# Distributed Algorithms for Scalable Proximity Operator Computation and Application to Video Denoising 

Feriel Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Hugues Talbot

## To cite this version:

Feriel Abboud, Emilie Chouzenoux, Jean-Christophe Pesquet, Hugues Talbot. Distributed Algorithms for Scalable Proximity Operator Computation and Application to Video Denoising. 2020. hal-03684063v2

HAL Id: hal-03684063
https://hal.science/hal-03684063v2
Preprint submitted on 13 Feb 2020 (v2), last revised 1 Jun 2022 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Distributed Algorithms for Scalable Proximity Operator Computation and Application to Video Denoising 

Feriel Abboud ${ }^{\text {a }}$, Emilie Chouzenoux ${ }^{\text {b,* }}$, Jean-Christophe Pesquet ${ }^{\text {b }}$, Hugues Talbot ${ }^{\text {b }}$<br>${ }^{a}$ WITBE, Les Collines de l'Arche, Immeuble Opéra. 92800 Puteaux, France ${ }^{b}$ Center for Visual Computing, CentraleSupélec, Inria, University Paris-Saclay, Gif-sur-Yvette, France


#### Abstract

Optimization problems arising in signal and image processing involve an increasingly large number of variables. In addition to the curse of dimensionality, another difficulty to overcome is that the cost function usually reads as the sum of several loss/regularization terms, non-necessarily smooth and possibly composed with large-size linear operators. Proximal splitting approaches are fundamental tools to address such problems, with demonstrated efficiency in many applicative fields. In this paper, we present a new distributed algorithm for computing the proximity operator of a sum of non-necessarily smooth convex functions composed with arbitrary linear operators. Our algorithm relies on a primal-dual splitting strategy, and benefits from established convergence guaranties. Each involved function is associated with a node of a hypergraph, with the ability to communicate with neighboring nodes sharing the same hyperedge. Thanks to this structure, our method can be efficiently implemented on modern parallel computing architectures, allowing to distribute computations on different nodes or machines while limiting the need for synchronization steps. Its good numerical performance and scalability properties are illustrated on a problem of video sequence denoising.


[^0]Keywords: Convex optimization, proximal methods, distributed algorithm, parallel programming, video restoration.

## 1. Introduction

Numerous problems in data science such as video restoration require the processing of huge datasets. Optimal processing are often obtained by solving nonsmooth optimization problems, for which proximity operators appear as funmethods to compute proximity operators involved in the solution of high-dimensional problems, especially when the objective function is the sum of several convex non-necessarily smooth functions [1, 2]. In the general case, a closed form expression of the proximity operator of such composite term does not exist, and developing iterative strategies becomes necessary.

Primal-dual splitting methods are prominently used when dealing with convex optimization problems where large-size linear operators are involved 3, 4, 5, 6]. The main advantage of many of these algorithms is that none of the linear operators needs to be inverted which makes this class of algorithms well few blocks are activated following a specific selection rule [21, 22]. These algorithms can achieve fast convergence speed with reasonable memory requirement. Both stochastic [23, 24] and deterministic [25, 26] versions of these have been used in image processing and machine learning applications. In the latter con25 text, algorithms based on a dual Forward-Backward approach are often refereed to as dual ascent methods.

The aforementioned algorithms were originally proposed with single-node
implementations, which may be suboptimal or even unsuitable, when dealing with massive datasets. Therefore, various asynchronous or distributed extenthe integration of accelerations, such as preconditioning, into those, is difficult.

In this paper, we focus instead on another approach, namely the dual block preconditioned forward-backward algorithm that we recently proposed in [25], which can be viewed as a block-coordinate implementation of the dual ascent 40 method. We propose here a distributed asynchronous version for the latter, by considering each involved function as locally related to a node of a connected hypergraph, where communications are allowed between neighboring nodes that share the same hyperedge. This leads to a novel scheme for computing the proximity operator of any sum of convex functions involving linear operators, that is well-suited to implementation in architectures involving multiple computing units. As its centralized counterpart [25], our method takes advantage of variable metric techniques that have been shown to be efficient for accelerating the convergence speed of proximal approaches [30, 31, 32]. It also benefits from the classical key advantage of proximal splitting strategies, namely its ability to handle a finite sum of convex functions without inverting any of the involved linear operators. Furthermore, its convergence is guaranteed under mild assumptions on the node activation and synchronization rules.

The remainder of this paper is organized as follows: in Section 2 we recall some fundamental background and present the centralized dual block-coordinate forward-backward algorithm from 25] for computing proximity operators. In Section 3, we introduce our novel asynchronous version for this algorithm, its convergence properties and a dimension reduction strategy for limiting communication cost within nodes. In Section 4, we discuss a useful special case of
our algorithm for an important class of hypergraph structure and we describe its practical implementation on a distributed architecture. Section 5 shows the good performance of the proposed algorithm in the context of video denoising. Finally, some conclusions are drawn in Section 6

## 2. Problem formulation

### 2.1. Optimization background

Let $\Gamma_{0}\left(\mathbb{R}^{N}\right)$ denote the class of proper lower-semicontinuous convex functions from $\mathbb{R}^{N}$ to $\left.]-\infty,+\infty\right]$ and let $B \in \mathbb{R}^{N \times N}$ be a symmetric positive definite matrix. The proximity operator of $\psi \in \Gamma_{0}\left(\mathbb{R}^{N}\right)$ at $\widetilde{x} \in \mathbb{R}^{N}$ relative to the metric induced by $B$ is denoted by $\operatorname{prox}_{B, \psi}(\widetilde{x})$ and defined as the unique solution to the following minimization problem [33, 1]:

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{N}}{\operatorname{minimize}} \psi(x)+\frac{1}{2}\|x-\widetilde{x}\|_{B}^{2} \tag{1}
\end{equation*}
$$

where the weighted norm $\|\cdot\|_{B}$ is defined as $\langle\cdot \mid B \cdot\rangle^{1 / 2}$ with $\langle\cdot \mid \cdot\rangle$ the usual scalar product of $\mathbb{R}^{N}$. When $B$ is set to $I_{N}$, the identity matrix of $\mathbb{R}^{N}$, the standard proximity operator $\operatorname{prox}_{\psi}$ is recovered.
Let us now define the conjugate of a function $\psi \in \Gamma_{0}\left(\mathbb{R}^{N}\right)$ as

$$
\begin{equation*}
\left.\left.\psi^{*}: \mathbb{R}^{N} \rightarrow\right]-\infty,+\infty\right]: x \mapsto \sup _{v \in \mathbb{R}^{N}}(\langle v \mid x\rangle-\psi(v)) \tag{2}
\end{equation*}
$$

