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Université de Toulouse ; CNRS

UPS, F-31062 Toulouse Cedex 9, France
email: pierre.degond@math.univ-toulouse.fr

2- Mathematics Department, University College London,
25 Gordon Street, London, UK
email: a.manhart@ucl.ac.uk

3- Faculty of Mathematics, University of Vienna,
Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

email: sara.merino@univie.ac.at

4- Inria, Laboratoire Jacques-Louis Lions,
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Abstract

We investigate the collective motion of self-propelled agents in an environment filled with
obstacles that are tethered to fixed positions via springs. The active particles are able to modify
the environment by moving the obstacles through repulsion forces. This creates feedback
interactions between the particles and the obstacles from which a breadth of patterns emerges
(trails, band, clusters, honey-comb structures,...). We will focus on a discrete model first
introduced in [17] and derived into a continuum PDE model. As a first major novelty, we
perform an in-depth investigation of pattern formation of the discrete and continuum models in
2D: we provide phase-diagrams and determine the key mechanisms for bifurcations to happen
using linear stability analysis. As a result, we discover that the agent-agent repulsion, the
agent-obstacle repulsion and the obstacle’s spring stiffness are the key forces in the appearance
of patterns, while alignment forces between the particles play a secondary role. The second
major novelty lies in the development of an innovative methodology to compare discrete and
continuummodels that we apply here to perform an in-depth analysis of the agreement between
the discrete and continuum models.
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1 Introduction

Understanding how patterns in collective motion arise from local interactions between individuals
is an exciting and challenging endeavour that has drawn the attention of the scientific community
[3, 4, 8, 5, 12, 21, 32, 36]. In many scenarios the environment plays a key role in the emergence
of collective motion and of the resulting patterns [9, 25, 27, 28, 34, 37]. Examples are evacuation
dynamics in the presence of obstacles [18, 21, 29], sperm dynamics in the seminal fluid [14, 37],
swirl of fish under the presence of predators [7], cells moving in a space filled with fibers [27] or
over a substrate [32],...
In particular, we are interested by feedback interactions between self-propelled agents and their
environment that they are able to modify. This happens, for example, (i) in the formation of
paths in grass-land by active walkers [22, 26],(ii) in the modification of the extra-cellular matrix
(fibers) by migratory cells [2], or (iii) in ant trail formation due to ant pheromone deposition [5].
In this paper, we will focus on the model introduced in [17] where collective motion happens in
an environment filled with movable obstacles that are tethered to a fixed point via a spring. The
authors in [17] showed that a variety of patterns are generated due to the feedback interactions
between the obstacles and the self-propelled agents. Indeed, the capacity of the agents to modify
their environment (i.e., to modify the position of the obstacles) is key for patterns to form.

Figure 1: Overview of the paper. It includes a summary of the scales, the models and the objects
considered in this paper and introduced in [17] (first three grey lines). The blue boxes indicate
the derivation of the different models and derivation assumptions. The main contributions in the
paper appear in the last row corresponding to ‘patterns’ (at the discrete and continuum level and
their correspondence) and the linear stability analysis (bottom right yellow box).

Figure 1 offers an overview of the ideas and messages of this paper. We will consider mostly
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two scales (marked in yellow). The reason for this is that understanding the emergent properties of
collective dynamics requires to establish a link between the agent’s interactions and the continuum
dynamics that emerges at scales much larger than the size of the individual agents. As a conse-
quence, it is natural to consider two different scales to investigate collective motion: a microscopic
scale where the discrete dynamics of the agents can be described, and a macroscopic scale where
the average/continuum behaviour of the large ensemble can be observed.

From a modelling perspective, it is natural to consider the microscopic scale, where individual-
based models can describe individual-agent behaviour and their interactions. In the left column
of Figure 1 we present key features of the individual-based model introduced in [17]. The model
assumes that agents move trying to avoid obstacles via a repulsion force. Agents interact with each
other following Vicsek-type dynamics [13, 20, 24, 38], i.e. they move at a constant speed trying to
align their orientation of motion with the one of their neighbours, up to some noise, while repelling
each other at short distances. The discrete system gives the time-evolution of the position of the
obstacles (Xi)i=1,...,N tethered at fixed anchor points (Yi)i=1,...,N via a spring and the position and
orientation of the self-propelled agents (Zk, αk)k=1,...,M , where Xi, Yi, Zk ∈ R2 and αk is a unit
vector (see Eq. (1) for a full mathematical description of the system and Figure 1 for a list of the
most relevant parameters). We will explore the variety of patterns that arise depending on the
values of the model parameters.

However, the simulation of the discrete model becomes quickly computationally challenging
for systems composed of millions of individuals. Therefore, for large-particle systems, continuum
models are to be preferred since they provide information on the average behaviour and are compu-
tationally less costly (right column of Figure 1). Moreover, continuum models are the appropriate
framework for studying large scale patterns and carry out mathematical analyses like linear stabil-
ity analysis. The drawback is that, from a modelling perspective, they are harder to justify than
individual based models. For this reason, one would like to derive the continuum dynamics from
the discrete ones: this derivation validates the continuum models and provides understanding on
the emergence of large-scale patterns. At the same time, during this derivation process, due to
averaging and asymptotic analysis, some information on the discrete system can be lost.

This rigorous derivation is precisely one of the purposes of kinetic theory. Kinetic theory has
been successfully applied to the study of models like the Vicsek model [13, 20, 24, 38] and the
Cucker-Smale model [1, 6, 10]. Tools from kinetic theory were applied in [17] to the discrete model
described above, see second and third rows in Figure 1.

First, the authors derive the mean-field limit equation (large-particle limit N,M → ∞ for both
agents and obstacles). This equation corresponds to a Kolmogorov-Fokker-Plank equation for the
time-evolution of the distribution of the agents g = g(z, α, t) at position z ∈ R2 and orientation α;
and the time-evolution of the distribution of the obstacles f = f(x, y, t) at position x ∈ R2 with
anchor point at y ∈ R2.

Then, from the kinetic equations for these distributions, the authors in [17] obtained continuum
equations for the system under some asymptotic assumptions on the parameters (right blue boxes
in Figure 1). In particular, it is assumed a high stiffness of the obstacle springs, strong local agent-
agent repulsion and fast agent alignment. In this regime, it was shown in [17] that the obstacle
density ρf = ρf (x, t) becomes a non-local function of the agent density ρg = ρg(x, t) and that the
continuum model consists of a system of two non-linear non-local equations for ρg and the local
mean orientation of the agents Ω = Ω(x, t), see Eqs. (6).

The main objective of this article is to investigate the influence of the tethered obstacles in
pattern formation using the discrete and continuum models first introduced in [17]. The main
contributions of this paper are listed below:

• We focus our study primarily on the continuum equations (which were analysed only in
dimension one in [17]). Here we introduce 2D simulations of the continuum equations and
an extensive phase diagram (Sec. 3.2) that shows the appearance of patterns depending on
the value of the parameters (green box in Fig. 1). We carry out a linear stability analysis
in 2D around uniform states and validate this analysis by comparing its predictions with the
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numerical simulations of the discrete and continuum models (right yellow box in Fig. 1).

• We document in which parameter regime the continuum equations capture the discrete pat-
terns (bottom grey box in Fig. 1). To this aim, we propose a method to compare discrete
and continuum simulations. This novel method provides an indicator of the distance between
different patterns.

• Lastly, we also expand and greatly systematize the parameter exploration of the discrete
model supported by a phase diagram. As a consequence, we detect two new patterns with
respect to reference [17]: honeycombs structures and pinned agents states (left green box in
Fig. 1).

Organisation of the paper. The paper is organized as follows: we first describe the models
(discrete and continuum), including the derivation assumptions of the continuum model. Then we
simulate both systems to construct two corresponding phase diagrams based on different values of
the parameters. Next, to better understand pattern formation as function of the model parameters,
we perform a linear stability analysis of the continuum equations around uniform states and identify
bifurcation parameters controlling the formation of patterns. Finally, an innovative method is
proposed to compare discrete and continuum simulations, which is used to determine in which
parameter regime the continuum equations are in good accordance with the discrete dynamics.
We conclude the paper with a discussion of the main results.

2 Modeling

2.1 Discrete dynamics

We consider as a starting point the model introduced in [17] for self-propelled particles undergoing
collective motion in an environment filled with obstacles. Obstacles are tethered to a given fixed
anchor point through a Hookean spring. They are characterised by their positions Xi(t) ∈ R2

over time t ≥ 0 and their anchor points Yi ∈ R2 for i = 1, 2, . . . , N , where N is the total number
of obstacles. The self-propelled particles are characterised by their positions Zk(t) ∈ R2 and
orientations αk(t) ∈ S1 (unit circle) at time t ≥ 0, k = 1, 2, . . . ,M , where M is the total number
of agents. We assume that obstacles and agents interact through a given potential, as explained
next.

The evolution for the obstacles (Xi(t), Yi)i=1,...,N and the agents (Zk(t), αk(t))k=1,...,M over
time is given by the following coupled system of stochastic differential equations:

dXi =− κ

η
(Xi − Yi) dt−

1

η

1

M

M∑
k=1

∇ϕ (Xi − Zk) dt+
√
2do dBi

t, (1a)

dZk =u0αk dt−
1

ζ

1

N

N∑
i=1

∇ϕ (Zk −Xi) dt−
1

ζ

1

M

M∑
l ̸=k

∇ψ (Zk − Zl) dt, (1b)

dαk =Pα⊥
k
◦
[
νᾱk dt+

√
2ds dB̃k

t

]
, (1c)

where the mean direction ᾱk is defined via the mean flux Jk as follows

ᾱk =
Jk
|Jk|

, where Jk =

M∑
j=1

|Zk−Zj |≤rA

αj . (2)

Eq. (1a) gives the time-evolution for the obstacles’ positions Xi. The first term on the right-
hand side corresponds to the force generated by the Hookean spring anchored at position Yi with
stiffness constant κ > 0. The tether positions Yi are given and do not change over time. The terms
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Bi, i = 1, . . . , N are independent Brownian motions that introduce noise in the dynamics with
intensity d0 > 0. This term accounts for fluctuations in the dynamics. Finally, the second term on
the right-hand side of Eq. (1a) is precisely the interaction force that couples the dynamics of the
self-propelled agents with the ones of the obstacles. We assume that ϕ is an even and non-negative
interaction potential. Typically we will assume ϕ to be a repulsive potential to model volume
exclusion between obstacles and self-propelled particles.

Now, Eq. (1b) gives the time-evolution for the position of the self-propelled agents Zk. The
first term on the right-hand-side of (1b) expresses that agent k moves in the orientation αk at a
fixed speed u0 > 0. The second term is the force due to the interaction potential coupling the
self-propelled agents and the obstacles, as we have seen before. Finally, the last term is a repulsive
force between agents given by a potential ψ which is assumed to be non-negative and even. This
force is added to the model to prevent agents clustering at a single point in space and represents
volume exclusion interactions between the agents [12].

