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Gif-sur-Yvette, France

Abstract

Optimization problems arising in signal and image processing involve an in-

creasingly large number of variables. In addition to the curse of dimension-

ality, another difficulty to overcome is that the cost function usually reads as

the sum of several loss/regularization terms, which are non-necessarily smooth

and possibly composed with large-size linear operators. Proximal splitting ap-

proaches are fundamental tools to address such problems, with demonstrated

efficiency in many applicative fields. In this paper, we present a new distributed

algorithm for computing the proximity operator of a sum of non-necessarily

smooth convex functions composed with arbitrary linear operators. Our algo-

rithm relies on a primal-dual splitting strategy, and benefits from established

convergence guaranties. Each involved function is associated with a node of a

hypergraph, with the ability to communicate with neighboring nodes sharing

the same hyperedge. Thanks to this structure, our method can be efficiently

implemented on modern parallel computing architectures, distributing the com-

putations on multiple nodes or machines, with controlled requirements for syn-

chronization steps. Good numerical performance and scalability properties are
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demonstrated on a problem of video sequence denoising. Our code implemented

in Julia is made available at https://github.com/MarinENSTA/distributed_

julia_denoising.

Keywords: Convex optimization, proximal methods, distributed algorithm,

parallel programming, video restoration.

1. Introduction

Numerous problems in data science such as video restoration require the

processing of large datasets. Optimal processing are often obtained by solv-

ing nonsmooth optimization problems, for which proximity operators appear

as fundamental tools. In this context, it is necessary to propose parallel and5

distributed methods to compute proximity operators involved in the solution of

high-dimensional problems, especially when the objective function is the sum

of several convex non-necessarily smooth functions [1, 2]. In the general case, a

closed form expression of the proximity operator of such composite term does

not exist, and developing iterative strategies becomes necessary.10

Primal-dual splitting methods are prominently used when dealing with con-

vex optimization problems where large-size linear operators are involved [3, 4, 5,

6]. The main advantage of many of these algorithms is that they do not require

computing the inverse of these linear operators, which makes this class of algo-

rithms well suited for large-scale problems encountered in various application15

fields [7, 8, 9]. Primal-dual techniques are based on several well-known strate-

gies such as the Forward-Backward iteration [10, 11], the Forward-Backward-

Forward iteration [12, 13], the Douglas-Rachford algorithm [14, 15], or the Al-

ternating Direction Method of Multipliers [16, 17, 18, 19, 20]. Moreover, primal-

dual algorithms can be combined with a block-coordinate approach, where at20

each iteration only a few blocks are activated following a specific selection rule

[21, 22]. These algorithms can achieve fast convergence speed with contained

memory requirement. Both stochastic [23, 24] and deterministic [25, 26] versions

of these have been used in image processing and machine learning applications.
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In the latter context, algorithms based on a dual Forward-Backward approach25

are often referred to as dual ascent methods.

The aforementioned algorithms were originally made available with single-

node implementations, which may be suboptimal or even unsuitable, when deal-

ing with massive datasets. Therefore, various asynchronous or distributed ex-

tensions have been proposed [16, 27, 18, 28, 29], where each term is handled30

independently by a processing unit and the convergence toward an aggregate

solution to the optimization problem is ensured via a suitable communication

strategy between those processing units. However, the convergence analysis of

primal-dual distributed algorithms is usually based on fixed-point theory, that

require specific probabilistic assumptions on the block update rule. Moreover,35

the integration of accelerations, such as preconditioning, into those distributed

algorithms is difficult.

In this paper, we focus instead on another approach, namely the dual block

preconditioned forward-backward algorithm that we recently proposed in [25],

which can be viewed as a block-coordinate implementation of the dual ascent40

method. We propose here a distributed asynchronous version for the latter, by

considering each involved function as locally related to a node of a connected

hypergraph, where communications are allowed between neighboring nodes that

share the same hyperedge. This leads to a novel scheme for computing the

proximity operator of any sum of convex functions involving linear operators,45

which is well-suited to architectures involving multiple computing units. As

its centralized counterpart [25], our method takes advantage of variable metric

techniques that have been shown to be efficient for accelerating the convergence

speed of proximal approaches [30, 31, 32]. It also benefits from the classical key

advantage of proximal splitting strategies, namely its ability to handle a finite50

sum of convex functions without having to invert any of the involved linear

operators. Furthermore, its convergence is guaranteed under mild assumptions

on the node activation and synchronization rules.

The remainder of this paper is organized as follows: in Section 2 we recall

some fundamental background and present the centralized dual block-coordinate55
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forward-backward algorithm from [25] for computing proximity operators. In

Section 3, we introduce our novel asynchronous version for this algorithm, its

convergence properties and a dimension reduction strategy for limiting commu-

nication cost within nodes. In Section 4, we discuss a useful special case of our

algorithm for an important class of hypergraph structure and we describe its60

practical implementation on a distributed architecture. Section 4.3 shows the

good performance of the proposed algorithm in the context of video denoising.

Finally, some conclusions are drawn in Section 5.

2. Problem formulation

2.1. Optimization background65

Let Γ0pRN q denote the class of proper lower-semicontinuous convex functions

from RN to p´8,`8s and let B P RNˆN be a symmetric positive definite

matrix. The proximity operator of ψ P Γ0pRN q at rx P RN relative to the metric

induced by B is denoted by proxB,ψprxq and defined as the unique solution to

the following minimization problem [33, 1]:

minimize
xPRN

ψpxq `
1

2
}x´ rx}2B , (1)

where the weighted norm } ¨ }B is defined as x ¨ |B ¨ y
1{2

with x ¨ | ¨ y the usual

scalar product of RN . When B is set to IN , the identity matrix of RN , the

standard proximity operator proxψ is recovered.

We now define the conjugate of a function ψ P Γ0pRN q as

ψ˚ : RN Ñ p´8,`8s : x ÞÑ sup
vPRN

pxv | xy ´ ψpvqq . (2)

Following Moreau’s decomposition theorem [34],

proxB,ψ˚ “ IN ´B
´1proxB´1,ψpB ¨q. (3)
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2.2. Minimization problem

This paper addresses the problem of computing the proximity operator of

the following sum of functions at some given point rx of RN :

`

@x P RN
˘

Gpxq “
J
ÿ

j“1

gjpAjxq, (4)

where, for every j P t1, . . . , Ju, gj : RMj Ñ p´8,`8s is a proper lower-

semicontinuous convex possibly nonsmooth function and Aj is a linear operator

in RMjˆN . In addition, it is assumed that XJj“1dom pgj ˝Ajq ‰ ∅.

Computing the proximity operator of G amounts to finding the solution to the

following minimization problem:

Find px “ proxGprxq “ argmin
xPRN

J
ÿ

j“1

gjpAjxq `
1

2
}x´ rx}2. (5)

As we will see in Section 4.3, the latter problem also arises in the computation

of the maximum a posteriori solution for the denoising problem that consists of

recovering px from a noisy observation rx in the presence of an additive zero-mean

white Gaussian noise and of a prior density expp´Gq. [1].70

Primal-dual algorithms [10, 14, 15, 16] amounts to solve Problem (5) by

making use of its dual formulation given by:

Find py “ argmin
y“pyjq1ďjďJPRM

1

2

›

›

›
rx´

J
ÿ

j“1

AJj y
j
›

›

›

2

`

J
ÿ

j“1

g˚j py
jq, (6)

where M “
řJ
j“1Mj and pg˚j q1ďjďJ are the Fenchel-Legendre conjugate func-

tions of pgjq1ďjďJ . Particularly efficient primal-dual approaches take advantage

of the strongly convex term involved in the cost function in (5) [35, 36, 25].

In this work, we focus on the Dual Block Preconditioned Forward-Backward

algorithm, recently proposed in [25] (see Algorithm 1).75

Algorithm 1 benefits from the acceleration provided by variable metric meth-
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Algorithm 1: Dual Block Preconditioned Forward-Backward

1 Initialization:

2 Bj P RMjˆMj with Bj ľ AjA
J
j , @j P t1, . . . , Ju

3 ε P p0, 1s, pyj0q1ďjďJ P R
M , x0 “ rx´

J
ÿ

j“1

AJj y
j
0.

4 Main loop:
5 for n “ 0, 1, . . . do
6 γn P rε, 2´ εs
7 jn P t1, . . . , Ju

8 ryjnn “ yjnn ` γnB
´1
jn
Ajnxn

9 yjnn`1 “ ryjnn ´ γnB
´1
jn

proxγnB´1
jn
,gjn

`

γ´1
n Bjnry

jn
n

˘

10 yjn`1 “ yjn, @j P t1, . . . , Juztjnu

11 xn`1 “ xn ´A
J
jn
pyjnn`1 ´ y

jn
n q.