Following Moreau's decomposition theorem [34],

$$
\begin{equation*}
\operatorname{prox}_{B, \psi^{*}}=I_{N}-B^{-1} \operatorname{prox}_{B^{-1}, \psi}(B \cdot) \tag{3}
\end{equation*}
$$

### 2.2. Minimization problem

This paper addresses the problem of computing the proximity operator of the following sum of functions at some given point $\widetilde{x}$ of $\mathbb{R}^{N}$ :

$$
\begin{equation*}
\left(\forall x \in \mathbb{R}^{N}\right) \quad G(x)=\sum_{j=1}^{J} g_{j}\left(A_{j} x\right) \tag{4}
\end{equation*}
$$

where, for every $\left.\left.j \in\{1, \ldots, J\}, g_{j}: \mathbb{R}^{M_{j}} \rightarrow\right]-\infty,+\infty\right]$ is a proper lowersemicontinuous convex possibly nonsmooth function and $A_{j}$ is a linear operator in $\mathbb{R}^{M_{j} \times N}$. In addition, it is assumed that $\cap_{j=1}^{J} \operatorname{dom}\left(g_{j} \circ A_{j}\right) \neq \varnothing$.
Computing the proximity operator of $G$ amounts to finding the solution to the following minimization problem:

$$
\begin{equation*}
\text { Find } \widehat{x}=\operatorname{prox}_{G}(\widetilde{x})=\underset{x \in \mathbb{R}^{N}}{\operatorname{argmin}} \sum_{j=1}^{J} g_{j}\left(A_{j} x\right)+\frac{1}{2}\|x-\widetilde{x}\|^{2} \text {. } \tag{5}
\end{equation*}
$$

As we will see in Section 5 the latter problem also arises in the computation of the maximum a posteriori solution for the denoising problem which consists of recovering $\widehat{x}$ from a noisy observation $\widetilde{x}$ in the presence of an additive zero-mean white Gaussian noise and of a prior density $\exp (-G)$ 1].

Primal-dual algorithms [10, 14, 15, 16] amounts to solve Problem (5) by making use of its dual formulation given by:

$$
\begin{equation*}
\text { Find } \widehat{y}=\underset{y=\left(y^{j}\right)_{1 \leqslant j \leqslant J} \in \mathbb{R}^{M}}{\operatorname{argmin}} \frac{1}{2}\left\|\tilde{x}-\sum_{j=1}^{J} A_{j}^{\top} y^{j}\right\|^{2}+\sum_{j=1}^{J} g_{j}^{*}\left(y^{j}\right) \tag{6}
\end{equation*}
$$ tions of $\left(g_{j}\right)_{1 \leqslant j \leqslant J}$. Particularly efficient primal-dual approaches take advantage of the strongly convex term involved in the cost function in (5) 35, 36, 25]. In this work, we will focus on the Dual Block Preconditioned Forward-Backward algorithm, recently proposed in [25] (see Algorithm (1).

Algorithm 1 benefits from the acceleration provided by variable metric methods through the introduction of preconditioning matrices $\left(B_{j}\right)_{1 \leqslant j \leqslant J}$. Note that a non-preconditioned version is obtained by setting $(\forall j \in\{1, \ldots, J\}) B_{j}=$ $\left\|A_{j}\right\|^{2} I_{M_{j}}$ where $\left\|A_{j}\right\|$ denotes the spectral norm of $A_{j}$. Moreover, when at iteration $n \in \mathbb{N}$, all the dual variables $y_{n}^{j_{n}}$ with $j_{n} \in\{1, \ldots, J\}$ are updated in a parallel manner followed by an update of the primal variable $x_{n}$, one recovers the Parallel Dual Forward-Backward proposed in [35]. Convergence guaranties

```
Algorithm 1: Dual Block Preconditioned Forward-Backward
    Initialization:
    \(B_{j} \in \mathbb{R}^{M_{j} \times M_{j}}\) with \(B_{j} \geq A_{j} A_{j}^{\top}, \quad \forall j \in\{1, \ldots, J\}\)
    \(\epsilon \in] 0,1],\left(y_{0}^{j}\right)_{1 \leqslant j \leqslant J} \in \mathbb{R}^{M}, x_{0}=\widetilde{x}-\sum_{j=1}^{J} A_{j}^{\top} y_{0}^{j}\).
    Main loop:
    for \(n=0,1, \ldots\) do
        \(\gamma_{n} \in[\epsilon, 2-\epsilon]\)
        \(j_{n} \in\{1, \ldots, J\}\)
        \(\widetilde{y}_{n}^{j_{n}}=y_{n}^{j_{n}}+\gamma_{n} B_{j_{n}}^{-1} A_{j_{n}} x_{n}\)
        \(y_{n+1}^{j_{n}}=\widetilde{y}_{n}^{j_{n}}-\gamma_{n} B_{j_{n}}^{-1} \operatorname{prox}_{\gamma_{n} B_{j_{n}}^{-1}, g_{j_{n}}}\left(\gamma_{n}^{-1} B_{j_{n}} \widetilde{y}_{n}^{j_{n}}\right)\)
        \(y_{n+1}^{j}=y_{n}^{j}, \quad \forall j \in\{1, \ldots, J\} \backslash\left\{j_{n}\right\}\)
        \(x_{n+1}=x_{n}-A_{j_{n}}^{\top}\left(y_{n+1}^{j_{n}}-y_{n}^{j_{n}}\right)\).
    end
```

on both generated primal sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ and dual sequences $\left(y_{n}^{j}\right)_{n \in \mathbb{N} *}$ with $j \in\{1, \ldots, J\}$ have been established in [25] under a quasi-cyclic rule on the block 85 selection (i.e., each block must be updated at least once every $K$ iterations, with $K \geqslant J)$. Furthermore, results in terms of practical convergence speed have revealed the effectiveness of the above algorithm compared to existing algorithms in the literature.

