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; Maxworthy (2010) and the theoretical model of Dai (2013a). The collected data allowed also for the determination of the entrainment rates based on the turbulent fluxes instead using the variation of the volume flux, and the regions of entrainement/detrainment have been identified. The results support previous observations of the mechanism responsible for the buoyancy loss of the cloud and its consequent deceleration down the slope, as a large scale recirculation vortex at the back of the cloud. A very complex interior structure of the cloud is observed, with a large variety of turbulent processes taking place, such as the large-scale convectively unstable recirculation vortex at the scale of the current itself, the small-scale convectively unstable motions inside the head of the cloud and close to the bottom boundary and shear (Kelvin-Helmholtz) instabilities at the boundary between the current and the ambient water. The synoptic velocity and density measurements allowed also to test existent parametrizations of turbulent fluxes, that have been quantified in 2D fields with a high spatial resolution. Results confirm that parametrization laws based on the assumption of a constant turbulent diffusivity or mixing length do not apply for buoyancy clouds due to their high spatial heterogeneity. Hence, the parametrization of the turbulent dif-

Introduction

Variations in temperature, salinity and/or sediment concentration cause variations of fluid density in the vertical direction. The resulting flow stratification, which typically occurs in environmental and geophysical flows, leads to qualitative and quantitative modifications of the flow patterns by buoyancy. When buoyancy driven flows encounter topography, a downslope dense current, i.e. gravity current, is created. Its motion is then sustained by buoyancy and deviated by the topographic slope. Gravity currents are key processes that affect ocean, atmospheric and coastal circulation.

Gravity currents can take on different forms depending on their source of supply of buoyancy being continuous [START_REF] Baines | Two-dimensional plumes in stratified environments[END_REF][START_REF] Britter | The motion of the front of a gravity current travelling down an incline[END_REF][START_REF] Martin | Development of gravity currents on slopes under different interfacial instability conditions[END_REF][START_REF] Negretti | Development of gravity currents on rapidly changing slopes[END_REF][START_REF] Odier | Entrainment and mixing in a laboratory model of oceanic overflow[END_REF] or resulting from a finite volume release [START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF]. Examples of the first type are oceanic gravity currents [START_REF] Baringer | Mixing and spreading of the Mediterranean outflow[END_REF], while examples of finite volume released gravity currents are avalanches [START_REF] Clément-Rastello | A study on the size of snow particles in powdersnow avalanches[END_REF][START_REF] Hopfinger | Snow avalanche motion and related phenomena[END_REF][START_REF] Rastello | Sediment-entraining suspension clouds: a model of powder-snow avalanches[END_REF], volcanic eruptions [START_REF] Holyer | Gravity currents entering a two-layer fluid[END_REF] or turbidity currents [START_REF] Meiburg | Turbidity currents and their deposits[END_REF], which contribute to the shaping of the continental surface and have a large impact on the geomorphological floor and the related ecosystems [START_REF] Bründl | Review and future challenges in snow avalanche risk analysis[END_REF][START_REF] Kostaschuk | On the causes of pulsing in continuous turbidity currents[END_REF][START_REF] Pohl | Transport and burial of microplastics in deep-marine sediments by turbidity currents[END_REF][START_REF] Thorez | From inflow to interflow, through plunging and lofting: Uncovering the dominant flow processes of a sediment-rich negatively buoyant river inflow into a stratified lake[END_REF]. Katabatic winds are also an example of an intermittent gravity flow and are important to determine the local air circulation in several regions [START_REF] Brun | Large-eddy simulation of a katabatic jet along a convexly curved slope: 2. evidence of gortler vortices[END_REF][START_REF] Charrondiere | Buoyancy effects in the turbulence kinetic energy budget and reynolds stress budget for a katabatic jet over a steep alpine slope[END_REF]. This paper deals with finite volume released gravity currents over sloping boundaries. For the terminology, finite volume released gravity currents on a sloping boundary is more precisely described as a 'thermal cloud' or 'density cloud' [START_REF] Simpson | Gravity currents in the laboratory, atmosphere and ocean[END_REF], because the flow resembles more a cloud with some tail following.

The pioneering work on donwlope propagating density clouds was made by [START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF], who studied the full range of slopes between 5 • and 90 • . They showed that the current development includes a first quick accelerating phase of the density cloud, followed by a decelerating phase, if no buoyancy is entrained by the current, as for gravity currents propagating over a sediment bed [START_REF] Rastello | Sediment-entraining suspension clouds: a model of powder-snow avalanches[END_REF]). Further theoretical, numerical and experimental studies followed, giving important insights in the dynamics and the spatio-temporal development of the current [START_REF] Adduce | Gravity currents produced by lock-exchanges: experiments and simulations with a two layer shallowwater model with entrainment[END_REF][START_REF] Beghin | Contribution of theoretical and experimental results to powder-snow avalanche dynamics[END_REF][START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF][START_REF] Dai | Gravity currents propagating on sloping boundaries[END_REF]Dai, , 2013a[START_REF] Dai | Non-Boussinesq gravity currents propagating on different bottom slopes[END_REF][START_REF] Dai | High-resolution simulations of downslope gravity currents in the acceleration phase[END_REF][START_REF] Dai | Gravity currents from instantaneous sources down a slope[END_REF][START_REF] Hopfinger | Snow avalanche motion and related phenomena[END_REF][START_REF] Martin | Propagation of a continuously supplied gravity current head down bottom slopes[END_REF][START_REF] Ottolenghi | Entrainment in a dense current flowing down a rough sloping bottom in a rotating fluid[END_REF][START_REF] Rastello | Sediment-entraining suspension clouds: a model of powder-snow avalanches[END_REF]Steenhauer et al., 2017a;Zemach et al., 2019).