12 end

ods through the introduction of preconditioning matrices pBjq1ďjďJ . Note that

a non-preconditioned version is obtained by setting p@j P t1, . . . , Juq Bj “

}Aj}
2IMj

where }Aj} denotes the spectral norm of Aj . Moreover, when at it-80

eration n P N, all the dual variables yjnn with jn P t1, . . . , Ju are updated in a

parallel manner followed by an update of the primal variable xn, one recovers

the Parallel Dual Forward-Backward proposed in [35]. Convergence guarantees

on both generated primal sequence pxnqnPN and dual sequences pyjnqnPN˚ with

j P t1, . . . , Ju have been established in [25] under a quasi-cyclic rule on the block85

selection (i.e., each block must be updated at least once every K iterations, with

K ě J). Furthermore, results in terms of practical convergence speed have re-

vealed the effectiveness of the above algorithm compared to existing algorithms

in the literature.

3. Proposed distributed algorithm90

We ground our work on the previous algorithm in order to design a novel

distributed (i.e., multi-node) solution to Problem (5). This can be achieved by

resorting to a global consensus technique [37, 16, 27, 3, 38] and rewriting the
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problem in the following form:

Find px “ argmin
x“pxj

q1ďjďJPΛ

J
ÿ

j“1

gjpAjx
jq `

1

2

J
ÿ

j“1

}xj ´ rx}2Ωj
, (7)

where pΩjq1ďjďJ are diagonal N ˆN matrices with positive diagonal elements

and Λ is the vector subspace of RNJ defined so as to introduce suitable cou-

pling constraints on the vectors pxjq1ďjďJ . The most standard choice for such

constraint set is

Λ “

$

’

’

’

&

’

’

’

%

»

—

—

—

–

x1

...

xJ

fi

ffi

ffi

ffi

fl

P RNJ | x1 “ . . . “ xJ

,

/

/

/

.

/

/

/

-

. (8)

Provided that
J
ÿ

j“1

Ωj “ IN , (9)

we notice that the solution to Problem (7) yields a vector in RNJ ,for which the

components pxjq1ďjďJ are all equal, and identical to the solution px to Problem

(5).

3.1. Local form of consensus

Let us now split the constraint set Λ into L local linear constraints pΛ`q1ď`ďL.

For every ` P t1, . . . , Lu, each constraint set Λ` handles a nonempty subset V`
of t1, . . . , Ju with cardinality κ` such that, for every x “ rpx1qJ, . . . , pxJqJsJ P

RNJ ,

x P Λ ô p@` P t1, . . . , Luq pxjqjPV`
P Λ`. (10)

Examples of vector subspaces pΛ`q1ď`ďL allowing this condition to be satisfied95

are discussed in Section 3.3. Each node j P t1, . . . , Ju is associated with function

gj , which is considered local and processes its own private data. Moreover, each

node j is allowed to communicate with nodes that belong to the same set V`.

The sets pV`q1ď`ďL can thus be viewed as the hyperedges of a hypergraph with
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J nodes. It is worth noticing that the case of a graph topology, considered for100

instance in the distributed projected subgradient method from [38], is a special

case of this formulation when setting the cardinality of the set V` to κ` “ 2 for

every ` P t1, . . . , Lu.

Figure 1 shows an illustrative example, where the hypergraph is composed of

J “ 7 nodes associated with functions pgjq1ďjď7 and L “ 4 hyperedges rep-105

resented by the sets pV`q1ď`ď4 with cardinalities κ1 “ 3, κ2 “ 2, κ3 “ 2, and

κ4 “ 3, respectively. Node 4 belonging to the set V2 can communicate with node

5. Besides, node 3 belongs to V1 and V4, hence it is allowed to communicate

with nodes t1, 2, 5, 7u.

1

2

4

3

5

6
7

V1

V2
V3

V4

Figure 1: Connected hypergraph of J “ 7 nodes and L “ 4 hyperedges.

Let us define, for every ` P t1, . . . , Lu, the matrix S` P RNκ`ˆNJ associated

with constraint set Λ`, which extracts the vector pxjqjPV`
from the concatenated

vector x “ rpx1qJ, . . . , pxJqJsJ P RNJ :

pxjqjPV`
“ rpxip`,1qqJ, . . . , pxip`,κ`qqJsJ “ S` x, (11)

where ip`, 1q, . . . , ip`, κ`q denote the elements of V` ordered in an increasing

manner. The transpose matrix of pS`q1ď`ďL is such that, for every v` “

pv`,kq1ďkďκ`
P RNκ` ,

x “ rpx1qJ, . . . , pxJqJs “ SJ` v
`, (12)
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where

xj “

$

’

&

’

%

v`,k if j “ ip`, kq with k P t1, . . . , κ`u

0 otherwise.

(13)

From a signal processing standpoint, the matrix S` can be viewed as a decima-110

tion operator, while its transpose is the associated interpolator.

The above definitions allow us to propose the following equivalent formula-

tion of Problem (7):

Find px “ argmin
x“pxj

q1ďjďJPRNJ

J
ÿ

j“1

gjpAjx
jq`

L
ÿ

`“1

ιΛ`
pS` xq`

1

2

J
ÿ

j“1

}xj ´ rx}2Ωj
.

(14)

The main difference between formulations (7) and (14) is the introduction of

the term
řL
`“1 ιΛ`

pS` xq, where ιΛ`
denotes the indicator function of the set Λ`,

which is 0 for every z P Λ`, and `8 elsewhere.

This latter formulation makes the link with Problem (5) more explicit.115

More precisely, in order to solve Problem (14) using Algorithm 1, it is nec-

essary to set:

• J 1 “ J ` L,

• p@` P t1, . . . , Luq MJ`` “ Nκ`,

• M 1 “
řJ 1

j“1Mj ,120

• p@j P t1, . . . , Juq Aj “ r 0 . . . 0
loomoon

Npj´1qˆ

AjΩ
´1{2
j 0 . . . 0

loomoon

NpJ´jqˆ

s,

• D “ Diag pΩ
´1{2
1 , . . . ,Ω

´1{2
J q,

• p@` P t1, . . . , Luq gJ`` “ ιΛ`
and AJ`` “ S`D.

9



Then, Problem (14) is recast in the following way:

Find px “Dpx1 such that

px1 “ argmin
x1PRNJ

J 1
ÿ

j“1

gjpAjx
1q `

1

2
}x1 ´ rx1}2, (15)

where rx1 “ rΩ
1{2
1 rxJ, . . . ,Ω

1{2
J rxJsJ P RNJ .

3.2. Derivation of the proposed algorithm125

The application of Algorithm 1 for the resolution of Problem (15) yields:

—

—

—

—

—

—

—

—

—

—

–

Bj P RMjˆMj with Bj ľ AjA
J
j , j P t1, . . . , J 1u

ε P p0, 1s

pyj0q1ďjďJ 1 P RM
1

x10 “ rx1 ´
řJ 1

j“1 A
J
j y

j
0.

For n “ 0, 1, . . .
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

γn P rε, 2´ εs

jn P t1, . . . , J
1u

ryjnn “ yjnn ` γnpBjnq
´1Ajnx

1
n

yjnn`1 “ ryjnn ´ γnpBjnq
´1proxγnpBjn q

´1,gjn

`

γ´1
n Bjnry

jn
n

˘

yjn`1 “ yjn, j P t1, . . . , J 1uztjnu

x1n`1 “ x1n ´AJjnpy
jn
n`1 ´ y

jn
n q.

(16)

The following convergence properties of the above algorithm can be deduced

from [25, Prop. 1-2]:

Theorem 3.1. Assume that

(i) pgjq1ďjďJ are semi-algebraic functions, and for every j P t1, ..., Ju, the

restriction of g˚j on its domain is continuous ;130

(ii) the sequence pjnqnPN follows a quasi-cyclic rule, i.e., there exists K ě J 1

such that, for every n P N, t1, . . . , J 1u Ă tjn, . . . , jn`K´1u.
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Let px1nqnPN, pyn “ py
j
nq1ďjďJ 1qnPN be sequences generated by Algorithm (16),

and pxnqnPN “ pDx1nqnPN. Then, if pynqnPN is bounded, then px1nqnPN converges

to the solution px1 to Problem (15), and pxnqnPN converges to the solution px to

Problem (7). Moreover, there exists α P p0,`8q such that

lim
nÑ`8

nα}xn ´ px} P R. (17)

We now show how the above algorithm can be simplified.