## 3. Proposed distributed algorithm

Let us ground on the previous algorithm in order to design a novel distributed (i.e., multi-node) solution to Problem (5). This can be achieved by resorting to a global consensus technique [37, 16, 27, 3] and rewriting the problem in the following form:

$$
\begin{equation*}
\text { Find } \widehat{\boldsymbol{x}}=\underset{\boldsymbol{x}=\left(x^{j}\right)_{1 \leqslant j \leqslant J} \in \Lambda}{\operatorname{argmin}} \sum_{j=1}^{J} g_{j}\left(A_{j} x^{j}\right)+\frac{1}{2} \sum_{j=1}^{J}\left\|x^{j}-\widetilde{x}\right\|_{\Omega_{j}}^{2} \tag{7}
\end{equation*}
$$

where $\left(\Omega_{j}\right)_{1 \leqslant j \leqslant J}$ are diagonal $N \times N$ matrices with positive diagonal elements and $\Lambda$ is the vector subspace of $\mathbb{R}^{N J}$ defined so as to introduce suitable coupling constraints on the vectors $\left(x^{j}\right)_{1 \leqslant j \leqslant J}$. The most standard choice for such
constraint set is

$$
\Lambda=\left\{\left.\left[\begin{array}{c}
x^{1}  \tag{8}\\
\vdots \\
x^{J}
\end{array}\right] \in \mathbb{R}^{N J} \right\rvert\, x^{1}=\ldots=x^{J}\right\} .
$$

Provided that

$$
\begin{equation*}
\sum_{j=1}^{J} \Omega_{j}=I_{N} \tag{9}
\end{equation*}
$$

90 we notice that the solution to Problem (7) yields a vector in $\mathbb{R}^{N J}$ whose components $\left(x^{j}\right)_{1 \leqslant j \leqslant J}$ are all equal, and equals the solution $\hat{x}$ to Problem (5).

### 3.1. Local form of consensus

Let us now split the constraint set $\Lambda$ into $L$ local linear constraints $\left(\Lambda_{\ell}\right)_{1 \leqslant \ell \leqslant L}$. For every $\ell \in\{1, \ldots, L\}$, each constraint set $\Lambda_{\ell}$ handles a nonempty subset $\mathbb{V}_{\ell}$ of $\{1, \ldots, J\}$ with cardinality $\kappa_{\ell}$ such that, for every $\boldsymbol{x}=\left[\left(x^{1}\right)^{\top}, \ldots,\left(x^{J}\right)^{\top}\right]^{\top} \in$ $\mathbb{R}^{N J}$,

$$
\begin{equation*}
\boldsymbol{x} \in \Lambda \quad \Leftrightarrow \quad(\forall \ell \in\{1, \ldots, L\}) \quad\left(x^{j}\right)_{j \in \mathbb{V}_{\ell}} \in \Lambda_{\ell} . \tag{10}
\end{equation*}
$$

Examples of vector subspaces $\left(\Lambda_{\ell}\right)_{1 \leqslant \ell \leqslant L}$ allowing this condition to be satisfied will be discussed in Section 3.3. Each node $j \in\{1, \ldots, J\}$ is associated with function $g_{j}$, which is considered local and processes its own private data. Moreover, each node $j$ is allowed to communicate with nodes that belong to the same set $\mathbb{V}_{\ell}$. The sets $\left(\mathbb{V}_{\ell}\right)_{1 \leqslant \ell \leqslant L}$ can thus be viewed as the hyperedges of a hypergraph with $J$ nodes. It is worth noticing that the case of a graph topology is encompassed by this formulation when setting the cardinality of the set $\mathbb{V}_{\ell}$ to $\kappa_{\ell}=2$ for every $\ell \in\{1, \ldots, L\}$.

Figure 1 shows an illustrative example, where the hypergraph is composed of $J=7$ nodes associated with functions $\left(g_{j}\right)_{1 \leqslant j \leqslant 7}$ and $L=4$ hyperedges represented by the sets $\left(\mathbb{V}_{\ell}\right)_{1 \leqslant \ell \leqslant 4}$ with cardinalities $\kappa_{1}=3, \kappa_{2}=2, \kappa_{3}=2$, and $\kappa_{4}=3$, respectively. Node 4 belonging to the set $\mathbb{V}_{2}$ can communicate with node 5. Besides, node 3 belongs to $\mathbb{V}_{1}$ and $\mathbb{V}_{4}$, hence it is allowed to communicate
with nodes $\{1,2,5,7\}$.


Figure 1: Connected hypergraph of $J=7$ nodes and $L=4$ hyperedges.

Let us define, for every $\ell \in\{1, \ldots, L\}$, the matrix $\boldsymbol{S}_{\ell} \in \mathbb{R}^{N \kappa_{\ell} \times N J}$ associated with constraint set $\Lambda_{\ell}$, which extracts the vector $\left(x^{j}\right)_{j \in \mathbb{V}_{\ell}}$ from the concatenated vector $\boldsymbol{x}=\left[\left(x^{1}\right)^{\top}, \ldots,\left(x^{J}\right)^{\top}\right]^{\top} \in \mathbb{R}^{N J}$ :

$$
\begin{equation*}
\left(x^{j}\right)_{j \in \mathbb{V}_{\ell}}=\left[\left(x^{\mathrm{i}(\ell, 1)}\right)^{\top}, \ldots,\left(x^{\mathrm{i}\left(\ell, \kappa_{\ell}\right)}\right)^{\top}\right]^{\top}=\boldsymbol{S}_{\ell} \boldsymbol{x} \tag{11}
\end{equation*}
$$

where $\mathrm{i}(\ell, 1), \ldots, i\left(\ell, \kappa_{\ell}\right)$ denote the elements of $\mathbb{V}_{\ell}$ ordered in an increasing manner. The transpose matrix of $\left(\boldsymbol{S}_{\ell}\right)_{1 \leqslant \ell \leqslant L}$ is such that, for every $v^{\ell}=$ $\left(v^{\ell, k}\right)_{1 \leqslant k \leqslant \kappa_{\ell}} \in \mathbb{R}^{N \kappa \ell}$,

$$
\begin{equation*}
\boldsymbol{x}=\left[\left(x^{1}\right)^{\top}, \ldots,\left(x^{J}\right)^{\top}\right]=\boldsymbol{S}_{\ell}^{\top} v^{\ell} \tag{12}
\end{equation*}
$$

where

$$
x^{j}= \begin{cases}v^{\ell, k} & \text { if } j=\mathrm{i}(\ell, k) \text { with } k \in\left\{1, \ldots, \kappa_{\ell}\right\}  \tag{13}\\ 0 & \text { otherwise }\end{cases}
$$

From a signal processing standpoint, the matrix $\boldsymbol{S}_{\ell}$ can be viewed as a decimation operator while its transpose is the associated interpolator.