To describe the front velocity history of a lock-released gravity current both a shallow water model approach [START_REF] Ross | A study of three-dimensional gravity currents on a uniform slope[END_REF][START_REF] Tickle | A model of the motion and dilution of a heavy gas cloud released on a uniform slope in calm conditions[END_REF][START_REF] Ungarish | An introduction to gravity currents and intrusions[END_REF][START_REF] Webber | A model of the motion of a heavy gas cloud released on a uniform slope[END_REF] or thermal theory [START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF][START_REF] Morton | Turbulent gravitational convection from maintained and instantaneous sources[END_REF] have been adopted. In the latter case, the assumption of a constant buoyancy flux during the head propagation was made and despite the strong approximation, this model has shown to give a good description of the evolution of both the first accelerating phase and the successive decelerating phase [START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF].

A more sophisticated model has been proposed by [START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 1. the release of a fixed volume of heavy fluid from an enclosed lock into an open channel[END_REF], who argued that during the acceleration phase, the head was being fed by a following current that increased its buoyancy as it propagated downstream. [START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 2. the evolution of a fixed volume of fluid released from closed locks into a long, open channel[END_REF] showed that after a propagation distance of the order of (5-10)H 0 , where H 0 is the initial depth of the lock, the inflow into the rear stopped, and the head began to lose buoyancy-containing fluid from its rear by the detachment of large, weakly vortical structures. Their measurements have shown that the buoyancy in the current head increased during the acceleration phase and decreased during the deceleration phase. [START_REF] Dai | Gravity currents propagating on sloping boundaries[END_REF]Dai ( , 2013b) implemented a three-dimensional direct numerical simulation of a lock released downslope gravity current. They confirmed numerically that the maximum buoyancy in the head never reaches the total released buoyancy, and a significant portion of heavy fluid is left in the tail current, which is often detached from the head when the density cloud propagates over steep slopes (see also Dai (2013a,c)), in accord with [START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 2. the evolution of a fixed volume of fluid released from closed locks into a long, open channel[END_REF].

For a long running length x > 13H, they showed a disagreement between the thermal theory [START_REF] Morton | Turbulent gravitational convection from maintained and instantaneous sources[END_REF] and the observed growth of the density cloud in the deceleration phase.

Recently, [START_REF] Martin | Propagation of a continuously supplied gravity current head down bottom slopes[END_REF]Zemach et al. (2019) proposed a the-oretical solution based on the shallow water model combined with a Benjamin's type jump condition at the nose of the head and an empirical entrainment law, respectively. Their solution is of relevance during the acceleration phase only, taking into account the contribution of the tail to the buoyancy budget of the density cloud, as reported by [START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 1. the release of a fixed volume of heavy fluid from an enclosed lock into an open channel[END_REF].

However, the model cannot predict the loss of buoyancy in the deceleration phase [START_REF] Dai | Gravity currents propagating on sloping boundaries[END_REF](Dai, , 2013a;;[START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 2. the evolution of a fixed volume of fluid released from closed locks into a long, open channel[END_REF].

While previous studies mostly concentrated on the global properties of such density clouds propagating on horizontal or inclined boundaries, their internal structure has started to receive attention only recently. [START_REF] Hopfinger | A model study of powder-snow avalanches[END_REF] measured the velocity distribution within the density cloud by means of the hydrogen bubble technique combined with a conductivity probe measurement for the density. Three-dimensional direct numerical simulations of a lock-released gravity current were performed by [START_REF] Calgaro | Modeling and simulation of mixture flows: Application to powder-snow avalanches[END_REF]; Étienne et al. (2004); Steenhauer et al. (2017b) revealing a very turbulent structure of the buoyancy cloud. [START_REF] Nishimura | Velocity distribution in snow avalanches[END_REF] measured internal velocities of 50 ms -1 for a front velocity of about 10 ms -1 , demonstrating that the head interior is characterized by a strong energetic circulation and a large variety of turbulent structures. Knowing the internal structure of density clouds may help to better predict the entrainment and dilution mechanisms, which are directly related to the propagation speed and motion of such currents.

Detailed velocity and/or density measurements within the head of a density cloud propagating over a horizontal boundary using optical non-intrusive measurements techniques (such as Particle Image Velocimetry-PIV) have been performed only in few studies [START_REF] Hallworth | Entrainment into two-dimensional and axisymmetric turbulent gravity currents[END_REF][START_REF] Martin | Combined piv/plif measurements of a steady density current front[END_REF][START_REF] Pelmard | Turbulent density transport in the mixing layer of an unsteady gravity current[END_REF][START_REF] Thomas | The structure of the head of an inertial gravity current determined by particle-tracking velocimetry[END_REF]. [START_REF] Hallworth | Entrainment into two-dimensional and axisymmetric turbulent gravity currents[END_REF] and later [START_REF] Martin | Combined piv/plif measurements of a steady density current front[END_REF] The recent studies performed by [START_REF] Agrawal | Probing the high mixing efficiency events in a lock-exchange flow through simultaneous velocity and temperature measurements[END_REF]; Mukherjee andBalasubramanian (2020, 2021) on horizontal lock-released gravity currents focused on the slumping phase and their analysis was aimed at estimating the mixing efficiency at the interface between the cloud and the ambient fluid due to Holmboe or Kelvin-Helmholtz instabilities. No study is known in the literature on downslope density clouds aimed at verifying the theories of the global characteristics governing the dynamics of such flows, as the front propagation, the buoyancy and the entrainment, but also quantifying small-scale processes and turbulent fluxes that characterize the internal structure of the density cloud, based on highly resolved simultaneous measurements of both the velocity and the density fields. By means of such detailed measurements, the validity and limitations of the existent theories for both the global characteristics of the flow, but also those related to the parametrization of the turbulent diffusivities, have been tested, revealing interesting insights on the small-scale features of the internal structure of the head. The global characteristics of the density cloud compared to the semi-empirical thermal theory of [START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF] and [START_REF] Escudier | On the motion of turbulent thermals[END_REF] reveal a fairly good agreement, with exception of the assumption of initial mass conservation, in accord with [START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 2. the evolution of a fixed volume of fluid released from closed locks into a long, open channel[END_REF]. The predictions for the buoyancy loss of the gravity current during the decelerating phase are in better agreement with the theoretical model proposed by Dai (2013a,c), while the model of [START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 2. the evolution of a fixed volume of fluid released from closed locks into a long, open channel[END_REF] reveals to strongly overestimate it, even if the trend of decrease is well represented by Maxworthy (2010)'s theory A very complex interior structure of the buoyancy cloud is observed, with a variety of turbulent processes sources of mixing and dilution present. These are large-scale and small-scale convective motions inside the cloud, shear turbulence and related instabilities (e.g. Kelvin-Helmholtz and boundary layer instabilities) at the boundaries with the ambient fluid and the bottom.

