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Abstract7

We present results from laboratory experiments of the downslope propagation
of a finite volume released gravity current by means of combined PIV/PLIF
measurements. The experimental data were used to estimate the global char-
acteristics of the current, such as the propagation speed, the lateral surface
and the buoyancy, revealing that thermal theory is a robust model that can
predict such quantities properly, especially the models of Beghin et al. (1981);
Maxworthy (2010) and the theoretical model of Dai (2013a). The collected
data allowed also for the determination of the entrainment rates based on
the turbulent fluxes instead using the variation of the volume flux, and the
regions of entrainement/detrainment have been identified. The results sup-
port previous observations of the mechanism responsible for the buoyancy
loss of the cloud and its consequent deceleration down the slope, as a large
scale recirculation vortex at the back of the cloud. A very complex interior
structure of the cloud is observed, with a large variety of turbulent processes
taking place, such as the large-scale convectively unstable recirculation vor-
tex at the scale of the current itself, the small-scale convectively unstable
motions inside the head of the cloud and close to the bottom boundary and
shear (Kelvin-Helmholtz) instabilities at the boundary between the current
and the ambient water. The synoptic velocity and density measurements
allowed also to test existent parametrizations of turbulent fluxes, that have
been quantified in 2D fields with a high spatial resolution. Results confirm
that parametrization laws based on the assumption of a constant turbulent
diffusivity or mixing length do not apply for buoyancy clouds due to their
high spatial heterogeneity. Hence, the parametrization of the turbulent dif-
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fusivities in such flows should be based on scalar quantities that avoid the
problem of spatial heterogeneity and takes into account the different sources
of turbulence production, e.g. using energetic considerations that compare
the terms having a definite exchange of energy and acts as a source or a sink.

Keywords: Gravity currents, mixing, experiments, sloping bottom, internal8

structure9

1. Introduction10

Variations in temperature, salinity and/or sediment concentration cause11

variations of fluid density in the vertical direction. The resulting flow strati-12

fication, which typically occurs in environmental and geophysical flows, leads13

to qualitative and quantitative modifications of the flow patterns by buoy-14

ancy. When buoyancy driven flows encounter topography, a downslope dense15

current, i.e. gravity current, is created. Its motion is then sustained by16

buoyancy and deviated by the topographic slope. Gravity currents are key17

processes that affect ocean, atmospheric and coastal circulation.18

Gravity currents can take on different forms depending on their source19

of supply of buoyancy being continuous (Baines, 2002; Britter and Linden,20

1980; Martin et al., 2019; Negretti et al., 2017; Odier et al., 2014) or resulting21

from a finite volume release (Beghin et al., 1981). Examples of the first type22

are oceanic gravity currents (Baringer and Price, 2001), while examples of fi-23

nite volume released gravity currents are avalanches (Clément-Rastello, 2001;24

Hopfinger, 1983; Rastello and Hopfinger, 2004), volcanic eruptions (Holyer25

and Huppert, 1980) or turbidity currents (Meiburg and Kneller, 2010), which26

contribute to the shaping of the continental surface and have a large impact27

on the geomorphological floor and the related ecosystems (Bründl et al., 2010;28

Kostaschuk et al., 2018; Pohl et al., 2020; Thorez et al., 2021). Katabatic29

winds are also an example of an intermittent gravity flow and are impor-30

tant to determine the local air circulation in several regions (Brun, 2017;31

Charrondiere et al., 2020).32

This paper deals with finite volume released gravity currents over sloping33

boundaries. For the terminology, finite volume released gravity currents on a34

sloping boundary is more precisely described as a ’thermal cloud’ or ’density35

cloud’ (Simpson, 1982), because the flow resembles more a cloud with some36

tail following.37

The pioneering work on donwlope propagating density clouds was made38
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by Beghin et al. (1981), who studied the full range of slopes between 5◦39

and 90◦. They showed that the current development includes a first quick40

accelerating phase of the density cloud, followed by a decelerating phase, if41

no buoyancy is entrained by the current, as for gravity currents propagating42

over a sediment bed (Rastello and Hopfinger, 2004). Further theoretical,43

numerical and experimental studies followed, giving important insights in44

the dynamics and the spatio-temporal development of the current (Adduce45

et al., 2012; Beghin and Brugnot, 1983; Beghin et al., 1981; Dai, 2012, 2013a,46

2014, 2015; Dai et al., 2011; Hopfinger, 1983; Martin et al., 2020; Ottolenghi47

et al., 2017; Rastello and Hopfinger, 2004; Steenhauer et al., 2017a; Zemach48

et al., 2019).49

To describe the front velocity history of a lock-released gravity current50

both a shallow water model approach (Ross et al., 2002; Tickle, 1996; Ungar-51

ish, 2009; Webber et al., 1993) or thermal theory (Beghin et al., 1981; Morton52

et al., 1956) have been adopted. In the latter case, the assumption of a con-53

stant buoyancy flux during the head propagation was made and despite the54

strong approximation, this model has shown to give a good description of the55

evolution of both the first accelerating phase and the successive decelerating56

phase (Beghin et al., 1981).57

A more sophisticated model has been proposed by Maxworthy and Nokes58

(2007), who argued that during the acceleration phase, the head was be-59

ing fed by a following current that increased its buoyancy as it propagated60

downstream. Maxworthy (2010) showed that after a propagation distance of61

the order of (5–10)H0, where H0 is the initial depth of the lock, the inflow62

into the rear stopped, and the head began to lose buoyancy-containing fluid63

from its rear by the detachment of large, weakly vortical structures. Their64

measurements have shown that the buoyancy in the current head increased65

during the acceleration phase and decreased during the deceleration phase.66

Dai (2012, 2013b) implemented a three-dimensional direct numerical sim-67

ulation of a lock released downslope gravity current. They confirmed numeri-68

cally that the maximum buoyancy in the head never reaches the total released69

buoyancy, and a significant portion of heavy fluid is left in the tail current,70

