then be interpreted as the one resulting from replacing every formula with ⊤.

Acknowledgments

We are extremely grateful to the anonymous reviewers for their valuable comments. We would also like to thank Christoph Haase, Rupak Majumdar, Alessio Mansutti, and Philipp Rümmer for productive discussions. Diego Figueira is partially supported by ANR QUID, grant ANR-18-CE40-0031. Anthony Lin was supported by the ERC Starting Grant 759969 (AV-SMP) and a Max-Planck Society Fellowship.

A Extending Data Automata with semilinear constraints

As already mentioned, SDA and Data Automata (DA) as introduced in [START_REF] Bojańczyk | Two-variable logic on data words[END_REF], are incomparable in expressive power.

Here we explore the question: Can DA be extended with semilinear constraints while preserving the decidability for the emptiness problem? We consider two ways of extending DA with semilinear constraints. The first one, SDA + , naturally extending both DA and SDA is undecidable, the second one, SDA ± , extends DA but it is still incomparable in expressive power with respect to SDA. Let SDA + be the natural common ancestor of SDA and DA in terms of expressive power. An SDA + is a triple (𝑇 , 𝐿, 𝑆) where

• 𝑇 ⊆ (A × N) * × B * and 𝑆 ⊆ N B × N B are as before,

• 𝐿 ⊆ B * is a regular language, specified as an NFA.

A word 𝑤 ∈ (A × N) * is accepted by such an SDA + if there exists some 𝑤 ′ ∈ B * such that (i) (𝑤, 𝑤 ′) ∈ 𝑇 , (ii) for every 𝑛 ∈ N, (Π(𝑤 ′ [𝐼 𝑛]), Π(𝑤 ′ [Ī𝑛])) ∈ 𝑆, and (iii) for every 𝑛 ∈ N, 𝑤 ′ [𝐼 𝑛] ∈ 𝐿.

where 𝐼 𝑛 = {1 ≤ 𝑗 ≤ |𝑤 | : 𝑤 N [𝑗] = 𝑛} and Ī𝑛 = {1, . . . , |𝑤 |}\ 𝐼 𝑛 . In particular, the language of an SDA + (𝑇 , 𝐿, 𝑆) is a subset of the intersection between the language of the SDA (𝑇 , 𝑆) and the language of the DA 5 (𝑇 , 𝐿).

By following the same lines as Proposition 5.1, one can show that SDA + is effectively closed under union and intersection. However, its emptiness problem is undecidable.

Proposition A.1. The emptiness problem for SDA + is undecidable.

Proof. We show undecidability by reduction from the halting problem of a 2-counter Minsky machine. Given a Minsky machine 𝑀 over two counters 𝑎 and 𝑏, we show that the following properties can be expresssed by SDA + over the alphabet A = {𝑎, 𝑎 ′ , 𝑏, 𝑏 ′ } ∪ 𝑇 𝑀 where 𝑇 𝑀 is the set of transitions of 𝑀. (For simplicity and without any loss of generality, we assume that there is a transition 𝑞 𝑖𝑛𝑐 (𝑎) -----→ 𝑞 ∈ 𝑇 𝑀 for every final state 𝑞 of 𝑀.) (a) The word is a non-empty sequence of 'blocks', where a block is a word 𝑤 ∈ (A × N) * such that 𝑤 = (𝑡, 𝑑) • ((𝑎, 𝑑) (𝑎 ′ , 𝑑 ′)) 𝑛 𝑎 • ((𝑏, 𝑑) (𝑏 ′ , 𝑑 ′)) 𝑛 𝑏 for some 𝑡 ∈ 𝑇 𝑀 , 𝑛 𝑎 , 𝑛 𝑏 ∈ N and distinct 𝑑, 𝑑 ′ ∈ N.

• 𝑆 ⊆ N B is semilinear, and • 𝐿 ⊆ B * is a regular language.

