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Abstract: Improving the ergonomy of working environments is essential to reducing work-related
musculo-skeletal disorders. We consider real-time ergonomic feedback a key technology for achieving
such improvements. To this end, we present supportive tools for online evaluation and visualization
of strenuous efforts and postures of a worker, also when physically interacting with a robot. A digital
human model is used to estimate human kinematics and dynamics and visualize non-ergonomic
joint angles, based on the on-line data acquired from a wearable motion tracking device.

Keywords: ergonomics tools; digital human model; wearable sensors

1. Introduction

Poor ergonomics conditions in work environments may lead to serious work-related
musculoskeletal disorders (WMSDs), including severe disabilities [1]. The development
of WMSDs is an issue not only for the workers’ health and well-being but also repre-
sents an important cost for companies and society [2,3]. In recent years, there has been
a surge in robotic solutions for ergonomics interventions, notably using industrial ma-
nipulators conceived for collaboration with humans (i.e., cobots) and exoskeletons [4,5].
These robotics solutions require ergonomics specialists to identify dangerous conditions and
develop adequate interventions, whilst maintaining operational safety and productivity.

Classic kinematics ergonomics evaluation tools such as RULA, REBA and OWAS [6–8]
use human joint positions to produce an ergonomics score for a given body posture.
Kinematics-based scores are fast to compute, but dynamics aspects of the task may not
be negligible [9]. Dynamics estimation may be an important complementary evaluation
to the classic tools throughout an entire task execution, as they are more suitable for
evaluating more accurately varied body morphologies, and external wrenches applied
to the human body. Many recent works evaluate dynamic aspects of the task execution,
such as internal and external human wrenches [10–13].

Recently, there has been much attention on improving the intuitiveness of ergonomics
evaluation tools, as industrial operators should not be expected to have a background in er-
gonomics. Previous works have used digital human models (DHMs) alongside different
types of visual cues for ergonomics evaluation: visualization of the human DHM with
colored joints [14] or displaying relevant information such as COP [15], overloaded joint
torque [11], level of fatigue [16].

The data relevant to assessing ergonomics is high-dimensional, including kinematic
and dynamic state variables related to posture and efforts. This high-dimensional data
is difficult to interpret, even for experts. Physiological sensors such as surface EMG
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or EKG often measure critical information for ergonomics assessment, but they require
considerable post-processing and are difficult to interpret promptly. They are mostly used
for post-experimental analysis [17], while few applications of online use in human-robot
collaboration exist [16]. Also, the dimensionality of the data may become a bottleneck
real-time computation and interpretation. For this reason, many works proposed to reduce
the dimensionality of a data set, reducing it to a set of representative principal features [18].
The reduced human representation has been used to execute for instance activity recognition
and prediction [19] or ergonomic optimization [20].

Here, we focus on providing ergonomics visualization tools that are intuitive for most
users—experts or otherwise—by using state-of-the-art methods for dimensionality reduc-
tion. We present a novel and potentially easy-to-use visualization tool for ergonomics assess-
ment: Latent Ergonomics Maps (LEM). To construct the LEM, we project a given ergonomics
score onto a 2D latent space that represents the human posture. In our previous work,
we proposed to use latent representations to capture the human movement/posture [21].
Here, we extend the use of latent maps to encode ergonomics evaluation scores.

In this article, we present two supportive tools for the evaluation of strenuous efforts
and postures:

• Online visualization of joint angles and torques for ergonomic feedback. Given a hu-
man posture, the framework calculates the ergonomic assessment and an estimation
of the human effort. This latter estimation is derived from inversion of the Lagrangian
model using variables (e.g., Intertia, Coriolis) extracted from a simulated DHM.
This enables to quickly verify a body posture, captured online using a motion capture
suit. This visualization consists of a DHM with color-coded visual cues that express
specific locations and joints of the body postures that are particularly non-ergonomic,
further facilitating the ergonomics assessment.

• Latent Ergonomic Maps(LEMs) for immediate overall 2D visual feedback on RULA
and RULA-based (RULA-continuous) scores. The algorithm uses a state-of-the-art
method for dimensionality reduction and generative network, namely Variational
Auto-Encoders (VAE). VAE allows us to encode high dimension postures and to sample
and decode variations of the same postures. The latter allows creating a LEM by
sampling the latent space, decoding the posture, and applying ergonomic assessment
to the posture.

We demonstrate the feasibility of the proposed frameworks in two different scenarios:
first, we demonstrate the feasibility of our visualization tool for typical industrial activities,
such as walking, bending, and overhead manipulation; second, we showcase our tool
during a physical human-robot interaction.