The last equation (1c) gives the time-evolution for the orientation of the agents and corresponds
to the terms appearing in the Vicsek model [15] which is a widely used model in collective motion.
The right hand side of Eq. (1c) is the sum of two competing forces: a force that tries to align the
orientation of the self-propelled agents with the mean orientation of their neighbours and a noise
term that opposes this alignment. The noise is given by (B̃k)k=1,...,M which are M independent
Brownian motions (also assumed to be independent from Bi, i = 1, . . . , N) and the intensity
of this noise is given by the parameter ds > 0. The operator Pα⊥

k
represents the orthonormal

projection onto α⊥
k (where α⊥

k is a vector orthogonal to αk) and the symbol ′◦′ indicates that the
stochastic differential equation has to be understood in the Stratonovich sense [23]. In particular,
the projection ensures that, for all times where the dynamics are defined, αk(t) remains on the
sphere, i.e., |αk| = 1. The alignment force is given by Pα⊥

k
νᾱk where ν > 0 is a positive constant

and ᾱk is the average orientation of the neighbouring agents that are at distance rA > 0 from
agent k, as computed in Eq. (2). Indeed, this term corresponds to an alignment force since it can
be rewritten as

Pα⊥
k
νᾱk = ν∇αk

(αk · ᾱk),

where ∇αk
denotes the gradient on the sphere. Therefore, this term is a gradient flow that relaxes

αk towards the average orientation ᾱk at speed ν > 0.

Finally, notice that the discrete model (1) consists of first order equations: the model can be
derived from second order equations in the overdamped (or inertialess) regime. This is the reason
why the parameters η > 0 and ζ > 0 appear in the system: η corresponds to the obstacle friction
and ζ to the agent friction. In an inertialess regime first-order equations give a good approximation
of the dynamics and this regime appears in many biological applications, in particular involving
micro-agents (like sperm cells) in highly viscous environments.

As we will see in later sections, the feedback interactions between agents and between agents
and obstacles give rise to a variety of patterns depending on the value of the parameters.

2.2 Continuum dynamics

When the number of agents and obstacles becomes large, it is useful to derive equations that
determine the average behaviour of the discrete system (1). These ‘averaged’ equations correspond
to continuum equations, which were derived in [17] for the discrete system (1). In this section we
summarise the results from this reference.

2.2.1 Main assumptions of the derivation

The derivation of the continuum equations in [17] is done under the following set of assumptions:

(a) Large-particle-system assumption. The number of obstacles and agents are assumed to
tend to infinity, i.e., N → ∞, M → ∞.
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Under this assumption, the authors derived formally equations for the evolution of obstacles and
agent density (kinetic equations). Then, some of the parameters of the kinetic equation are scaled
by a small factor ε≪ 1 and the continuum equations are obtained in the limit ε→ 0. We explain
next the scaling assumptions considered.

(b) Scaling assumptions on the parameters. Three types of scaling assumptions are made:
(i) the radius of alignment of the agents is supposed to be small and scaled as rA = O(

√
ε); (ii) the

agent-agent repulsion distance is supposed to be small and scales as rR = O(ε), but it is ensured
that the potential stays of order 1 by setting∫

ψ(x)dx = µ <∞; (3)

(iii) the agents alignment rate ν and orientational noise intensity ds in (1c) are supposed to be very
large and scale as: ds, ν = O( 1ε ) with ds

ν = O(1): this corresponds to fast agent-agent alignment
and diffusion [15].

(c) Uniform anchor density and stiff regime assumptions. It is assumed that the anchor
density for the obstacles is constant (uniformly distributed) and that the obstacles’ springs are
very stiff (the parameter κ is very large). To this aim, we consider the ratio

γ =
η

κ
≪ 1 (4)

to be small. We suppose also a low obstacle noise regime, by considering the smallness of

δ = doγ ≪ 1. (5)

The set of assumptions (a) is sufficient to derive continuum equations. The large-particle-limit
or mean-field limit gives rise to kinetic equations for the obstacle density f = f(t, x, y) and the
agent density g = g(t, z, α). The set of assumptions (b) and (c) are sufficient to obtain closed
equations for the obstacle density ρf = ρf (t, x), the agent density ρg = ρg(x, t) and the mean-
agent orientation Ω = Ω(x, t). In particular, the scaling assumptions rA = O(

√
ε) and rR = O(ε)

imply that alignment and agent-agent repulsion forces become localized in space as ε → 0. The
set of assumptions (c) is used to Taylor expand the function f with respect to γ and δ.

In summary, the continuum equations approximate a system with a very large number of
agents and obstacles in the regime where the parameters of the system reach a given range of
values, as described above, i.e., in the regime ε→ 0 (by an asymptotic analysis) and γ ≈ 0, δ ≈ 0
(by a Taylor expansion approximation). These approximations will be taken into account when
comparing discrete and continuum simulations, since they determine the range of validity of the
continuum dynamics.

2.2.2 The continuum model

The authors in [17] obtain the following equations for the dynamics of the density of agents
ρg(x, t) ∈ R and their mean orientation Ω(x, t) ∈ S1 at a point x ∈ R2 at time t ≥ 0:

∂tρg +∇ · (Uρg) = 0, (6)

ρg∂tΩ+ ρg (V · ∇) Ω + d3PΩ⊥∇ρg = γsPΩ⊥∆(ρgΩ),

where

U = d1Ω− 1

ζ
∇ρ̄f − µ

ζ
∇ρg,

V = d2Ω− 1

ζ
∇ρ̄f − µ

ζ
∇ρg,
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where ρf (x, t) is the obstacle density given by:

ρf/ρA = 1 +
1

κ
∆ρ̄g +

1

κ2
N (ρ̄g)−

η

κ2
∂t∆ρ̄g +O

((η
κ

)3
)
, N (ρ̄g) := detH(ρ̄g), (7)

where ρA is the distribution of the anchor points in space (assumed to be constant and here taken
to be equal to 1 in the simulations and computations); H denotes the Hessian, ‘det’ denotes the
determinant, and we have defined

ρ̄ := ρ ∗ ϕ, (8)

the convolution between ρ and ϕ, where ϕ is the repulsion kernel between agents and obstacles,
Eq. (12). In the numerical simulations we will drop the higher order terms in η/κ for ρf . The
model parameters are the friction constants ζ, η, the obstacle-spring constant κ, and the agent-
agent repulsion intensity µ given by Eq. (3).

The friction coefficient γs reads

γs =
r2A
8

(
ds
ν

+ c2

)
. (9)

The constants d1, d2 and d3 are defined by

di = u0ci, (10)

where u0 is the agent speed, and c1, c2 and c3 are explicit constants that depend only on the
fraction ds/ν:

c1 =

∫ 2π

0

cos θm(θ) dθ, (11a)

c2 =

∫ π

0
sin2 θ cos θm(θ)h(θ) dθ∫ π

0
sin2 θm(θ)h(θ) dθ

, (11b)

c3 = ds/ν, (11c)

where

m(θ) =
1

Z
exp

(
ν

ds
cos θ

)
, Z :=

∫ 2π

0

exp(ν cos θ/ds) dθ.

and where the function h does not have a explicit form but it is the solution to a differential
equation. Specifically, h(θ) = g(θ)/ sin(θ) where g is the unique solution (for the exact functional
space in which this unique solution is defined, the reader is referred to [12, Lemma 2.3])

ν

ds
sin θ

dg

dθ
+

d2g

dθ2
= sin θ.

For an explanation on the meaning of these equations the reader is referred to [17]. We just point
here that the system (6) for (ρg,Ωg) corresponds to the so-called Self-Organised Hydrodynamics
with Repulsion (SOHR) [12] in the case where ∇xρ̄f = 0 (i.e. when there is no influence from the
obstacles). The SOHR is the continuum version of the Vicsek model with agent-agent repulsion
[12].

Remark 1 (Approximation for ρf and blow-up). The density ρf may take negative values: in
that case the continuum simulations will bestopped. Notice also that solutions may ‘blow-up’ in the
sense that particle densities may concentrate at points in space.
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3 Patterns: phase diagrams

3.1 Discrete dynamics

3.1.1 Simulation set up

We here show some simulations of the discrete model (1) to give an overview of the different types
of patterns that emerge depending on the values of the parameters. Simulations are performed
with N = M = 3000 agents and obstacles initially distributed uniformly in the periodic domain
U = [0, 1]×[0, 1]. We also suppose that anchor points Yk for the obstacles are uniformly distributed
in U , and fix the initial agent direction to π/4.

We consider the following expressions for the agent-agent and agent-obstacle repulsion poten-
tials:

ψ(x) =
6µ

πr2R

(
1− |x|

rR

)2

+

, ϕ(x) =
3Cϕ

2πτ

(
1− |x|

τ

)2

+

, (12)

where

x2+ =

{
x if x2 ∈ R+,
0 if x < 0.

Therefore, both potentials are compactly supported and act in a radius rR > 0 for agent-agent
repulsion and a radius τ > 0 for agent-obstacle repulsion. Notice that the constants have been
chosen such that

µ =

∫
ψ(x)dx and Cϕ =

∫
|∇ϕ|(x)dx.

We fix a set of parameters as described in Table 1, and focus our study on the interplay between
three parameters: the obstacle spring stiffness κ, the agent friction ζ and the agent-agent repulsion
intensity µ.

3.1.2 Phase diagram

Fig. 2 shows the output of the simulations at time t = 10: at this time agents and obstacles
patterns seem to have reached a steady state. In this figure, agents’ positions and their orientations
are represented with black arrows and obstacle’s positions with blue dots. The output of the
simulations are grouped into three panels: panel (A) corresponds to weak obstacle spring stiffness
κ = 10, and panels (B) and (C) correspond to mild κ = 100 and strong κ = 1000 obstacle
spring stiffness, respectively. Inside each panel, we arrange the simulations in a table: right-to-left
columns correspond to increasing values of the agent-agent repulsion force µ, bottom-to-top rows
correspond to increasing values of the friction coefficient ζ. Notice that the value for the agent-
agent repulsion force µ is not taken the same in all panels. Indeed, the values for µ selected are the
ones that make different patterns appear in the simulations. We will justify further the particular
choice of the parameters after the linear stability analysis of the continuum equations. Notice that
the values for ζ are also different in panel (C). We refer the reader to the caption of Fig. 2 for the
exact choices for the parameter values of µ and ζ. Finally, we point out that the figures marked
with a red cross are the ones for which the videos can be found in the supplementary material (see
Appendix A for more details).

From Fig. 2 we observe that a rich variety of agents’ patterns emerges when varying the spring
stiffness κ, the intensity of the agent-agent repulsion µ, and the friction coefficient ζ.

We classify these patterns into 4 main types and we outline the parameter regions corresponding
to each with frames of different colors in Fig. 2:

• Trails of agents (framed in red): agents organize into trails inside the obstacle pool. This
behavior is mainly observed for weak and mild obstacle spring stiffness (κ = 10, panel (A)
and κ = 100, panel (B) of Fig. 2, respectively)
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• Honeycomb organization of the agents (framed in orange): For small obstacle spring stiffness
κ = 10 (panel (A) of Fig. 2) and mild agent-agent repulsion µ > 0.1 (middle columns),
we observe that the agents organize into fixed honeycomb structures, framing the obstacles
which concentrate into aggregates of different sizes and shapes (not necessarily round). We
point out that this pattern was not detected in the previous publication [17].

• Travelling bands of agents (framed in yellow): only observed for large values of the obstacle
spring stiffness κ = 103 and large agent friction with the environment ζ = 5, here the agents
organize into bands perpendicular to their direction of motion. The width of the bands
increases with the agent-agent repulsion intensity µ (from left to right plots of the first row
of panel (C)).