which is often detached from the head when the density cloud propagates71

over steep slopes (see also Dai (2013a,c)), in accord with Maxworthy (2010).72

For a long running length x > 13H, they showed a disagreement between the73

thermal theory (Morton et al., 1956) and the observed growth of the density74

cloud in the deceleration phase.75

Recently, Martin et al. (2020) and Zemach et al. (2019) proposed a the-76
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oretical solution based on the shallow water model combined with a Ben-77

jamin’s type jump condition at the nose of the head and an empirical entrain-78

ment law, respectively. Their solution is of relevance during the acceleration79

phase only, taking into account the contribution of the tail to the buoyancy80

budget of the density cloud, as reported by Maxworthy and Nokes (2007).81

However, the model cannot predict the loss of buoyancy in the deceleration82

phase (Dai, 2012, 2013a; Maxworthy, 2010).83

While previous studies mostly concentrated on the global properties of84

such density clouds propagating on horizontal or inclined boundaries, their85

internal structure has started to receive attention only recently. Hopfinger86

and Tochon-Danguy (1977) measured the velocity distribution within the87

density cloud by means of the hydrogen bubble technique combined with a88

conductivity probe measurement for the density. Three-dimensional direct89

numerical simulations of a lock-released gravity current were performed by90

Calgaro et al. (2015); Étienne et al. (2004); Steenhauer et al. (2017b) reveal-91

ing a very turbulent structure of the buoyancy cloud. Nishimura and Ito92

(1997) measured internal velocities of 50 ms−1 for a front velocity of about93

10 ms−1, demonstrating that the head interior is characterized by a strong94

energetic circulation and a large variety of turbulent structures. Knowing the95

internal structure of density clouds may help to better predict the entrain-96

ment and dilution mechanisms, which are directly related to the propagation97

speed and motion of such currents.98

Detailed velocity and/or density measurements within the head of a den-99

sity cloud propagating over a horizontal boundary using optical non-intrusive100

measurements techniques (such as Particle Image Velocimetry-PIV) have101

been performed only in few studies (Hallworth et al., 1996; Martin and102

Garćıa, 2009; Pelmard et al., 2021; Thomas et al., 2003). Hallworth et al.103

(1996) and later Martin and Garćıa (2009) observed the formation of per-104

sistent Kelvin–Helmholtz type billows at the front of the density current105

causing entrainment of ambient fluid into the current at the interface cur-106

rent/ambient.107

Here, we performed experiments on finite volume released gravity cur-108

rents over steep sloping boundaries (with slope angles of 15◦ and 20◦) using109

simultaneous PIV/PLIF measurements techniques. Such measurements in110

unsteady and heterogeneous turbulent buoyancy flows are rare, but are very111

useful since they allow to highly resolve both large-scale and small-scale flow112

motions and statistics, which otherwise are very difficult to measure. This113

also enables resolving turbulent fluxes and their spatial distribution, which114
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are impossible to quantify with other measurement techniques.115

The recent studies performed by Agrawal et al. (2021); Mukherjee and116

Balasubramanian (2020, 2021) on horizontal lock-released gravity currents117

focused on the slumping phase and their analysis was aimed at estimating118

the mixing efficiency at the interface between the cloud and the ambient fluid119

due to Holmboe or Kelvin-Helmholtz instabilities. No study is known in the120

literature on downslope density clouds aimed at verifying the theories of the121

global characteristics governing the dynamics of such flows, as the front prop-122

agation, the buoyancy and the entrainment, but also quantifying small-scale123

processes and turbulent fluxes that characterize the internal structure of the124

density cloud, based on highly resolved simultaneous measurements of both125

the velocity and the density fields. By means of such detailed measurements,126

the validity and limitations of the existent theories for both the global char-127

acteristics of the flow, but also those related to the parametrization of the128

turbulent diffusivities, have been tested, revealing interesting insights on the129

small-scale features of the internal structure of the head. The global charac-130

teristics of the density cloud compared to the semi-empirical thermal theory131

of Beghin et al. (1981) and Escudier and Maxworthy (1973) reveal a fairly132

good agreement, with exception of the assumption of initial mass conserva-133

tion, in accord with Maxworthy (2010). The predictions for the buoyancy134

loss of the gravity current during the decelerating phase are in better agree-135

ment with the theoretical model proposed by Dai (2013a,c), while the model136

of Maxworthy (2010) reveals to strongly overestimate it, even if the trend of137

decrease is well represented by Maxworthy (2010)’s theory138

A very complex interior structure of the buoyancy cloud is observed, with139

a variety of turbulent processes sources of mixing and dilution present. These140

are large-scale and small-scale convective motions inside the cloud, shear141

turbulence and related instabilities (e.g. Kelvin-Helmholtz and boundary142

layer instabilities) at the boundaries with the ambient fluid and the bottom.143

Finally, it is shown that classical mixing parametrizations of turbulent fluxes144

based on mixing length models are not appropriate for lock-released buoyancy145

clouds due to their strong spatial and temporal heterogeneity.146

The paper is organized as follows: section 2 outlines the experimental147

set-up and the measurement techniques. Section 3 gives the global charac-148

teristics of the buoyancy cloud, while entrainment/detrainment and mixing149

are presented in 4 and 5, respectively, and compared to existent parametriza-150

tions. Section 6 summarizes the results and includes concluding remarks.151
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2. Experimental facility and measurement techniques152

2.1. Experimental setup153

The experimental set-up is shown schematically in figure 1a. A plexiglas154

water channel 2.76 m long, 20 cm wide and 38cm deep was immersed in a155

larger water tank of dimensions 2.4 m × 2.4 m × 2.4 m. The slope angle156

of the experimental channel was set to the desired angle. The dense fluid157

was introduced in a reservoir L0 = 20 cm long and 30 cm deep, with a lock158

depth of H0 = 6.25cm located at the upper end of the channel and initially159

separated by a removable gate, resulting in an initial lateral surface of A0 =160

L0 ×H0 = 125cm2. The initial reduced gravity was fixed to g′0 = g∆ρ/ρa =161

5cm/s2 and produced by saline solutions with ∆ρ = 5.1± 0.1 kgm−3 and a162

constant temperature of 19.7◦C ±0.1, measured just before each experiment163

with a high precision (10−3) densimeter (DMA TM 35, Anton Paar). The164

resulting Reynolds numbers were Re = UH/ν ≈ 1.2 · 104 where U and H are165

respectively the typical velocities and depths of the cloud in the measurement166

region and ν the kinematic viscosity.167

Run A0 [cm2] θ[◦] g′0[cm/s2] N Technique F.O.V.
1 125 15 5± 0.1 5 PIV/PLIF 1.65m < x < 2.5m
2 125 20 5± 0.1 7 PIV/PLIF 1.65m < x < 2.5m
3 125 15 5± 0.1 5 PIV/PLIF 0.7m < x < 1.55m

Table 1: Main parameters of the experimental runs.