2. Related Work
2.1. Dimensionality Reduction for Human State Representation

DHMs typically have many degrees of freedom. A depiction of the human status,
therefore, requires high-dimensional vectors, which in turn increase the computational
cost of the ergonomics status evaluation [22]. To reduce the dimensionality of a data set,
a solution is to extract a reduced set of representative principal features from the original
data set [23]. This procedure is usually applied to reduce the amount of data necessary
to train a model and to reduce the risk of overfitting during the training [24]. Recent works
have applied this concept to compactly represent human motion. For instance, Mandery
et al. [18] were able to reach high accuracy in a human motion classification task using only
four features. Human models with a high number of degrees of freedom impact the time
performance of motion analysis. To improve speed in the motion processing of the DHM
data, recent works have used a representation of the human motion in a latent space [20,21].
Marin et al. [20] showed that the use of a latent space human representation improved
the performance of their application. Ikemoto et al. [25] use principal components analysis
(PCA) to reduce the dimensionality of the postures of a humanoid robot.
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Dimensionality reduction techniques applied to human poses are also used in move-
ment planning or prediction [26]. This type of approach uses latent space representations
for selecting points that complete a given path (movement prediction) or for joining two
extremes (movement planning). By inverting the relationship which maps the high-order
dimensional to the latent space, it is possible to recover the poses having the latent space
representations. For instance, variational autoencoders have been used to predict the next
pose given the current one [27,28].

Among dimensionality reduction techniques, autoencoders (AEs) and variational-AEs
(VAEs) have high reconstruction ability and produce compact latent spaces.
For this reason, they have been widely used for reducing the dimensionality of the hu-
man state and for movement generation [19]. Dermy et al. [21] address the problem
of predicting future human whole-body movements given prior observations. They map
high-dimensionalality trajectories into a reduced latent space using AE. Then the prediction
is based on a probabilistic description of the movement primitives in the latent space, which
reduces the computational time for the prediction to occur. In our work, we proposed
a method for visualizing the ergonomic scores in a latent space obtained using VAE.

2.2. Ergonomics Evaluation and Human-Robot Collaboration

To plan appropriate collaborative actions, collaborative robots need to have an esti-
mation of the current human posture [20,29]. They must be able to calculate the physical,
physiological, and/or cognitive state of the human to act accordingly. The perception
of the human state relies on sensors that can be placed in the environment, embedded
in the robot, or worn by the human. State-of-the-art motion capture techniques based
on infrared cameras and reflective markers, or more recently on inertial technology, re-
main widely used to provide high-fidelity and high-frequency measurements of human
kinematics [30]. The captured data are fitted to a DHM designed to have similar proper-
ties to the human operator (height, weight, and structure). Ergonomics scores typically
rely on kinematics and dynamics information about the human’s movement, which are
extracted from the DHM. There are two main types of DHMs: musculoskeletal models,
they have many degrees of freedom, and allow the analysis of the human movement by
simulating the muscular efforts [31]; rigid-body models, which are simplified models with
fewer degrees of freedom, where the human is represented as made of rigid body links [32].
While musculoskeletal models can be very accurate on a biomechanical standpoint, less
accurate rigid-body models are much faster to simulate. As such, they are better suited
for real-time applications such as model-based prediction, control, and ergonomics assess-
ment [32].

The need to reduce musculoskeletal disorders in the industry leads to extensive
research into measures of ergonomics. Many ergonomics assessment tools use the kine-
matic of a given worker to evaluate, and score a given task execution [33]. For instance,
RULA [6] and REBA [7] evaluate the upper-body and full-body posture by scoring how far
the worker’s current joint angle positions are from a neutral and safe position. Some works
have also used assessments typically used in robotics, such as manipulability measures
that can be associated with the user’s operational comfort at executing the task [34,35].

Postural-based approaches, however, do not consider the dynamics properties of the hu-
man model nor any dynamics interactions with the environment. In many ergonomics
scoring sheets, external forces and loads can be considered (e.g., in EAWS it is possi-
ble to account for manipulated weights), but a more general approach considering ef-
forts due to physical interaction with loads and robots is required to inform the human.
For this reason, many works in human-robot collaboration use DHMs to estimate the status
of human dynamics. Latella et al. [13,36] estimate the balance, and the internal force distri-
bution of the human during a human-robot collaboration using F/T sensors at the robot’s
end-effector, force plates at the feet, and/or sensorized insoles. Peternel et al. [10] estimate
the human joint overloading torque, a quantification of the effect an external load has
on a given body joint. Maurice et al. [12] estimate the human body joint torques by solving
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an optimization problem where the objective function encodes the human posture and
the optimization variables include torques and wrenches of the human model.

In this article, we present intuitive visualization tools to provide online feedback
to industrial operators about the ergonomics of their movements. In the next sections, we
present the methods and technologies used to build our tools (Section 3) and then discuss
how to use them in two experimental scenarios inspired by industrial activities, where
the human is executing different activities with challenging whole-body postures, with or
without the assistance of a robot (Section 4).