Finally, it is shown that classical mixing parametrizations of turbulent fluxes based on mixing length models are not appropriate for lock-released buoyancy clouds due to their strong spatial and temporal heterogeneity.

The paper is organized as follows: section 2 outlines the experimental set-up and the measurement techniques. Section 3 gives the global characteristics of the buoyancy cloud, while entrainment/detrainment and mixing are presented in 4 and 5, respectively, and compared to existent parametrizations. Section 6 summarizes the results and includes concluding remarks.

Experimental facility and measurement techniques

Experimental setup

The experimental set-up is shown schematically in figure 1a Two runs of experiments have been performed in the deceleration region 1.65m < x < 2.5m from the lock release (see figure 1). The same initial conditions have been adopted for both runs with exception of the bottom slope, 

Run A 0 [cm 2 ] θ[ • ] g ′ 0 [cm/s 2 ] N Technique F.O.V. 1 125 15 5 ± 0.1 5 PIV/PLIF 1.65m < x < 2.5m 2 125 20 5 ± 0.1 7 PIV/PLIF 1.65m < x < 2.5m 3 125 15 5 ± 0.1 5 PIV/PLIF 0.7m < x < 1.55m

Measurement technique

The velocities and the density were determined using the optical, non- The PIV set-up consisted of a light source, light sheet optics, seeding particles, a camera, and a PC equipped with a frame grabber and image acquisition software. Polyamide particles (Orgasol) with a mean diameter of 60µm and a specific density of 1.016g/cm -3 were added in both the fresh water and the salt water in the initial release reservoir as tracer material for the PIV measurements.

A 5 Watt Yag-laser (λ = 532 nm) has been used as continuous light source. The beam was transmitted through mirrors to a spherical lense with an angle of 45°to generate a laser sheet with a length of approximately 1 m and a width of 5mm, positioned in the middle of the channel. Rhodamine 6G was used as fluorescent dye (absorption peak at 530nm and emission peak at 555nm) and uniformly mixed in the reservoir containing the dense fluid with initial concentration c 0 = 5µg/l. The dye and the salt have approximately the same diffusivity, with a Schmidt number Sc = ν/κ = 700, where κ is the mass transfer diffusion coefficient [START_REF] Troy | The generation and quantitative visualization of breaking internal waves[END_REF].

For the simultaneous PIV/PLIF measurements an interferometer bandpass, 532nm for PIV and a high pass filter with cut-off 550nm for PLIF were used to separate the emitted wavelengths.

Images of roughly 70cm × 55cm were grabbed with a CCD camera (Flow Master 1200 × 1600 pixels) for PIV, and with a second CCD camera (Dalsa 1000 × 1000 pixels) at a frame rate of 23.22 Hz for PLIF.

The raw image pairs were then processed using a PIV cross-correlation algorithm (software package DaVis, LaVision) to compute the velocity fields, starting with an interrogation window of 32×32 pixels and a final window size of 16 × 16 pixels with 50% overlap. Each vector of the resulting vector field represents an area of roughly 0.6cm×0.6cm. Given the velocities encountered in the experiments, the error for the instantaneous velocity is approximately 4%.

The calibration procedure for the PLIF measurements is given in the appendix. For each x-position, the density cloud is detected (t, z) using a threshold of 0.99(∆ρ/ρ) max for the density.

Experimental results

Global characteristics of the density cloud

As suggested by [START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF], and as evident from present visual observations, the shape of the cloud can be fitted in time and vertical space (t, z) assuming a semi-elliptic shape (cf. also figure 5), that follows the following equation where z is the vertical (normal to the slope) coordinate of the boundary of the density cloud with the ambient fluid, H and 0.5t A are the minor and major axis of the ellipse and t 0 is the time corresponding to a given position of the geometrical centre of the ellipse x g . From equation ( 1), H and the length L = t A U of the density cloud can be estimated, where U is the velocity of the geometric centre of the ellipse defined as

z = H 0.5t A (0.5t A ) 2 -(t -t 0 ) 2 1 2 , (1) 
U = ∆x ∆t 0 (2)
Figure 3a, shows the non-linear fit using equation (1) (dashed line) compared to experimental values (solid line). The streamwise coordinate corresponds to the dimensionless advective time (tt 0 )/t A , where t 0 has been determined using a power law fit ( [START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF], cf. figure 3b).

Using this procedure, the velocity of the buoyancy cloud U , its surface area A and its buoyancy flux B = g ′ U H have been determined. showed experimentally that the surface of the buoyancy cloud increases with the square of the along slope direction as A = C (x + x 0 ) 2 , where C is a constant defined as C = π/16 (S 2 /S 1 ) 2 α 2 and x 0 is a virtual origin corresponding to A = 0, i.e. x 0 = 4S 1 /S 2 α -1 A 0 /π. The shape factors S 1 and S 2 are estimated assuming a semi-elliptical shape of the buoyancy cloud, and α is an empirical entrainment coefficient (see also equation 7). This model is represented by a dashed line in figure 4b revealing a good agreement with the experimental data in the initial accelerating stage. At X/L 0 sin θ ≈ 2.8, corresponding to x ≈ 34H 0 , the data suggests that the lateral surface stops increasing, in accord with previous numerical observations [START_REF] Dai | Gravity currents propagating on sloping boundaries[END_REF](Dai, , 2013b;;Steenhauer et al., 2017b). In particular, for a slope of 10°, [START_REF] Dai | Gravity currents propagating on sloping boundaries[END_REF] observed that the semi-elliptical head experiences multiple sporadic reductions in its height.

As mentioned in the introduction, [START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 2. the evolution of a fixed volume of fluid released from closed locks into a long, open channel[END_REF] explained this behaviour as the result of loss of volume (and buoyancy) that takes place during the descent, induced by large scale vortical structures developing at the back of the gravity current head, that has been also supported by Dai (2013a,b).