Two runs of experiments have been performed in the deceleration region168

1.65m < x < 2.5m from the lock release (see figure 1). The same initial con-169

ditions have been adopted for both runs with exception of the bottom slope,170

which was set to 15◦ in the first run and 20◦ in the second run of experi-171

ments. A third run of experiments has been conducted in the initial stage172

of the decelerating region within 0.7m < x < 1.55m from the lock release,173

and same initial conditions as in the first run of the experiments. The same174

experiment was repeated N ≤ 7 times to check for reproducibility and all175

calculated quantities have been averaged over the N experiments (ensemble176

average). The main parameters of the experimental runs are summarized177

in table 1. For all runs, synoptic PIV and PLIF measurements techniques178

have been used to capture simultaneously the velocity and density fields,179

respectively. Essential details are given below and in the appendix.180
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Figure 1: (a) Side view of the experimental setup. (b) Top view of the optical measurement
configuration for PIV and PLIF.

2.2. Measurement technique181

The velocities and the density were determined using the optical, non-182

intrusive experimental techniques of Particle Image Velocimetry (PIV) and183

Planar Laser-Induced Fluorescence (PLIF), respectively. Both PIV only and184

combined PIV/PLIF experimental data are used in the following results sec-185

tions. Essential details on the measurements techniques are given below,186

while the detailed procedure for the PLIF calibration is given in the ap-187

pendix.188

The PIV set-up consisted of a light source, light sheet optics, seeding189

particles, a camera, and a PC equipped with a frame grabber and image190

acquisition software. Polyamide particles (Orgasol) with a mean diameter191

of 60µm and a specific density of 1.016g/cm−3 were added in both the fresh192

water and the salt water in the initial release reservoir as tracer material for193

the PIV measurements.194

A 5 Watt Yag-laser (λ = 532 nm) has been used as continuous light195

source. The beam was transmitted through mirrors to a spherical lense with196

an angle of 45° to generate a laser sheet with a length of approximately 1 m197

and a width of 5mm, positioned in the middle of the channel. Rhodamine 6G198

was used as fluorescent dye (absorption peak at 530nm and emission peak at199

555nm) and uniformly mixed in the reservoir containing the dense fluid with200

initial concentration c0 = 5µg/l. The dye and the salt have approximately201
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the same diffusivity, with a Schmidt number Sc = ν/κ = 700, where κ is the202

mass transfer diffusion coefficient (Troy and Koseff, 2005).203

For the simultaneous PIV/PLIF measurements an interferometer band-204

pass, 532nm for PIV and a high pass filter with cut-off 550nm for PLIF were205

used to separate the emitted wavelengths.206

Images of roughly 70cm× 55cm were grabbed with a CCD camera (Flow207

Master 1200× 1600 pixels) for PIV, and with a second CCD camera (Dalsa208

1000× 1000 pixels) at a frame rate of 23.22 Hz for PLIF.209

The raw image pairs were then processed using a PIV cross-correlation210

algorithm (software package DaVis, LaVision) to compute the velocity fields,211

starting with an interrogation window of 32×32 pixels and a final window size212

of 16× 16 pixels with 50% overlap. Each vector of the resulting vector field213

represents an area of roughly 0.6cm×0.6cm. Given the velocities encountered214

in the experiments, the error for the instantaneous velocity is approximately215

4%.216

The calibration procedure for the PLIF measurements is given in the217

appendix.218

3. Experimental results219

3.1. Global characteristics of the density cloud220

Figure 2 illustrates an instantaneous side view of a calibrated density221

field. The cloud has the size of the present PIV/LIF field of view, hence,222

present results are treated in terms of the vertical coordinate z and time t,223

where time is converted in the streamwise space coordinate x by neglecting224

the time distortion of the cloud during the advective time tA at a given x-225

position, and assuming a constant advective velocity of the cloud over this226

time laps.227

For each x-position, the density cloud is detected (t, z) using a threshold228

of 0.99(∆ρ/ρ)max for the density.229

As suggested by Beghin et al. (1981), and as evident from present visual
observations, the shape of the cloud can be fitted in time and vertical space
(t, z) assuming a semi-elliptic shape (cf. also figure 5), that follows the fol-
lowing equation

z =
H

0.5tA

(
(0.5tA)

2 − (t− t0)
2
) 1

2 , (1)
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Figure 2: Instantaneous density field of the cloud for [∆ρ/ρ]i = 5 · 10−3 and run 2 (cf.
table 1).

where z is the vertical (normal to the slope) coordinate of the boundary230

of the density cloud with the ambient fluid, H and 0.5tA are the minor and231

major axis of the ellipse and t0 is the time corresponding to a given position of232

the geometrical centre of the ellipse xg. From equation (1), H and the length233

L = tAU of the density cloud can be estimated, where U is the velocity of234

the geometric centre of the ellipse defined as235

U =
∆x

∆t0
(2)

Figure 3a, shows the non-linear fit using equation (1) (dashed line) com-236

pared to experimental values (solid line). The streamwise coordinate corre-237

sponds to the dimensionless advective time (t − t0)/tA, where t0 has been238

determined using a power law fit ((Beghin et al., 1981), cf. figure 3b).239

Using this procedure, the velocity of the buoyancy cloud U , its surface240

area A and its buoyancy flux B = g′UH have been determined.241

Figure 4a shows the normalized experimental velocity U/
√

g′0H0 (solid242

line) obtained from equation (2) clearly in the deceleration stage and in243

good accord with predictions of the thermal theory (dashed line).244

The normalized lateral surface A/A0, defined as A = π
4
LH, where L and245

H are estimated from equation (1), is shown in figure 4b. Beghin et al. (1981)246
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(a) (b)