The above definitions allow us to propose the following equivalent formulation of Problem (7):

$$
\begin{equation*}
\text { Find } \widehat{\boldsymbol{x}}=\underset{\boldsymbol{x}=\left(x^{j}\right)_{1 \leqslant j \leqslant J} \in \mathbb{R}^{N J}}{\operatorname{argmin}} \sum_{j=1}^{J} g_{j}\left(A_{j} x^{j}\right)+\sum_{\ell=1}^{L} \iota_{\Lambda_{\ell}}\left(\boldsymbol{S}_{\ell} \boldsymbol{x}\right)+\frac{1}{2} \sum_{j=1}^{J}\left\|x^{j}-\widetilde{x}\right\|_{\Omega_{j}}^{2} . \tag{14}
\end{equation*}
$$

The main difference between formulations (7) and (14) is the introduction of the term $\sum_{\ell=1}^{L} \iota_{\Lambda_{\ell}}\left(\boldsymbol{S}_{\ell} \boldsymbol{x}\right)$, where $\iota_{\Lambda_{\ell}}$ denotes the indicator function of the set $\Lambda_{\ell}$, which is equal to 0 for every $z \in \Lambda_{\ell}$, and $+\infty$ elsewhere.

This latter formulation makes the link with Problem (5) more explicit.
More precisely, in order to solve Problem (14) using Algorithm 1, it is necessary to set:

- $J^{\prime}=J+L$,
- $(\forall \ell \in\{1, \ldots, L\}) \quad M_{J+\ell}=N \kappa_{\ell}$,
- $M^{\prime}=\sum_{j=1}^{J^{\prime}} M_{j}$,
- $(\forall j \in\{1, \ldots, J\}) \quad \boldsymbol{A}_{j}=[\underbrace{0 \ldots 0}_{N(j-1) \times} A_{j} \Omega_{j}^{-1 / 2} \underbrace{0 \ldots 0}_{N(J-j) \times}]$,
- $\boldsymbol{D}=\operatorname{Diag}\left(\Omega_{1}^{-1 / 2}, \ldots, \Omega_{J}^{-1 / 2}\right)$,
- $(\forall \ell \in\{1, \ldots, L\}) g_{J+\ell}=\iota_{\Lambda_{\ell}}$ and $\boldsymbol{A}_{J+\ell}=\boldsymbol{S}_{\ell} \boldsymbol{D}$.

Then, Problem (14) is recast in the following way:

Find $\widehat{\boldsymbol{x}}=\boldsymbol{D} \widehat{\boldsymbol{x}}^{\prime}$ such that

$$
\begin{equation*}
\widehat{\boldsymbol{x}}^{\prime}=\underset{\boldsymbol{x}^{\prime} \in \mathbb{R}^{N J}}{\operatorname{argmin}} \sum_{j=1}^{J^{\prime}} g_{j}\left(\boldsymbol{A}_{j} \boldsymbol{x}^{\prime}\right)+\frac{1}{2}\left\|\boldsymbol{x}^{\prime}-\widetilde{\boldsymbol{x}}^{\prime}\right\|^{2}, \tag{15}
\end{equation*}
$$

where $\widetilde{\boldsymbol{x}}^{\prime}=\left[\Omega_{1}^{1 / 2} \widetilde{x}^{\top}, \ldots, \Omega_{J}^{1 / 2} \widetilde{x}^{\top}\right]^{\top} \in \mathbb{R}^{N J}$.

### 3.2. Derivation of the proposed algorithm

The application of Algorithm 1 for the resolution of Problem (15) yields:

$$
\begin{aligned}
& B_{j} \in \mathbb{R}^{M_{j} \times M_{j}} \text { with } B_{j} \geq \boldsymbol{A}_{j} \boldsymbol{A}_{j}^{\top}, \quad j \in\left\{1, \ldots, J^{\prime}\right\} \\
& \epsilon \in] 0,1] \\
& \left(y_{0}^{j}\right)_{1 \leqslant j \leqslant J^{\prime} \in \mathbb{R}^{M^{\prime}}} \\
& \boldsymbol{x}_{0}^{\prime}=\widetilde{\boldsymbol{x}}^{\prime}-\sum_{j=1}^{J^{\prime}} \boldsymbol{A}_{j}^{\top} y_{0}^{j}
\end{aligned}
$$

For $n=0,1, \ldots$.

$$
\begin{align*}
& \gamma_{n} \in[\epsilon, 2-\epsilon]  \tag{16}\\
& j_{n} \in\left\{1, \ldots, J^{\prime}\right\} \\
& \widetilde{y}_{n}^{j_{n}}=y_{n}^{j_{n}}+\gamma_{n}\left(B_{j_{n}}\right)^{-1} \boldsymbol{A}_{j_{n}} \boldsymbol{x}_{n}^{\prime} \\
& y_{n+1}^{j_{n}}=\widetilde{y}_{n}^{j_{n}}-\gamma_{n}\left(B_{j_{n}}\right)^{-1} \operatorname{prox}_{\gamma_{n}\left(B_{j_{n}}\right)^{-1}, g_{j_{n}}}\left(\gamma_{n}^{-1} B_{j_{n}} \widetilde{y}_{n}^{j_{n}}\right) \\
& y_{n+1}^{j}=y_{n}^{j}, \quad j \in\left\{1, \ldots, J^{\prime}\right\} \backslash\left\{j_{n}\right\} \\
& \boldsymbol{x}_{n+1}^{\prime}=\boldsymbol{x}_{n}^{\prime}-\boldsymbol{A}_{j_{n}}^{\top}\left(y_{n+1}^{j_{n}}-y_{n}^{j_{n}}\right) .
\end{align*}
$$

The following convergence properties of the above algorithm can be deduced from [25, Prop. 1-2]:

Theorem 3.1. Assume that
(i) $\left(g_{j}\right)_{1 \leqslant j \leqslant J}$ are semi-algebraic functions, and for every $j \in\{1, \ldots, J\}$, the restriction of $g_{j}^{*}$ on its domain is continuous ;
(ii) the sequence $\left(j_{n}\right)_{n \in \mathbb{N}}$ follows a quasi-cyclic rule, i.e., there exists $K \geqslant J^{\prime}$ such that, for every $n \in \mathbb{N},\left\{1, \ldots, J^{\prime}\right\} \subset\left\{j_{n}, \ldots, j_{n+K-1}\right\}$.