A word 𝑤 ∈ (A × N) * is accepted by such an SDA ± if there exists some 𝑤 ′ ∈ B * such that (i) (𝑤, 𝑤 ′) ∈ 𝑇 , (ii) Π(𝑤 ′) ∈ 𝑆, and (iii) for every 𝑛 ∈ N, 𝑤 ′ [𝐼 𝑛] ∈ 𝐿.

where

As before this is an extension of DA: the language of an SDA ± (𝑇 , 𝐿, 𝑆) is a subset of the language of the DA (𝑇 , 𝐿).

Proposition A.2. The emptiness problem for SDA ± is decidable.

Proof sketch. As shown in [START_REF] Bojańczyk | Two-variable logic on data words[END_REF], there is a direct translation from DA to reachability of multi-counter automata which preserves the language projection onto the finite alphabet A. Such a translation can be extended in such a way that • the multi counter automaton has now one counter 𝑐 𝑏 for every letter 𝑏 ∈ B of the output alphabet; • every time the transducer reads a letter 𝑎 which is translated into a 𝑏, the multi counter automaton increments 𝑐 𝑏 ; • at the end of the computation the multi counter automaton decreases the counters {𝑐 𝑏 : 𝑏 ∈ B} in such a way as to reach the all-0 configuration if, and only if, the Parikh image on B is in the semilinear set 𝑆. This is straightforward to implement once we have 𝑆 represented as arithmetic progressions.

□

B Proof of lower bound of Theorem 5.2-(2)

We prove that SDA emptiness is P NP[log] -hard. This is done by a reduction from the problem INDEX-ODD: given a list 𝐹 1 , . . . , 𝐹 𝑚 of boolean formulas in 3-CNF, does there exist an odd index 𝑗 ∈ 𝑚 such that 𝐹 1 , . . . , 𝐹 𝑗 are all satisfiable and 𝐹 𝑗+1 , . . . , 𝐹 𝑚 are all unsatisfiable. This problem is P NP[log] complete [START_REF] Göller | On the Computational Complexity of Verifying One-Counter Processes[END_REF][START_REF] Wagner | More Complicated Questions About Maxima and Minima, and Some Closures of NP[END_REF]. Without loss of generality, one could also assume that each 𝐹 𝑖 is over the same variables 𝑧 1 , . . . , 𝑧 𝑛 . The SDA (𝑇 , 𝑆) has states 𝑞 0 , 𝑠 1 , . . . , 𝑠 𝑚 , 𝑡 2 , . . . , 𝑡 𝑚 , where 𝑞 0 is initial. If 𝑚 is odd, the only final state is 𝑠 𝑚 ; if 𝑚 is even, the only final state is 𝑡 𝑚 . We set A = B = {𝑎 1 , 𝑏 1 , . . . , 𝑎 𝑚 , 𝑏 𝑚 , ?}.

We now define the transitions of𝑇 . Let 1 < 𝑟 1 < • • • < 𝑟 𝑛•𝑚 be the first 𝑛 • 𝑚 primes. We use the Gödel encoding techniques for encoding Boolean formulas. We use the definition of a quantifier-free Presburger formula 𝜑 𝐹 𝑖 from a Boolean formula 𝐹 𝑖 from the proof of the lower bound proof of Theorem 7.1, using the primes 𝑃 𝑖 = {𝑝 𝑛• (𝑖 -1)+1 , . . . , 𝑝 𝑛•𝑖 }. In particular, 𝜑 𝐹 𝑖 accepts all the Gödel encodings on 𝑃 𝑖 of satisfying assignments to 𝐹 𝑖 . The transitions from 𝑠 𝑖 to 𝑠 𝑖+1 guesses a satisfying assignment of 𝐹 𝑖+1 :

From 𝑞 0 , we also could guess a satisfying assignment of 𝐹 1 :

The transitions from 𝑡 𝑖 to 𝑡 𝑖 guesses all satisfying assignment of ¬𝐹 𝑖 within the interval {1, . . . , 𝑅 𝑖 }, for 𝑅 0 = 0 and 𝑅 𝑖 =

Furthermore, we introduce the following extra transitions:

(𝑡 𝑖 , (?, 𝑥 = 0, ?), 𝑡 𝑖+1), for all 𝑖 ∈ 𝑚, and

for each odd 𝑖 ∈ 𝑚.