Figure 3: (a) Nonlinear fit of the shape of the buoyancy cloud by a half-ellipse (run 1). Di-
mensionless height of the cloud (blue line); Dimensionless fit (red dashed-line). Horizontal
axis corresponds to a dimensionless advective time and the vertical axis corresponds to the
dimensionless height. (b) Time position t0 of the geometric center of the ellipse function
of the along slope position (blue line). The dashed line is deduced from a fit by a power
law following Beghin et al. (1981).

showed experimentally that the surface of the buoyancy cloud increases with247

the square of the along slope direction as A = C (x+ x0)
2, where C is a248

constant defined as C = π/16 (S2/S1)
2 α2 and x0 is a virtual origin corre-249

sponding to A = 0, i.e. x0 = 4S1/S2α
−1
√

A0/π. The shape factors S1 and250

S2 are estimated assuming a semi-elliptical shape of the buoyancy cloud, and251

α is an empirical entrainment coefficient (see also equation 7). This model252

is represented by a dashed line in figure 4b revealing a good agreement with253

the experimental data in the initial accelerating stage. At X/L0 sin θ ≈ 2.8,254

corresponding to x ≈ 34H0, the data suggests that the lateral surface stops255

increasing, in accord with previous numerical observations (Dai, 2012, 2013b;256

Steenhauer et al., 2017b). In particular, for a slope of 10°, Dai (2012) ob-257

served that the semi-elliptical head experiences multiple sporadic reductions258

in its height.259

As mentioned in the introduction, Maxworthy (2010) explained this be-260

haviour as the result of loss of volume (and buoyancy) that takes place during261

the descent, induced by large scale vortical structures developing at the back262

of the gravity current head, that has been also supported by Dai (2013a,b).263
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The numerical results from Dai (2013b) are also reported as symbols in figure264

??b: results are within the range of our data and the theoretical prediction265

of Maxworthy (2010); however, the lateral surface A increases monotonically266

and no decrease is observed.267

(a) (b) (c)
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Figure 4: Experimental global characteristics of the buoyancy cloud with Re ≈ 1.2× 104

(a) Velocity of the geometrical center U from equation (2) of the buoyancy cloud (runs 1
and 2). (b) Lateral surface of the buoyancy cloud function of the along-slope direction for
run 1 with a slope of 15° (red shaded region) and run 2 with a slope of 20° (green shaded
region), and from DNS of Dai (2013b) (symbols). The x axis has been re-normalized by
L0/ sin θ.(c) Dimensionless experimental ensemble average of the buoyancy of the cloud B
from equation (3) (black line) and B′ from equation (4) (green line). Red lines represent
the confidence interval. The blue dashed and continuous lines represent the empirical
equation from Beghin et al. (1981) and from Maxworthy (2010) respectively, where the x
axis has been rescaled by L0/ sin θ.

Figure 5, illustrates the density field at three different x positions. In268

(a), at xg = 2.2 m, the buoyancy cloud is well fitted by the half-elliptic269

shape, with a very active back vortex incorporating ambient water at the270

back of the cloud. On figure 5(b), at xg = 2.3 m, a larger interfacial shear271

instability develops which begins to separate the back of the cloud, as seen272

later in (c): there is clearly a loss of volume and mass at the back of the273

cloud. This phenomenon is observed in all the experiments, although with274

variable intensity, and confirms the suggestion of Maxworthy (2010) and Dai275

(2013a) to explain the observed decrease of buoyancy in the second stage of276

propagation of the cloud down the slope.277

Steenhauer et al. (2017) observed a variation in the development of the278

lateral surface at x ≈ 35H0 for slopes larger than 30°. They showed that279

for sufficiently large distances from the source, the normalized sub-volume280
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containing mixed fluid (which is linearly related to the lateral surface A)281

starts decaying for any value of the slope θ related to a strong dilution of the282

sub-volume. Defining a constant, C0 representing the ratio between mixed283

and unmixed fluid, they observed that smaller values of C0 corresponded to284

extended regions in which the lateral surface A increases linearly with x and285

trends in the variation of A with x are similar for any value of C0.286

The buoyancy of the semi-elliptical cloud is shown in figure 4c, defined as

B = U

∫ ∞

0

(∫ tB

tN

g′δcdt

)
dz, (3)

where tN and tB are respectively the time at a given distance x at which287

the nose and the back of the ellipse appears, respectively, and δc is the Dirac288

function. Note that this definition of the buoyancy differs from that of Max-289

worthy (2010) by a factor of 1/ρ0, which is cancelled out in figure 4c since290

it is normalized with the initial buoyancy. From the figure, it emerges that291

at (x/L0) sin θ = 2.2 the buoyancy of the cloud is about 60% of the initial292

buoyancy, demonstrating that during the descent buoyancy has been left be-293

hind in the tail. For this value of the buoyancy, thermal theory predicts294

a velocity 84% of the predicted velocity, which explains the lower velocity295

(88%) reported in figure 4a. For comparison, we also report the conservation296

of buoyancy from Beghin et al. (1981) (dashed line in figure 4c). Maxworthy297

and Nokes (2007) and Maxworthy (2010) showed that the buoyancy of the298

cloud is not conserved in the deceleration stage of the density cloud. For a299

slope angle of 10.6°, they showed that the buoyancy of the cloud reaches a300

maximum of about 43%B0 for x ≈ (10 − 13)H0 and decreases afterwards.301

This is represented as a continuous line in figure 4c and we see that the302

descent of our data follows the trend of Maxworthy (2010).303

The theoretical solution of Maxworthy (2010) however underestimates304

our reported values (60% versus 43%), which may be imputed by the differ-305

ent definition of the buoyancy threshold within the cloud or by the different306

quantities used for its estimation: in our case the buoyancy has been obtained307