3. Methods

The main goal of this paper is to develop intuitive visualization tools to provide
online ergonomic feedback to industrial operators. The system is designed to be applicable
to diverse industrial scenarios in which a human operator may execute non-ergonomic
movements, either working alone, or in interaction with a robot. The intuitive visual-
ization tools enable the human to easily visualize the risks of their posture even if they
are not ergonomic experts. The human operator could, visualize the latent maps and
the DHM along with ergonomics suggestions on a display during a training session, where
time can be dedicated to analyzing and improving the gestures and the postures asso-
ciated with a workstation. Looking at the display is hardly possible during the regular
work because the display could divert the attention of the worker and increase the risk
of accidents; however, the display can be used for post-hoc analysis immediately after
a gesture if the production time allows for it. The visual feedback could be also displayed
to the worker using augmented reality glasses [37]. Interestingly, the visual feedback can
be used directly by the human worker, as well as by colleagues and ergonomics experts
that evaluate the worker’s activity at a workstation.

Here, we project the ergonomic information into a 2-dimensional latent space that is learned
to represent the human posture. In previous work, we used latent representations to capture
the human movement/posture [21]. Moreover, we showed they could be used to predict
future whole-body movements and optimize movements to improve ergonomics in specific
contexts [20]. Here, the latent space is used to build a map that is used to display ergonomics
information: we train the latent space to maximize the human posture representation and
the ergonomics characterization of the space. The result is an intuitive visualization tool, called
Latent Ergonomics Map (LEM), which provides a synthetic representation of the ergonomics
of motions. The LEM is coupled with a real-time simulation of the human using a DHM
that displays localized ergonomics information using colored spheres placed in relevant body
parts. Both the LEM and the simulation are updated online, with the information coming
from the human motion tracking system and eventually with the robot’s data if the human is
working in interaction with a robot. The ergonomics visualization tools are shown in Figure 1.
The only requirement of our system is that it requires a real-time human motion tracking system
like wearable or environmental sensors. In this work, the human posture is tracked using
an Xsens MVN motion tracking suit. Other devices could be used, but reviewing them is
beyond the scope of this article.
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Figure 1. The ergonomics visual feedback tools used to measure the executed motion in real-time.
(Left): the human movement is tracked with the Xsens MVN motion tracking suit. At the same
time the RULA Latent Ergonomics Map is calculated, with the visualization of the current human
movement (the magenta-colored line). (Right): the DHM with colored spheres showing the RULA
scores at relevant body locations.

3.1. Digital Human Model

Our DHM is a rigid multi-body system, similar to a humanoid robot, with anthropo-
metrics properties of the human (height, weight) to mimic their kinematic and dynamics. It
has 66 segments and is based on the Xsens MVN model (Figure 2). Using such a model,
it is possible to reproduce the human movement as recorded by the Xsens MVN motion
tracking system, a wearable set of 17 sensors distributed along the human body.
We modeled the human spherical joints collected by the motion capture suit as a series of 3 one-
dimensional revolute joints, where each DoF is controlled by a single actuator. The resulting
DHM posture is represented by the 66 joints: the links are modeled with geometric shapes
(parallelepiped, cylinder, sphere) scaled with the human height. The dynamic properties
(e.g., mass) are computed from anthropometric data available in the literature [32], assuming
a homogeneous density of the links and scaling with the human body mass.

Figure 2. Digital Human Model (DHM) with 66 degrees of freedom. For each DHM’s link we display
its origin axis (x in red, y in blue and z in green).
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The posture of the DHM is calculated using a one-to-one mapping from the original
human poses, which are measured in our case by a human skeleton or motion tracking
system. The position of the floating base of the DHM is calculated using the position
of the pelvis, which is provided by the motion tracking system.

The DHM enables the estimation of the human internal torques, as described in previ-
ous work [12]. However, here we do not use force plates to retrieve feet wrenches: instead,
we approximate the wrench acting on the human feet with the weight force generated
by the body. This approximation introduces an error in the joint torque estimation, but
it is tolerable for our visualization purposes as long as the joint torques are not used
in a control loop. This allows transporting easily the framework while having an issue with
the movement quality, especially for upper-body movements.