First, note that p@j P t1, . . . , Juq AjA
J
j “ AjΩ

´1
j AJj and p@` P t1, . . . , Luq

}S`D} “ maxjPV`
}Ω
´1{2
j }. It can also be observed that p@` P t1, . . . , Luq p@γ P

s0,`8rq,

proxγ´1gJ``
pγ´1¨q “ γ´1ΠΛ`

, (18)

where ΠΛ`
is the linear projector onto the vector space Λ`.

Hence, by setting

p@` P t1, . . . , Luq BJ`` “ ϑ´1
` INκ`

(19)

with ϑ` “ minjPV`
}Ωj}, and p@j P t1, . . . , Juq

V˚j “
 

p`, kq
ˇ

ˇ ` P t1, . . . , Lu, k P t1, . . . , κ`u and ip`, kq “ j
(

, (20)
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Algorithm (16) can be re-expressed as

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Bj P RMjˆMj with Bj ľ AjΩ
´1
j AJj , j P t1, . . . , Ju

ϑ` “ min
jPV`

}Ωj}, ` P t1, . . . , Lu

ε P p0, 1s

z`0 P RNκ` , ` P t1, . . . , Lu

yj0 P R
Mj , j P t1, . . . , Ju

xj0 “ rx´ Ω´1
j

´

AJj y
j
0 `

ř

p`,kqPV˚j
z`,k0

¯

, j P t1, . . . , Ju.

For n “ 0, 1, . . .
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

γn P rε, 2´ εs

jn P t1, . . . , J ` Lu

If jn ď J
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

ryjnn “ yjnn ` γnpBjnq
´1Ajnx

jn
n

yjnn`1 “ ryjnn ´ γnpBjnq
´1proxγnpBjn q

´1,gjn

`

γ´1
n Bjnry

jn
n

˘

yjn`1 “ yjn, j P t1, . . . , Juztjnu

z`n`1 “ z`n, ` P t1, . . . , Lu

xjnn`1 “ xjnn ´ Ω´1
jn
AJjnpy

jn
n`1 ´ y

jn
n q

xjn`1 “ xjn, j P t1, . . . , Juztjnu

else
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

`n “ jn ´ J

rz`nn “ z`nn ` γnϑ`npx
j
nqjPV`n

z`nn`1 “ rz`nn ´ΠΛ`n
prz`nn q

z`n`1 “ z`n, ` P t1, . . . , Luzt`nu

yjn`1 “ yjn, j P t1, . . . , Ju

For k “ 1, . . . , κ`n
Y

x
ip`n,kq
n`1 “ x

ip`n,kq
n ´ Ω´1

ip`n,kq
pz`n,kn`1 ´ z

`n,k
n q

xjn`1 “ xjn, j R V`n .

(21)
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In this algorithm, for increased readibility, we have set, for every n P N,

xn “ rpx
1
nq
J, . . . , pxJnq

JsJ “Dx1n, (22)

z`n “ yJ``n P RNκ` , rz`n “ ryJ``n P RNκ` . (23)

Furthermore, it can be noticed that, for every n P N such that jn “ J ` `n ą J ,

ΠΛ`n
pz`nn`1q “ ΠΛ`n

`

rz`nn ´ΠΛ`n
prz`nn q

˘

“ ΠΛ`n

`

rz`nn
˘

´ΠΛ`n

`

ΠΛ`n
prz`nn q

˘

“ 0. (24)

Since, for every ` P t1, . . . , Luzt`nu, z
`
n`1 “ z`n, the latter equality can be

extended by induction to

p@n P Nqp@` P t1, . . . , Luq ΠΛ`
pz`nq “ 0, (25)

using an appropriate initialization of the algorithm (e.g., by choosing p@` P

t1, . . . , Luq z`0 “ 0). Hence, for every n P N such that jn “ J ` `n ą J ,

ΠΛ`n
prz`nq “ γnϑ`nΠΛ`n

`

pxjnqjPV`n

˘

, (26)

which implies that

z`nn`1 ´ z
`n
n “ γnϑ`n

`

pxjnqjPV`n
´ΠΛ`n

`

pxjnqjPV`n

˘˘

. (27)

The second part of iteration n of (21) dealing with the case when jn ą J can

then be re-expressed as shown in the projection step of Algorithm 2 (lines 20 to135

26). In the resulting algorithm, we were able to drop the variables pz`nq1ď`ďL,

for every n P N.

The body of our proposed Algorithm 2 is composed of two main parts:

13



Algorithm 2: Distributed Preconditioned Dual Forward-Backward

1 Initialization:
2 V` ” index set of nodes in hyperedge ` P t1, . . . , Lu

3 Bj P RMjˆMj with Bj ľ AjΩ
´1
j AJj , j P t1, . . . , Ju

4 ϑ` “ min
jPV`

}Ωj}, ` P t1, . . . , Lu

5 ε P p0, 1s

6 yj0 P R
Mj , xj0 “ rx´ Ω´1

j AJj y
j
0, j P t1, . . . , Ju.

7 Main loop:
8 for n “ 0, 1, . . . do
9 γn P rε, 2´ εs

10 jn P t1, . . . , J ` Lu
11 if jn ď J then
12 Local optimization:
13 ryjnn “ yjnn ` γnpBjnq

´1Ajnx
jn
n

14 yjnn`1 “ ryjnn ´ γnpBjnq
´1proxγnpBjn q

´1,gjn

`

γ´1
n Bjnry

jn
n

˘

15 yjn`1 “ yjn, j P t1, . . . , Juztjnu

16 xjnn`1 “ xjnn ´ Ω´1
jn
AJjnpy

jn
n`1 ´ y

jn
n q

17 xjn`1 “ xjn, j P t1, . . . , Juztjnu

18 else
19 Projection:
20 `n “ jn ´ J

21 yjn`1 “ yjn, j P t1, . . . , Ju

22 p`nn “ ΠΛ`n

`

pxjnqjPV`n

˘

23 for k “ 1, . . . , κ`n do

24 x
ip`n,kq
n`1 “ x

ip`n,kq
n ` γnϑ`nΩ´1

ip`n,kq
pp`n,kn ´ x

ip`n,kq
n q

25 end

26 xjn`1 “ xjn, j R V`n .
27 end

28 end
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• A first local optimization step (lines 13 to 17) which is reminiscent of140

the Dual Block Forward-Backward algorithm where, at each iteration, a

block jn is selected and the associated dual and primal variables yjnn (line

14) and xjnn (line 16) are updated, respectively. Note that a fundamental

difference between the proposed algorithm and Algorithm 1 lies in the

fact that each block jn is now associated with a local primal variable xjnn145

whereas, in Algorithm 1, xn was a shared variable.

• A projection step (lines 20 to 26) in which a set V`n is selected and all

the variables pxjnqjnPV`n
are updated by means of a projection operating

over the selected set V`n .

In Algorithm 2, all computation steps only involve local variables, which is150

suitable for parallel processing. A high degree of flexibility is allowed in the

quasi-cyclic rule for choosing the indices jn and `n at each iteration n. The

distributed Algorithm 2 inherits all the advantages of primal-dual methods, in

particular it requires no inversion of matrices pAjq1ďjďJ , which is critical when

these matrices have a complex structure and are of very large size. Note that155

the proposed approach is quite different from the ones developed in [27, 28, 38]

since it does not assume a random sweeping rule for the block index selection.

Moreover, in contrast with the aforementioned works, its convergence analysis,

secured by Theorem 3.1, does not rely on the nonexpansiveness property of the

involved operators.160

3.3. Consensus choice

We now discuss practical settings for the vector spaces pΛ`q1ď`ďL and the

weights and the weight matrices pΩjq1ďjďJ , that parameterize our consensus165

formulation (14). These choices are of main importance to devise efficient dis-

tributed schemes with limited communication cost and good practical conver-

gence speed.
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3.3.1. Generic case

When the operators pAjq1ďjďJ have no specific structure, a natural choice

for the vector spaces pΛ`q1ď`ďL is to adopt a form similar to that of Λ in (8):

p@` P t1, . . . , Luq Λ` “

$

’

’

’

&

’

’

’

%

»

—

—

—

–

v`,1

...

v`,κ`

fi

ffi

ffi

ffi

fl

P RNκ` | v`,1 “ . . . “ v`,κ`

,

/

/

/

.