by instantaneous velocity and density measurements, and not from dye con-308

centration measurements.Dai (2013a) derived a power-law relationship which309

enables to estimate the fraction of heavy fluid in the lock that is contained310

within the head, χ, via χ = [KM/KB]1
3, where KM is parameter which has311

been determined by several measurements in previous studies (Beghin et al.312

(1981), Hoult (1972), Huppert and Simpson (1980), Marino et al. (2005)),313
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whereas a theoretical derivation of KB is given in Dai (2013a) (cf. equa-314

tion (1.7) therein). The theoretical estimations of Dai (2013a) were also in315

good agreement with the measurements of Beghin et al. (1981), predicting316

values of ≈ 0.75 for slope angles below 5◦ and ≈ 0.82 for slope angles of 9◦317

(Dai, 2013c). These values are much higher than those predicted by Max-318

worthy (2010) and this difference was explained by erroneous estimations of319

the model constant KB and/or a different definition of the head dye concen-320

tration threshold. If we estimate the model constant with our values using321

equation (1.7) in Dai (2013a), we obtain KB = 3.8, resulting in χ ≈ 0.63322

for KM = 2.45 (Beghin et al., 1981), which is in good agreement with the323

reported values in figure 4c of 0.6.324

Figure 5: Density field at three different x positions for run 1. Non-linear fit of the shape
of the buoyancy cloud using a half-ellipse (red dashed line). Horizontal axis corresponds
to the advective time.

In order to assure that the results do not depend on the definition chosen
to determine the buoyancy of the cloud, it has also been estimated directly
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using the combined PIV/PLIF data as follows

B′ =

∫ ∞

0

(∫ tB

tN

u(z, t)g′δcdt

)
dz = B

Um

U
, (4)

where u(z, t) is the local velocity from the PIV and Um the velocity of the325

centre of mass of the buoyancy cloud. The buoyancy B′ is shown in figure326

4c as a green line, revealing that both estimations for B and B′ give similar327

results: the ensemble average of B′ is slightly smaller than that of B because328

the geometric velocity U overestimates the velocity of the centre of mass of329

the cloud.330

3.2. Interior structure331

Figures 6 (a,b) show the mean structure of the buoyancy cloud with332

the black arrows representing the velocity difference between the ensemble333

average of the instantaneous velocity ⟨u⃗⟩ and the ensemble average of the334

velocity of the gravity center ⟨u⃗B⟩ of the buoyancy cloud. The density for335

[∆ρ/ρ]i = 5 × 10−3 in (a) and the mean vorticity (ωy = ∂u
∂z

− ∂w
∂x
) in (b) are336

highlighted by the colormaps.337

Clearly, the density within the cloud is not homogeneous and at the back338

of the head, a large-scale vortex appears, associated to a downward vertical339

velocity at the outer edge of the density cloud and an upward vertical velocity340

in the central area of the head, with evident regions convectively unstable341

(cf. colormap in figure 6a). Such a large scale vortex structure has been342

already observed in the literature (e.g. Beghin and Brugnot, 1983; Dai, 2013a;343

Hampton, 1972). This vortex is composed of much lighter water (≈ 4%g′0)344

as compared to the frontal part at the nose (≈ 12%g′0), entrained from the345

ambient. The size of the large-scale vortex is of the order of the maximum346

depth of the buoyancy cloud. The averaged reduced gravity within the cloud347

is about 6%g′0, thus 60% of the initial value, during the considered space-time348

interval when observations were taken.349

Figure 6(b) shows that the vorticity is negative at the interface between350

the buoyancy cloud and the ambient water and positive in the bottom bound-351

ary layer of the buoyancy cloud. The high values of the vorticity on the back352

of the buoyancy cloud confirms the presence of the large-scale vortex. High353

positive vorticity is observed at the nose of the buoyancy cloud, highlight-354

ing the presence of Kelvin-Helmholtz like structures on the frontal part of355
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(a)

(b) (c)

Figure 6: Mean structure of the buoyancy cloud for run 2 with the velocity ⟨u⃗⟩ − ⟨u⃗B⟩
(black arrows) and ⟨u⃗B⟩ being the velocity of the gravity center of the buoyancy cloud.
The density for [∆ρ/ρ]i = 5 × 10−3 in (a) and the mean vorticity (ωy = ∂u

∂z − ∂w
∂x ) in (b)

are highlighted by the colormaps. (c) Snapshot of an instantaneous PIV/PLIF field.

the head (Martin and Garćıa, 2009) and at the outer boundary of the large-356

scale vortex within the buoyancy cloud, induced by enhanced vertical shear357

generated by the vortex itself.358

These results also highlight that a variety of different turbulent processes359

take place inside the density cloud: the large-scale and small-scale convective360

motions which become locally unstable in the core of the cloud, shear tur-361

bulence as Kelvin-Helmholtz instabilities at the boundary with the ambient362

fluid, as also observed and quantified by Balasubramanian and Zhong (2018),363
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and boundary layer instabilities at the bottom boundaries, which all concur364

to the dilution of the cloud.365

4. Entrainment366

Two phenomena responsible for entrainment can be distinguished (cf fig-367

ure 6): the first is induced by the large scale vortex (of typical scale of the368

order of H) that engulfs ambient water within the full cloud, and the sec-369

ond is due to small scale (shear) instabilities of typical scale of the order of370

≈ 1 cm that develop at the contours of the buoyancy cloud with the ambient371

water and entraining locally.372

The conservation of mass for the buoyancy cloud can be expressed using
the model of the thermal theory considering the temporal variation of the
lateral surface A:

DA

Dt
= αUΓ, (5)

where α = −W/U , is the entrainment coefficient, W is the average entrain-
ment velocity across the contour Γ corresponding to the buoyancy cloud
interface with the ambient water, assuming a 2D flow. This formulation ne-
glects the variations of density, that can be assumed valid for small ∆ρ/ρ.
More rigorously, the conservation of mass across the control volume repre-
senting the density cloud, can be expressed as