The internal torques are calculated starting from the classical Lagrangian formulation:

M(q̄) ¨̄q + C(q̄, ˙̄q) ˙̄q + G(q̄) = S>τ +
nk

∑
i=1

Jpi (q̄)
T fi (1)

where q̄ = (xF, q) is the DHM extended posture composed by the floating base pose (xF ∈ R6)
and the joints angles (q ∈ R66), M, C, G are respectively the inertia, the Coriolis and the gravity
matrices, S is the actuation selection matrix due to the free-floating base and τ is the vector
of the DHM joint torques. Concerning the computation of the external wrenches acting on the i-
th link ( fi), we consider the force sensed by the robot through the torque sensors ( fRH =
JF(q)τF,ext, where JF is the robot Franka’s Jacobian matrix and τF,ext are the robot external
torques) and the gravitational forces acting on the feet. The external wrenches acting on the ith
link are multiplied by the Jacobian matrix from the world frame to the i-th link frame (Jpi).
The choice of using only the gravitational forces acting on the feet helps to improve the speed
of the algorithm and facilitates the deployment of our tools for ergonomics feedback to situations
where only the human skeleton information is accessible. We solve the Equation (1) for τ.

3.2. Ergonomics Scores

To estimate the motion ergonomics, we use scores based on kinematics information
(RULA, RULA-C, manipulability) and dynamics information (joint torques). The Rapid
Upper Limb Assessment (RULA) tool [6] is often used by ergonomists to evaluate work
activities involving upper-body motion. It consists of a score ranging from 1 to 7, calculated
based on the joint positions (posture), the known force/load applied to the worker’s arm,
and how many times the activity is repeated. The time evolution of RULA during a work
activity is likely to have discontinuities and plateaus that make it inconvenient to use
for motion optimization or continuous postural assessment. To alleviate this problem, we
define a continuous version of RULA: RULA-C (εrc ∈ R+). To compute RULA-C, we fit
a second-degree polynomial function to calculate intermediate scores for the RULA joints.
The joint scores for each limb are combined with weighted sums, where the weights are
computed from linear regressions of the standard RULA tables. To account for the comfort
of movement, especially in presence of physical interaction, we consider the arm manipula-
bility: it provides information about the velocity and force production capacity of the limb
endpoint in different configurations [10]. It provides a piece of complementary informa-
tion about the human posture to RULA and RULA-C about the capacity of the human
to produce forces.

Finally, we compute human joint torques using DHM, to account for the postural
efforts and the effect of external wrenches acting on the human. To display the ergonomic
assessments intuitively (especially targeting end-users that do not have a comprehensive
background in ergonomics), we choose to visualize the local ergonomics scores in color-
coded spheres attached to relevant body parts in the DHM, updated at each time step.
The mapping from the ergonomic score to the colors follows existing recommendations
when available: green is associated with low ergonomics scores and indicates low risks,
red with high scores indicating high risks, and yellow with scores in between the two.
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Each ergonomic score (kinematic and dynamic) can be normalized between zero and one
by using the maximum value for the specific task, computed in an offline calibration
phase. Normalizing the values enables to highlight for a specific task the differences
in the ergonomics while executing the same movement in different ways. We are aware
that this normalization has some limitations (e.g., encountering new movements that are
particularly risky). In future work, we want to overcome these limitations and integrate
activity recognition [38] into our framework, to change normalization values according
to the current activity and movement.

3.3. Latent Ergonomics Maps (LEMs)

Latent Ergonomics Maps (LEMs) project an ergonomics score on a 2-dimensional
latent space that is trained to represent the human posture (note that this means that each
ergonomics score listed in Section 3.2 leads to a different map). Previous work showed
the advantages of reducing the dimensionality of the human postural state (Section 2.1).
In particular, Dermy et al. [21] showed that low-dimensional (2 to 7) latent representations
of a human posture are sufficient for probabilistic models computed over the latent space
to predict future whole-body movements with accuracy for activity recognition and postu-
ral evaluation. Malaisé [22] showed that a 2D latent space is sufficient for activity prediction
and to some extent for postural evaluation. In this article, we propose a synthetic represen-
tation of the human postures using a 2D latent space created by a Variational Auto-Encoder,
and then we project ergonomics scores of sampled human postures on the latent space,
in the form of a map. The resulting map is the Latent Ergonomics Map. This representation
allows us to visualize in an immediate way when a person is in a non-ergonomic (associated
with red color) or ergonomic (associated with green color) posture. In future work, we
would like to use the presented space to provide corrections to humans and plan better
ergonomically optimized trajectories.

The LEM is created in an offline phase, requiring a dataset of human movements and
the definition of the ergonomics score. Training a LEM proceeds in two steps.
The first step is to create and train a Variational Auto-Encoder (VAE) to represent the human
postures. A schematic of the training procedure is shown Figure 3. A VAE is an auto-
encoder based on variational inference [39]. Let [xk]

K
k=1 be a data-set of K independent and

identically distributed samples of some continuous observation variable x of unknown
distribution. It is assumed that x is generated by some process involving the latent variable
z and the parametric functions of distribution pθ∗(x|z) and pθ∗(z): x ∼

∫
z pθ∗(x|z)pθ∗(z)dz

where θ∗ is a set of parameters. In a VAE, the so-called decoder neural network tries to fit
the function which maps z to x, and so learns from data the values of the weights θ. The
distribution is assumed to be Gaussian: pθ(z) = N (0, I) and pθ(x|z) = N (µx, σ2

x). However,
the transition function pθ(z|x) is not known. A recognition model qφ(z|x) is used to approx-
imate true posterior pθ(z|x). In our case the distribution is also assumed to be Gaussian
for simplicity, but without loss of generality: qφ(z|x) = N (µz, σ2

z ), where φ is represented by
weights and biases of a neural network (encoder). Training the VAE aims at recovering val-
ues of the parameters (θ, φ) in such a way to approximate as much as possible the optimal
parameters (θ∗, φ∗).