/

/

/

-

. (28)

Note that (8), (10) and (28) imply that the hypergraph induced by the hy-170

peredges pV`q1ď`ďL is connected (Figure 1 is an example of such a connected

hypergraph). In this context, the connectivity of the hypergraph is essential in

order to allow the global consensus solution to be reached.

For every ` P t1, . . . , Lu, the projection onto Λ` is then simply expressed as

`

@pv`,kq1ďkďκ`
P RNκ`

˘

ΠΛ`

`

pv`,kq1ďkďκ`

˘

“ rpv`qJ, . . . , pv`qJsJ, (29)

where

v` “ mean
`

pv`,kq1ďkďκ`

˘

(30)

and meanp¨q designates the arithmetic mean operation (i.e. mean
`

pv`,kq1ďkďκ`

˘

“

κ´1
`

řκ`

k“1 v
`,k). In addition, Condition (9) is met by simply choosing p@j P

t1, . . . , Juq Ωj “ ωjIN , where pωjq1ďjďJ P p0, 1s
J are such that

řJ
j“1 ωj “ 1.

These simplifications lead to the following modifications of lines 22-25 in Algo-

rithm 2:

x`nn “ mean
`

pxjnqjPV`n

˘

For k “ 1, . . . , κ`n
Y

x
ip`n,kq
n`1 “ x

ip`n,kq
n ` γnϑ`nω

´1
ip`n,kq

px`nn ´ x
ip`n,kq
n q.

(31)

3.3.2. Dimension reduction

Under its previous form, Algorithm 2 requires each node of the hypergraph

to handle a local copy of several variables. In particular, for the j-th node, a vec-
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tor xjn of dimension N needs to be stored, which may be prohibitive for highly

dimensional problems. Fortunately, very often in signal and image processing

applications, the operators pAjq1ďjďJ have a sparse block structure, which mit-

igates this problem. More specifically, it will be assumed subsequently that

p@j P t1, . . . , Juq
`

@xj “ prxjstq1ďtďT P RN
˘

Ajx
j “

ÿ

tPTj

Aj,trxjst (32)

where, for every j P t1, . . . , Ju, rxjst is a vector corresponding to a block of175

data of dimension L, T is the overall number of blocks (i.e., N “ TL), and

Tj Ă t1, . . . , T u defines the reduced index subset of the components of vector xj

acting on the operator Aj . In the above equation, pAj,tqtPTj
are the associated

reduced-size matrices of dimensions Mj ˆ L. Similarly to the way xj has been

block-decomposed, we split the diagonal matrix Ωj as Ωj “ Diag pΩj,1, . . . ,Ωj,T q180

where, for every t P t1, . . . , T u, Ωj,t is a diagonal matrix of size L ˆ L. It

then obviously holds that AjΩ
´1
j AJj “

ř

tPTj
Aj,tΩ´1

j,tAJj,t. To avoid degenerate

cases, we will subsequently assume that p@j P t1, . . . , Juq Tj ‰ ∅ and
J
ď

j“1

Tj “

t1, . . . , T u.

In our distributed formulation, the specific form of the operators pAjq1ďjďJ

suggests to set the vector subspaces pΛ`q1ď`ďL so as to reach the consensus only

for the components prxjstq1ďjďJ,tPTj
of vectors pxjq1ďjďJ . This means that the

space Λ (resp. Λ` with ` P t1, . . . , Lu) is defined as

pxjq1ďjďJ P Λ ô p@pj, j1q P t1, . . . , Ju2qp@t P Tj X Tj1q rxjst “ rx
j1st

(33)

(resp. pxjqjPV`
P Λ` ô p@pj, j1q P V2

`qp@t P Tj X Tj1q rxjst “ rx
j1stq.

It can be noticed that, although the hypergraph must still be built so that (10)185

holds, Λ is no longer given by (8), since the components prxjstq1ďjďJ,tRTj
are

unconstrained. The main advantage of this choice is that Problem (7) then

17



decouples into two optimization problems:

• the minimization of the function

prxjstq1ďjďJ,tPTj
ÞÑ

J
ÿ

j“1

gj

´

ÿ

tPTj

Aj,trxjst
¯

`
1

2

J
ÿ

j“1

ÿ

tPTj

}rxjst´rrxst}
2
Ωj,t

(34)

subject to Constraint (33);

• the unconstrained minimization of the function

prxjstq1ďjďJ,tRTj
ÞÑ

J
ÿ

j“1

ÿ

tRTj

}rxjst ´ rrxst}
2
Ωj,t

. (35)

Since the second problem is trivial, the variables prxjnstq1ďjďJ,tRTj
generated at190

each iteration n P N of Algorithm 2 are useless and, consequently, they can

be discarded. By doing so, only the |Tj | vectors1 prxjnstqtPTj
of dimension L

need to be stored at the j-th node (instead of T vectors of this size) and the

number of computations to be performed during the projection step is also

sharply diminished.195

This yields Algorithm 3 where, in the synchronization step, averaging oper-

ations corresponding to the projection onto Λ`n have been substituted for lines

22-25 in Algorithm 2. The notation

p@t P t1, . . . , T uq T˚t “
 

j P t1, . . . , Ju
ˇ

ˇ t P Tj
(

, (36)

has been introduced for the computation of the averages. In particular, in line

29 of Algorithm 3, if V`XT˚t is a singleton, which means that the t-th block com-

ponent of the vector x appears only once in the expression of gjpAjxq for indices

j in the `n-th hyperedge, then the averaging reduces to setting rxjn`1st “ rx
j
nst.

It is also worthwhile to note that, when p@j P t1, . . . , Juq Tj “ t1, . . . , T u, the

1|S| is the cardinality of a set S.
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consensus solution described in Section 3.3.1 is recovered. It must be nonetheless

pointed out that, in general, to ensure the equivalence between the minimiza-

tion of (34) subject to Constraint (33) and the resolution of Problem (5), the

following condition has to be substituted for (9):

p@t P t1, . . . , T uq
ÿ

jPT˚t

Ωj,t “ IL. (37)

In Algorithm 3, this was simply achieved by setting p@j P t1, . . . , Juq p@t P Tjq

Ωj,t “ ωj,tIL, where pωj,tq1ďjďJ,tPTj are positive real such that p@t P t1, . . . , T uq
ř

jPT˚t
ωj,t “ 1. In turn, the notation pΩj,tq1ďjďJ,tRTj is no longer used in this

algorithm.

Algorithm 3 can give rise to a variety of distributed implementations. In the200

remainder of the paper, we will focus on a useful, simpler, specific instance of

this algorithm.

4. A useful special case205

Let us consider the case when C ď J processing units are available. To

simplify our presentation, we will restrict our attention to a case of practical

interest, that arises for example in the video denoising application described in

Section 4.3, by making the following assumptions.

Assumption 4.1.210

(i) The hyperedges pV`q1ď`ďC form a partition of t1, . . . , Ju.

(ii) For every ` P t1, . . . , Cu, let TV`
“
Ť

jPV`
Tj.

(a) For every p`, `1q P t1, . . . , Cu2, TV`
X TV`1

“ ∅ if |`´ `1| ą 1.

(b) For every ` P t2, . . . , C ´ 1u, TV`´1
X TV`

X TV``1
“ ∅.

An example of hypergraph satisfying Assumption 4.1(i) is displayed in Figure 2.215

For every ` P t1, . . . , Cu, TV`
is the set of the block indices t of the components
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Algorithm 3: Distributed Preconditioned Dual Forward-Backward af-
ter Dimension Reduction

1 Initialization:
2 V` ” index set of nodes in hyperedge ` P t1, . . . , Lu
3 Tj ” index set of blocks used at node j P t1, . . . , Ju
4 T˚t ” index set of nodes using block t P t1, . . . , T u

5 tωj,t | 1 ď j ď J, t P Tju Ă p0, 1s such that p@t P t1, . . . , T uq
ÿ

jPT˚t

ωj,t “ 1

6 Bj P RMjˆMj with Bj ľ
ÿ

tPTj

ω´1
j,tAj,tA

J
j,t, j P t1, . . . , Ju

7 ϑ` “ min
jPV`,tPTj

ωj,t, ` P t1, . . . , Lu

8 ε P p0, 1s

9 yj0 P R
Mj , rxj0st “ rrxst ´ ω

´1
j,tA

J
j,ty

j
0, j P t1, . . . , Ju, t P Tj .