Let $\left(\boldsymbol{x}_{n}^{\prime}\right)_{n \in \mathbb{N}},\left(\boldsymbol{y}_{n}=\left(y_{n}^{j}\right)_{1 \leqslant j \leqslant J^{\prime}}\right)_{n \in \mathbb{N}}$ be sequences generated by Algorithm (16), and $\left(\boldsymbol{x}_{n}\right)_{n \in \mathbb{N}}=\left(\boldsymbol{D} \boldsymbol{x}_{n}^{\prime}\right)_{n \in \mathbb{N}}$. Then, if $\left(\boldsymbol{y}_{n}\right)_{n \in \mathbb{N}}$ is bounded, then $\left(\boldsymbol{x}_{n}^{\prime}\right)_{n \in \mathbb{N}}$ converges to the solution $\widehat{\boldsymbol{x}}^{\prime}$ to Problem (15), and $\left(\boldsymbol{x}_{n}\right)_{n \in \mathbb{N}}$ converges to the solution $\widehat{\boldsymbol{x}}$ to Problem (7). Moreover, there exists $\alpha \in] 0,+\infty[$ such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} n^{\alpha}\left\|\boldsymbol{x}_{n}-\widehat{\boldsymbol{x}}\right\| \in \mathbb{R} \tag{17}
\end{equation*}
$$

Let us now show how the above algorithm can be simplified.
First, note that $(\forall j \in\{1, \ldots, J\}) \boldsymbol{A}_{j} \boldsymbol{A}_{j}^{\top}=A_{j} \Omega_{j}^{-1} A_{j}^{\top}$ and $(\forall \ell \in\{1, \ldots, L\})$ $\left\|\boldsymbol{S}_{\ell} \boldsymbol{D}\right\|=\max _{j \in \mathbb{V}_{\ell}}\left\|\Omega_{j}^{-1 / 2}\right\|$. It can also be observed that $(\forall \ell \in\{1, \ldots, L\})(\forall \gamma \in$ $] 0,+\infty[)$,

$$
\begin{equation*}
\operatorname{prox}_{\gamma^{-1} g_{J+\ell}}\left(\gamma^{-1} \cdot\right)=\gamma^{-1} \Pi_{\Lambda_{\ell}} \tag{18}
\end{equation*}
$$

where $\Pi_{\Lambda_{\ell}}$ is the linear projector onto the vector space $\Lambda_{\ell}$.
Hence, by setting

$$
\begin{equation*}
(\forall \ell \in\{1, \ldots, L\}) \quad B_{J+\ell}=\vartheta_{\ell}^{-1} I_{N \kappa \ell} \tag{19}
\end{equation*}
$$

with $\vartheta_{\ell}=\min _{j \in \mathbb{V}_{\ell}}\left\|\Omega_{j}\right\|$, and $(\forall j \in\{1, \ldots, J\})$

$$
\begin{equation*}
\mathbb{V}_{j}^{*}=\left\{(\ell, k) \mid \ell \in\{1, \ldots, L\}, k \in\left\{1, \ldots, \kappa_{\ell}\right\} \text { and } \mathrm{i}(\ell, k)=j\right\} \tag{20}
\end{equation*}
$$

Algorithm (16) can be re-expressed as

$$
\left\lvert\, \begin{aligned}
& B_{j} \in \mathbb{R}^{M_{j} \times M_{j}} \text { with } B_{j} \geq A_{j} \Omega_{j}^{-1} A_{j}^{\top}, \quad j \in\{1, \ldots, J\} \\
& \vartheta_{\ell}=\min _{j \in \mathbb{V}_{\ell}}\left\|\Omega_{j}\right\|, \quad \ell \in\{1, \ldots, L\} \\
& \epsilon \in] 0,1] \\
& z_{0}^{\ell} \in \mathbb{R}^{N \kappa_{\ell}}, \quad \ell \in\{1, \ldots, L\} \\
& y_{0}^{j} \in \mathbb{R}^{M_{j}}, \quad j \in\{1, \ldots, J\} \\
& x_{0}^{j}=\widetilde{x}-\Omega_{j}^{-1}\left(A_{j}^{\top} y_{0}^{j}+\sum_{(\ell, k) \in \mathbb{V}_{j}^{*}} z_{0}^{\ell, k}\right), \quad j \in\{1, \ldots, J\} .
\end{aligned}\right.
$$

For $n=0,1, \ldots$

$$
\begin{aligned}
& \gamma_{n} \in[\epsilon, 2-\epsilon] \\
& j_{n} \in\{1, \ldots, J+L\} \\
& \text { If } j_{n} \leqslant J
\end{aligned}
$$

$$
\left[\begin{array}{l}
\widetilde{y}_{n}^{j_{n}}=y_{n}^{j_{n}}+\gamma_{n}\left(B_{j_{n}}\right)^{-1} A_{j_{n}} x_{n}^{j_{n}} \\
y_{n+1}^{j_{n}}=\widetilde{y}_{n}^{j_{n}}-\gamma_{n}\left(B_{j_{n}}\right)^{-1} \operatorname{prox}_{\gamma_{n}\left(B_{j_{n}}\right)^{-1}, g_{j_{n}}}\left(\gamma_{n}^{-1} B_{j_{n}} \widetilde{y}_{n}^{j_{n}}\right) \\
y_{n+1}^{j}=y_{n}^{j}, \quad j \in\{1, \ldots, J\} \backslash\left\{j_{n}\right\} \\
z_{n+1}^{\ell}=z_{n}^{\ell}, \quad \ell \in\{1, \ldots, L\} \\
x_{n+1}^{j_{n}}=x_{n}^{j_{n}}-\Omega_{j_{n}}^{-1} A_{j_{n}}^{\top}\left(y_{n+1}^{j_{n}}-y_{n}^{j_{n}}\right) \\
x_{n+1}^{j}=x_{n}^{j}, \quad j \in\{1, \ldots, J\} \backslash\left\{j_{n}\right\}
\end{array}\right.
$$

else
$\ell_{n}=j_{n}-J$
$\tilde{z}_{n}^{\ell_{n}}=z_{n}^{\ell_{n}}+\gamma_{n} \vartheta_{\ell_{n}}\left(x_{n}^{j}\right)_{j \in \mathbb{V}_{\ell_{n}}}$
$z_{n+1}^{\ell_{n}}=\widetilde{z}_{n}^{\ell_{n}}-\Pi_{\Lambda_{\ell_{n}}}\left(\widetilde{z}_{n}^{\ell_{n}}\right)$
$z_{n+1}^{\ell}=z_{n}^{\ell}, \quad \ell \in\{1, \ldots, L\} \backslash\left\{\ell_{n}\right\}$
$y_{n+1}^{j}=y_{n}^{j}, \quad j \in\{1, \ldots, J\}$
For $k=1, \ldots, \kappa_{\ell_{n}}$

$$
\begin{aligned}
& L x_{n+1}^{\mathrm{i}\left(\ell_{n}, k\right)}=x_{n}^{\mathrm{i}\left(\ell_{n}, k\right)}-\Omega_{\mathrm{i}\left(\ell_{n}, k\right)}^{-1}\left(z_{n+1}^{\ell_{n}, k}-z_{n}^{\ell_{n}, k}\right) \\
& x_{n+1}^{j}=x_{n}^{j}, \quad j \notin \mathbb{V}_{\ell_{n}} .
\end{aligned}
$$