We choose a relational VAE to define a loss function which represents both the recon-
struction loss and a loss on the relation reconstruction [40]:

L = (1− α)Dkl(qφ(z|x)||pθ(x|z)) + αDkl(qφ(z|ε(x))||pθ(ε(x)|z)) (2)

where Dkl(.) is the Kullback-Leibler divergence, ε(.) is the relation function (in our work
corresponding to the ergonomic loss function RULA-C) and, finally, the parameter α is
a scale parameter to control the weights of the data reconstruction loss and the relationship
reconstruction loss. This enables us to obtain a latent space that not only represents
the postures, but also, tries to encode the space to minimize the error in reconstructing
the correct ergonomics score for the compressed posture.
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Figure 3. Training the VAE of the LEM requires a dataset of human postures. For each posture
an ergonomics score exists. In our experiments, as a dataset, we used: (1) the AnDy dataset [30]
and (2) a task-specific dataset acquired for each experiment. The training is done to find the VAE
weights which simultaneously minimize the reconstruction error of the postures and the associated
ergonomics score.

Training the VAE requires a dataset of human movements. For example, the AnDy
dataset [30] contains many examples of human activities, recorded with the Xsens motion
tracking suit, which can provide both wearable sensing data and estimated postural data.
To simplify, let us assume that we input human postures fitted to the DHM (R66). We train
the VAE with batches of human postures from the training dataset to find the parameters
of the encoder-decoder networks, to minimize the loss function Equation (2) via back-
propagation.

Once the VAE is trained, the second step consists in creating the ergonomics landscape
projected on the latent map. The procedure is illustrated in Figure 4. We uniformly sample
in the latent space a set of 2D vectors (zi,j = [zi, zj] ∈ R2). We reconstruct the samples
using the decoder. Then, for each reconstructed human posture (q̂i,j ∈ R66) we calculate
the ergonomic score ε(q̂i,j) (e.g., RULA or RULA-C) from the estimated human joint angles,
following the method presented in Section 2.2. Note that one map is created for each
ergonomics score (for instance, one map for the standard RULA score, and another map
for the RULA-C score). If the data used for the training are subject to a normalization
function ( fn(.)), it is necessary to invert the normalization (ε( f−1

n (q̂i,j))) before calculat-
ing the ergonomic scores. The result is a height-map composed by the 2D coordinated
in the latent space and the ergonomic score ([zi, zj, ε(q̂i,j)] ∈ R3).

The LEM can be used online to display the movement that the human operator is exe-
cuting, which appears as a trace on the landscape: since every point is a posture, the height
of each point indicates the ergonomics evaluation associated with the corresponding human
posture. The human posture is recorded with wearable sensors (e.g., in our case the Xsens
MVN motion tracking suit) and retargeted into the DHM (qc ∈ R66). The encoder neural net-
work reduces the input to its 2D representation (zi,j), the ergonomics score is then retrieved.
We adopt a triadic color code to make the height map more intuitive to read: we associate
low ergonomic scores (e.g., ergonomic postures, with low risk) with green; high ergonomic
scores (e.g., non-ergonomic postures, with high risk) are associated with red; middle scores
are associated with yellow. This kind of representation allows to visualize in an immedi-
ate way when a person is in a non-ergonomic (and therefore associated with red color)
or ergonomic (associated with green color) posture space. Similarly, different variations
of the same movement (and therefore different postures) can be mapped in the latent space,
as it was done in Figure 5, to visualize which trajectory is better from an ergonomic point
of view. In future work, we would like to use this representation to provide corrections
to humans and plan better ergonomically optimized trajectories.
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Figure 4. Creation of the LEM: the 2D latent space of the VAE is sampled. The decoder reconstructs
sampled latent points. The reconstructed postures are used to compute the ergonomics scores.
The ergonomics score is therefore associated with the original 2D points, thus creating a heightmap.

Figure 5. Latent space representation: in this plot, some examples of movements from the dataset
of [38] colored according to the ergonomic evaluation. The postures associated with some 2D points
in the latent space are shown. On the right, the scale of the colors corresponds to the ergonomic scores
where: 1 (green) corresponds to the safer postures while 7 (red) represents the postures less safe.