10 Main loop:
11 for n “ 0, 1, . . . do
12 γn P rε, 2´ εs
13 jn P t1, . . . , J ` Lu
14 if jn ď J then
15 Local optimization:

16 ryjnn “ yjnn ` γnB
´1
jn

ÿ

tPTjn

Ajn,trxjnn st

17 yjnn`1 “ ryjnn ´ γnB
´1
jn

proxγnB´1
jn
,gjn

`

γ´1
n Bjnry

jn
n

˘

18 yjn`1 “ yjn, j P t1, . . . , Juztjnu
19 for t P Tjn do

20 rxjnn`1st “ rx
jn
n st ´ ω

´1
jn,t
AJjn,tpy

jn
n`1 ´ y

jn
n q

21 end

22 prxjn`1stqtPTj
“ prxjnstqtPTj

, j P t1, . . . , Juztjnu

23 else
24 Projection:
25 `n “ jn ´ J

26 yjn`1 “ yjn, j P t1, . . . , Ju
27 for j P V`n do
28 for t P Tj do
29 rxjn`1st “

rxjnst ` γnϑ`nω
´1
j,t

`

mean
`

prxj
1

n stqj1PV`nXT˚t

˘

´ rxjnst
˘

30 end

31 end

32 prxjn`1stqtPTj
“ prxjnstqtPTj

, j R V`n .
33 end

34 end
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rxjst where j is any node in V`. According to Assumption 4.1-(ii)(a), these

indices may only be common to hyperedges having preceding or following index

values (i.e. ` ´ 1 or ` ` 1). Finally, Assumption 4.1-(ii)(b) means that no

intersection is allowed between block indices shared with the preceding and the220

succeeding hyperedges.

1

2

4

3

5

6 7

V1

V2

V3

V4

V5

Figure 2: Hypergraph of J “ 7 nodes, C “ 4 computing units and L “ 5 hyperedges.

4.1. Form of the algorithm

A practical instance of Algorithm 3 is then obtained by setting L “ C`1 and

by assuming that each hyperedge V` with ` P t1, . . . , Cu corresponds to a given

computing unit where the computations are locally synchronized. In addition,225

hyperedge VL is set to t1, . . . , Ju in order to model global synchronization steps

consisting of an averaging over all the available nodes. An example of such a

structure is illustrated in Figure. 3. At each iteration n, only a subset Jn,` of

dual variable indices is activated within the `-th hyperedge. Their update is

followed by either a possible local synchronization or a global one.230

Algorithm 4 summarizes the proposed approach. For simplicity, the index

L has been dropped in variable ϑL. Note that, if the local synchronization step

is omitted (by setting rxjn`1st “ rx
j
n`1{2st in line 29), the algorithm still makes

sense since it can be easily shown that it actually corresponds to a rewriting of

Algorithm 3 in the case when L “ 1 and V1 “ t1, . . . , Ju. Note that in the case235

of Algorithm 4, the global synchronization step is mandatory although it does

not neeed to be performed at each iteration, but only in a quasi-cyclic manner.
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Conversely, this step may never be requested in Algorithm 3.

It should be emphasized that even in the case when all the dual variables

are updated iteratively (i.e., p@` P t1, . . . , Luq p@n P Nq Jn,` “ V`), Algorithm240

4 exhibits a different structure from that of the parallel dual forward-backward

algorithm in [35].

1

2

4

3

5

6 7

V5

V1

Figure 3: Hypergraph of J “ 8 nodes including a fictitious node in charge of global
synchronization, C “ 4 computing units and L “ 1 hyperedge.

4.2. Distributed implementation

We now look more precisely at the implementation of Algorithm 4 on a dis-

tributed architecture with C P N˚ computing units, each computing unit being245

indexed by an integer c P t1, . . . , Cu. Figure 4 (top) shows an illustrative exam-

ple of C “ 4 computing units based on the hypergraph defined in Figure 2.

c “ 1 c “ 2 c “ 3 c “ 4

1 2 3 4 5 6 7

c “ 1 c “ 2 c “ 3 c “ 4

1 2 3 4 5 6 7V5

Figure 4: Example of partioning on C “ 4 computing units, for the hypergraphs of
Fig. 2 (top) and Fig. 3 (bottom), respectively.
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Algorithm 4: Special case of distributed Preconditioned Dual
Forward-Backward

1 Initialization:
2 V` ” index set of nodes associated with computing unit ` P t1, . . . , Cu
3 Tj ” index set of blocks used at node j P t1, . . . , Ju
4 T˚t ” index set of nodes using block t P t1, . . . , T u

5 tωj,t | 1 ď j ď J, t P Tju Ă p0, 1s such that p@t P t1, . . . , T uq
ÿ

jPT˚t

ωj,t “ 1

6 Bj P RMjˆMj with Bj ľ
ÿ

tPTj

ω´1
j,tAj,tA

J
j,t, j P t1, . . . , Ju

7 ϑ “ min
1ďjďJ,1ďtďT

ωj,t, ϑ` “ min
jPV`,tPTj

ωj,t, ` P t1, . . . , Cu

8 ε P p0, 1s

9 yj0 P R
Mj , rxj0st “ rrxst ´ ω

´1
j,tA

J
j,ty

j
0, j P t1, . . . , Ju, t P Tj .

10 Main loop:
11 for n “ 0, 1, . . . do
12 for ` “ 1, . . . , C do
13 Jn,` Ă V`
14 for j P Jn,` do
15 Local optimization:

16 ryjn “ yjn ` γnB
´1
j

ÿ

tPTj

Aj,trxjnst

17 yjn`1 “ ryjn ´ γnB
´1
j proxγnB´1

j ,gj

`

γ´1
n Bjry

j
n

˘

18 for t P Tj do
19 rxjn`1{2st “ rx

j
nst ´ ω

´1
j,tAJj,tpy

j
n`1 ´ y

j
nq

20 end

21 end
22 for j P V`zJn,` do
23 yjn`1 “ yjn
24 prxjn`1{2stqtPTj

“ prxjnstqtPTj

25 end
26 if local synchronization is requested then
27 for j P V` do
28 for t P Tj do
29 rxjn`1st “ rx

j
n`1{2st `

γnϑ`ω
´1
j,t

`

mean
`

prxj
1

n`1{2stqj1PV`XT˚t

˘

´ rxjn`1{2st
˘

30 end

31 end

32 end

33 end
34 if global synchronization is requested then

35 for t “ 1, . . . , T do rxnst “ mean
`

prxjn`1{2stqjPT˚t

˘

;

36 for j “ 1, . . . , J do
37 for t P Tj do
38 rxjn`1st “ rx

j
n`1{2st ` γnϑω

´1
j,t prxnst ´ rx

j
n`1{2stq

39 end

40 end

41 end

42 end
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As we have seen, each computing unit c P t1, . . . , Cu handles κc terms cor-250

responding to the nodes in Vc of the hypergraph, and processes the functions

pgjqjPVc
associated with these nodes. Furthermore, a global synchronization

step needs is required. This task could be assigned to one of the computing

unit, e.g. the first one, as modelled in Figure 4 (bottom) by adding a fictitious

term corresponding to hyperedge VC`1. This would however lead to a central-255

ized scheme where the computing load between the different units would end

up unbalanced.

A better strategy consists of distributing the operations performed on line

35 of Algorithm 4 over the different computing units. For this purpose, we

first note that at iteration n, the c-th computing unit only needs the block

components prxnstqtPTVc
. In addition, because of Assumption 4.1-(ii)(a), some

of these variables may be shared with the computing units c´ 1 (if c ‰ 1) and

c` 1 (if c ‰ C), where part of the variables rxjn`1{2st necessary to compute the

averages are locally available. As a consequence of Assumption 4.1-(ii)(b), no

other variables than those available in either TVc´1
X TVc

or TVc
X TVc`1

are

necessary . For example, if c ‰ 1 and t P TVc´1 X TVc , the averaging operation

reads

rxnst “
1

|T˚t |
ÿ

jPT˚t

rxjn`1{2st

“
1

|T˚t |
`

rsn,c´1st ` rsn,cst
˘

, (38)

where

rsn,c´1st “
ÿ

jPVc´1XT˚t

rxjn`1{2st, (39)

and rsn,cst is similarly defined. Since the variables prxjn`1{2stqjPVc´1XT˚t
are not

available at unit c, the latter summation must be performed by unit c´ 1 and

the result must be transmitted to unit c. This one will then be able to compute

rxnst, so as to update variables prxjn`1stqjPVcXT˚t
. Besides, rxnst will be sent to

unit c´ 1, which in turn will update its variables prxjn`1stqjPVc´1XT˚t
. A similar
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synchronization process can be followed for blocks with indices t P TVc X TVc`1

with c ‰ C. Finally, for the block indices t in TVc
which do not belong to TVc´1

or TVc`1
,

rxnst “ mean
`

prxjn`1{2stqjPVcXT˚t

˘

“
rsn,cst
|T˚t |

, (40)

as we have then |Vc X T˚t | “ |T˚t |. This means that local averaging is only

required for these blocks. In Figure 5, the synchronization workflow is summa-

rized, while, in Algorithm 5, a more detailed account of the whole process is260

given.