In this algorithm, for increased readibility, we have set, for every $n \in \mathbb{N}$,

$$
\begin{align*}
& \boldsymbol{x}_{n}=\left[\left(x_{n}^{1}\right)^{\top}, \ldots,\left(x_{n}^{J}\right)^{\top}\right]^{\top}=\boldsymbol{D} \boldsymbol{x}_{n}^{\prime},  \tag{22}\\
& z_{n}^{\ell}=y_{n}^{J+\ell} \in \mathbb{R}^{N \kappa_{\ell}}, \quad \widetilde{z}_{n}^{\ell}=\widetilde{y}_{n}^{J+\ell} \in \mathbb{R}^{N \kappa_{\ell}} . \tag{23}
\end{align*}
$$

Furthermore, it can be noticed that, for every $n \in \mathbb{N}$ such that $j_{n}=J+\ell_{n}>J$,

$$
\begin{align*}
\Pi_{\Lambda_{\ell_{n}}}\left(z_{n+1}^{\ell_{n}}\right) & =\Pi_{\Lambda_{\ell_{n}}}\left(\widetilde{z}_{n}^{\ell_{n}}-\Pi_{\Lambda_{\ell_{n}}}\left(\widetilde{z}_{n}^{\ell_{n}}\right)\right) \\
& =\Pi_{\Lambda_{\ell_{n}}}\left(\widetilde{z}_{n}^{\ell_{n}}\right)-\Pi_{\Lambda_{\ell_{n}}}\left(\Pi_{\Lambda_{\ell_{n}}}\left(\widetilde{z}_{n}^{\ell_{n}}\right)\right) \\
& =0 \tag{24}
\end{align*}
$$

Since, for every $\ell \in\{1, \ldots, L\} \backslash\left\{\ell_{n}\right\}, z_{n+1}^{\ell}=z_{n}^{\ell}$, the latter equality can be extended by induction to

$$
\begin{equation*}
(\forall n \in \mathbb{N})(\forall \ell \in\{1, \ldots, L\}) \quad \Pi_{\Lambda_{\ell}}\left(z_{n}^{\ell}\right)=0 \tag{25}
\end{equation*}
$$

using an appropriate initialization of the algorithm (e.g., by choosing ( $\forall \ell \in$ $\left.\{1, \ldots, L\}) z_{0}^{\ell}=0\right)$. Hence, for every $n \in \mathbb{N}$ such that $j_{n}=J+\ell_{n}>J$,

$$
\begin{equation*}
\Pi_{\Lambda_{\ell_{n}}}\left(\widetilde{z}_{n}^{\ell}\right)=\gamma_{n} \vartheta_{\ell_{n}} \Pi_{\Lambda_{\ell_{n}}}\left(\left(x_{n}^{j}\right)_{j \in \mathbb{V}_{\ell_{n}}}\right) \tag{26}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
z_{n+1}^{\ell_{n}}-z_{n}^{\ell_{n}}=\gamma_{n} \vartheta_{\ell_{n}}\left(\left(x_{n}^{j}\right)_{j \in \mathbb{V}_{\ell_{n}}}-\Pi_{\Lambda_{\ell_{n}}}\left(\left(x_{n}^{j}\right)_{j \in \mathbb{V}_{\ell_{n}}}\right)\right) \tag{27}
\end{equation*}
$$

The second part of iteration $n$ of (21) dealing with the case when $j_{n}>J$ can then be re-expressed as shown in the projection step of Algorithm 2 (lines 20 to (26). In the resulting algorithm, we were able to drop the variables $\left(z_{n}^{\ell}\right)_{1 \leqslant \ell \leqslant L}$, for every $n \in \mathbb{N}$.

The body of our proposed Algorithm 2 is composed of two main parts:

```
Algorithm 2: Distributed Preconditioned Dual Forward-Backward
    Initialization:
    \(\mathbb{V}_{\ell} \equiv\) index set of nodes in hyperedge \(\ell \in\{1, \ldots, L\}\)
    \(B_{j} \in \mathbb{R}^{M_{j} \times M_{j}}\) with \(B_{j} \geq A_{j} \Omega_{j}^{-1} A_{j}^{\top}, \quad j \in\{1, \ldots, J\}\)
    \(4 \vartheta_{\ell}=\min _{j \in \mathbb{V}_{\ell}}\left\|\Omega_{j}\right\|, \quad \ell \in\{1, \ldots, L\}\)
    \(\epsilon \in] 0,1]\)
    \(y_{0}^{j} \in \mathbb{R}^{M_{j}}, x_{0}^{j}=\widetilde{x}-\Omega_{j}^{-1} A_{j}^{\top} y_{0}^{j}, \quad j \in\{1, \ldots, J\}\).
    Main loop:
    for \(n=0,1, \ldots\) do
        \(\gamma_{n} \in[\epsilon, 2-\epsilon]\)
        \(j_{n} \in\{1, \ldots, J+L\}\)
        if \(j_{n} \leqslant J\) then
            Local optimization:
            \(\widetilde{y}_{n}^{j_{n}}=y_{n}^{j_{n}}+\gamma_{n}\left(B_{j_{n}}\right)^{-1} A_{j_{n}} x_{n}^{j_{n}}\)
            \(y_{n+1}^{j_{n}}=\widetilde{y}_{n}^{j_{n}}-\gamma_{n}\left(B_{j_{n}}\right)^{-1} \operatorname{prox}_{\gamma_{n}\left(B_{j_{n}}\right)^{-1}, g_{j_{n}}}\left(\gamma_{n}^{-1} B_{j_{n}} \widetilde{y}_{n}^{j_{n}}\right)\)
            \(y_{n+1}^{j}=y_{n}^{j}, \quad j \in\{1, \ldots, J\} \backslash\left\{j_{n}\right\}\)
            \(x_{n+1}^{j_{n}}=x_{n}^{j_{n}}-\Omega_{j_{n}}^{-1} A_{j_{n}}^{\top}\left(y_{n+1}^{j_{n}}-y_{n}^{j_{n}}\right)\)
            \(x_{n+1}^{j}=x_{n}^{j}, \quad j \in\{1, \ldots, J\} \backslash\left\{j_{n}\right\}\)
        else
            Projection:
            \(\ell_{n}=j_{n}-J\)
            \(y_{n+1}^{j}=y_{n}^{j}, \quad j \in\{1, \ldots, J\}\)
            \(p_{n}^{\ell_{n}}=\Pi_{\Lambda_{\ell_{n}}}\left(\left(x_{n}^{j}\right)_{j \in \mathbb{V}_{\ell_{n}}}\right)\)
            for \(k=1, \ldots, \kappa_{\ell_{n}}\) do
                \(x_{n+1}^{\mathbf{i}\left(\ell_{n}, k\right)}=x_{n}^{i\left(\ell_{n}, k\right)}+\gamma_{n} \vartheta_{\ell_{n}} \Omega_{\mathrm{i}\left(\ell_{n}, k\right)}^{-1}\left(p_{n}^{\ell_{n}, k}-x_{n}^{\mathrm{i}\left(\ell_{n}, k\right)}\right)\)
            end
            \(x_{n+1}^{j}=x_{n}^{j}, \quad j \notin \mathbb{V}_{\ell_{n}}\).
        end
    end
```