The numerical results from Dai (2013b) are also reported as symbols in figure

??b: results are within the range of our data and the theoretical prediction of [START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 2. the evolution of a fixed volume of fluid released from closed locks into a long, open channel[END_REF]; however, the lateral surface A increases monotonically and no decrease is observed. The buoyancy of the semi-elliptical cloud is shown in figure 4c, defined as

B = U ∞ 0 t B t N g ′ δ c dt dz, (3) 
where t N and t B are respectively the time at a given distance x at which the nose and the back of the ellipse appears, respectively, and δ c is the Dirac function. Note that this definition of the buoyancy differs from that of Maxworthy ( 2010) by a factor of 1/ρ 0 , which is cancelled out in figure 4c since it is normalized with the initial buoyancy. From the figure, it emerges that at (x/L 0 ) sin θ = 2.2 the buoyancy of the cloud is about 60% of the initial buoyancy, demonstrating that during the descent buoyancy has been left behind in the tail. For this value of the buoyancy, thermal theory predicts a velocity 84% of the predicted velocity, which explains the lower velocity (88%) reported in figure 4a. For comparison, we also report the conservation of buoyancy from [START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF] (dashed line in figure 4c). [START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 1. the release of a fixed volume of heavy fluid from an enclosed lock into an open channel[END_REF] and [START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 2. the evolution of a fixed volume of fluid released from closed locks into a long, open channel[END_REF] showed that the buoyancy of the cloud is not conserved in the deceleration stage of the density cloud. For a slope angle of 10.6°, they showed that the buoyancy of the cloud reaches a maximum of about 43%B 0 for x ≈ (10 -13)H 0 and decreases afterwards. This is represented as a continuous line in figure 4c and we see that the descent of our data follows the trend of [START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 2. the evolution of a fixed volume of fluid released from closed locks into a long, open channel[END_REF].

The theoretical solution of Maxworthy (2010) however underestimates our reported values (60% versus 43%), which may be imputed by the different definition of the buoyancy threshold within the cloud or by the different quantities used for its estimation: in our case the buoyancy has been obtained by instantaneous velocity and density measurements, and not from dye concentration measurements.Dai (2013a) derived a power-law relationship which enables to estimate the fraction of heavy fluid in the lock that is contained within the head, χ, via χ = [K M /K B ]1 3 , where K M is parameter which has been determined by several measurements in previous studies [START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF], [START_REF] Hoult | Oil spreading on the sea[END_REF], [START_REF] Huppert | The slumping of gravity currents[END_REF], [START_REF] Marino | The front condition for gravity currents[END_REF]), whereas a theoretical derivation of K B is given in Dai (2013a) (cf. equation (1.7) therein). The theoretical estimations of Dai (2013a) were also in good agreement with the measurements of [START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF] In order to assure that the results do not depend on the definition chosen to determine the buoyancy of the cloud, it has also been estimated directly using the combined PIV/PLIF data as follows

B ′ = ∞ 0 t B t N u(z, t)g ′ δ c dt dz = B U m U , (4) 
where u(z, t) is the local velocity from the PIV and U m the velocity of the centre of mass of the buoyancy cloud. The buoyancy B ′ is shown in figure 4c as a green line, revealing that both estimations for B and B ′ give similar results: the ensemble average of B ′ is slightly smaller than that of B because the geometric velocity U overestimates the velocity of the centre of mass of the cloud. Clearly, the density within the cloud is not homogeneous and at the back of the head, a large-scale vortex appears, associated to a downward vertical velocity at the outer edge of the density cloud and an upward vertical velocity in the central area of the head, with evident regions convectively unstable (cf. colormap in figure 6a). Such a large scale vortex structure has been already observed in the literature (e.g. [START_REF] Beghin | Contribution of theoretical and experimental results to powder-snow avalanche dynamics[END_REF]Dai, 2013a;[START_REF] Hampton | The role of subaqueous debris flow in generating turbidity currents[END_REF]. This vortex is composed of much lighter water (≈ 4%g ′ 0 )

Interior structure

as compared to the frontal part at the nose (≈ 12%g ′ 0 ), entrained from the ambient. The size of the large-scale vortex is of the order of the maximum depth of the buoyancy cloud. The averaged reduced gravity within the cloud is about 6%g ′ 0 , thus 60% of the initial value, during the considered space-time interval when observations were taken. the head [START_REF] Martin | Combined piv/plif measurements of a steady density current front[END_REF] and at the outer boundary of the largescale vortex within the buoyancy cloud, induced by enhanced vertical shear generated by the vortex itself.

These results also highlight that a variety of different turbulent processes take place inside the density cloud: the large-scale and small-scale convective motions which become locally unstable in the core of the cloud, shear turbulence as Kelvin-Helmholtz instabilities at the boundary with the ambient fluid, as also observed and quantified by [START_REF] Balasubramanian | Entrainment and mixing in lockexchange gravity currents using simultaneous velocity-density measurements[END_REF], and boundary layer instabilities at the bottom boundaries, which all concur to the dilution of the cloud.

Entrainment

Two phenomena responsible for entrainment can be distinguished (cf figure 6): the first is induced by the large scale vortex (of typical scale of the order of H) that engulfs ambient water within the full cloud, and the second is due to small scale (shear) instabilities of typical scale of the order of ≈ 1 cm that develop at the contours of the buoyancy cloud with the ambient water and entraining locally.