Vc´1 Vc Vc`1

ipc´ 1, 1q ipc´ 1, κc´1q ipc, 1q ipc, κcq ipc` 1, 1q ipc` 1, κc`1q. . . . . .. . .

rxipc´1,1qst rxipc´1,κc´1qst rxipc,1qst rxipc,κcqst rxipc`1,1qst rxipc`1,κc`1qst

Transmit prsn,c´1stqtPTVc´1
XTVc

Transmit prsn,cstqtPTVcXTVc`1

Vc´1 Vc Vc`1

ipc´ 1, 1q ipc´ 1, κc´1q ipc, 1q ipc, κcq ipc` 1, 1q ipc` 1, κc`1q. . . . . .. . .

rxipc´1,1qst rxipc´1,κc´1qst rxip1,cqst rxipc,κcqst rxipc`1,1qst rxipc`1,κc`1qst

Transmit prxnstqtPTVc´1
XTVc

Transmit prxnstqtPTVcXTVc`1

Figure 5: Global synchronisation process: Transmission of local summations to the next
computing unit (top) ; Transmission of averaged blocks to the previous computing unit
(bottom).

Remark 4.2.

(i) It must be emphasized that, in order to facilitate the derivation of our

algorithm, a common iteration variable n has been used for each com-

puting unit. However, units have the flexibility to process data at their265

own speed. In particular, each unit may perform a different number of

local synchronizations before a global one is made. In this sense, our al-

gorithm is asynchronous. To understand why such behavior is allowed,

it suffices to note that if no global synchronization arises and Jn,c “ ∅,

then pxjn`1qjPVc “ px
j
nqjPVc . This means that such a null iteration can be270

used to model a time when the c-th computing unit is idle while others are
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locally updating their variables.

(ii) When the c-th computing unit operates a global synchronization, it will sus-

pend its activities until it receives data from units c ´ 1 (line 35) and/or

c` 1 (line 39), which happens only when these units also are globally syn-275

chronizing their variables. To ensure low latencies, global synchronization

steps however have to be scheduled (quasi-)periodically for each comput-

ing unit based on their processing speeds (faster ones should schedule less

frequent synchronizations than slower ones). Alternatively, when one unit

decides to perform a global synchronization, it can broadcast a message to280

the others to warn them to do the same.

(iii) Other forms of local consensus could potentially be devised. For example,

another choice would consist in setting L “ 2C´1 and p@c P t1, . . . , C´1uq

VC`c “ VcYVc`1. Then, each node c P t1, . . . , C´1u could be responsible

for driving the synchronization with its neighbor of index c` 1. However,285

it appears more difficult, in this context, to devise an efficient procedure

to avoid deadlocks, contrary to our previous example.

4.3. Application to video denoising290

4.3.1. Observation model

In this section, we illustrate the performance of the proposed distributed al-

gorithm for denoising video sequences. The original sequence x “ prxstq1ďtďT P

RN is naturally decomposed in T blocks of data, each corresponding to one im-

age composed of L pixels. The degradation model relating the observed noisy

sequence y “ prystq1ďtďT P RN to the sought sequence x with TL “ N is given

by

p@t P t1, . . . , T uq ryst “ rxst ` rwst, (41)

where prwstq1ďtďT P RN represents an additive zero-mean white Gaussian noise.

An estimate of the unknown video can be inferred by solving Problem (5) where
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Algorithm 5: Special case of distributed PDFB for the c-th computing
unit
1 Setting of global constants:
2 Tj ” index set of blocks used at node j P t1, . . . , Ju
3 T˚t ” index set of nodes using block t P t1, . . . , T u

4 tωj,t | 1 ď j ď J, t P Tju Ă p0, 1s such that p@t P t1, . . . , T uq
ÿ

jPT˚t

ωj,t “ 1

5 ϑ “ min
1ďjďJ,1ďtďT

ωj,t, ε P p0, 1s, pγnqnPN sequence of rε, 2´ εs with ε P p0, 1s

6 Initialization:
7 Vc ” index set of nodes associated with computing unit c
8 TVc ” set of block indices used in Vc (with the convention TV0 “ TVC`1 “ ∅)

9 Bj P RMjˆMj with Bj ľ
ÿ

tPTj

ω´1
j,tAj,tAJj,t, j P Vc

10 ϑc “ min
jPVc,tPTj

ωj,t, ` P t1, . . . , Cu

11 yj0 P RMj , rxj0st “ rrxst ´ ω
´1
j,tA

J
j,ty

j
0, j P Vc, t P Tj .

12 Main loop:
13 for n “ 0, 1, . . . do
14 Jn,c Ă Vc
15 for j P Jn,c do

16 ryjn “ yjn ` γnB
´1
j

ÿ

tPTj

Aj,trx
j
nst

17 yjn`1 “ ryjn ´ γnB
´1
j prox

γnB
´1
j ,gj

`

γ´1
n Bjry

j
n

˘

18 for t P Tj do rxjn`1{2st “ rx
j
nst ´ ω

´1
j,tA

J
j,tpy

j
n`1 ´ y

j
nq ;

19 end
20 for j P VczJn,c do

21 yjn`1 “ yjn
22 prxjn`1{2stqtPTj “ prx

j
nstqtPTj

23 end

24 for t P TVc do rsn,cst “
ÿ

jPVcXT˚t

rxjn`1{2st ;

25 if synchronization is local then
26 for j P Vc do
27 for t P Tj do

28 rxjn`1st “ rx
j
n`1{2st ` γnϑc ω

´1
j,t

´

rsn,cst
|Vc X T˚t |

´ rxjn`1{2st

¯

29 end

30 end

31 else
32 Global synchronization:
33 if c ‰ C then send prsn,cstqtPTVcXTVc`1

to unit c` 1 ;

34 if c ‰ 1 then
35 wait for receiving prsn,c´1stqtPTVc´1

XTVc from unit c´ 1

36 for t P TVc´1 X TVc do rxnst “
1

|T˚t |
`

rsn,c´1st ` rsn,cst
˘

;

37 send prxnstqtPTVc´1
XTVc to unit c´ 1

38 end
39 if c ‰ C then wait for receiving prxnstqtPTVcXTVc`1

from unit c` 1

;

40 for t P TVczpTVc´1 Y TVc`1q do rxnst “
rsn,cst
|T˚t |

;

41 for j P Vc do
42 for t P Tj do

43 rxjn`1st “ rx
j
n`1{2st ` γnϑω

´1
j,t

`

rxnst ´ rx
j
n`1{2st

˘

44 end

45 end

46 end

47 end
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J “ T and rx “ y. Note that similar applicative problems have been addressed

by using other techniques in [39]. The last quadratic term in (5) is a least

squares data fidelity term ensuring compliance with model (41), and functions

pgjq1ďjďT stand for regularization functions that incorporate both temporal and

spatial prior knowledge on each video frame. The temporal regularization is

fulfilled by taking into account motion compensation between the previous and

next neighbouring frames. More precisely, at each time t P t2, . . . , T ´ 1u, the

linear operator At extracts the current frame xt and its neighbors pxt´1, xt`1q

as shown by:

rrxs1 . . . rxst´1rxstrxst`1 . . . rxsT s
At
Ñ rrxst´1rxstrxst`1s . (42)

The linear operators pAtq1ďtďT thus have the block sparse structure ex-

pressed by (32) with

p@t P t1, . . . , T uq Tt “
 

maxtt´ 1, 1u, t,mintt` 1, T u
(

(43)

and

A1,1 “

”

IL 0
ıJ

, A1,2 “

”

0 IL

ıJ

, (44)

p@t P t2, . . . , T ´ 1uq At,t´1 “

”

IL 0 0
ıJ

(45)

At,t “
”

0 IL 0
ıJ

(46)

At,t`1 “

”

0 0 IL

ıJ

(47)