• Clusters of agents (framed in green): agents organize into clusters more or less round depend-
ing on the regime of parameters. Cluster formation appears in all regimes of obstacle spring
stiffness κ = 10, 102, 103 (all three panels), and the size of the clusters changes depending
on the obstacle spring stiffness κ and on the agent-agent repulsion intensity µ but seems
independent of the agent friction ζ. Particularly, we observe that the cluster sizes increase
with µ, until a point is reached in which µ is so large that agent-agent repulsion counteracts
all the other aggregation forces (right columns of Fig. 2). Moreover, the parameter µ acts as
a phase transition parameter between different types of patterns. During the transition from
clustered to near-homogeneous agent distributions with increasing repulsion intensity µ, we
observe a passage to other pattern types such as trails (for weak κ = 10 or mild κ = 100
obstacle stiffness), or honeycomb organizations (for weak obstacle stiffness). Finally, we note
that for large obstacle spring stiffness κ and small agent friction ζ (bottom row of panel (C),
simulations marked with a green star) we observe the formation of ’pinned’ clusters where the
agents are grouped into very small clusters that do not move (see Supplementary material
and Appendix A for access to the videos)

Each of these agent patterns is surrounded by obstacles that are kept at a given distance from
the agents. This distance depends on the stiffness of the obstacles’ springs κ and the agent-agent
repulsion intensity µ. On one hand, if obstacles are loose enough (i.e., κ is small), the repulsion
force between the agents and the obstacles may be large enough to keep them both at approximately
the obstacle-agent repulsion distance τ (defined in the potential ϕ, Eq. (12)). On the other hand,
agent-agent repulsion opposes this effect, by giving the agent population force to go against the
pressure exerted by the obstacle pool. We indeed observe that increasing the agent-agent repulsion
force µ (left-to-right columns of Fig. 2) decreases the typical distance between the agent structures
and the obstacles.

3.2 Continuum dynamics

In this section we show numerical simulations of the continuum equations (6) using the numerical
scheme detailed in Appendix C.

3.2.1 Simulation set up

We perform simulations of the continuum model on the periodic domain U = [0, 1] × [0, 1] dis-
cretized with space step ∆x ≈ 6.7 10−3 (150 discretization points in each direction). The initial
homogeneous agent direction Ω0 is set to π

4 , and initial agent density ρg is a small perturbation of
a uniform distribution with

∫
Ω
ρg = 1. In order to compare the numerical results with the discrete

model, we use the same parameters as for the discrete simulations presented in Section 3.1 (see
Table 2).

Notice that the agent-agent alignment distance at the continuum level is chosen to be rA = 0.15
whereas for the discrete simulations it was 0.1. This choice corresponds to having rescaled rA
approximately by a scaling factor ε = 0.5, i.e., r′A =

√
εrA, where r

′
A = 0.1 is the parameter used

in the discrete simulation (see the scaling assumption (b) in Sec. 2.2.1). Note that only the ratio
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Parameters Value Description
N 3000 number of obstacles
M 3000 number of agents
u0 1 agent speed
rR 0.075 agent-agent repulsion distance
rA 0.1 agent-agent alignment distance
ν 2 agent-agent alignment intensity
τ 0.15 agent-obstacle repulsion distance
Cϕ 5 agent-obstacle repulsion intensity
ds 0.02 noise in the agents’ orientation
η 1 obstacle friction
d0 0 obstacle positional noise
µ various agent-agent repulsion intensity
ζ various friction constant of the agents
κ various spring constant coefficient

Table 1: Parameters used for the discrete simulations of Fig. 2. The various values considered for
µ, ζ, κ are specified in the caption of Fig. 2.

Parameters Value Description
h ≈ 6.7 · 10−3 step-size spatial discretization
v0 1 agent speed
rA 0.15 agent-agent alignment distance
ds

ν 0.01 parameter coming from alignment forces
τ 0.15 agent-obstacle repulsion distance
Cϕ 5 agent-obstacle repulsion intensity
η 1 obstacle friction
γs 28 · 10−4 viscosity coefficient
µ various agent-agent repulsion intensity
ζ various agent friction constant
γ various γ = η/κ

Table 2: Parameters used for the simulations of the continuum equations (6) shown in Fig. 3. The
constants d1, d2, d3 only depend on ν/ds and are obtained by computing the expressions (10) and
(11).

ds/ν is relevant for the continuous model, independently of their individual values. We therefore
just ensure that this ratio is kept the same as for the discrete simulations and use ds/ν = 0.01.

3.2.2 Phase diagram

We present the output of the continuum simulations. To facilitate the comparison with the discrete
system, we adopt the same representation as the one presented in Fig. 2. In particular, the
continuum densities are discretized as follows: at a simulation time t we distribute randomly
N = 3000 agent points in the domain according to the distribution ρg(·, t), and similarly for the
obstacle points using ρf (·, t). In Fig. 3 we show the simulation results at the final time of the
simulation, corresponding either to the time before blow-up or appearance of negative density for
the obstacles (see Rem. 1) or to t = 10, as for the discrete simulations. As in Fig. 2, the simulations
are separated in three panels: panel (A) is obtained for weak obstacle stiffness κ = 10, and panels
(B) and (C) are for κ = 100 and κ = 1000 respectively. In each panel, we organize the simulations
in tables for which bottom-to-top rows correspond to increasing values of the friction coefficient
ζ, while left-to-right columns correspond to increasing values of the agent-agent repulsion force
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intensity µ. See the legend of Fig. 3 for more details on the parameter values considered for ζ and
µ.

In Fig. 3 we observe different patterns for the agents, each framed using the same color code
as for the discrete simulations: cluster formation (framed in green, present in all three panels),
travelling bands (framed in yellow, panel (C), trails (framed in red, panel (B)), near-honeycomb
structures (framed in orange, panel (A)), uniform distributions (unframed) and in-between states.
Here again, increasing the obstacle spring stiffness κ (from top to bottom panels) decreases the
distance between agents and obstacles (i.e., the white area around the agents is reduced with
increasing κ). We also observe that increasing the agent-agent repulsion intensity µ increases the
size of the agent clusters and this parameter again serves as a transition parameter between clusters
and uniform distribution of the agents, passing through honeycomb structures (first row of panel
(A)), trails (third row of panel (B)) or travelling bands (first three rows of panel (C)). The effect
of the friction parameter ζ becomes more relevant for large values of κ. For example, in panel (C)
the parameter ζ serves as a transition parameter between clusters, trails and uniform states.

Comparing phase diagrams. We compare the two phase diagrams from the discrete simula-
tions in Fig. 2 and the continuum simulations in Fig. 3. Note, though, that there is not an exact
correspondence of the values for the parameter ζ used in panel (C) for the two cases.

It is noteworthy that the patterns observed with the continuum simulations are similar to the
patterns of the discrete simulations (Fig. 2) for strong and mild obstacle spring stiffness (compare
panels (B) and (C) of Figs. 3 and 2), while the two models lead to different types of behavior
in the weak obstacle stiffness regime (panel (A)). These are expected results since the continuum
model has been obtained in a strong obstacle spring stiffness regime (1/κ ≈ 0). As a result,
the continuum model seems to be unable to produce the rich variety of patterns offered by the
discrete model when considering loose obstacles. Also, we do not observe the pinned state with
the continuum model, which appeared with the discrete dynamics when considering large obstacle
spring stiffness κ and small agent friction ζ. Even though pinned-states are observed for large
values of κ, they correspond to states where agents collapse into a very small cluster and then
the numerical simulations of the continuum equations blow-up due to a high concentration of the
agent density ρg (see Rem. 1).

4 Linear stability of uniform states

4.1 Analysis of the continuum model

Continuum equations are amenable to linear stability analysis around constant solutions or uniform
states. This is useful because the presence of instabilities signals the formation of patterns. In this
section we obtain an explicit condition for the stability of uniform states.

Before stating the main result, we introduce the following notation: denote by ϕ̂ the Fourier
transform of ϕ defined as, for k ∈ R2:

ϕ̂k := ϕ̂|k| = ϕ̂(k) =

∫
R2

e−ik·xϕ(x)dx ∈ R.

Notice that ϕ is assumed rotationally invariant, therefore ϕ̂ is real and rotationally invariant (so

we abused notation and wrote ϕ̂|k| instead of ϕ̂k).

Theorem 1 (Linear instability). Consider fixed constant values ρ0 > 0 and Ω0 ∈ S1. Then, the
linearized system of (6) around (ρ0,Ω0) is unstable if and only if

there exists z > 0 such that z2(ϕ̂z)
2 > µκ. (13)

The proof of the theorem is given later. First, we derive sufficient conditions for the system to
be stable:
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Corollary 1 (Conditions for stability). Suppose that ϕ is absolutely continuous, rotationally in-
variant, and ϕ, ϕ′ ∈ L1. Then, it holds that

c0 := max
z∈R+

z2(ϕ̂z)
2 <∞ (14)

and if µκ > c0, then the continuum equations (6) are linearly stable.
Moreover, if ϕ is given by (12), define c′0 = c0/C

2
ϕ. It holds that the constant c′0 is independent

on the obstacle-agent repulsion radius τ and the intensity Cϕ and the system is stable whenever

µκ

C2
ϕ

> c′0.

Proof. Since by assumption ϕ is absolutely continuous and ϕ, ϕ′ ∈ L1, we have that |ϕ̂′(k)| = |k||ϕ̂(k)|.
Moreover, since ϕ′ ∈ L1, then ϕ̂′ is bounded. Therefore, |k|2|ϕ̂(k)|2 is bounded and c0 is finite. In
this case, for µκ > c0 the instability condition (13) does not hold, so the system is stable.

In the particular case where ϕ takes the shape given in (12), one can check that the following
self-similarity condition holds

|k|ϕ̂k = τ|k|ϕ̂(1)(τ|k|),

where ϕ(1) corresponds to ϕ when taking τ = 1. Therefore, it holds that

C2
ϕc0 = max

k
|k|2(ϕ̂k)2 = max

k
(τ|k|)2(ϕ̂(1)(τ|k|))2 = max

y
|y|2(ϕ̂(1)(|y|))2,

and so c0 is independent of τ. The rest of the corollary follows: the value of c′0 is also clearly
independent of Cϕ as it is just a multiplicative factor of ϕ.

Remark 2 (Limiting case of pillar obstacles). In the case where the obstacles are fixed pillars,
i.e., the case where κ → ∞, then the uniform distribution of agents and pillars is always a stable
solution. The effect of this limiting case is that the equations for the agents on (ρg,Ω) become
decoupled from the obstacles’ density ρf = ρA, which is just constant (take the formal limit κ→ ∞
on the continuum equations (6)). Therefore, there is an abrupt behavioural change between static
obstacles and obstacles that can move a bit (anchored at a fixed point via a very stiff spring). This
shows that, in this particular set up, the fact that the agents are able to modify their environment
is crucial for interesting patterns to emerge.

The role of the parameters. From the instability condition (13), we observe that the main
drivers of the formation of instabilities are: the shape of the agent-obstacle repulsion potential
ϕ, the obstacle-spring stiffness κ, and the agent-agent repulsion intensity µ. High agent-agent
repulsion - high values of µ - has a stabilising effect while high agent-obstacle repulsion - high
values of Cϕ - has a destabilising effect, and vice-versa. Also, high values of the spring constant κ
have a stabilising effect and small values have the opposite effect.

From Cor. 1, in the case when ϕ is given in (12) the ratio given by

bp :=
µκ

C2
ϕc

′
0

(15)

is the single value that acts as a bifurcation parameter. However, the obstacle-agent repulsion
radius τ plays a role in determining the size of the patterns (see Fig. 3). Also, from the instability
condition (13) and corollary 1, for typical shapes of the potential ϕ, we expect to have stability
for small and large values of the wave vector k but instabilities can appear at intermediate values
whenever c0 > µκ (where c0 is given in (14)).