The conservation of mass for the buoyancy cloud can be expressed using the model of the thermal theory considering the temporal variation of the lateral surface A:

DA Dt = αU Γ, ( 5 
)
where α = -W/U , is the entrainment coefficient, W is the average entrainment velocity across the contour Γ corresponding to the buoyancy cloud interface with the ambient water, assuming a 2D flow. This formulation neglects the variations of density, that can be assumed valid for small ∆ρ/ρ. More rigorously, the conservation of mass across the control volume representing the density cloud, can be expressed as

D Dt S Γ ρds = S Γ ⃗ ∇ P • (ρ⃗ u) ds + S Γ ρ∂ y vds, (6) 
where ⃗ ∇ P • ⃗ u = ∂ x u + ∂ z w is the divergence of the velocity in the (x, z) plane. Assuming the flow to be primarily two-dimensional, the last term on the right hand side of equation ( 6) can be neglected, so that the local mass flux can be directly estimated across the interface between the buoyancy cloud and the surrounding ambient. The entrainment coefficient α used in the thermal theory can be then written as

α = 1 ρ 0 U Γ ρ⃗ u • ⃗ ndl/ Γ dl = 1 ρ 0 U C Γ ρ⃗ u • ⃗ ndl, (7) 
where the circulation integral in the latter equation can be replaced by the surface integral using the Green's theorem Figure 7 displays the entrainment coefficient deduced from equations ( 7)

Γ ρ⃗ u • ⃗ ndl = S Γ ⃗ ∇ P • (ρ⃗ u) ds. (8) 
and ( 8). The observed sign fluctuations of α in figure 7 are of the order of the spatial average (cf. dashed line in figure 7) and correspond to entrainment (positive) and detrainment (negative). For comparison, the constant entrainment coefficient proposed by [START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF] is also reported (continuous line). 

Turbulent fluxes

The results in section 3 have shown that a variety of turbulent motions characterize the internal structure of the density cloud. Turbulent motions are usually not solved explicitly in numerical models and thus they need to be parameterized (e.g. [START_REF] Madec | Nemo ocean engine, Notes du Pole de[END_REF].Vertical turbulent fluxes are generally assumed to depend linearly on the gradients of large-scale quantities.

The eddy viscosity ν t is used in the momentum equation to parameterize the Reynolds stress such as:

⟨u ′ w ′ ⟩ = -ν t ∂u ∂z (9) 
A frequently used turbulence closure for mixing in ocean or atmospheric circulation models is to assume a linear relation between the vertical buoyancy flux and the density gradients. This relation defines a diapycnal turbulent diffusivity K ρ that can be written as Maps of the turbulent diffusivities are shown in figure 9, with ν t in (a)

⟨ρ ′ w ′ ⟩ = -K ρ ∂ρ ∂z (10) 
and K ρ in (b). ν t and K ρ present the same order of magnitude, with high values (> 10 -4 m 2 s -1 ) within the large-scale vortex and smaller values (< 10 -5 m 2 s -1 ) close to the nose and at the bottom. Their spatial structure is however different. Turbulent diffusivities ν t are intensified at the edge of the large-scale vortex and the ambient, whereas diapycnal turbulent diffusivities K ρ present the largest values in the core of the large-scale vortex. These estimations show clearly that the usual hypothesis of a constant diffusivity for the entire density cloud does not apply, with strong variations of one order of magnitude. [START_REF] Prandtl | Bericht über die entstehung der turbulenz[END_REF] proposed a mixing length scale L u to relate the Reynolds stress and the square of the mean velocity vertical shear:

⟨u ′ w ′ ⟩ = L 2 u ∂u ∂z 2 (11)
Similarly, for the buoyancy flux a buoyancy mixing length L ρ can be defined:

⟨ρ ′ w ′ ⟩ = L 2 ρ ∂ρ ∂z ∂u ∂z (12) 
In figure 10, both parametrizations for the Reynolds stress equations ( 9) and ( 11), respectively (a,c), and for the buoyancy turbulent fluxes as given in equations ( 10) and ( 12), respectively, (b,d), are reported. Two-dimensional histograms show the correlation between fluxes and gradients, but no convergence for both models is found. Thorpe (1977) proposed a characteristic length scale related to a density profile in a mixed patch, obtained by adiabatically re-ordering the density profile in the unstable regions of the water column and estimating the vertical displacements ∆z needed for a fluid particle to be moved from the synthetic stable profile to the observed profile.

A characteristic length scale for the mixing can then be introduced from the root mean square of the vertical displacements ∆z over the vertical profile of the buoyancy cloud such as L T = (∆z) 2 , where • corresponds to the vertical average operator. Dillon (1980) showed that this length scale can be related to the Ozmidov scale L O as

L O = 0.8L T , (13) 
where the Ozmidov scale L O is defined as L O = ϵ 1/2 N -3/2 . Herein, ϵ the dissipation rate and N the Brunt-Väisälä frequency. By combining the equation ( 13) with the expression of L O given above, the dissipation rate can be written as:

ϵ = 0.64L 2 T N 3 . ( 14 
)
Osborn (1980) showed that the turbulent diffusivity is limited by the dissipation rate following the equation [START_REF] Barry | Measurements of diapycnal diffusivities in stratified fluids[END_REF] proposed also two equations to estimate the turbulent diffusivity depending of the buoyancy Reynolds number Re b = ϵ/(νN 2 ) = 0.64L 2 T N/ν K ρ = 0.9(ν 2 K mol ) 1/3 Re b for 10 < Re b < 300, 24(ν 2 K mol ) 1/3 Re

K ρ = - ⟨w ′ ρ ′ ⟩ ⟨∂ z ρ⟩ ≤ 0.2ϵ/N 2 ≃ 0.13L 2 T N. (15) 
1/3 b for Re b > 300, ( 16 
)
where K mol is the molecular diffusivity of salt in water. Combining the equations ( 14) and ( 16) leads to

K ρ ≃ 0.6(P r) -1/3 L 2 T N for 10 < Re b < 300, 21(L 2 T N ν 2 /P r) 1/3 for Re b > 300, (17) 
where P r = ν/K mol is the Prandtl number of the fluid. 17) and the red line is the vertical running mean of these points with a window size of 0.05z/H. The vertical green line is the vertical average of the diapycnal turbulent diffusivity following [START_REF] Barry | Measurements of diapycnal diffusivities in stratified fluids[END_REF].