- First a local optimization part (lines 13 to (17) which is reminiscent of the Dual Block Forward-Backward algorithm where, at each iteration, a block $j_{n}$ is selected and the associated dual and primal variables $y_{n}^{j_{n}}$ (line 14) and $x_{n}^{j_{n}}$ (line 16) are updated, respectively. Note that a fundamental difference between the proposed algorithm and Algorithm $\mathbb{\square}$ lies in the fact that each block $j_{n}$ is now associated with a local primal variable $x_{n}^{j_{n}}$ whereas, in Algorithm $x_{n}$ was a shared variable.
- The second part of Algorithm 22 is a projection step (lines 20 to 26) in which a set $\mathbb{V}_{\ell_{n}}$ is selected and all the variables $\left(x^{j_{n}}\right)_{j_{n} \in \mathbb{V}_{\ell_{n}}}$ are updated by means of a projection operating over the selected set $\mathbb{V}_{\ell_{n}}$.

In Algorithm [2 all computation steps only involve local variables, which is suitable for parallel processing. A high degree of flexibility is allowed in the quasi-cyclic rule for choosing the indices $j_{n}$ and $\ell_{n}$ at each iteration $n$. The distributed Algorithm 2 inherits all the advantages of primal-dual methods, in particular it requires no inversion of the matrices $\left(A_{j}\right)_{1 \leqslant j \leqslant J}$, which is critical when these matrices do not have a simple structure and are of very large size. Note that the proposed approach is quite different from the ones developed in [27, 28] since it does not assume a random sweeping rule for the block index selection, and its convergence analysis, secured by Theorem [3.1] does not rely on the nonexpansiveness property of the involved operators.

### 3.3. Consensus choice

Let us now discuss practical settings for the vector spaces $\left(\Lambda_{\ell}\right)_{1 \leqslant \ell \leqslant L}$ and the weights and the weight matrices $\left(\Omega_{j}\right)_{1 \leqslant j \leqslant J}$, that parameterize our consensus formulation (14). Such choice is of main importance to devise efficient distributed schemes with limited communication cost and good practical convergence speed.

### 3.3.1. Generic case

When the operators $\left(A_{j}\right)_{1 \leqslant j \leqslant J}$ have no specific structure, a natural choice for the vector spaces $\left(\Lambda_{\ell}\right)_{1 \leqslant \ell \leqslant L}$ is to adopt a form similar to that of $\Lambda$ in (8):

$$
(\forall \ell \in\{1, \ldots, L\}) \quad \Lambda_{\ell}=\left\{\left.\left[\begin{array}{c}
v^{\ell, 1}  \tag{28}\\
\vdots \\
v^{\ell, \kappa_{\ell}}
\end{array}\right] \in \mathbb{R}^{N \kappa_{\ell}} \right\rvert\, v^{\ell, 1}=\ldots=v^{\ell, \kappa_{\ell}}\right\} .
$$

165 Note that (8), (10) and (28) imply that the hypergraph induced by the hyperedges $\left(\mathbb{V}_{\ell}\right)_{1 \leqslant \ell \leqslant L}$ is connected (Figure $\mathbb{T}$ is an example of such a connected hypergraph). In this context, the connectivity of the hypergraph is essential in order to allow the global consensus solution to be reached.

For every $\ell \in\{1, \ldots, L\}$, the projection onto $\Lambda_{\ell}$ is then simply expressed as

$$
\begin{equation*}
\left(\forall\left(v^{\ell, k}\right)_{1 \leqslant k \leqslant \kappa_{\ell}} \in \mathbb{R}^{N \kappa_{\ell}}\right) \quad \Pi_{\Lambda_{\ell}}\left(\left(v^{\ell, k}\right)_{1 \leqslant k \leqslant \kappa_{\ell}}\right)=\left[\left(\bar{v}^{\ell}\right)^{\top}, \ldots,\left(\bar{v}^{\ell}\right)^{\top}\right]^{\top}, \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{v}^{\ell}=\operatorname{mean}\left(\left(v^{\ell, k}\right)_{1 \leqslant k \leqslant \kappa_{\ell}}\right) \tag{30}
\end{equation*}
$$

and mean $(\cdot)$ designates the arithmetic mean operation (i.e. mean $\left(\left(v^{\ell, k}\right)_{1 \leqslant k \leqslant \kappa_{\ell}}\right)=$ $\left.\kappa_{\ell}^{-1} \sum_{k=1}^{k_{\ell}} v^{\ell, k}\right)$. In addition, Condition (9) is met by simply choosing ( $\forall j \in$ $\{1, \ldots, J\}) \Omega_{j}=\omega_{j} I_{N}$, where $\left.\left.\left(\omega_{j}\right)_{1 \leqslant j \leqslant J} \in\right] 0,1\right]^{J}$ are such that $\sum_{j=1}^{J} \omega_{j}=1$. These simplifications lead to the following modifications of lines 22-25 in Algorithm [2]

$$
\begin{align*}
& \bar{x}_{n}^{\ell_{n}}=\operatorname{mean}\left(\left(x_{n}^{j}\right)_{j \in \mathbb{V}_{\ell_{n}}}\right) \\
& \text { For } k=1, \ldots, \kappa_{\ell_{n}}  \tag{31}\\
& \left\lfloor x_{n+1}^{\mathbf{i}\left(\ell_{n}, k\right)}=x_{n}^{i\left(\ell_{n}, k\right)}+\gamma_{n} \vartheta_{\ell_{n}} \omega_{\mathrm{i}\left(\ell_{n}, k\right)}^{-1}\left(\bar{x}_{n}^{\ell_{n}}-x_{n}^{\mathbf{i}\left(\ell_{n}, k\right)}\right) .\right.
\end{align*}
$$