The rest of this section is devoted to the proof of Th. 1.
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Proof of Th. 1. We start by linearising the continuum equations (6) around (ρ0,Ω0) by expanding
the solution using a small perturbation parameter β

ρg = ρ0 + βρ1 +O(β2), Ω = Ω0 + βΩ1 +O(β2), |Ω| = 1. (16)

Dropping the higher order terms, we obtain the linearised system (where the over-script bar nota-
tion is defined in Eq. (8)):

∂tρ1 + d1Ω0 · ∇ρ1 + d1ρ0∇ · Ω1 = µ̄ρ0∆ρ1 + ρ0λ̄
(
∆2 ¯̄ρ1 − γ∆2∂t ¯̄ρ1

)
, (17a)

ρ0∂tΩ1 + ρ0d2 (Ω0 · ∇) Ω1 + d3PΩ⊥
0
∇ρ1 = γsρ0PΩ⊥

0
∆Ω1, (17b)

Ω0 · Ω1 = 0, (17c)

where ∆2 is the bi-Laplacian, i.e., ∆2ρ = ∆(∆ρ) and PΩ⊥
0

is the orthogonal projection on Ω⊥
0 .

Note also that µ̄ = µ/ζ, γ = η/κ and λ̄ = ρA/(κζ) (we assume ρA = 1).
We now define the functions F,G : R+ → R by:

F (z) := z2
ρ0
ζ

(
1

κ
z2(ϕ̂z)

2 − µ

)
, (18)

G(z) := 1 + ρ0
η

κ2ζ
z4(ϕ̂z)

2 > 0,

and given k ∈ R2, we denote by k0, k1 the quantities

k0 = (k · Ω0), k1 = (k · Ω⊥
0 ), (19)

where Ω⊥
0 is the image of Ω0 by the rotation of angle π/2. Th. 1 is then a direct consequence of

the following proposition.

Proposition 1. System (17) allows for non-trivial plane wave solutions, i.e. solutions of the form

ρ1(x, t) = ρ̃eik·x+αt, Ω1(x, t) = Ω̃eik·x+αt, (20)

where k ∈ R2 is the wave vector, α ∈ C, ρ̃ ∈ C and Ω̃ ∈ C2, and (ρ̃, Ω̃) ̸= (0, 0) if and only if α
and k fulfil the following dispersion relations:
Case A: k ∥ Ω0

Option 1: ρ̃ ̸= 0, Ω̃ = 0,

α = α1(k) := −i d1k0
G(|k0|)

+
F (|k0|)
G(|k0|)

. (21)

Option 2: ρ̃ = 0, Ω̃ ̸= 0.

α = α2(k) := −id2k0 − |k|2γs. (22)

Case B: k ∦ Ω0. Then, α is a root of the following polynomial of degree 2:

α2G+ α
[
G|k|2γs − F + ik0 (Gd2 + d1)

]
(23)

+ d1(ρ0d3k
2
1 − d2k

2
0)− |k|2γsF + i

(
d1k0|k|2γs − d2k0F

)
= 0.

The real parts of α are negative if and only if the following holds:

G(k)|k|2γs − F (k) > 0, (24)

and

H(k) :=
[
G(k)|k|2γs − F (k)

]2
d1d3k

2
1 (25)

−γsF (k)|k|2
[
(d1 − d2G(k))

2k20 +
[
G(k)|k|2γs − F (k)

]2]
> 0.
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Proof of Prop. 1. Substituting the plane wave ansatz into the equation yields

ρ̃α+ iρ̃d1 (Ω0 · k) + iρ0d1

(
Ω̃ · k

)
= −|k|2µ̄ρ0ρ̃+ |k|4λ̄ρ0ρ̃(ϕ̂k)2 (1− γα) , (26a)

ρ0αΩ̃ + iρ0d2Ω̃ (Ω0 · k) + iρ̃d3PΩ⊥
0
k = −|k|2ρ0γsΩ̃, (26b)

Ω0 · Ω̃ = 0. (26c)

or (if Ω̃ = ωΩ⊥
0 )

(G(|k|)α− F (|k|) + id1k0)ρ̃+ iρ0d1k1ω = 0,

id3k1ρ̃+ ρ0(α+ id2k0 + |k|2γs)ω = 0.

This is a homogeneous linear system in (ρ̃, ω) which has a non-trivial solution if and only if the
determinant of the system is 0, i.e.:

(G(|k|)α− F (|k|) + id1k0)
(
α+ id2k0 + |k|2γs

)
+ d1d3k

2
1 = 0. (27)

If k1 = 0, there are two roots corresponding to either bracket being zero. This leads to (21) or
(22). If k1 ̸= 0, we can recast (27) in (23).

To determine the sign of the real part of α, we use the Routh-Hurwitz criterion for polynomials
with complex coefficients [19, 30]. In our case the Routh-Hurwitz criterion states that the Re(α) < 0
for all solutions α if and only if expressions (24) and (25) hold.

With Prop. 1 we conclude the proof of Th. 1 as follows. Suppose (13) holds and let z0 > 0

be such that z20 ϕ̂
2
z0 > µκ. Let k = z0Ω0. Then k0 = z0 and k1 = 0. So F (|k|) = F (z0) > 0 and

α = α1(k) is such that Re (α) > 0. Hence, the linearized system is unstable.

Suppose now (13) does not hold, i.e., z2ϕ̂2z < µκ, for all z ∈ R+. Then, F (|k|) < 0, for all
k ∈ R2. It results that Re(α1(|k|)) < 0, Re(α2(|k|)) < 0. Furthermore (24) and (25) are obviously
satisfied for all k ∈ R2. Hence the system is stable.

4.2 Numerical validation of the linear stability analysis

In this section we compare the pattern predictions given by the linear stability analysis with the
results obtained from numerical simulations. This way we check that the linear stability analysis
truly captures pattern formation, i.e., that nonlinear effects are of second order and most of the
patterns characteristics are captured by linear effects.

4.2.1 Predictions from the theoretical analysis and qualitative agreement with the
macroscopic simulations

We start by giving insights on the size and shape of the expected patterns based on the theoretical
predictions offered by the stability analysis. To this aim, we consider perturbations introduced
in the stability analysis (see Prop. 1), around the homogeneous density ρ0 = 1 and in constant
direction Ω0 ∈ S1 . As we are particularly interested in characterizing the patterns corresponding
to clusters or bands, we will focus on the theoretical values for wave vectors parallel to Ω0 and
parallel to Ω⊥

0 :
kth∥ = argmax

k∥Ω0

Re(α̃(k)), kth⊥ = argmax
k∥Ω⊥

0

Re(α(k)),

where α̃(k) corresponds to case A (Eq. (21)), α(k) corresponds to case B (larger root of Eq.
(23), computed numerically) and the symbol ‘Re’ indicates the real part. With these wave vectors
maximizing the real part of α, we define the quantities:

Sth
1 =

2π

|kth∥ |
, Sth

2 =
2π

|kth⊥ |
.

15



These quantities give the size of the expected patterns in each direction. We will also compute the
maximal growth rates of the perturbations in these two directions:

α∥
max = max

k∥Ω0

Re(α̃(k)), α⊥
max = argmax

k∥Ω⊥
0

Re(α(k)).

Equipped with these quantifiers, we now study the influence of the model parameters on the
expected pattern shapes and sizes. As predicted by the stability analysis, patterns can be expected
if the bifurcation parameter bp (Eq. (15)) is below 1. We fix Cϕ = 5 and use ϕ as in Eq. (12)
giving c0 ≈ 5.6 independent on τ as shown in the proof of corollary 1 (definition of c0 in Eq. 14).
We vary bp by changing the values of the agent-agent repulsion intensity µ and aim to study the
influence of the friction constant ζ, the obstacle spring stiffness κ and the agent-obstacle repulsion
distance τ. For each subsection, we compare qualitatively these predictions based on the linear
stability analysis with simulations of the macroscopic model presented in Fig. 3

Influence of the friction constant ζ. First we fix κ = 1000 and τ = 0.15, and show in Fig.

4 the values of α
∥
max and α⊥

max (left panel) and of Sth
1 and Sth

2 (right panel), as functions of the
bifurcation parameter bp and for different values of the agent friction constant ζ: ζ = 0.1 (blue
curves), ζ = 0.5 (red curves), ζ = 1 (yellow curves). One can first observe in Fig. 4 (left panel)
that we indeed recover the critical value 1 of the bifurcation parameter, below which perturbations
grow (Re(α) > 0) and after which they are damped, independently on the value of ζ. This shows
that bp is indeed a relevant bifurcation parameter. Moreover, one can observe that perturbations
grow faster for smaller values of the friction constant ζ (compare the blue and red curves in the
left panel). From the right panel of Fig. 4, we note first that the size of the clusters increases
when increasing the bifurcation parameter (here, by increasing the agent-agent repulsion µ). These
are expected results as stronger agent repulsion leads to higher pressure in the agent population,
leading to larger clusters. Secondly, we observe that the size of the patterns is independent on
the friction constant ζ, but the parameter zone in which patterns are of travelling band type (i.e
Sth
1 > 0 and Sth

2 = 0) is larger for larger values of ζ -compare the yellow and blue dashed curves
in the right panel-. Thus, high friction substrates seem to favor the formation of travelling bands
compared to low friction environments, provided the bifurcation parameter is large enough (large
obstacle spring stiffness and/or large agent-agent repulsion compared to agent-obstacle repulsion).

Qualitative comparison with the macroscopic simulations. The influence of the agent
friction ζ for τ = 0.15 and κ = 1000 can be observed in the macroscopic simulations presented in
Fig. 3 panel (C), comparing the rows together (from bottom to top for increasing values of ζ).
We first note that in the simulations of the three panels of Fig. 3, the values considered for the
product µκ were always the same, i.e.,

µκ ∈ {0.02, 0.2, 0.5, 1, 4, 6},

and the value of Cϕ = 5 was kept constant, corresponding to the following values for the bifurcation
parameter:

bp ∈ {0.0036, 0.0357, 0.0893, 0.1785, 0.7142, 1.0713}.

We then observe that in each panel of Fig. 3, patterns are indeed observed in the first 5 columns
of the tables while the last column displays a homogeneous distribution of agents. This validates
the fact that patterns are observed only when the bifurcation parameter bp is below 1.

Moreover, focusing on the last panel (for which κ = 1000), we recover most of the observations
predicted by the stability analysis: (a) the pattern size increases when increasing the bifurcation
parameter (increasing µ: compare simulations from left to right in Fig. 3 panel (C)), (b) the zone
of parameters showing travelling bands increases when increasing the agent friction ζ (compare
bottom to top rows of panel (C)). Therefore, we obtain a very good qualitative agreement between
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the simulations of the macro model and the tendencies predicted by the stability analysis as function
of ζ.

Influence of the obstacle spring stiffness κ. Here we adopt the same representation as in
the previous paragraph, but fixing the agent friction constant ζ = 0.5 and playing on the obstacle

spring stiffness κ (we keep the agent-obstacle distance τ = 0.15). Fig. 5 shows the values of α
∥
max

and α⊥
max (left panel) and of Sth

1 and Sth
2 (right panel), as functions of the bifurcation parameter

bp and for κ = 10 (blue curves), κ = 100 (red curves) and κ = 1000 (yellow curves). From Fig.
5 (right), we can observe a similar evolution of the pattern size playing on the obstacle spring
stiffness as when changing the friction constant ζ: increasing the obstacle spring stiffness κ slightly
increases the zone of parameters favoring the formation of bands of agents (compare yellow and
red dashed curves in the right panel). One can particularly note (blue curve of Fig. 5 (right)) that
environments composed of loose obstacles (κ = 10) will only promote agent clusters the size of
which is independent of the value of the bifurcation parameter. Finally we note from Fig. 5 (left)
that the growth rate of perturbations does not evolve monotonically with the spring stiffness κ:
faster perturbations are observed for κ = 100 compared to κ = 10 or κ = 1000 (compare red with
blue and yellow curves in the left panel).