To finish off the proof, we need to ensure that all the satisfying assignments of each ¬𝐹 𝑗+1 , . . . , ¬𝐹 𝑚 have been enumerated. To this end, we assert an appropriate constraint 𝑆. The following constraint now is added as a conjunct for each odd 𝑖 = 1, . . . , 𝑚 and each number 𝑗 ∈ {𝑖 + 1, . . . , 𝑚}:

We of course need to ensure that each data value appears uniquely for any given letter 𝑎 𝑖 :

It is easy now to see that the reduction is correct and runs in polynomial time. Further, the resulting SDA is in minterm normal form. □

C NEXP-hardness of Theorem 4.2-(2)

We show hardness for the fragment in which the only data modality used is ⟨=⟩ 𝑦 ≥1 , which we will simply write as ⟨=⟩ for economy of space. We reduce from the exponential tiling problem [START_REF] Van | The convenience of tilings[END_REF], which is well-known to be NEXP-complete. The problem is defined as follows. The input is a number 𝑛 in unary, a set of possible tiles 𝑇 ⊆ {𝑡 1 , . . . , 𝑡 𝑘 }, and horizontal and vertical constraints 𝐻, 𝑉 ⊆ 𝑇 × 𝑇 . An instance 𝐼 = ⟨𝑛,𝑇 , 𝐻, 𝑉 ⟩ of this problem is said to be solvable if there is a mapping 𝑠 : [0,

) and the vertical constraint is satisfied ((𝑠 (𝑎, 𝑏), 𝑠 (𝑎, 𝑏 + 1)) ∈ 𝑉 for each 𝑎 ∈ [0, 2 𝑛 -1] and 𝑏 ∈ [0, 2 𝑛 -2]). Such a mapping 𝑠 is said to be a solution to 𝐼 . Given 𝐼 = ⟨𝑛,𝑇 , 𝐻, 𝑉 ⟩, we will compute a formula 𝜓 in SDL min,k (for any 𝑘 ≥ 2), which is satisfiable iff 𝐼 is solvable. The alphabet 𝐴 contains the following letters

𝑖

for each 𝑖 = 1, . . . , 𝑛. These will be used to indicate binary encodings of positions in the 2 𝑛 × 2 𝑛 grid. In addition 𝐴 also contains the letters 𝑡 𝑖 , 𝑡 ′ 𝑖 by 𝜋 2 . We will only specify this in detail for 𝜓 𝐻 ; the formula 𝜓 𝑉 is similar:

Note that 𝜓 𝐻 avoids testing 𝐻 whenever one resets the counter for the 𝑥-coordinate.

The final formula is

𝜓 𝑉 This reduction runs in time polynomial in the size of 𝐼 . Finally, 𝜓 is easily seen to be satisfiable iff 𝐼 is solvable. This completes the reduction, proving that satisfiability for SDL 𝑀𝑁 𝐹 is also NEXP-complete. □

D Eliminating unary counting quantifiers Proposition D.1 ([40]

). There exists an algorithm, which given a formula 𝜑 (𝑦, z) := ∃ =𝑦 𝑥𝜓 (𝑥, z) with 𝜓 quantifierfree, outputs an existential Presburger formula 𝜃 (𝑦, z) (without counting quantifiers) equivalent to 𝜑 (𝑥, z) in exponential time.

This proposition can be derived rather easily from Schweikardt's original proof [START_REF] Schweikardt | Arithmetic, first-order logic, and counting quantifiers[END_REF] with a few minor modifications, which we will remark below. We refer the reader to the paper itself for the detail; below, we follow the ArXiv version https://arxiv.org/pdf/cs/0211022.pdf.

A standard quantifier-elimination algorithm (e.g. for Presburger, see [START_REF] Enderton | A mathmeatical introduction to logic[END_REF]) typically proceeds by assuming that the quantifier-free part of the formula is a conjunction of atomic formulas. This can be achieved easily by first converting the quantifier-free part 𝜒 (𝑥, z) of a formula ∃𝑥 𝜒 (𝑥, z) to its DNF form 𝑖 ∈𝐼 𝜒 𝑖 (𝑥, z), where 𝜒 𝑖 is a conjunction of atomic formulas, and then handling each ∃𝑥 𝜒 𝑖 (𝑥, z) separately. In Schweikardt's algorithm [START_REF] Schweikardt | Arithmetic, first-order logic, and counting quantifiers[END_REF] for removing ∃ =𝑦 𝑥 from ∃ =𝑦 𝑥𝜓 (𝑥, z), similar steps are also applied, each of which we will modify slightly.