4. Experiments

In this section we elaborate on the structure of the VAE and the specific training
procedure for the experiments. We then describe the use of the trained LEM to provide
online ergonomics feedback in two different experiments, where a human executes pick
and place activities with and without robot assistance.

4.1. Setup and Scenarios: Experiment 1

We demonstrate our ergonomics visualization tools to evaluate human movements
executed in two experiments, with two work-related scenarios. In the first experiment,
the human performs a pick and place task. The task is inspired by packaging tasks on as-
sembly lines in the manufacturing industry and consists of picking, carrying, and placing
a 6 kg bar. One male participant performed 8 sequences of the task, with each sequence
consisting of 6 to 8 pick-and-place actions. Each sequence started and ended in the same
neutral pose. The bar was initially placed at a height of 45 cm on a 100 × 50 cm flat support.
The participant was instructed to take the bar with both hands, carry it to the other side
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of the support, place the bar there and return to the initial position to perform the next
iteration. Each sequence lasted around one minute. To add variability to the data, the par-
ticipant was instructed to change the position of his hands on the bar and to follow two
different paths when going to and coming from the bar’s final position.

4.2. Setup and Scenarios: Experiment 2

In the second experiment, the human carries loads in collaboration with a robot.
They move a box together from a point A to a point B and then backward, along a trajectory
that lasts about one minute. The box is initially placed at a height of 85 cm on a table. The
box is fixed to the robot end-effector which carries the majority of its weight; the human
grasps the object through a handle as shown in Figure 6. Each sequence lasts around one
minute. At the beginning of the activity, the robot and the human grasp the object, and each
sequence starts and ends in the same neutral pose. The robot control is based on a Cartesian
impedance controller:

τ = J(q)>(D(ẋd − ẋ) + K(xd − x)) + g(q) (3)

where K ∈ R6×6 and D ∈ R6×6 are respectively the stiffness and the damping matrices
and g(.) is the gravity compensation term. Cartesian impedance control generates a torque
proportional to the error between the end-effector pose and the desired end-effector pose
(x, xd ∈ R6) and their derivatives (ẋd, ẋ ∈ R6).

Figure 6. Experiment 2: collaborative object transportation. The human is physically interacting with
the Franka robot. On the right of each photo, the Latent Ergonomic Map. The current human posture
is a point on the map while the line that is attached to it represents the previous human posture.

We implemented two Cartesian impedance behaviors changing the values of the stiff-
ness matrix: in the first, the robot was more compliant (K = 500 N/m) and in the second
the robot was stiff (K = 1000 N/m). The desired Cartesian damping D was calculated pro-
portional to K using factorization design as in [41]. The robot’s trajectory is predefined by
the robot planner, the latter selects a trajectory of Cartesian points using a parabolic curve
passing through the initial and final points while the orientation is maintained constant. A
participant repeated the movements 15 times, with 3 different robot trajectories (5 times
for each trajectory) to add variability to the movement; in particular, we designed different
robot trajectories in such a way to induce a variety of human postures and ergonomics.
Some movement examples are shown in the video attachment. The robot used is the Panda
(Franka Emika) robot controlled using libfranka and FrankaROS libraries.

In both experiments, the human is equipped with an Xsens MVN motion tracking
suit, which provides real-time (240Hz) information about the current human pose: joint
angles and link’s positions, orientations, velocities, and accelerations. Both the human’s
and the robot’s sensors measurements are streamed online to the module, to visualize and
simulate their movements in the simulation (Dart [42]) as shown in Figure 7.

An overview of the main modules used in the two scenarios is shown in Figure 8,
which details as well the flow of information from the Xsens sensors and the Franka
robot. The simulation receives the sensed information, from both humans and robots,
and their corresponding models are updated. All the items in the scene are modeled
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(i.e., a Unified Robotic Description Format (URDF) is available for all the elements: robot, ex-
perimental setup—table, object, etc.—as well as human) and simulated. Precisely, the robot
communicates the following information to the simulation: (1) Robot joint configura-
tion, (2) Robot end-effector pose, (3) External measured torques, and (4) Internal torques.
The robot pose (joint angles, end-effector pose, and torque) are used to update the simu-
lated robot. Meanwhile, the measured external torques are used to calculate the wrenches
that the human is applying to the robot and then used to calculate the effort estimation
Equation (1) Similarly, the motion tracking suit communicates: (1) the human posture
expressed as the joint angles, and (2) the positions of the human links. The human joint
angles are used to generate the LEM and to simulate the DHM; the links’ poses are used
to locate the DHM in the reference frame of the simulation.

Figure 7. Experiment 2: collaborative object transportation. The DHM with the colored spheres
indicating non-ergonomic joint values.