AT,T´1 “

”

IL 0
ıJ

, AT,T “
”

0 IL

ıJ

. (48)

For every t P t1, . . . T u, each regularization function gt : RMt Ñ r0,`8q is
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convex, proper, lower semi-continuous and such that

Mt “

$

’

&

’

%

3L if t ‰ 1 and t ‰ T

2L otherwise,

(49)

and, for every x “ prxstq1ďtďT ,

gt pprxst1qt1PTt
q “ η tgvprxstq ` ιrxmin,xmaxsLprxstq ` ht pprxst1qt1PTt

q , (50)

where “tgv” denotes the Total Generalized Variation regularization from [40],

defined as

p@z P RLq tgvpzq “ min
dPR2L

α0 χ2 pDz ´ dq ` α1 χ3 pGdq , (51)

with pα0, α1q P p0,`8q
2, D P R2LˆL is the concatenation of the horizontal and

vertical spatial gradient operators:

D “

»

–

∇H

∇V

fi

fl , with ∇H P RLˆL, ∇V P RLˆL, (52)

and G P R3Lˆ2L is the Jacobian operator given by

G “

»

—

—

–

∇H ∇V 0

0 ∇H ∇V

fi

ffi

ffi

fl

J

, (53)

while, for every q P N˚, χq : RqL Ñ R is given by

`

@pz1, . . . , zqq P pRLqq
˘

χqpz1, . . . , zqq “
L
ÿ

k“1

b

pz1,kq
2
` ¨ ¨ ¨ ` pzq,kq

2
. (54)

The indicator function ιrxmin,xmaxsL in (50) imposes a range rxmin, xmaxs on the

pixel values in each frame. In addition, ht is a function introducing a temporal
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regularization of the form

ht pprxst1qt1PTt
q “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

βt´1,t χ1prxst ´Mt´1Ñt rxst´1q

` βt`1,t χ1prxst ´Mt`1Ñt rxst`1q

if t ‰ 1 and t ‰ T

β2,1 χ1prxs1 ´M2Ñ1 rxs2q

if t “ 1

βT´1,T χ1prxsT ´MT´1ÑT rxsT´1q

if t “ T ,

(55)

whereMt´1Ñt P RLˆL (resp. Mt`1Ñt P RLˆL) is a motion compensation oper-

ator between the reference frame xt´1 (resp. xt`1) and the current frame xt, de-

fined as described in [25, Section 5.2.2] (See also [41]). Finally, η, pβt´1,tq2ďtďT

and pβt`1,tq1ďtďT´1 are positive regularization parameters controlling the strength295

of the contribution of their associated terms. The values of these parameters

were optimized by grid search so as to achieve the best denoising performance.

4.3.2. Proposed method

We employ our proposed asynchronous distributed framework to address the

previous denoising problem. More precisely, we use the practical implementa-

tion detailed in Algorithm 5. Functions pgtq1ďtďT and their associated primal

variables prxtst1qt1PTt
for t P t1, . . . , T u, are spread over C computing units,

each of them handling κc P t1, . . . , T u nodes with
řC
c“1 κc “ T .The associated

hyperedges are then given by

p@c P t1, . . . , Cuq Vc “ tpc´ 1qκc ` 1, . . . , cκcu. (56)

Note that, since

p@c P t1, . . . , Cuq TVc “
 

maxtpc´ 1qκc, 1u, . . . ,mintcκc ` 1, T u
(

, (57)
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we have

p@c P t1, . . . , C ´ 1uq TVc
X TVc`1

“ tcκc, cκc ` 1u, , (58)

so that Assumption 4.1 holds provided that κc ą 1.

In the local optimization first performed at the n-th iteration of Algorithm300

5, we used, for every j P t1, . . . , T u, Bj “
ř

tPTj
ω´1
j,t IMj and γn ” 1.7. Then,

the local or global synchronization steps are performed as described in Section

4.2. In our case, for every t P t1, . . . , T u, T˚t “ Tt. If t P TVc
with c P t1, . . . , Cu

corresponds neither to the smallest nor the largest index in Vc, then 3 values

need to be summed to compute rsn,cst. If t is the smallest or the largest index305

in Vc, then the summation involves only two terms. Finally, if c ą 1 and

t “ pc ´ 1qκc (resp. c ă C and t “ cκc ` 1q) , then rsn,cst “ rx
t`1
n`1{2st (resp.

rsn,cst “ rxt´1
n`1{2st). In global synchronization steps, by virtue of (58), only

variables rsn,cscκc and rsn,cscκc`1 are transmitted from computing unit c ‰ C

to computing unit c`1, which in return sends back the updated averages rxnscκc
310

and rxnscκc`1. This workflow is illustrated in Figures 6 and 7 by an example

showing two computing units both handling κ “ 3 nodes.

c “ 2 c “ 3

4 5 6 7 8 9

»

—

—

—

–

x3

x4

x5

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x4

x5

x6

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x5

x6

x7

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x6

x7

x8

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x7

x8

x9

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x8

x9

x10

fi

ffi

ffi

ffi

fl

rx4nst1 rx5nst1 rx6nst1 rx7nst1 rx8nst1 rx9nst1

Transmit prsn,2st1qt1Pt6,7u

. . .. . .. . . . . .. . .. . .

Figure 6: Transmission of local sums prsn,2st1qt1Pt6,7u shared between TV2 “ t3, 4, 5, 6, 7u
and TV3 “ t6, 7, 8, 9, 10u from computing unit c “ 2 to computing unit c “ 3.
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c “ 2 c “ 3

4 5 6 7 8 9

»

—

—

—

–

x3

x4

x5

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x4

x5

x6

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x5

x6

x7

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x6

x7

x8

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x7

x8

x9

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x8

x9

x10

fi

ffi

ffi

ffi

fl

rx4nst1 rx5nst1 rx6nst1 rx7nst1 rx8nst1 rx9nst1

Transmit prxnst1qt1Pt6,7u

. . .. . .. . . . . .. . .. . .

Figure 7: Transmission of averaged images prxnst1qt1Pt6,7u from computing unit c “ 3
to computing unit c “ 2.

In our simulations, the global synchronizations are activated every 4 itera-

tions. This synchronization frequency was chosen in order to achieve a reason-

able trade-off between the communication overhead and a satisfactory conver-315

gence speed. The weights pωj,tq1ďtďT,jPT˚t are set to 1
|T˚t |

.

4.3.3. Simulation results

The performance of the proposed denoising method are evaluated on four

standard test video sequences from http://trace.eas.asu.edu/yuv/, namely

Flower, Bus, Stefan, and Irene with T “ 72 frames. These are YCbCr-320

colored frames of size 352 ˆ 288. The four videos display significantly high mo-

tions which makes their restoration challenging. For the sake of fair comparison,

we applied the restoration methods (ours and BM4D) only on the luminance

channel. All the displayed SNR (signal-to-noise ratio) scores are computed on

luminance channel only. The restored color videos, displayed at the end of this325

section, are obtained by further restoring the chrominance channels with a me-

dian filter of size 3ˆ 3. The degraded videos are obtained by adding zero-mean

white Gaussian noise to the original video sequences, resulting in an initial SNR

(on luminance channel) of 25.02 dB, 24.84 dB, 24.41 dB and 25.51 dB for the four

sequences respectively. Parameters α0 and α1 in (51) were set to α0 “ 0.7108330

and α1 “ 1´α0. Moreover, the weights of the spatial and temporal regulariza-

tions in (50) have been set constant through the images, for each video. They
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have been optimized by grid search of about 100 values, so as to maximize the

restored video SNR. The selected values are listed in Table 1.

Sequences Spatial regularization Temporal regularization

Flower η “ 2.9ˆ 10´2

$

’

&

’

%

pβt´1,tq2ďtďT´1 “ 6.01ˆ 10´2

β2,1 “ βT´1,T “ 9.13ˆ 10´1

Bus η “ 2.02ˆ 10´2

$

’

&

’

%

pβt´1,tq2ďtďT´1 “ 2.81ˆ 10´2

β2,1 “ βT´1,T “ 9.54ˆ 10´2

Stefan η “ 1.47ˆ 10´3

$

’

&

’

%

pβt´1,tq2ďtďT´1 “ 6.62ˆ 10´2

β2,1 “ βT´1,T “ 9.6ˆ 10´1

Irene η “ 2.04ˆ 10´2

$

’

&

’

%

pβt´1,tq2ďtďT´1 “ 0.75ˆ 10´2

β2,1 “ βT´1,T “ 1.5ˆ 10´2

Table 1: Values of the spatial and temporal regularization parameters.