Qualitative comparison with the macroscopic simulations. The influence of the obstacle
spring stiffness κ for τ = 0.15 and ζ = 0.5 can be observed in the macroscopic simulations presented
in Fig. 3, comparing the second rows (starting from the bottom) in each panel (panel (A) for κ = 10,
panel (B) for κ = 100, panel (C) for κ = 1000).

Again, we obtain a very good agreement with the theoretical predictions: (a) the pattern sizes
increase when increasing the bifurcation parameter (by increasing µ: compare simulations from
left to right in each panel), (b) the increase in pattern size as function of µ seems less important for
κ = 10 (panel (A)) than for larger obstacle spring stiffness (panels (B) and (C)), and (c) travelling
bands are only observed for κ = 1000 (panel (C)).

Influence of the agent-obstacle repulsion distance τ
Finally we aim to document the role of the agent-obstacle repulsion distance τ. We adopt the

same methodology as in the two previous paragraphs: we fix ζ = 0.5 and κ = 1000 and show in

Fig. 6 the values of α
∥
max and α⊥

max (left panel) and of Sth
1 and Sth

2 (right panel), as functions
of the bifurcation parameter bp and for τ = 0.15 (blue curves), τ = 0.2 (red curves) and τ = 0.3
(yellow curves). We first observe that increasing the value of τ slows down the growth of the
perturbation modes (compare blue red and yellow curves of Fig. 6 (left)). Moreover, as predicted
by the stability analysis, the critical value of µ for which patterns appear does not depend on τ:
patterns are once again only observed as long as the bifurcation parameter bp does not exceed the
value 1. Secondly, Fig. 6 (right) shows that the agent-obstacle distance τ has a strong impact on
the size of the clusters: larger τ leads to larger agent clusters (compare for instance yellow and
blue curves in Fig. 6 (right)), and agent-obstacle repulsion distance does not impact the shape of
the patterns (clusters or bands types).

As the simulations of Fig. 3 have been generated only for τ = 0.15, we are not able at this
point to compare qualitatively the predictions of the stability analysis with the simulations of the
macroscopic model as functions of this parameter. We will however assess the influence of τ via a
quantitative comparison between the model and the theory in the next section.

Altogether, these results show that agent-agent repulsion favors the spreading of the agents
while agent-obstacle repulsion tends to aggregate the agents (and consequently clusters obstacles
together). Travelling bands of agents seem to be favored in low friction environments composed of
stiff obstacles, and the size of agent clusters seem to be controlled primarily by the agent-obstacle
distance and the bifurcation parameter (ratio between the agent-agent repulsion intensity and the
agent-obstacle repulsion intensity).
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4.2.2 Quantitative agreement between the macroscopic simulations and the stability
analysis

Here we provide a quantitative assessment of the pattern sizes computed numerically on the simu-
lations of the macroscopic model and the ones predicted by the stability analysis. To this aim, we
first compute numerically the pattern sizes using the 2D Discrete Fourier transform of the agent
density at equilibrium F̂ [ρg] = F̂ [ρg](k), and extract the frequency of the two maximal modes
k∥, k⊥ ∈ R2 aligned in the direction of Ω0 and Ω⊥

0 , respectively:

k∥ = argmax
k∥Ω0

|F̂ [ρg](k)|, k⊥ = argmax
k∥Ω⊥

0

|F̂ [ρg](k)|,

where | · | is the modulus of a complex number. Then, the theoretical quantifiers Sth
1 and Sth

2 will
be compared with

S1 =
2π

|k∥|
, S2 =

2π

|k⊥|
.

In Fig. 7, we show the values of S1 and S2 (dotted curves) and Sth
1 , S

th
2 (plain curves), for

three different values of the obstacle spring stiffness κ = 10 (panel (A)), κ = 100 (panel (B)) and
κ = 1000 (panel (C)), and three different value of τ: τ = 0.15 (blue curves), τ = 0.2 (orange curves)
and τ = 0.3 (yellow curves). Note that here ζ = 0.5 so that theoretical predictions correspond to
Fig. 6. Simulations are completed for Ω0 =

(
cos π

4 , sin
π
4

)
and ρ0 = 1.

As one can observe, we obtain a fairly good agreement between the values computed on the
numerical solution and the ones predicted by the linear stability analysis as presented in Fig.
7. As predicted, the size of the repeating patterns increases as τ increases, (compare blue, red
and yellow curves), and as the agent-agent repulsion intensity µ increases while staying below the
critical threshold µ∗ (above which the homogeneous steady-state profile is stable), corresponding
to bp = 1. For κ = 1000 (panel (C) of Fig. 7), we also recover the regime of travelling bands
predicted for µ = 4 · 10−3 and here S1 > 0 and S2 = 0, i.e., patterns (the travelling bands) are
only in the direction Ω0.

5 Quantitative assessment of the continuum model

In this section, we aim to compare quantitatively the continuum and discrete models. As our goal
is to compare continuous density profiles (continuum model) with clouds of points representing
individual positions (discrete model), a method to quantify the ‘proximity’ between these two
different types of solutions has to be devised. A first natural choice would be to use the quantifiers
defined in the previous section, i.e. to compute the maximal eigenmode of the Fourier transform
of the agent distributions from the discrete simulations. This would enable to construct a space-
independent quantifier which could give an insight into the main structures of the discrete model.
However, as one can observe in Fig. 2, the agent and obstacle structures that emerge from the
discrete dynamics are not necessarily regularly spaced in the domain, which makes the use of the
Fourier transform imprecise for the discrete simulations. In the following section, we propose a new
method to compare discrete point clouds and continuum densities which does not require some
spatial regularity of the patterns.

5.1 Methodology to compare discrete and continuum simulations

In Table 3, we summarize the steps of the method we propose to compare discrete and continuum
simulations. After generating two simulations (one with the continuum model and one with the
discrete dynamics, step 1), we first aim to find the optimal Cartesian mesh on which (i) we
interpolate the continuum solution and (ii) we compute the density of the point clouds using a
Particle In Cell (PIC) method (step 2, Section 5.1.1). At the end of this step, both solutions
(continuum and discrete) are projected on the same Cartesian mesh. In step 3 (section 5.1.2), we
then compute a Wasserstein-type distance based on the histograms of the two density distributions.
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STEP 1 Simulation of the continuum
equations (6)

Simulation of the particle dy-
namics (1a)-(1b)

⇓ ⇓

STEP 2 Discretization of the output
density on a grid Π∆x

U using
the PIC method: ρ∆x

mac

Approximate the particle
density on the grip Π∆x

U

using the PIC method: ρ∆x
mic

→ Compute the optimal grid
size ∆x using the ℓ2 distance
(Sec. 5.1.1)

↘ ↙

STEP 3 Compare ρ∆x
mic and ρ∆x

mac with the distance W (ρ∆x
mic, ρ

∆x
mac)

→ Computed with the EMD method (Sec. 5.1.2)

Table 3: Diagram of the methodology used to compare the simulations for the continuum equations
(6) and the simulation of the discrete dynamics (1a)-(1b). PIC: Particle-In-Cell; EMD: Earth
Movers Distance; W : Wasserstein distance.

5.1.1 Discretization of the particle density

A natural choice for comparing point clouds and continuum densities is to choose a Cartesian grid
for both models, and compute the density of the individual agents using for instance a Particle-In-
Cell (PIC) method [11]. However, the choice of grid points spacing is critical, as it depends on the
profile of the distribution as well as on the number of particles present in the computational domain:
highly clustered agent distributions require fine meshes to enable to capture the characteristics of
the small and concentrated agent clusters, while more homogeneous agent distributions require
coarser grids to allow the capture of larger patterns (see Fig. 8). To be efficient, the grid spacing
must, therefore, account for the characteristic size of the continuum structures that can be captured
with a finite number of individual points. As we want to compare a continuum model with a discrete
one, we will use the continuum simulations as a reference. Our goal here is to find the optimal
Cartesian mesh on which a continuum density ρ∆x(x, t) would be best represented by a cloud of
N points, for N given. Note that the continuum density ρ∆x(x, t) is itself already discretized on a
Cartesian mesh with spacing ∆x, because it corresponds to a solution of the discretized continuum
model.

Given a continuum density profile ρ∆x(x, t) - discretized on a Cartesian mesh Ω∆x ⊂ Ω with
grid spacing ∆x = 1

Nx
in each direction - we first throw N individual points (y1, . . . , yN ) ∈ Ω

according to the distribution ρ∆x(x, t). We now denote by ρhPIC(y1, . . . , yN ) the density of the
individual points (y1, . . . , yN ) computed on a Cartesian mesh of spacing h > 0 using a PIC method,
and Π∆x

(
ρhPIC

)
its linear interpolation on the initial mesh Ω∆x. We aim at finding the optimal

grid spacing h minimizing the L2 distance between the initial continuum density ρ∆x(x, t) and its
approximation by N individual points:

h̃ = argmin
h

||ρ∆x −Π∆x
(
ρhPIC(y1, . . . , yN )

)
||ℓ2(Ω∆x),

where ||.||ℓ2(Ωh) denotes the discrete l2 norm on a Cartesian mesh Ωh:

||ρh||ℓ2(Ωh) = h2
Nx∑
i=1

Nx∑
j=1

|ρh(xi, yj)|2

The optimal h̃ is computed numerically. It therefore corresponds to the best grid spacing one
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can hope for approximating a density ρ∆x with a set ofN points. We therefore will use this quantity
to compare a simulation of the continuum model with one of the discrete model performed with

N agents. The discretized macroscopic density will be denoted by ρh̃mac = ρh̃PIC(y1, . . . , yN ), and

the approximation from the discrete particle simulation will be denoted by ρh̃mic (computed via the

PIC method on a grid with spacing h̃). In the following section, we describe how to compare ρh̃mac

with ρh̃mic.

5.1.2 Comparing discretized and discrete dynamics

The comparison between the discretized and the discrete dynamics will be done in several steps:

Step 1) Choosing the right distance to compare the micro- and macro- simulations: we want to
construct a quantifier enabling to compute the distance between the two distributions

ρh̃mac and ρ
h̃
mic described in the previous section (solutions of the continuum and discrete

models projected on a Cartesian mesh with spacing h̃). The first natural choice would be
to use the discrete L2 norm as both quantities are defined on the same meshes. However,
we need a quantifier independent on space translations, as there is no reason for the
patterns of the discrete model to match exactly the locations of those of the continuum
model at a given time. For example if the discrete and continuum simulations produce
band patterns with same width and speed but not at the same positions, we still want
to consider that the two solutions are very close to each other. Therefore, we propose
here to use a Wasserstein-like distance.
Inspired from [35], we choose to work with the Earth Movers Distance (EMD). The
EMD is based on the minimal cost that must be paid to transform one distribution
into the other and relies on the solution to a transportation problem issued from lin-
ear optimization. As solving the transport problem in 2 dimensions is very costly, we
’compress’/approximate the density distributions using their signatures (histograms).