In figure 11b the turbulent diffusivity is estimated using equation ( 10 15) and the red dashed-line is the vertical running mean of these points with a window size of 0.05z/H. The black dots are estimated following the [START_REF] Barry | Measurements of diapycnal diffusivities in stratified fluids[END_REF] equations ( 17) and the red line is the vertical running mean of these points with a window size of 0.05z/H. The vertical green line is the vertical average of the diapycnal turbulent diffusivity following [START_REF] Barry | Measurements of diapycnal diffusivities in stratified fluids[END_REF]. (b) K ρ estimated from equation (10) (black stars) and the associated vertical average (vertical green line).

Summary and conclusions

An experimental investigation of finite volume gravity currents down a slope released from a lock has been performed using combined PIV and PLIF measurement techniques to obtain two-dimensional velocity and density fields.

Experiments were focused on the deceleration region of the buoyancy cloud at a distance x > 10H 0 from the initial volume reservoir. Based on the high resolved simultaneous velocity-density data, it is verified that the existing theoretical models of [START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF]; Dai (2013a); Maxworthy (2010) are suitable for predicting the global characteristics of the cloud propagation (front propagation, lateral surface and buoyancy), with exception of the buoyancy variations that have to be corrected from [START_REF] Maxworthy | Experiments on gravity currents propagating down slopes. part 2. the evolution of a fixed volume of fluid released from closed locks into a long, open channel[END_REF] using the coefficients given in the theoretical model of Dai (2013a).

The measurements showed the complex turbulent structure of the cloud with the back of the buoyancy cloud being hydrostatically unstable with the associated Thorpe scale larger than at the front of the cloud. Large patches of ambient fluid are engulfed into the cloud, especially at the back of the head due to a large scale recirculation vortex, that causes convectively unstable small-scale structures within the head and subsequent intense dilution. Smaller scale instabilities at the limiting edge between the head and the ambient fluid also contributes to local mixing and dilution, such as Kelvin-Helmholtz instabilities.

Using the combined velocity and density data and by averaging the buoyancy cloud along its descent, turbulent fluxes has been estimated revealing that the usual parameterization laws based on the assumption of a constant turbulent diffusivity or a constant turbulent mixing length do not work properly. These results apply for lock-release density clouds propagating down steep slopes, and in particular for the head of the gravity current, which present high spatial and temporal hetereogenity. The tail behind the passage of the head in case of continuous supply, or even some lock released gravity currents propagating on horizontal boundaries, has shown to be rather stationary and homogeneous, present self-similarity and can be treated with a good approximation as a stratified shear layer, as given by the measurements of [START_REF] Odier | Understanding and modeling turbulent fluxes and entrainment in a gravity current[END_REF][START_REF] Odier | Entrainment and mixing in a laboratory model of oceanic overflow[END_REF]. The turbulent closure models based on mixing length scales (e.g. [START_REF] Prandtl | Bericht über die entstehung der turbulenz[END_REF]) revealed to work reasonably well in such cases. Spatial hetereogenity has been also reported for spatially developing gravity currents [START_REF] Martin | Development of gravity currents on slopes under different interfacial instability conditions[END_REF][START_REF] Negretti | Development of gravity currents on rapidly changing slopes[END_REF]. In this latter case however, turbulent diffusivities can be defined distinctively in the defined spatial regions, that can be identified using for example the internal Froude number or the bulk Richardson number (a study is currently in progress on this aspect).

The high spatio-temporal anisotropy of downslope density clouds over steep slopes makes it challenging to find a correct parametrization using closure models based on the turbulent viscosity ν t that depend on the spatial variables. Our results show clearly that none of the parametrizations proposed in the literature can properly represent turbulent diffusivities for downslope propagating density clouds. The fact that in figure 10 the histograms show no correlation between the turbulent fluxes and a mixing length, the strong vertical variations shown in figure 11 using the formulation of [START_REF] Osborn | Estimates of the local rate of vertical diffusion from dissipation measurements[END_REF] and [START_REF] Barry | Measurements of diapycnal diffusivities in stratified fluids[END_REF], comes from the fact that for downslope propagating buoyancy clouds over steep slopes there are several characteristic scales, which are set by the multiplicity of turbulent processes that take place, along with their intermittency. These are convective unstable processes (inside the cloud), Kelvin-Helmholtz (shear) instabilities (at the edge with the ambient fluid) and lobes and clefts instabilities (not observed in this study). Under these conditions, mixing scales go from the small convectively unstable scales, the Kelvin-Helmholtz scales, up to the large scale recirculation vortex, which is of the same order of the size of the cloud itself, as also highlighted in figure 9.

The parametrization of the turbulent diffusivities should be based rather on scalar quantities that avoid the problem of spatial hetereogenity and takes into account the different sources of turbulence production. This could be done for example using energetic considerations that compare the terms having a definite exchange of energy and acts as a source or a sink: the shear production deriving its energy from the mean flow (P k ), the buoyancy production representing the rate at which turbulent kinetic energy is consumed in mixing, but also aliments the production of kinetic energy for downslope propagating currents (P b ), and the viscous dissipation of turbulent kinetic energy (ϵ), governed by the balance P k + P b = ϵ. Each of these three terms, can be represented by a characteristic length scale of shear (L s ), of buoyancy, as for example the Monin-Obukhov or the Ozmidov scales (L O ) and a dissipation scale (L ϵ ), as proposed earlier in [START_REF] Bradshaw | Effects of streamline curvature and buoyancy in turbulent shear flow[END_REF].

The use of the energy budget approach has also the advantage to permit extending the results to similarly spatially hetereogeneous non-conservative currents such as turbidity currents or katabatic flows, where the additional source/sink of buoyancy can be added following the suspension/deposition of fluid particles -in turbidity currents -or the presence of a local thermal flux in katabatic flows.

Additional investigations are needed to test the appropriate turbulent closure for these flows based on the above described energy approach, which is left for future work.

For each angle β, a non-linear fit of equation (A.6) has been performed to find the parameters ϵ, a w , and ΓA β . The following attenuation coefficients has been found: a w = 2.8 ± 1.7 × 10 -3 cm -1 , ϵ = 3.2 ± 0.3 × 10 -4 (cm µg/l) -1 and ϵ s c s,0 c 0 ≈ 1.4 × 10 -6 (cm µg/l) -1 ≪ ϵ.