D

Dt

∫∫

SΓ

ρds =

∫∫

SΓ

∇⃗P · (ρu⃗) ds+
∫∫

SΓ

ρ∂yvds, (6)

where ∇⃗P · u⃗ = ∂xu+∂zw is the divergence of the velocity in the (x, z) plane.
Assuming the flow to be primarily two-dimensional, the last term on the right
hand side of equation (6) can be neglected, so that the local mass flux can
be directly estimated across the interface between the buoyancy cloud and
the surrounding ambient. The entrainment coefficient α used in the thermal
theory can be then written as

α =
1

ρ0U

∮

Γ

ρu⃗ · n⃗dl/
∮

Γ

dl =
1

ρ0UC

∮

Γ

ρu⃗ · n⃗dl, (7)

where the circulation integral in the latter equation can be replaced by the
surface integral using the Green’s theorem

∮

Γ

ρu⃗ · n⃗dl =
∫∫

SΓ

∇⃗P · (ρu⃗) ds. (8)
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Figure 7: Entrainment coefficient. Coefficient deduced from equations (7) and (8) (black
line) and its spatial average (horizontal dashed line); constant coefficient proposed by
Beghin et al. (1981) (horizontal red line).

Figure 7 displays the entrainment coefficient deduced from equations (7)373

and (8). The observed sign fluctuations of α in figure 7 are of the order of the374

spatial average (cf. dashed line in figure 7) and correspond to entrainment375

(positive) and detrainment (negative). For comparison, the constant entrain-376

ment coefficient proposed by Beghin et al. (1981) is also reported (continuous377

line).378

Odier et al. (2012) suggested a quantitative measure of local entrainment379

and detrainment derived from observed conditional correlations of density380

fluxes to fluctuations of density ρ′ or of the vertical velocity w′.381

Figure 8 shows the two-dimensional probability density functions (PDF)382

of ρ′ versus ρ′w′ for the initial development phase where the lateral surface383

of the buoyancy cloud increases (a) and for the second stage characterized384

by a decreasing lateral surface of the buoyancy cloud (b). The right part of385

the plots corresponds to the stabilizing return to neutral buoyancy, while the386

top left quadrant corresponds to entrainment, and the bottom left quadrant387

to detrainment. It is evident comparing the two figures, that most of the388

entrainment takes place in the initial development phase of the density cloud,389

while detrainment is dominant during the second phase characterized by the390

detachment of the back of the cloud.391
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Figure 8: Two-dimensional PDFs of the density flux versus the density fluctuations. (a)
During the increasing phase of A/A0 (run 3). (b) During the decreasing phase of A/A0

(runs 1 and 2.

5. Turbulent fluxes392

The results in section 3 have shown that a variety of turbulent motions393

characterize the internal structure of the density cloud. Turbulent motions394

are usually not solved explicitly in numerical models and thus they need to395

be parameterized (e.g. Madec, 2015).Vertical turbulent fluxes are generally396

assumed to depend linearly on the gradients of large-scale quantities.397

The eddy viscosity νt is used in the momentum equation to parameterize
the Reynolds stress such as:

⟨u′w′⟩ = −νt

〈
∂u

∂z

〉
(9)

A frequently used turbulence closure for mixing in ocean or atmospheric cir-
culation models is to assume a linear relation between the vertical buoyancy
flux and the density gradients. This relation defines a diapycnal turbulent
diffusivity Kρ that can be written as

⟨ρ′w′⟩ = −Kρ

〈
∂ρ

∂z

〉
(10)
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(a) (b)

Figure 9: Turbulent diffusivity (log10m
2/s) in the buoyancy cloud. νt (a); Kρ with stable

stratification (b).

Maps of the turbulent diffusivities are shown in figure 9, with νt in (a)398

and Kρ in (b). νt and Kρ present the same order of magnitude, with high399

values (> 10−4 m2s−1) within the large-scale vortex and smaller values (<400

10−5 m2s−1) close to the nose and at the bottom. Their spatial structure is401

however different. Turbulent diffusivities νt are intensified at the edge of the402

large-scale vortex and the ambient, whereas diapycnal turbulent diffusivities403

Kρ present the largest values in the core of the large-scale vortex. These404

estimations show clearly that the usual hypothesis of a constant diffusivity405

for the entire density cloud does not apply, with strong variations of one406

order of magnitude.407

Prandtl (1925) proposed a mixing length scale Lu to relate the Reynolds
stress and the square of the mean velocity vertical shear:

⟨u′w′⟩ = L2
u

〈
∂u

∂z

〉2

(11)

Similarly, for the buoyancy flux a buoyancy mixing length Lρ can be defined:

⟨ρ′w′⟩ = L2
ρ

〈
∂ρ

∂z

〉〈
∂u

∂z

〉
(12)

In figure 10, both parametrizations for the Reynolds stress equations (9)408

and (11), respectively (a,c), and for the buoyancy turbulent fluxes as given in409

equations (10) and (12), respectively, (b,d), are reported. Two-dimensional410
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histograms show the correlation between fluxes and gradients, but no con-411

vergence for both models is found.412

(a) (b)

(c) (d)

Figure 10: Two-dimensional histograms representing the correlation between the Reynolds
stress and the mean gradients. The color scale represents the log10 number of entries in
the histogram. (a) Momentum flux ⟨u′w′⟩ versus the vertical-velocity gradient ⟨∂u/∂z⟩
and (b) versus the square of the velocity vertical gradient ⟨∂u/∂z⟩2. (c) Buoyancy flux
⟨ρ′w′⟩ versus the vertical density gradient expressed using the Brunt Väisälaa frequency
N2 and (d) versus the square (N2)2.