Step 2) Construction of the signatures of the distributions: given a density profile on a grid
containing Nh = 1

h points in each direction (ρij), i = 1 . . . Nh, j = 1 . . . Nh, the signature
of ρ, P [ρ] = {(p1, ω1), . . . , (pm, ωm))} is defined as:

pk =
kM

nb
, ωk =

Nh∑
i=1

Nh∑
j=1

1[pk−1,pk]

(
ρij

)
, k = 1 . . . nb, (28)

where M = ||ρ||∞ = maxi,j ρij and the number of bins nb has been chosen using the

Freeman Diaconis rule, for which the bin width corresponds to 2 IQR
n3/2 , where IQR is

the interquartile range of the data and n is the number of observations (in our case the
number of grid points, n = 1

h2 ). We give in Fig 9 a visual representation of comput-
ing the signature of a toy distribution with 4 bins and in Fig. 10 an example of the
histograms of two simulations of the continuum model. Note that when computed on
density distributions, the points pk in each cluster correspond to local density values and
the corresponding weights ωk are the number of grid (spatial) points in which the density
is comprised between the values pk−1 and pk.

Step 3) Definition of the EMD between two signatures: following the lines of [35], we apply
the following linear programming problem: Let P = {(p1, ω1), . . . , (pm, ωm))} and Q =
{(q1, v1), . . . , (qn, vn))} be two signatures with m and n clusters represented by their
representatives pk, qℓ and their respective weights ωk, vℓ for k = 1 . . .m, ℓ = 1 . . . n. We
want to find a flow F = (fkℓ) minimizing the overall cost:

W (P,Q, F ) =

m∑
k=1

n∑
ℓ=1

dkℓfkℓ,
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where dkℓ is the ground distance matrix between clusters pk and qℓ:

dkℓ = |pk − qℓ|.

The minimization is made under the following set of constraints:

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (29)
n∑

j=1

fij ≤ ωpi, 1 ≤ i ≤ m (30)

m∑
i=1

fij ≤ ωqj , 1 ≤ j ≤ n (31)

m∑
i=1

n∑
j=1

fij = min(

m∑
i=1

ωpi,

m∑
i=1

ωqj). (32)

If we look at the signatures P and Q as a set of goods at given locations (represented
by p and q) each with a given amount (represented by the weights ω and v), the EMD
can be seen as a transportation problem consisting in finding the least expensive flow of
goods from the suppliers to the consumers, where the cost of transporting a single unit of
goods is given. Then, constraint (29) expresses that ’supplies’ can be transported from
P to Q only, while constraints (30), (31) limits the amounts of supplies that can be given
by P to Q and that can be received from Q to P , respectively. The final constraint (32)
expresses the fact that the total amount of mass transported must be optimal. Once this
transportation problem is solved, the EMD between signatures P and Q, EMD(P,Q) is
then defined as:

EMD(P,Q) =

∑m
i=1

∑n
j=1 dijfij∑m

i=1

∑n
j=1 fij

.

Rubner et al. proved in [35] that when the ground distance is a metric and the to-
tal weights of the two signatures are equal, the EMD is a true metric. Therefore, by
considering the Euclidean distance as ground distance we can use the EMD as a valid
dissimilarity measure between signatures. However, as two different density distributions
may have the same signature, the EMD with (28) as signatures is a pseudo-metric. How-
ever, as shown in Fig. 10, the histograms between band like patterns and clustered state
are very different distributions, making this pseudo metric suitable for measuring the
dissimilarity between pattern types. Moreover, we check carefully in the next paragraph
the validity of the EMD when it can be compared to the classical L2 distance.

Step 4) Validation of the pseudometric EMD. In order to check the validity of the pseudometric
constructed in this section, we aim to compare the efficiency of the EMD in cases where
it can be compared to the classical L2 distance. More specifically, we use it to measure
the dissimilarity between the density profile of the continuum simulation (high density
clustered simulation of Fig. 8 left column) and its approximation by a cloud of N points
reconstructed on a grid, using the procedure described in the previous section. We show
these dissimilarity measures in Fig. 11, as a function of the number of grid points for
the PIC method (NPIC , horizontal axis of Figs. 11) and different numbers N of discrete
particle (different curves), using the EMD distance based on histograms (left panel) or
the L2 distance based on point values (right panel). As one can observe in Fig. 11, the
EMD and the L2 norm are in good accordance. As previously observed in Sec. 5.1.1, both
metrics show that for each number of particles used to approximate the continuum density
distribution, there exists an optimal number of grid points for the PIC method which
minimizes the distance between the initial density and its approximation by particles.
As expected, this optimal value increases as the number of particles increases, suggesting
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that using a larger number of agents allows the use of finer grids which enables us to
better capture the fine structures of the continuum density distribution. Moreover, this
figure shows that the Wasserstein distance based on the EMD between density signatures
seems to be a valid tool to compare density distributions.

In the next section we present the numerical comparison between the discrete and continuum
models.

5.2 Results

We aim to compare quantitatively the steady-states of the discrete and continuum models in
different regimes of the parameters, and study the influence of the number of agents for the discrete
model N as well as the scaling parameter ϵ. We recall that the assumptions for the derivation of
the continuum equations are given in Sec. 2.2.1. In particular, some of the parameters are scaled
by a factor ε≪ 1 in the following way (denoting by a tilde the values used for discrete simulations):

r̃R = ϵrR, r̃A =
√
ϵrA, d̃s =

ds
ϵ
, ν̃ =

ν

ϵ
. (33)

For all simulations, we consider the same number of agents and obstacles and set M = N , and we
fix the values of Cϕ = 5 (leading to c0 = 5.6) and ζ = 0.5. For each set of parameters, we use the
method previously described in Sec. 5.1 to compare discrete and continuum simulations.

5.2.1 Mild obstacle spring stiffness

In Fig. 12, we show the simulations obtained for mild obstacle spring stiffness κ = 100. The left
panel is obtained for µ = 2.10−3 (corresponding to a bifurcation parameter bp ≈ 0.036), and the
right panel is for µ = 4.10−2 (corresponding to bp ≈ 0.7, close to the stability threshold 1). Top
figures show the EMD between the continuum and discrete solutions as a function of ϵ, for different
number of agents used for the discrete simulations N : N = 500 (blue curve), N = 1000 (red curve),
N = 3000 (yellow curve) and N = 5000 (purple curves). The corresponding simulations are shown
below in tables: for each, the left column shows the simulations of the continuum model, and
the next columns are simulations of the discrete model for different values of ϵ: ϵ = 0.1 (second
column), ϵ = 0.5 (third column), ϵ = 0.8 (fourth column), ϵ = 1 (last column). The different rows
of the tables correspond to different number of agents for the discrete simulations as well as for
the discretization of the continuum density (from top to bottom: N = 500, N = 1000, N = 3000,
N = 5000).

Fig. 12 suggests that the discrete and continuum models are in quite good agreement in the
case of week agent-agent repulsion (bp ≪ 1, left panel), where both models are able to reproduce
agent clusters, while their correspondence is more tenuous for stronger agent-agent repulsion (bp
close to the instability threshold, right panel), where the discrete dynamics seems to produce
more trail-like patterns than the continuum model. For both regimes however, we can observe a
significant improvement of the discrete-continuum correspondence as ϵ decreases, suggesting that
the continuum model becomes a good approximation of the discrete dynamics as ϵ goes to zero.
Indeed, for weak agent-agent repulsion (left panel), we observe that decreasing ϵ is accompanied by
an increase in the cluster sizes and a decrease of the distance between the boundary of the clusters
and the obstacles, getting closer to the cluster types observed with the macroscopic dynamics. For
stronger agent-agent repulsion (right panel), the clusters thicken as ϵ decreases and get closer to
the continuum structures.

These observations are confirmed by the measurements of the EMD between the discrete and
continuum agent distributions (top plots of Fig. 12). Indeed, one notes in the left panel that
the distance between the two distributions decreases as the scaling parameter ϵ decreases, inde-
pendently on the number of agents. Moreover, the top plot on the right panel shows that the
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discrete-continuum distance is larger for stronger agent-agent repulsion (bp close to 1) compared to
the case where bp ≪ 1 (left panel). From the right figure, we also observe a strong dependency of
the discrete-continuum distance as a function of the number of agents used in the discrete model.
When the agent-agent repulsion is strong (or equivalently when bp is close to 1), it becomes cru-
cial to use a large number of individuals for the discrete simulations, while the number of agents
does not seem to significantly impact the discrete-continuum agreement in regimes favoring the
apparition of small and dense clusters (small agent-agent repulsion or equivalently small bp).

These first observations tend to suggest that the choice of the number of agents in the discrete
setting seem to depend both on the choice of ϵ and on the regime of parameters. In order to give
more insights on the influence of N and bp on the discrete-continuum match, we plot in Fig. 13
the EMD between the discrete and continuum models as a function of bp (by changing the value
of µ for fixed κ = 100), having fixed ϵ = 0.1 and for different N :N = 500 (blue curve), N = 1000
(red curve) and N = 3000 (yellow curve) and N = 5000 (purple curve).

As one can see in Fig. 13, the discrete-continuum distance increases with bp independently on
the number of agents N , suggesting indeed that the discrete and continuum models are closer far
from the instability threshold. As the agent-agent repulsion increases (increasing values of bp), the
number of agents used in the discrete simulations has increasing influence on the match between
the discrete and continuum simulations. These results suggest that large agent clusters with low
density are better captured by a large number of agents.

5.2.2 Strong obstacle spring stiffness

Here we aim to study the discrete-continuum agreement for strong obstacle spring stiffness κ =
1000. In Fig. 14, the left panel is obtained for µ = 2.10−4 (corresponding to a bifurcation
parameter bp ≈ 0.036), and the right panel is for µ = 4.10−3 (corresponding to bp ≈ 0.7, close to
the stability threshold 1). Top figures show the EMD between the continuum and discrete solutions
as a function of ϵ, for different number of agents used for the discrete simulations N : N = 500
(blue curve), N = 1000 (red curve), N = 3000 (yellow curve) and N = 5000 (purple curves). As
in the previous section, the corresponding simulations are shown below in tables: for each, the left
column shows the simulations of the continuum model, and the next columns are simulations of the
discrete model for different values of ϵ: ϵ = 0.05 (second column), ϵ = 0.1 (third column), ϵ = 0.5
(fourth column) ϵ = 0.8 (fifth column) and ϵ = 1 (last column). As before, the different rows of
the tables correspond to different number of agents for the discrete simulations as well as for the
discretization of the continuum density (from top to bottom: N = 500, N = 1000, N = 3000,
N = 5000).

For strong obstacle spring stiffness κ = 1000, we again observe that the discrete and continuous
models are in good agreement far from the instability threshold (left panel), where both models
reproduce clusters, while the agreement between the two models worsen for stronger agent-agent
repulsion (right panel), where the discrete system fails to reproduce the travelling bands patterns
observed with the continuum model. Again, the discrete-continuum agreement improves as ϵ
decreases: for low agent-agent repulsion the discrete pattern sizes converge to the ones of the
continuum model as ϵ decreases (from right to left in the left panel), and for strong agent-agent
repulsion (last rows of the right panel), decreasing ϵ induces a phase transition between clustered
states and trail-like agent patterns, closer to the formation of bands.

It is noteworthy that for small agent-agent-repulsion (bp ≪ 1, left figure), the agreement be-
tween the discrete and continuum dynamics seem to be better when using less agents in the discrete
model, independently on the value of ϵ (compare purple and blue curves on the left panel), while
close to the instability threshold (bp close to 1, right figure) the choice of N seems to be related to
ϵ: the discrete-continuum error decreases when using larger N for small ϵ, smaller N for larger ϵ.