Finally, the non-dimensional dynamic density is related to the measured dye concentration by ρ(r, β, t) = c(r, β, t)/c 0 .

Zemach, T., Ungarish, M., [START_REF] Martin | Development of gravity currents on slopes under different interfacial instability conditions[END_REF] On gravity currents of fixed volume that encounter a down-slope or up-slope bottom.

Phys. Fluids 31, 096604.

  observed the formation of persistent Kelvin-Helmholtz type billows at the front of the density current causing entrainment of ambient fluid into the current at the interface current/ambient. Here, we performed experiments on finite volume released gravity currents over steep sloping boundaries (with slope angles of 15 • and 20 • ) using simultaneous PIV/PLIF measurements techniques. Such measurements in unsteady and heterogeneous turbulent buoyancy flows are rare, but are very useful since they allow to highly resolve both large-scale and small-scale flow motions and statistics, which otherwise are very difficult to measure. This also enables resolving turbulent fluxes and their spatial distribution, which are impossible to quantify with other measurement techniques.

  . A plexiglas water channel 2.76 m long, 20 cm wide and 38cm deep was immersed in a larger water tank of dimensions 2.4 m × 2.4 m × 2.4 m. The slope angle of the experimental channel was set to the desired angle. The dense fluid was introduced in a reservoir L 0 = 20 cm long and 30 cm deep, with a lock depth of H 0 = 6.25cm located at the upper end of the channel and initially separated by a removable gate, resulting in an initial lateral surface of A 0 = L 0 × H 0 = 125cm 2 . The initial reduced gravity was fixed to g ′ 0 = g∆ρ/ρ a = 5cm/s 2 and produced by saline solutions with ∆ρ = 5.1 ± 0.1 kgm -3 and a constant temperature of 19.7 • C ± 0.1, measured just before each experiment with a high precision (10 -3 ) densimeter (DMA TM 35, Anton Paar). The resulting Reynolds numbers were Re = U H/ν ≈ 1.2 • 10 4 where U and H are respectively the typical velocities and depths of the cloud in the measurement region and ν the kinematic viscosity.

Figure 1 :

 1 Figure 1: (a) Side view of the experimental setup. (b) Top view of the optical measurement configuration for PIV and PLIF.

  intrusive experimental techniques of Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF), respectively. Both PIV only and combined PIV/PLIF experimental data are used in the following results sections. Essential details on the measurements techniques are given below, while the detailed procedure for the PLIF calibration is given in the appendix.

Figure 2

 2 Figure 2 illustrates an instantaneous side view of a calibrated density field. The cloud has the size of the present PIV/LIF field of view, hence, present results are treated in terms of the vertical coordinate z and time t, where time is converted in the streamwise space coordinate x by neglecting the time distortion of the cloud during the advective time t A at a given xposition, and assuming a constant advective velocity of the cloud over this time laps.

Figure 2 :

 2 Figure 2: Instantaneous density field of the cloud for [∆ρ/ρ] i = 5 • 10 -3 and run 2 (cf. table 1).

FigureFigure 3 :

 3 Figure4ashows the normalized experimental velocity U/ g ′ 0 H 0 (solid line) obtained from equation (2) clearly in the deceleration stage and in good accord with predictions of the thermal theory (dashed line).The normalized lateral surface A/A 0 , defined as A = π 4 LH, where L and H are estimated from equation (1), is shown in figure4b.[START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF] 

Figure 4 :

 4 Figure 4: Experimental global characteristics of the buoyancy cloud with Re ≈ 1.2 × 10 4 (a) Velocity of the geometrical center U from equation (2) of the buoyancy cloud (runs 1 and 2). (b) Lateral surface of the buoyancy cloud function of the along-slope direction for run 1 with a slope of 15°(red shaded region) and run 2 with a slope of 20°(green shaded region), and from DNS of Dai (2013b) (symbols). The x axis has been re-normalized by L 0 / sin θ.(c) Dimensionless experimental ensemble average of the buoyancy of the cloud B from equation (3) (black line) and B ′ from equation (4) (green line). Red lines represent the confidence interval. The blue dashed and continuous lines represent the empirical equation from Beghin et al. (1981) and from Maxworthy (2010) respectively, where the x axis has been rescaled by L 0 / sin θ.

Figure 5 ,

 5 Figure 5, illustrates the density field at three different x positions. In (a), at x g = 2.2 m, the buoyancy cloud is well fitted by the half-elliptic shape, with a very active back vortex incorporating ambient water at the back of the cloud. On figure 5(b), at x g = 2.3 m, a larger interfacial shear instability develops which begins to separate the back of the cloud, as seen later in (c): there is clearly a loss of volume and mass at the back of the cloud. This phenomenon is observed in all the experiments, although with variable intensity, and confirms the suggestion of Maxworthy (2010) and Dai (2013a) to explain the observed decrease of buoyancy in the second stage of propagation of the cloud down the slope. Steenhauer et al. (2017) observed a variation in the development of the lateral surface at x ≈ 35H 0 for slopes larger than 30°. They showed that for sufficiently large distances from the source, the normalized sub-volume

  , predicting values of ≈ 0.75 for slope angles below 5 • and ≈ 0.82 for slope angles of 9 • (Dai, 2013c). These values are much higher than those predicted by Maxworthy (2010) and this difference was explained by erroneous estimations of the model constant K B and/or a different definition of the head dye concentration threshold. If we estimate the model constant with our values using equation (1.7) in Dai (2013a), we obtain K B = 3.8, resulting in χ ≈ 0.63for K M = 2.45[START_REF] Beghin | Gravitational convection from instantaneous sources on inclined boundaries[END_REF], which is in good agreement with the reported values in figure 4c of 0.6.

Figure 5 :

 5 Figure 5: Density field at three different x positions for run 1. Non-linear fit of the shape of the buoyancy cloud using a half-ellipse (red dashed line). Horizontal axis corresponds to the advective time.