Thorpe (1977) proposed a characteristic length scale related to a density413

profile in a mixed patch, obtained by adiabatically re-ordering the density414

profile in the unstable regions of the water column and estimating the vertical415

displacements ∆z needed for a fluid particle to be moved from the synthetic416

stable profile to the observed profile.417

A characteristic length scale for the mixing can then be introduced from
the root mean square of the vertical displacements ∆z over the vertical profile
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of the buoyancy cloud such as LT =

√
(∆z)2, where · corresponds to the

vertical average operator. Dillon (1980) showed that this length scale can be
related to the Ozmidov scale LO as

LO = 0.8LT , (13)

where the Ozmidov scale LO is defined as LO = ϵ1/2N−3/2. Herein, ϵ the
dissipation rate and N the Brunt-Väisälä frequency. By combining the equa-
tion (13) with the expression of LO given above, the dissipation rate can be
written as:

ϵ = 0.64L2
TN

3. (14)

Osborn (1980) showed that the turbulent diffusivity is limited by the dissi-
pation rate following the equation

Kρ = −⟨w′ρ′⟩
⟨∂zρ⟩

≤ 0.2ϵ/N2 ≃ 0.13L2
TN. (15)

Barry et al. (2001) proposed also two equations to estimate the turbulent
diffusivity depending of the buoyancy Reynolds number Reb = ϵ/(νN2) =
0.64L2

TN/ν

Kρ =

{
0.9(ν2Kmol)

1/3Reb for 10 < Reb < 300,

24(ν2Kmol)
1/3Re

1/3
b for Reb > 300,

(16)

where Kmol is the molecular diffusivity of salt in water. Combining the
equations (14) and (16) leads to

Kρ ≃
{
0.6(Pr)−1/3L2

TN for 10 < Reb < 300,

21(L2
TNν2/Pr)1/3 for Reb > 300,

(17)

where Pr = ν/Kmol is the Prandtl number of the fluid.418

Figure 11a displays the turbulent diffusivity deduced using the Thorpe419

scale LT . The light-gray dots are estimated following the Osborn equation420

(15) and the red dashed-line is the vertical running mean of these points with421

a window size of 0.05z/H. The black dots are estimated following the Barry422

et al. (2001) equations (17) and the red line is the vertical running mean of423

these points with a window size of 0.05z/H. The vertical green line is the424

vertical average of the diapycnal turbulent diffusivity following Barry et al.425

(2001).426
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In figure 11b the turbulent diffusivity is estimated using equation (10)427

(black stars), where the continuous vertical green line represents the vertical428

average. Both methods (figure 11(a,b)) give a similar distribution with the429

same order of magnitude.430

These results suggest that neither the mixing model based on the Prandtl431

scale L nor the model based on the Thorpe scale LT deliver a reliable relation432

to parametrize turbulent fluxes.433
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Figure 11: Diapycnal turbulent diffusivity Kρ (m2/s) from an instantaneous vertical den-
sity profile at the back of the buoyancy cloud using (a) The light-gray dots are estimated
following the Osborn equation (15) and the red dashed-line is the vertical running mean
of these points with a window size of 0.05z/H. The black dots are estimated following the
Barry et al. (2001) equations (17) and the red line is the vertical running mean of these
points with a window size of 0.05z/H. The vertical green line is the vertical average of
the diapycnal turbulent diffusivity following Barry et al. (2001). (b) Kρ estimated from
equation (10) (black stars) and the associated vertical average (vertical green line).

6. Summary and conclusions434

An experimental investigation of finite volume gravity currents down a435

slope released from a lock has been performed using combined PIV and436

PLIF measurement techniques to obtain two-dimensional velocity and den-437

sity fields.438

Experiments were focused on the deceleration region of the buoyancy439

cloud at a distance x > 10H0 from the initial volume reservoir. Based on440
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the high resolved simultaneous velocity-density data, it is verified that the441

existing theoretical models of Beghin et al. (1981); Dai (2013a); Maxworthy442

(2010) are suitable for predicting the global characteristics of the cloud prop-443

agation (front propagation, lateral surface and buoyancy), with exception of444

the buoyancy variations that have to be corrected from Maxworthy (2010)445

using the coefficients given in the theoretical model of Dai (2013a).446

The measurements showed the complex turbulent structure of the cloud447

with the back of the buoyancy cloud being hydrostatically unstable with448

the associated Thorpe scale larger than at the front of the cloud. Large449

patches of ambient fluid are engulfed into the cloud, especially at the back450

of the head due to a large scale recirculation vortex, that causes convectively451

unstable small-scale structures within the head and subsequent intense dilu-452

tion. Smaller scale instabilities at the limiting edge between the head and the453

ambient fluid also contributes to local mixing and dilution, such as Kelvin-454

Helmholtz instabilities.455

Using the combined velocity and density data and by averaging the buoy-456

ancy cloud along its descent, turbulent fluxes has been estimated revealing457

that the usual parameterization laws based on the assumption of a constant458

turbulent diffusivity or a constant turbulent mixing length do not work prop-459

erly. These results apply for lock-release density clouds propagating down460

steep slopes, and in particular for the head of the gravity current, which461

present high spatial and temporal hetereogenity. The tail behind the passage462

of the head in case of continuous supply, or even some lock released grav-463

ity currents propagating on horizontal boundaries, has shown to be rather464

stationary and homogeneous, present self-similarity and can be treated with465

a good approximation as a stratified shear layer, as given by the measure-466

ments of Odier et al. (2012, 2014). The turbulent closure models based on467

mixing length scales (e.g. Prandtl 1925) revealed to work reasonably well468

in such cases. Spatial hetereogenity has been also reported for spatially de-469

veloping gravity currents (Martin et al., 2019; Negretti et al., 2017). In this470

latter case however, turbulent diffusivities can be defined distinctively in the471

defined spatial regions, that can be identified using for example the inter-472

nal Froude number or the bulk Richardson number (a study is currently in473

progress on this aspect).474

The high spatio-temporal anisotropy of downslope density clouds over475

steep slopes makes it challenging to find a correct parametrization using476

closure models based on the turbulent viscosity νt that depend on the spa-477

tial variables. Our results show clearly that none of the parametrizations478
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proposed in the literature can properly represent turbulent diffusivities for479

downslope propagating density clouds. The fact that in figure 10 the his-480

tograms show no correlation between the turbulent fluxes and a mixing481

length, the strong vertical variations shown in figure 11 using the formu-482

lation of Osborn (1980) and Barry et al. (2001), comes from the fact that for483

downslope propagating buoyancy clouds over steep slopes there are several484

characteristic scales, which are set by the multiplicity of turbulent processes485

that take place, along with their intermittency. These are convective unsta-486

ble processes (inside the cloud), Kelvin-Helmholtz (shear) instabilities (at the487