5.2.3 Summary of observations

We conclude that the continuum equations are a good approximation of the discrete dynamics in
the limit of small rescaling parameter ε, as long as the agent-agent repulsion µ is small enough
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(i.e in a parameter regime far from the instability threshold, bp ≪ 1). On the contrary, the trend
is less apparent when µ gets closer to the instability threshold µ∗ (corresponding to bp = 1). In
particular, when µ ≈ µ∗, the rescaling factor ε can act as a phase transition parameter between
different types of patterns (right panel, Fig. 14). This phase transition is due to the fact that
the instability condition is given by (13). Indeed, the presence of µ in this formula hints to the
fact that at the discrete level the agent-agent repulsion potential ψ plays a key role in determining
the patterns that emerge. Therefore, it is no wonder that by rescaling the value of agent-agent
repulsion radius r̃R = εrR (and therefore changing the value of ψ) the shape of the patterns also
changes. However, the smaller the µ the less relevant the role of ψ, thus the predictions of the
continuum simulations become more robust.

There is also another important factor to take into account: the continuum dynamics just
gives averaged behaviour of the discrete dynamics. If there is a wide variability in the discrete
dynamics, due to its intrinsic stochasticity, then the average behaviour will not be able to represent
well particular realizations of the discrete dynamics. It seems that closer to the boundary of the
instability region (µ ≈ µ∗) this variability is larger.

6 Discussion

In this article we have investigated a model for collective dynamics in an environment filled with
obstacles that are tethered to a fixed point via a spring. The model was first introduced in [17].
In particular, the paper has presented the following novelties: (i) phase diagram of the continuum
equations in dimension 2; (ii) a linear stability analysis of constant solutions; (iii) method to
discriminate between different types of patterns that has been used to compare quantitatively the
relation between discrete and continuum simulations; (iv) and, finally, a more extensive phase
diagram of the discrete dynamics that has allowed to identify two new types of patterns with
respect to [17] (honey comb structures and pinned cluster states).

The continuum description captures well the behavior of the system when it is comprised of a
large number of agents and obstacles, and involves huge computational savings compared with the
simulation of the discrete system. Comparing discrete and continuum simulations is in general not
straightforward. We have proposed a method to compare the two types of solutions to investigate
in which parameter regime they are in good correspondence. This parameter regime includes
the assumptions made for the derivation of the continuum equations in Section 2.2.1: the spring
stiffness must be large κ ≫ 1, the number of agents and obstacles must be large N,M ≫ 1, the
scaling parameter ε≪ 1 (see (33) for the rescaled parameters) must be small. However, we require
one more condition to have a good correspondence between discrete and continuum dynamics: the
agent-agent repulsion intensity µ must be much smaller than the critical value µ∗, which is at the
threshold of the instability condition (13). For values closer to µ∗ the intrinsic variability of the
system is too large to be described just with the averaged behaviour that captures the continuum
equations.

This work has also showcased the impact of the environment in pattern formation in collective
dynamics. The phase diagrams of both discrete and continuum dynamics show that the feedback
interactions between agents and obstacles give rise to a rich variety of patterns. In particular,
we have observed that trails, travelling bands, moving clusters, uniform configurations and other
in-between patterns emerge. The fact that agents can modify their environment by moving the
obstacles is fundamental to this pattern emergence. This can be clearly seen in the linear stability
analysis where the instability condition (13) depends crucially on the agent-obstacle repulsion force
ϕ which is the only interaction force between agents and obstacles, and on the spring stiffness κ
which indicates the degree of mobility of the obstacles around their tethered positions.

As a prospective work, we would like to use the models investigated here to study the impact
of the environment in collective dynamics under different set up. One of these set up is collective
motion in a complex fluid. To investigate this, the idea is to couple the current model with a fluid
model. Then the environment in which collective motion takes place will be the combination of the
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fluid with the obstacles. The idea of representing a complex fluid in this manner is similar to other
existing models in the literature, such as the Oldroyd-B model that describes the visco-elasticity
of fluids filled with spring dumbbells [33]. The coupling of the current discrete model with a fluid
model will require a new derivation of the continuum equations and a new linear stability analysis
to understand how the presence of the fluid impacts the dynamics and pattern formation.
Another extension of this work will investigate the impact in collective dynamics of an environment
filled with a different type of obstacles (i.e., obstacles of a different nature than the ones considered
in this work). For example, one can consider solid obstacles that are movable but that are not
tethered or that have a particular shape (like elongated fibers).
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Figure 2: Simulations of the discrete model for the parameters indicated in table 1. Agents
are represented as black arrows giving their direction of motion, obstacles are represented
as blue circles. Panel (A): for weak obstacle stiffness κ = 10, panel (B): for mild ob-
stacle stiffness κ = 100, panel (C): for large obstacle stiffness κ = 1000. In each
panel, the vertical axis represents different values of the friction coefficient ζ (from bot-
tom to top: ζ = 0.2, 0.5, 1, 2 for panels (A) and (B) and ζ = 0.2, 1, 2, 5 for panel (C);
and the horizontal axis represents different values of the agent-agent repulsion µ: panel (A):
µ ∈ {0.002, 0.02, 0.05, 0.1, 0.4, 0.6} , panel (B): µ ∈ {0.0002, 0.002, 0.005, 0.01, 0.04, 0.06}, panel
(C): µ ∈ {2.10−5, 2.10−4, 6.10−4, 2.10−3, 4.10−3, 6.10−3}.
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Figure 3: Simulations of the continuum model (6) for the parameters indicated in table 2. Agents
(randomly distributed from the distribution ρg(x, t)) are represented as black arrows of orientation
π/4, obstacles (randomly distributed from the distribution ρf (x, t)) are represented as blue circles.
panel (A): for weak obstacle stiffness κ = 10, panel (B): for mild obstacle stiffness κ = 100, panel
(C): for large obstacle stiffness κ = 1000. In each panel, the vertical axis represents different values
of the friction coefficient ζ (from bottom to top: ζ = 0.2, 0.5, 1, 2 and the horizontal axis represents
different values of the agent-agent repulsion µ: panel (A): µ ∈ {0.002, 0.02, 0.05, 0.1, 0.4, 0.6},
panel (B): left column: µ ∈ {0.0002, 0.002, 0.005, 0.01, 0.04, 0.06}, panel (C):
µ ∈ {2.10−5, 2.10−4, 6.10−4, 2.10−3, 4.10−3, 6.10−3}.
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Figure 4: Prediction of the linear stability analysis. Left: values of the maximal growth rate
of the plane wave perturbations in the direction of Ω0 (continuous lines) and in the orthogonal
direction Ω⊥

0 (dashed lines) as functions of the bifurcation parameter bp, for different values of the
agent friction ζ: ζ = 0.1 (blue curves), ζ = 0.5 (red curves), ζ = 1 (yellow curves). Right: same
representation for the size of the perturbations in the two directions Sth

1 and Sth
2 .

Figure 5: Left: values of the maximal growth rate of the plane wave perturbations in the direction
of Ω0 (continuous lines) and in the orthogonal direction Ω⊥

0 (dashed lines) as functions of the
bifurcation parameter bp, for different values of the obstacle spring stiffness κ: κ = 10 (blue
curves), κ = 100 (red curves), κ = 1000 (yellow curves). Right: same representation for the size of
the perturbations in the two directions Sth

1 and Sth
2 .

Figure 6: Left: values of the maximal growth rate of the plane wave perturbations in the direction
of Ω0 (continuous lines) and in the orthogonal direction Ω⊥

0 (dashed lines) as functions of the
bifurcation parameter bp, for different values of the agent-obstacle distance τ: τ = 0.15 (blue
curves), τ = 0.2 (red curves), τ = 0.3 (yellow curves). Right: same representation for the size of
the perturbations in the two directions Sth

1 and Sth
2 .
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Figure 7: Values of the maximal eigenmodes of the Fourier transform of the numerical solution (dot-
ted curves) and predicted by the stability analysis (plain curves) in direction Ω0 = (cosπ/4, sinπ/4)
(left figures) and Ω⊥

0 (right coloured frames). Three different values of the obstacle spring stiffness
are considered: κ = 10 (panel (A)), κ = 100 (panel (B)) and κ = 1000 (panel (C)), and three
different agent-obstacle repulsion force distances τ = 0.15 (blue curves), τ = 0.2 (orange curves)
and τ = 0.3 (yellow curves). Right column: examples of simulations for parameters reported on
the graphs: simulations with diamond symbol match panel (B) (yellow frame: clusters; red and
blue frame: trails) and the simulation with the circle symbol matches panel (C) (travelling bands).
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Figure 8: Two examples of the procedure for choosing the optimal grid for the PIC method of
the discrete simulations, starting from a continuum simulation with high density aggregates (left
column) or low density bands (right column). The first step (first to second rows) consists in
distributing N points according to the continuum density distributions (left: for N = 200, right
for N = 2000 points), and the second step (third and fourth rows) computes the approximated
density using a PIC method with different spacing from the point distributions (third row: using
a coarse grid with spacing h = 0.1, fourth row: using a finer grid h = 0.02). As one can see
in Fig. 8, while the number of points to throw to approximate the continuum density does not
play a major role for high density clustered distributions, it becomes critical for approximating
more homogeneous distributions (compare left and right columns). Moreover, high density clusters
require the use of a fine enough grid to correctly recover the initial distribution (compare third and
fourth rows in the left column), while smoother distributions are better approximated using a large
number of agents and coarse grids (third row of the left columns). These first results highlight the
necessity for adapting the numerical grid used to compute the density of agents from the discrete
model if one hopes to have a consistent quantifier to compare with the continuum model.
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Figure 9: Example of the signature of a distribution with 4 bins, M = 85 and Nx = 13. The
different colors represent the different compartments of the signature.

(A) (B)

p p

Figure 10: Histograms for simulations of Fig. 8 as defined in Eq. (28).
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Figure 11: Error between the density profile of the continuum simulation (high density clustered
simulation of Fig. 8 left column) and its approximations using the procedure described in Sec.
5.1.1, as a function of the number of grid points for the PIC method NPIC (horizontal axis) and
different number N of discrete particles (see insert for correspondance between curve color and
N), using the EMD distance based on histograms (left panel) or the L2 distance based on point
values (right panel)
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Figure 12: Comparison between the discrete and continuum simulations for mild obstacle spring
stiffness κ = 100 and agent friction ζ = 0.5. Left figures: for weak agent agent repulsion µ = 2 10−3,
right figures, for µ = 4 10−2. Top figures: EMD between the approximated continuum density and
the discrete one as a function of ϵ for different values of the number of agents N : N = 500 (blue
curve), N = 1000 (red curve) and N = 3000 (yellow curve) and N = 5000 (purple curve). Bottom
tables: simulations of the continuum model (left column), and of the discrete one for different
values of ϵ: ϵ = 0.1 (second column), ϵ = 0.5 (third column), ϵ = 0.8 (fourth column) ϵ = 1 (last
column). The different rows correspond to different number of agents for the discrete simulations
as well as for the discretization of the continuum density (from top to bottom: N = 500, N = 1000,
N = 3000, N = 5000).