Our method is implemented with Julia-1.4.1 and a Message Passing In-335

terface (MPI) wrapper for managing communication between cores [42, 43].

The Julia MAT and HDF5 packages (version 1.10.6) are used to read/write in-

put/output data. For parallel processing, we use the Intel MPI v2019.3.199

compiler paired with the Julia MPI package. Receive (recv) and send (isend)

operations are used to communicate between different cores when running our340

algorithm, and as a last step to gather the restored frames into a full re-

stored video. For ease of reproducibility, our code is made available at https:

//github.com/MarinENSTA/distributed_julia_denoising. We use a multi-

core architecture with 170 Gb RAM, using 2 Intel(R) Xeon(R) Gold 6230 CPU

@ 2.10GHz, each with 20 cores and 2 threads per core, hence C can be up to345

40 cores. The experiments are run using 30 iterations of Algorithm 5, which

is sufficient to reach convergence. We evaluate the proposed distributed ap-

proach in terms of restoration quality and acceleration provided by our algo-

rithm with respect to the number of computing units. We consider various
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values of C P t1, . . . , 36u. If T “ κC for κ P N˚, then the images composing350

the video sequences are partitioned in groups of equal size κ. Otherwise, we

decompose the sequence in a balanced way. For instance, let C “ 19. Then

cores c P t1, . . . , 4u process blocks of 3 images while cores c P t5, . . . , 19u handle

blocks of 4 images. All the provided computation times are obtained using the

$SECONDS Linux environment variable. This is an independent time observer355

meant to provide the time cost of the complete video denoising process, regard-

less of parallel vs sequential parts of the algorithm. Note that the motion com-

pensation operators involved in our regularization function are pre-computed

prior to running our algorithm, by applying the optical flow estimation C++

software from [44] on the noisy sequence. This step is not included in our com-360

putational time evaluation, for a fair and comprehensive scalability analysis.

Our method achieves satisfactory restoration results with an improvement of

3.25 dB for Flower, 2.97 dB for Bus, 4.27 dB for Stefan and 5.6 dB for Irene,

with respect to the degraded video. Moreover, according to our observations, the365

convergence to the sought solution was reached in each experiment regardless the

number of used cores. Otherwise stated, the quality of the solution is identical,

whatever the number of cores activated. Figures 8, 9, 10, and 11 show some

frames illustrative of the degraded and restored sequences (after including the

filtered chrominance channels). These demonstrate the good visual quality of370

the performed denoising, even in some examples in the presence of large motion.

Figure 12 shows the speedup in execution time with respect to the number

of cores, which is estimated as follows:

Speedup forC cores “
Execution time with 1 core

Execution time withC cores
. (59)

Figure 12 shows how speedup increases as we increase the number of cores

from C “ 1 to C “ 36. The behavior is similar for all video tested. As

the number of cores increases, the speedup gets farther to the ideal (linear)

curve. This is a consequence of the number of cores increasing, which results375
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Figure 8: Flower sequence: Input degraded images (top) initial SNR = 25.02 dB,
associated restored images (bottom) final SNR = 28.27 dB.

Figure 9: Bus sequence: Input degraded images (top) initial SNR = 24.84 dB, associ-
ated restored images (bottom) final SNR = 27.81 dB.

in higher communication time costs between parallel processes thus impacting

global execution time and impeding better time improvements for the algorithm.

One can also notice a non-monotonic behavior in the speedup curves. This is

explained by a slight decrease of the overall performance when the number of

video frames is not a multiple of the core numbers, thus yielding an imperfect380

balance of the workload per core. We furthermore display in Figure 13 the
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Figure 10: Stefan sequence: Input degraded images (top) initial SNR = 24.41 dB,
associated restored images (bottom) final SNR = 28.68 dB.

Figure 11: Irene sequence: Input degraded images (top) initial SNR = 25.51 dB,
associated restored images (bottom) final SNR = 31.11 dB.

averaged computational time per frame, with respect to the number of cores.

For instance, the restoration of Flower sequence requires from 43.1 seconds per

frame (for one core) to 4.2 seconds per frame (for 36 cores).

We additionally performed a comparison with the method BM4D [39] also385

aiming at restoring video sequences. BM4D relies on a totally different approach,

based on non-local filtering. The obtained results in terms of averaged SNR per
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(a) Flower sequence. (b) Bus sequence.

(c) Stefan sequence. (d) Irene sequence.

Figure 12: Speedup (y-axis) with respect to the number of used cores (x-axis): proposed
method (blue), linear speedup (red).

frame are shown in Table 2. We can observe that our method achieves competi-

tive, and sometimes superior, performance in terms of quality metrics. In terms

of computational time, when run on Flower video using the same computer,390

BM4D requires 6.3 seconds per frame, which is slightly slower than the best per-

formance reached by our method. For BM4D, we relied on the publicly available

code https://webpages.tuni.fi/foi/GCF-BM3D/BM4D_v3p2.zip, combining

Matlab (using th R2020b version) and precompiled C codes in mex format.

Such implementation of BM4D does not exploit multi-CPU, and the same com-395

puting time was observed whatever the number of active cores. A fair time

complexity comparison would however require BM4D to be developed using the

same programming language, in addition to a rigorous management of implicit

and explicit multithreading aspects.

400
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(a) Flower sequence. (b) Bus sequence.

(c) Stefan sequence. (d) Irene sequence.

Figure 13: Averaged computing time per frame in seconds (y-axis) with respect to the
number of used cores (x-axis).

Table 2: Comparison in terms of averaged SNR per frame.

Sequences Initial SNR Our method BM4D

Flower 25.02 dB 28.27 dB 27.87 dB

Bus 24.84 dB 27.81 dB 25.65 dB

Stefan 24.41 dB 28.68 dB 28.37 dB

Irene 25.51 dB 31.11 dB 30.86 dB

5. Conclusion

This article has introduced a fully parallelized version of the preconditioned

dual block-coordinate forward-backward algorithm for computing proximity op-

erators. Our algorithm benefits from all the advantages of primal-dual methods

and the acceleration provided by a block-coordinate strategy combined with a405

variable metric approach. We mainly focused on an instance of the proposed

approach for which we proposed a practical asynchronous implementation, as-
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suming that a given number of computing units is available. Although our

distributed algorithm can be applied to a wide range of problems, we investi-

gated its application to video sequence denoising. The experimental results we410

obtained are quite promising and demonstrate the ability of our algorithm to

take advantage of multiple cores. An acceleration of about 12 was reached with

a standard two-processors computer configuration. In future works, we intend

to experiment different distributed implementations based on other partition-

ing strategies and hypergraph topologies and to study the application of our415

distributed framework to other proximal optimization algorithms.
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[4] P. L. Combettes, D. Dung, B. C. Vũ, Dualization of signal recovery prob-430

lems, Set-Valued Var. Anal. 18 (3) (2010) 373–404.

[5] L. Condat, A primal-dual splitting method for convex optimization involv-

ing lipschitzian, proximable and linear composite terms, J. Optim. Theory

App. 158 (2) (2013) 460–479.

39



[6] S. R. Becker, P. L. Combettes, An algorithm for splitting parallel sums of435

linearly composed monotone operators, with applications to signal recovery,

J. Nonlinear Convex Anal. 15 (1) (2014) 137–159.

[7] C. Couprie, L. Grady, L. Najman, J.-C. Pesquet, H. Talbot, Dual con-

strained tv-based regularization on graphs, SIAM J. Imaging Sci. 6 (2013)

1246–1273.440

[8] A. Jezierska, E. Chouzenoux, J.-C. Pesquet, H. Talbot, A primal-dual prox-

imal splitting approach for restoring data corrupted with poisson-gaussian

noise, in: IEEE Int. Conf. Acoust. Speech and Signal Process. (ICASSP

2012), Kyoto, Japan, 2012, pp. 1085–1088.

[9] A. Onose, R. E. Carrillo, A. Repetti, J. D. McEwen, J.-T. Thiran, J.-C.445

Pesquet, Y. Wiaux, Scalable splitting algorithms for big-data interferomet-

ric imaging in the SKA era, Monthly Notices of the Royal Astronomical

Society 462 (4) (2016) 4314–4335.

[10] A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex

problems with applications to imaging, J. Math. Imag. Vision 40 (1) (2010)450

120–145.

[11] P. L. Combettes, L. Condat, J.-C. Pesquet, B. C. Vũ, A forward-backward
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