edge with the ambient fluid) and lobes and clefts instabilities (not observed488

in this study). Under these conditions, mixing scales go from the small con-489

vectively unstable scales, the Kelvin-Helmholtz scales, up to the large scale490

recirculation vortex, which is of the same order of the size of the cloud itself,491

as also highlighted in figure 9.492

The parametrization of the turbulent diffusivities should be based rather493

on scalar quantities that avoid the problem of spatial hetereogenity and takes494

into account the different sources of turbulence production. This could be495

done for example using energetic considerations that compare the terms hav-496

ing a definite exchange of energy and acts as a source or a sink: the shear497

production deriving its energy from the mean flow (Pk), the buoyancy pro-498

duction representing the rate at which turbulent kinetic energy is consumed499

in mixing, but also aliments the production of kinetic energy for downslope500

propagating currents (Pb), and the viscous dissipation of turbulent kinetic501

energy (ϵ), governed by the balance Pk + Pb = ϵ. Each of these three terms,502

can be represented by a characteristic length scale of shear (Ls), of buoy-503

ancy, as for example the Monin-Obukhov or the Ozmidov scales (LO) and a504

dissipation scale (Lϵ), as proposed earlier in Bradshaw (1969).505

The use of the energy budget approach has also the advantage to permit506

extending the results to similarly spatially hetereogeneous non-conservative507

currents such as turbidity currents or katabatic flows, where the additional508

source/sink of buoyancy can be added following the suspension/deposition509

of fluid particles - in turbidity currents - or the presence of a local thermal510

flux in katabatic flows.511

Additional investigations are needed to test the appropriate turbulent512

closure for these flows based on the above described energy approach, which513

is left for future work.514
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Appendix A. PLIF calibration526

Optical flow diagnostics techniques in a stratified environment require527

closely matching the refraction indices of the dense and light fluids. This is528

generally achieved by the use of salt water for the heavy fluid and ethanol529

water mixture for the light fluid. However, as shown by Daviero et al (2001),530

the refractive index variations in stratified flows can be neglected if the salt531

and dye concentrations remain below thresholds values (∆ρ < 20 kgm−3, c0 <532

70 µg/l), which is the case in our study with ∆ρ = 5 kgm−3, c0 = 5 µg/l.533

For an excitation illumination I0(r, β), with (r, β) being the position along
a radius and an angle of the laser sheet, and with no absorption along the
laser path, there is a linear relationship between the intensity of fluorescence
emission and the dye concentration, consistent with our measurements at
dye concentrations ranging from 0 to 53.8 µg/l. For low laser intensities
(Crimaldi, 2008), the pixel grey scale values at each location in the fluores-
cence image, g0(r, β, t), are linearly related to the dye concentration at that
location, c(r, β, t), and to I0(r, β) via

g0(r, β, c) = ΓI0(r, β)c(r, β, t) + gb(r, β), (A.1)

where gb(r, β) is the background noise or camera dark-response. The con-534

stant Γ accounts for the system-specific optical collection efficiency and the535

effective quantum yield of the fluorescent dye. Here the subscript ‘0’ de-536

notes the case without absorption. The values of ΓI0(r, β) and gb(r, β) are537

determined from a calibration procedure detailed below.538
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When laser light passes through the test section, the dye solution attenu-
ates the laser intensity and this attenuation must be corrected to obtain ac-
curate dye concentrations from PLIF images (e.g., Atsavapranee and Gharib,
1997; Ferrier et al., 1993; Krug et al., 2013; Odier et al., 2014). In the present
set-up, the propagation of the laser sheet in the field of view is along the r
axis. According to the Bouguer–Lambert–Beer law, the laser intensity in
such an absorbing medium is

I(r, β, t) = I0(r, β)α(r, β, c) (A.2)

with539

α = exp

(
−
(
awr + ϵ

∫ r

0

c(r′, β, t)dr′ + ϵs

∫ r

0

cs(r
′, β, t)dr′

))
(A.3)

= exp

(
−
(
awr +

(
ϵ+ ϵs

cs,0
c0

)∫ r

0

c(r′, β, t)dr′
))

where α = α(r, β, c) is the attenuation along ray paths due to solution
absorption. aw is the clear water attenuation coefficient, ϵ is the attenuation
coefficient of the dyed solution per unit concentration, ϵs is the attenuation
coefficient of the salt solution per unit of salinity and cs(r

′, β, t) is the salt
concentration of the water. The recorded greyscale value is then g(r, β, c) =
ΓI(r, β, c)c(r, β, t) + gb(r, β). Substituting eq. (A.2) into this last equation
leads to

g(r, β, c) = ΓI0(r, β)α(r, β, c)c(r, β, t) + gb(r, β). (A.4)

The PLIF calibration was done before and after each experiment. The
main tank was filled with Rhodamine 6G with uniform known concentrations
(c = 0, 3.8, 7.7, 15.4, 30.8, 38.5, 46.2 and 53.8 µg/l). The zero concentration
measurement gives the camera dark-response gb(r, β). For uniform known
concentrations c and for a given angle β, equation (A.4) gives

g(r, c)β − gb(r)β = ΓI0(r)β exp[1− (ϵc+ aw)r]c, (A.5)

where gb(r)β = g(r)β|c=0. For (ϵc + aw)r ≪ 1 and assuming I0(r)β ≈ Aβr
−1

540

far from the laser source, with Aβ being a constant to be determined, the541

previous equation can be approximated by the following equation542

543

g(r, c)β − gb(r, c)β ≈ ΓAβr
−1 [1− (ϵc+ aw)r] c. (A.6)
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For each angle β, a non-linear fit of equation (A.6) has been performed to544

find the parameters ϵ, aw, and ΓAβ. The following attenuation coefficients545

has been found: aw = 2.8±1.7×10−3 cm−1, ϵ = 3.2±0.3×10−4 (cm µg/l)−1
546

and
(
ϵs

cs,0
c0

)
≈ 1.4× 10−6 (cm µg/l)−1 ≪ ϵ.547

Finally, the non-dimensional dynamic density is related to the measured548

dye concentration by ρ̃(r, β, t) = c(r, β, t)/c0.549
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