Figure 13: EMD between the approximated continuum density and the discrete one as a function
of bp for κ = 100, ζ = 0.5 and ϵ = 0.1, and for different values of the number of agents N : N = 500
(blue curve), N = 1000 (red curve) and N = 3000 (yellow curve) and N = 5000 (purple curve).
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Figure 14: Comparison between the discrete and continuum simulations for strong obstacle spring
stiffness κ = 1000 and agent friction ζ = 0.5. Left figures: for weak agent agent repulsion µ =
2 10−4, right figures, for µ = 4 10−3. Top figures: EMD between the approximated continuum
density and the discrete one as function of ϵ for different values of the number of agents N : N = 500
(blue curve), N = 1000 (red curve) and N = 3000 (yellow curve) and N = 5000 (purple curve).
Bottom tables: simulations of the continuum model (left column), and of the discrete one for
different values of ϵ: ϵ = 0.05 (second column), ϵ = 0.1 (third column), ϵ = 0.5 (fourth column)
ϵ = 0.8 (fifth column) and ϵ = 1 (last column). The different rows correspond to different number
of agents for the discrete simulations as well as for the discretization of the continuum density
(from top to bottom: N = 500, N = 1000, N = 3000, N = 5000)
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A Supplementary material: Videos of IBM simulations

In the following paragraphs, we give some details on the videos of the IBM simulations available
online as supplementary material. Each video is composed of two simulations representative of
the different types of patterns shown in Fig. 2 and highlighted by a red cross. In each movie,
agents are represented by black arrows and obstacles by colored points. The colors indicate the
distance of the obstacles to their tethered points (from blue (close to their attachment site) to
red (stretched springs)). Otherwise stated, the parameters used for the simulations are the ones
indicated in table 1.

S1 - Trails
Link: https://doi.org/10.6084/m9.figshare.19615599.v2
In this video, two simulations are shown : The left movie is obtained for weak obstacle spring

stiffness κ = 10, agent friction ζ = 2 and agent-agent repulsion µ = 0.02 and the right movie is
obtained for mild obstacle spring stiffness κ = 100, agent friction ζ = 1 and agent-agent repulsion
µ = 0.04. Both simulations show the spontaneous formation of trails of agents in a more or less
deformable field of obstacle. For weak obstacle spring stiffness (left movie), agents easily repulse
the obstacles as they move, creating large trails empty of obstacles that can merge or evolve over
time. For larger obstacle spring stiffness (right movie), the agents also organize in trails that push
the obstacles, creating tunnels with strong walls, more robust over time. It is noteworthy that trail
structures are only observed for weak or mild obstacle spring stiffness.

S2 - Travelling bands - strong obstacles
Link: https://doi.org/10.6084/m9.figshare.19615884.v3
Here, both simulations feature strong obstacle spring stiffness κ = 1000 and agent friction

ζ = 2. The left movie is obtained for weak agent-agent repulsion µ = 2.10−5 while the right movie
is obtained for µ = 10−3. In both situations, agents end up organizing in travelling bands on the
long run, but we can observe a first phase when agents try to organize in trails. This suggest that
the trail-like formation is only stable when agents have enough strength to push the obstacles as
they move. Comparing the left and right movie, we also observe that larger agent-agent repulsion
leads to larger clusters of agents.

S3 - Honneycomb structures
Link: https://doi.org/10.6084/m9.figshare.19615116.v2
We consider here the case of weak obstacle spring stiffness κ = 10. The left movie is obtained for

agent friction ζ = 0.2 and mild agent-agent repulsion µ = 0.05 while the right movie is obtained for
ζ = 1 and larger agent-agent repulsion µ = 0.1. As one can observe, when the agent-agent repulsion
is large enough in an easily deformable obstacle field, the agent phase wins over the obstacle phase,
creating regularly spaced islands of obstacles in the form of honneycomb structures.

S4 - Moving Clusters
Link: https://doi.org/10.6084/m9.figshare.19615878.v2
Here, the left movie features weak obstacles κ = 10, agent friction ζ = 0.2 and agent-agent

repulsion µ = 0.002, while the right movie is for κ = 100, ζ = 1 and µ = 0.004. When agent-
agent repulsion is low enough, agents spontaneously organize into more or less round clusters
surrounded by obstacles. This cluster formation happens very fast, and agent clusters then move
more or less fast depending on their environment. Large and slow clusters of agents are observed
in the left movie, where obstacles are very loose and agent-agent repulsion is a bit larger, while
more numerous, smaller and more stable agent clusters are observed in the right movie (where
agent-agent repulsion is a bit larger but obstacles are stronger).

S5 - Pinned Clusters
Link: https://doi.org/10.6084/m9.figshare.19615866.v1
In these movies, we consider a small agent friction ζ = 0.2 and agent-agent repulsion µ = 2.10−4,

for mild obstacle spring stiffness κ = 100 (left pannel) and for strong obstacles κ = 1000 (right
pannel). We classify these clusters as ’pinned’ as the agents organize very fast into small and
highly concentrated clusters that do not move (right pannel) or move very slow in the case of
mild obstacles. We can also observe merging of clusters in the case of mild obstacles (left video).
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In these extreme case, the force exerted by the stretched obstacles overcomes the other forces,
preventing the agent clusters to move further from their position.

B Supplementary material: Numerical codes for the Individual-
Based Model and Continuous Model simulations

Individual-Based model code
The MATLAB code corresponding to the simulations of Fig. 2 (Individual-Based model) can

be found at the following link: https://doi.org/10.6084/m9.figshare.19937861.v1
This supplementary material contains the following files:

• run SwOb IBM demo.m : file which allows to fix the parameter values (set to reproduce Fig
1 of the paper), create folders for registering the datafiles generated by the model, and run
the simulations

• SwObIBM.m : MATLAB function that allows, given a set of parameters provided as entry,
to run an entire simulation and register regularly the files in the specified data folder

• The other files (get IC.m, get neighborhood info.m, get pushing forces.m, make plot.m) are
intrinsic functions of the model, the description of which is contained in the corresponding
files.

Continuous model code
The MATLAB code corresponding to the simulations of Fig. 3 (Continuous model) can be

found at the following link: https://doi.org/10.6084/m9.figshare.19939409.v1
This supplementary material contains the following files:

• run Swimmer demo.m : file which allows to fix the parameter values (set to reproduce Fig
3 of the paper), create folders for registering the datafiles generated by the model, and run
the simulations

• SwimmerSOH.m : MATLAB function that allows, given a set of parameters provided as
entry, to run an entire simulation and register regularly the files in the specified data folder

• The other files (get constants.m, get eigenvalues F.m, get eigenvalues G.m, get F.m, get G.m,
get fluxes.m, get Jacobian F.m, get Jacobian G.m, mmat.m, convol.m, make plot.m) are in-
trinsic functions of the model, the description of which is contained in the corresponding
files.

C Numerical method for the continuum model

One of the difficulties in solving the nonlinear model (6) is the geometric constraint |Ω| = 1, and
the resulting non-conservativity of the model arising from the presence of the projection operator
PΩ⊥ . We rely on a method proposed in [31, 12] where the SOH model is approximated by a
relaxation problem consisting of an unconstrained conservative hyperbolic system supplemented
with a relaxation operator onto vector fields satisfying the constraint |Ω| = 1. The relaxation
model writes:

∂tρ
ϵ
g +∇ ·

(
U ϵρϵg

)
= 0

∂t(ρ
ϵ
gΩ

ϵ) +∇ ·
(
ρϵgV

ϵ ⊗ Ωϵ

)
+ d3∇ρϵg − γs∆

(
ρϵgΩ

ϵ
)
=
ρϵg
ϵ
(1− |Ωϵ|2)Ωϵ, (34)
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where

U ϵ = d1Ω
ϵ − 1

ξ
∇ρ̄ϵf − µ

ξ
∇ρϵg,

V ϵ = d2Ω
ϵ − 1

ξ
∇ρ̄ϵf − µ

ξ
∇ρϵg.

In the limit ϵ → 0, one can shows that (34) converges towards (6). The main idea is based on
the fact that the right-hand side of (34) is parallel to Ωϵ, and the proof is similar to [31].

The numerical method is adapted from [31], using the so-called splitting scheme in two steps
(dropping the ϵ for clarity):

• Step 1: Solve the conservative part:

∂tρg +∇ ·
(
Uρg

)
= 0 (35)

∂t(ρgΩ) +∇ ·
(
ρgV ⊗ Ω

)
+ d3∇ρg − γs∆

(
ρgΩ

)
= 0, (36)

• Solve the relaxation part:

∂tρg = 0

∂t(ρgΩ) =
ρg
ϵ
(1− |Ω|2)Ω

Writting Q =

 ρg
ρgΩx

ρgΩy

, and Q̃ = ρg ∗ Φ ∗ Φ, system (35) can be written as:

∂tQ+ ∂xF (Q,Qx,∆Qx) + ∂yG(Q,Qy,∆Qy) = 0, (37)

where we have denoted by ∆Qx (resp. ∆Qy) the derivative in x (resp. in y) of the Laplacian of
Q, and the fluxes write

F (Q,Qx,∆Q̃x) =

 d1Q(2)− 1
ξ
γρA

η Q(1)∆Q̃x ∗ Φ ∗ Φ− µ
ξQ(1)Qx(1)

d2
Q(2)2

Q(1) − 1
ξ
γρA

η Q(2)∆Q̃x ∗ Φ ∗ Φ− µ
ξQ(2)Qx(1) + d3Q(1)− γQx(2)

d2
Q(2)Q(3)

Q(1) − 1
ξ
γρA

η Q(3)∆Q̃x ∗ Φ ∗ Φ− µ
ξQ(3)Qx(1)− γQx(3),


and

G(Q,Qy,∆Q̃y) =

 d1Q(3)− 1
ξ
γρA

η Q(1)∆Q̃y ∗ Φ ∗ Φ− µ
ξQ(1)Qy(1)

d2
Q(2)Q(3)

Q(1) − 1
ξ
γρA

η Q(2)∆Q̃y ∗ Φ ∗ Φ− µ
ξQ(2)Qy(1)− γQy(2)

d2
Q(3)2

Q(1) − 1
ξ
γρA

η Q(3)∆Q̃y ∗ Φ ∗ Φ− µ
ξQ(3)Qy(1) + d3Q(1)− γQy(3).


The explicit time-discretization for Eq. (6) writes:

Q∗
i,j = Qn

i,j −
∆t

∆x

(
Fn
i+ 1

2 ,j
− Fn

i− 1
2 ,j

)
− ∆t

∆y

(
Gn

i,j+ 1
2
−Gn

i,j− 1
2

)
,

where

Fi+ 1
2 ,j

=
F (Qi,j) + F (Qi+1,j)

2
− 1

2
P 2(

∂F

∂Q
(Q̄i,j , Q̄xi,j ,

¯∆ ˜
xQi,j)

(
Qi+1,j −Qi,j

)
,

with

Q̄i,j =
Qi,j +Qi+1,j

2
, Qxi,j =

Qi+1,j −Qi,j

2
, Q̄xi,j =

Qxi,j +Qxi+1,j

2
,
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∆Q̃i,j ≈
Q̃i−1,j + Q̃i+1,j − 2Q̃i,j

∆x2
+
Q̃i,j−1 + Q̃i,j+1 − 2Q̃i,j

∆y2

and where P 2(∂F∂Q ) is a second polynomial of a matrix at the intermediate state of (Q̄i,j , Q̄xi,j ,
¯∆ ˜

xQi,j)

and (Q̄i+1,j , Q̄xi+1,j , ¯∆Qxi+1,j) computed following [16]. Terms in G are computed the same way.
Convoluted terms are computed using a double fast-Fourier transform as:

Q̃ = ρ ∗ Φ ∗ Φ = F−1

[
F

(
F−1

(
ρ̂Φ̂

)
Φ̂

)]
,

where we used the fast Fourier transform.
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