Motion
Retargeting

Robot
Dart

Visualization

Ergonomic
Scores

Robot
Trajectory
Generation

Robot Human

Xsens
measure

DHM
Effort

Estimation

Plotter
Graphical
User

Interface

Impedance
Controller

Figure 8. Overview of the system in a human-robot collaboration setting. In the left box: the robot
modules that enable to control the robot and retrieve information about the contact forces exchanged
with the human. The human-robot interaction force is measured on-line thanks to the joint torque
sensors embedded in the robot. Each of the 7 axis is equipped with a torque sensor, and based
on these torques measurements, the Franka API provides an estimation of the interaction force
at the end-effector. In the right box: modules for online estimation of the human kinematics, dynamics,
ergonomics scores and visualization tools. Green boxes: the framework includes visualization tools
to plot the online ergonomics scores and other relevant quantities, as well as visualizing the human
and the robot interacting in a digital twin based on Dart physics engine.

The main interest of the second scenario is to use a DHM with visual clues of the joint
torques and efforts, to account for the physical interaction between the human and the robot.
The contact wrenches are input in the DHM in real-time, using the Franka robot’s sensor
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measurements, which enables a better representation of the ergonomics status of the human
from the point of view of efforts.

4.3. Creating and Visualizing the LEMs

To obtain the LEMs for every ergonomics score, we first created and trained the VAE
representing the human body postures. The VAE architecture consists of 5 layers with
66 inputs, 200 hidden neurons, 2-dimensional latent space, and 66 outputs, where rec-
tifier, tanh and identity activations are used for the hidden layers and the output layer.
The hyperparameters of the VAE are chosen based on the reconstruction error and the train-
ing time by grid search. To train the latent space, we perform first a pre-training with
a large human motion dataset (AndyData-lab-onePerson dataset [30], containing more than 5 h
of recorded data), then a fine-tuning with smaller task-specific datasets acquired for each
experiment (see below). This latter step is optional. The first training with a large dataset
is sufficient to generate a LEM, in particular, it enables to obtain a generic LEM that is
task-independent and that captures a variety of different postures. In our experiments,
however, the fine-tuning enables us to obtain a task-specific LEM that is more specialized
to represent the postures of a specific task, while maintaining the generalization capabilities.
All the datasets were normalized between zero and one and augmented using intermediate
and mirrored poses before training.

The VAE training was carried out according to the procedure explained in Section 3.3.
During training, we optimized both the weight of the encoder and the decoder. The weight
optimization was done on an Intel CoreTM i7-8850H with 6 cores at 2.6GHz, requiring about
20 min. The trained encoder can be used to visualize example movements in the latent space.
This can be useful for preliminary insights into the postures for different activities. For ex-
ample, Figure 9 shows the sequence of postures, projected in the 2D latent space, associated
with the movements from the dataset of [38], which contains activities such as bending,
kicking, lifting objects, and walking. Some postures are also displayed, to clarify that each
2D point is representing a different posture. Some 2D points belong to different activities,
and this is normal since the same body posture can be observed in different activities. It is
also possible to display ergonomics information in this activities representation: as shown
in Figure 5, it is possible to color-code the points associated with a movement according
to the ergonomics scores. In this case, the activity information is lost, but it is possible
to inspect one or more movements. Of course, the limit of this visualization is that it only
shows the execution of a movement.

The trained decoder is used to create the LEM, which is a latent space height-map
for a given ergonomics score. To do so, we uniformly sample the latent space to obtain
a set of 10,000 points (100 × 100). For each point in the latent space we apply the decoder
to reconstruct the original posture, we invert the normalization function and then we apply
the ergonomic score to the estimated pose. The shape of the latent space is influenced
by the choice of the activation functions, for instance, the sigmoid activation function
maps the input to [0, 1] while the tanh maps to [−1, 1]. In Figure 10, we show the LEMs
for RULA and RULA-C. The triadic color code (green, yellow, red) is applied to the postures
classified according to the RULA recommendations, while a continuous color coding based
on the triad is used for RULA-C. The LEM created using the RULA-C score creates, by
definition, a latent space that is similar to that of the RULA but continuous. While there is
no immediate advantage in using one of the two LEMs for ergonomics visual feedback,
the continuous LEM can be used in future work as a reduced model for planning ergonomics
movements using gradient-based methods [43].

In the online phase, the LEM is used to visualize the overall ergonomics score of a pos-
ture. Figure 1 shows the RULA LEM (center) corresponding to the human motion (left)
tracked in real-time (240 Hz) by the Xsens MVN suit. During the execution of the move-
ment, the current human posture is projected into the ergonomic map, after being encoded
by the encoder into a 2D point in the latent space. The result is a trace, i.e., a sequence of 2D
points moving in the ergonomic map, representing the human motion and its ergonomics



Sensors 2022, 1, 0 13 of 17

evaluation. Another example of the trace onto a LEM is shown in Figure 6, and other
examples are available in the video attachment.