Figures 6

 6 Figures 6 (a,b) show the mean structure of the buoyancy cloud with the black arrows representing the velocity difference between the ensemble average of the instantaneous velocity ⟨⃗ u⟩ and the ensemble average of the velocity of the gravity center ⟨⃗ u B ⟩ of the buoyancy cloud. The density for [∆ρ/ρ] i = 5 × 10 -3 in (a) and the mean vorticity (ω y = ∂u ∂z -∂w ∂x ) in (b) are highlighted by the colormaps.

Figure 6 Figure 6 :

 66 Figure 6(b) shows that the vorticity is negative at the interface between the buoyancy cloud and the ambient water and positive in the bottom boundary layer of the buoyancy cloud. The high values of the vorticity on the back of the buoyancy cloud confirms the presence of the large-scale vortex. High positive vorticity is observed at the nose of the buoyancy cloud, highlighting the presence of Kelvin-Helmholtz like structures on the frontal part of

Figure 7 :

 7 Figure 7: Entrainment coefficient. Coefficient deduced from equations (7) and (8) (black line) and its spatial average (horizontal dashed line); constant coefficient proposed by Beghin et al. (1981) (horizontal red line).

Figure 8 :

 8 Figure 8 shows the two-dimensional probability density functions (PDF) of ρ ′ versus ρ ′ w ′ for the initial development phase where the lateral surface of the buoyancy cloud increases (a) and for the second stage characterized by a decreasing lateral surface of the buoyancy cloud (b). The right part of the plots corresponds to the stabilizing return to neutral buoyancy, while the top left quadrant corresponds to entrainment, and the bottom left quadrant to detrainment. It is evident comparing the two figures, that most of the entrainment takes place in the initial development phase of the density cloud, while detrainment is dominant during the second phase characterized by the detachment of the back of the cloud.

Figure 9 :

 9 Figure 9: Turbulent diffusivity (log 10 m 2 /s) in the buoyancy cloud. ν t (a); K ρ with stable stratification (b).

Figure 10 :

 10 Figure 10: Two-dimensional histograms representing the correlation between the Reynolds stress and the mean gradients. The color scale represents the log 10 number of entries in the histogram. (a) Momentum flux ⟨u ′ w ′ ⟩ versus the vertical-velocity gradient ⟨∂u/∂z⟩ and (b) versus the square of the velocity vertical gradient ⟨∂u/∂z⟩ 2 . (c) Buoyancy flux ⟨ρ ′ w ′ ⟩ versus the vertical density gradient expressed using the Brunt Väisälaa frequency N 2 and (d) versus the square (N 2 ) 2 .

Figure

  Figure 11a displays the turbulent diffusivity deduced using the Thorpe scale L T . The light-gray dots are estimated following the Osborn equation (15) and the red dashed-line is the vertical running mean of these points with a window size of 0.05z/H. The black dots are estimated following the Barry et al. (2001) equations (17) and the red line is the vertical running mean of

Figure 11 :

 11 Figure11: Diapycnal turbulent diffusivity K ρ (m 2 /s) from an instantaneous vertical density profile at the back of the buoyancy cloud using (a) The light-gray dots are estimated following the Osborn equation (15) and the red dashed-line is the vertical running mean of these points with a window size of 0.05z/H. The black dots are estimated following the[START_REF] Barry | Measurements of diapycnal diffusivities in stratified fluids[END_REF] equations (17) and the red line is the vertical running mean of these points with a window size of 0.05z/H. The vertical green line is the vertical average of the diapycnal turbulent diffusivity following[START_REF] Barry | Measurements of diapycnal diffusivities in stratified fluids[END_REF]. (b) K ρ estimated from equation (10) (black stars) and the associated vertical average (vertical green line).

Table 1 :

 1 Main parameters of the experimental runs.
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The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. For an excitation illumination I 0 (r, β), with (r, β) being the position along a radius and an angle of the laser sheet, and with no absorption along the laser path, there is a linear relationship between the intensity of fluorescence emission and the dye concentration, consistent with our measurements at dye concentrations ranging from 0 to 53.8 µg/l. For low laser intensities [START_REF] Crimaldi | Planar laser induced fluorescence in aqueous flows[END_REF], the pixel grey scale values at each location in the fluorescence image, g 0 (r, β, t), are linearly related to the dye concentration at that location, c(r, β, t), and to I 0 (r, β) via

where g b (r, β) is the background noise or camera dark-response. The constant Γ accounts for the system-specific optical collection efficiency and the effective quantum yield of the fluorescent dye. Here the subscript '0' denotes the case without absorption. The values of ΓI 0 (r, β) and g b (r, β) are determined from a calibration procedure detailed below.

When laser light passes through the test section, the dye solution attenuates the laser intensity and this attenuation must be corrected to obtain accurate dye concentrations from PLIF images (e.g., [START_REF] Atsavapranee | Structures in stratified plane mixing layers and the effects of cross-shear[END_REF][START_REF] Ferrier | Application of optical techniques to the study of plumes in stratified fluids[END_REF][START_REF] Krug | Experimental study of entrainment and interface dynamics in a gravity current[END_REF][START_REF] Odier | Entrainment and mixing in a laboratory model of oceanic overflow[END_REF]. In the present set-up, the propagation of the laser sheet in the field of view is along the r axis. According to the Bouguer-Lambert-Beer law, the laser intensity in such an absorbing medium is

where α = α(r, β, c) is the attenuation along ray paths due to solution absorption. a w is the clear water attenuation coefficient, ϵ is the attenuation coefficient of the dyed solution per unit concentration, ϵ s is the attenuation coefficient of the salt solution per unit of salinity and c s (r ′ , β, t) is the salt concentration of the water. The recorded greyscale value is then g(r, β, c) = ΓI(r, β, c)c(r, β, t) + g b (r, β). Substituting eq. (A.2) into this last equation leads to g(r, β, c) = ΓI 0 (r, β)α(r, β, c)c(r, β, t) + g b (r, β).

(A.4)

The PLIF calibration was done before and after each experiment. The main tank was filled with Rhodamine 6G with uniform known concentrations (c = 0, 3.8, 7.7, 15.4, 30.8, 38.5, 46.2 and 53.8 µg/l). The zero concentration measurement gives the camera dark-response g b (r, β). For uniform known concentrations c and for a given angle β, equation (A.4) gives