Firstly, the catch of converting the quantifier-free part 𝜓 (𝑦, z) of ∃ =𝑦 to any equivalent formula 𝑖 ∈𝐼 𝜓 𝑖 (𝑥, z) in DNF (i.e., where 𝜓 𝑖 is a conjunction of atomic formulas) is that two pairwise distict 𝜓 𝑗 and 𝜓 𝑘 might be satisfied by the same value of 𝑥. This means that one cannot simply just deal with ∃ =𝑦 𝑖 𝜓 𝑖 (𝑥, z) and then add the sum constraint sum 𝑦 = 𝑖 ∈𝐼 𝑦 𝑖 because this would result in double counting. Schweikardt [START_REF] Schweikardt | Arithmetic, first-order logic, and counting quantifiers[END_REF] resolves this problem by applying the standard principle of inclusion and exclusion. The catch with this is that this would result in an extra exponential on top of the exponential blow-up caused by converting 𝜓 to DNF. There is an easy fix to this. A DNF-term (i.e. conjunction of formulas) is said to be complete (with respect to 𝜓) if, for each atomic formula 𝛼 in 𝜓 , it contains 𝛼 or ¬𝛼. The first modification is to convert 𝜓 into an equivalent formula 𝑖 ∈𝐼 𝜓 𝑖 (𝑥, z) in DNF, where 𝜓 𝑖 is a complete DNF-term. In particular, removing redundant DNF-terms, we would now be able to simply just rewrite ∃𝑦𝜓 (𝑦, z) as:

since the 𝜓 𝑖 's are pairwise disjoint, i.e., they do not admit the same values of 𝑥. Conversion into this special type of DNF formula is easily achieved by a standard technique from boolean logic. As an example, suppose the atomic formulas in 𝜓 are 𝑃 1 , 𝑃 2 , 𝑃 3 and a conversion of 𝜓 into DNF results in a DNF-term 𝛼 := 𝑃 1 ∧¬𝑃 2 , i.e., the atomic formula 𝑃 3 is missing. We could simply rewrite 𝛼 as (𝛼 ∧ 𝑃 3) ∨ (𝛼 ∧ ¬𝑃 3). Furthermore, the resulting algorithm still runs in exponential-time (i.e. no worse than the standard conversion to a formula in DNF). This result is summarized in the following lemma.

Lemma D.2. The formula 𝜑 (𝑦, z) := ∃ =𝑦 𝑥𝜓 (𝑥, z) with 𝜓 quantifier-free could be converted in exponential time into the equivalent formula

where 𝜓 𝑖 is a conjunction of atomic subformulas in 𝜓 .

Proposition D.1 now follows from the following lemma; the reason being that each ∃ =𝑦 𝑖 𝑥𝜓 𝑖 (𝑥, z) in Lemma D.2 can now be rewritten as an existential formula of size 2 𝑂 (|𝜑 | 𝑘) for some constant 𝑘 and, since 𝐼 = 𝑂 (2 |𝜑 |), it follows that the resulting existential formula corresponding to 𝜑 can be produced in time

Lemma D.3. There exists a exponential-time algorithm, which given a formula 𝜑 (𝑦, z) := ∃ =𝑦 𝑥 𝜒 (𝑥, z) with 𝜒 is a conjunction of atomic formulas, outputs an existential Presburger formula (without counting quantifiers) equivalent to 𝜑 (𝑦, z).

The proof of this lemma follows very much from Schweikardt's original proof [START_REF] Schweikardt | Arithmetic, first-order logic, and counting quantifiers[END_REF] except that two universal quantifiers have to be removed from the produced formula from Schweikardt's algorithm. We provide details below.

The proof of Lemma D.