Figure 9. Latent space representation of the human movement during some activities from the dataset
of [38]. The movements presented in this latent space are: bent forward (strongly), kicking, lifting
a box, standing, walking, open a window. A movement is a sequence of points in the latent space. A
color code enables to distinguish the 2D path associated with each sequence. The postures associated
with some 2D points in the latent space are shown.

Latent Ergonomic Map RULA-C Latent Ergonomic Map RULA

Figure 10. Latent Ergonomics Maps (LEMs): one for RULA, one for RULA-C. The figure visualizes
the ergonomic data generated by the decoder network of a variational autoencoder. Here, we’ve
sampled a grid of values around the origin with a radius of size 1 from a two-dimensional Gaussian
and displayed the output of our decoder network. The distinct ergonomic scores which exist
in different regions of the latent space smoothly transform from one to another.
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4.4. Visualization of Local Ergonomics Scores in the DHM

The DHM is used to display in real-time the ergonomics information associated with
human movement. The real-time information about the human posture is used to update
the DHM pose and compute the local ergonomics score, where “local” indicates the specific
body location. Each score is calculated using the partial scores presented in the RULA
table. In the case of RULA-C, these have continuous values because they are the result
of polynomials that approximate the RULA values. The local ergonomic scores are then
visualized on the DHM to provide intuitive feedback about the current posture. Specifically,
we color some spheres placed at relevant joints (knees, ankles, back, torso, shoulders, and
elbows) with colors that are proportional to the ergonomic score. The latter is normalized
in the range [0, 1] → [GREEN, RED], using the maximum score value that is set after
the maximum score registered for that body part on the dataset used for training the LEM
in the offline phase. The reason for the latter normalization is to better spot the difference
in ergonomic scores between similar movements. In our setup, it is possible to select
the ergonomic score to visualize on the DHM by interacting with an easy-to-use GUI
(some examples in the video attachment). Figure 1 shows the DHM displayed during
a manipulation task, together with the RULA LEM: while the LEM provides a synthetic
visualization of the overall ergonomics score, the spheres on the DHM enable to visualize
the individual scores on the different body parts. This is convenient to identify the body
parts that are more at risk, from the ergonomics standpoint, which are colored in red; those
that are not at risk are colored in green, and the intermediate values in yellow. Figure 11
shows more examples of the DHM during a pick and place movement where the human
takes on different body postures: back joints are red when the human is bent forward,
the knees are red during squats, while shoulders are red during over-head work.

Figure 11. Experiment 1: pick and place. Across the pick and place task, the human takes on different
postures. In particular, some are usually classified as non-ergonomic (e.g., hands over shoulders,
bent back, squat). The color-coded spheres on the DHM show the body parts that have a high risk
(ergonomics score: RULA) during these postures.

5. Discussions and Conclusions

In this article, we presented a set of tools for providing online ergonomics feedback
to human workers during their activities, also when they physically interact with robots.
A Digital Human Model is used to visualize, with color-coded spheres, the body areas and
joints that are subject to efforts and non-ergonomic postures according to state-of-the-art
ergonomics scores, such as RULA. Several plotting tools were also developed to provide
an intuitive visualization of ergonomics scores associated with human movement.

Our contribution, Latent Ergonomics Maps, are synthetic representations of the overall
ergonomics scores projected onto a bidimensional latent space that maps human postures.
The result is an intuitive color-coded map where the human posture is a point, a movement
is a line, and their associated color is an estimation of the ergonomics score of choice.
LEMs can be used for bio-feedback or self-correction, as a visual tool for teaching, or simply
to inform the human. Their potential goes beyond the online feedback for the human,
as they can be used to inform the robot as well, which can find applications in planning
ergonomically optimal collaborative motions. Advantages of LEMs include their ease
of interpretation also for non-experts, and the computational efficiency, enabling online
feedback. A limitation of projecting the map on a 2D latent space, which is necessary
for visualization purposes, is the information loss that may result from such a strong
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dimensionality reduction. However, the error is tolerable for ergonomics scores based
on postural information, and otherwise acceptable if coupled with the visualization of ef-
forts on the Digital Human Model.

In the future, we plan to combine the prediction of intended movement [21] with LEMs,
therefore predicting future ergonomics scores for the intended movement.
This will enable us to alert the human of possible risks associated with ergonomics. More-
over, we want to leverage the LEM for ergonomics optimization of robot motions to improve
human-robot collaboration. The idea is to inform the robot about the ergonomics risk asso-
ciated with planned collaborative robot trajectories as in [44], and then to optimize these
trajectories using ergonomics optimization as in [43,45].
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