### 3.3.2. Dimension reduction

Under its previous form, Algorithm 2 requires each node of the hypergraph to handle a local copy of several variables. In particular, for the $j$-th node, a vector $x_{n}^{j}$ of dimension $N$ needs to be stored, which may be prohibitive for
highly dimensional problems. Hopefully, very often in signal and image processing applications, the operators $\left(A_{j}\right)_{1 \leqslant j \leqslant J}$ have a sparse block structure, which makes it possible to ameliorate this problem. More specifically, it will be assumed subsequently that

$$
\begin{equation*}
(\forall j \in\{1, \ldots, J\})\left(\forall x^{j}=\left(\left[x^{j}\right]_{t}\right)_{1 \leqslant t \leqslant T} \in \mathbb{R}^{N}\right) \quad A_{j} x^{j}=\sum_{t \in \mathbb{T}_{j}} \mathcal{A}_{j, t}\left[x^{j}\right]_{t} \tag{32}
\end{equation*}
$$

where, for every $j \in\{1, \ldots, J\},\left[x^{j}\right]_{t}$ is a vector corresponding to a block of data of dimension $L, T$ is the overall number of blocks (i.e., $N=T L$ ), and $\mathbb{T}_{j} \subset\{1, \ldots, T\}$ defines the reduced index subset of the components of vector $x^{j}$ acting on the operator $A_{j}$. In the above equation, $\left(\mathcal{A}_{j, t}\right)_{t \in \mathbb{T}_{j}}$ are the associated reduced-size matrices of dimensions $M_{j} \times L$. Similarly to the way $x^{j}$ has been block-decomposed, we split the diagonal matrix $\Omega_{j}$ as $\Omega_{j}=\operatorname{Diag}\left(\Omega_{j, 1}, \ldots, \Omega_{j, T}\right)$ where, for every $t \in\{1, \ldots, T\}, \Omega_{j, t}$ is a diagonal matrix of size $L \times L$. It then obviously holds that $A_{j} \Omega_{j}^{-1} A_{j}^{\top}=\sum_{t \in \mathbb{T}_{j}} \mathcal{A}_{j, t} \Omega_{j, t}^{-1} \mathcal{A}_{j, t}^{\top}$. To avoid degenerate cases, we will subsequently assume that $(\forall j \in\{1, \ldots, J\}) \mathbb{T}_{j} \neq \varnothing$ and $\bigcup_{j=1}^{J} \mathbb{T}_{j}=$ $\{1, \ldots, T\}$.

In our distributed formulation, the specific form of the operators $\left(A_{j}\right)_{1 \leqslant j \leqslant J}$ suggests to set the vector subspaces $\left(\Lambda_{\ell}\right)_{1 \leqslant \ell \leqslant L}$ so as to reach the consensus only for the components $\left(\left[x^{j}\right]_{t}\right)_{1 \leqslant j \leqslant J, t \in \mathbb{T}_{j}}$ of vectors $\left(x^{j}\right)_{1 \leqslant j \leqslant J}$. This means that the space $\Lambda\left(\operatorname{resp} . \Lambda_{\ell}\right.$ with $\left.\ell \in\{1, \ldots, L\}\right)$ is defined as

$$
\left(x^{j}\right)_{1 \leqslant j \leqslant J} \in \Lambda \Leftrightarrow\left(\forall\left(j, j^{\prime}\right) \in\{1, \ldots, J\}^{2}\right)\left(\forall t \in \mathbb{T}_{j} \cap \mathbb{T}_{j^{\prime}}\right) \quad\left[x^{j}\right]_{t}=\left[x^{j^{\prime}}\right]_{t}
$$

$$
\begin{equation*}
\left(\text { resp. }\left(x^{j}\right)_{j \in \mathbb{V}_{\ell}} \in \Lambda_{\ell} \Leftrightarrow\left(\forall\left(j, j^{\prime}\right) \in \mathbb{V}_{\ell}^{2}\right)\left(\forall t \in \mathbb{T}_{j} \cap \mathbb{T}_{j^{\prime}}\right) \quad\left[x^{j}\right]_{t}=\left[x^{j^{\prime}}\right]_{t}\right) \tag{33}
\end{equation*}
$$

180 It can be noticed that, although the hypergraph must still be built so that (10) holds, $\Lambda$ is no longer given by (8), since the components $\left(\left[x^{j}\right]_{t}\right)_{1 \leqslant j \leqslant J, t \notin \mathbb{T}_{j}}$ are unconstrained. The main advantage of this choice is that Problem (7) then
decouples into two optimization problems:

- the minimization of the function

$$
\begin{equation*}
\left(\left[x^{j}\right]_{t}\right)_{1 \leqslant j \leqslant J, t \in \mathbb{T}_{j}} \mapsto \sum_{j=1}^{J} g_{j}\left(\sum_{t \in \mathbb{T}_{j}} \mathcal{A}_{j, t}\left[x^{j}\right]_{t}\right)+\frac{1}{2} \sum_{j=1}^{J} \sum_{t \in \mathbb{T}_{j}}\left\|\left[x^{j}\right]_{t}-[\tilde{x}]_{t}\right\|_{\Omega_{j, t}}^{2} \tag{34}
\end{equation*}
$$

subject to Constraint (33);

- the unconstrained minimization of the function

$$
\begin{equation*}
\left(\left[x^{j}\right]_{t}\right)_{1 \leqslant j \leqslant J, t \notin \mathbb{T}_{j}} \mapsto \sum_{j=1}^{J} \sum_{t \notin \mathbb{T}_{j}}\left\|\left[x^{j}\right]_{t}-[\tilde{x}]_{t}\right\|_{\Omega_{j, t}}^{2} \tag{35}
\end{equation*}
$$

Since the second problem is trivial, the variables $\left(\left[x_{n}^{j}\right]_{t}\right)_{1 \leqslant j \leqslant J, t \notin \mathbb{T}_{j}}$ generated at each iteration $n \in \mathbb{N}$ of Algorithm 2 are useless and, consequently, they can be discarded. By doing so, only the $\left|\mathbb{T}_{j}\right|$ vectors ${ }^{1}\left(\left[x_{n}^{j}\right]_{t}\right)_{t \in \mathbb{T}_{j}}$ of dimension $L$ need to be stored at the $j$-th node (instead of $T$ vectors of this size) and the number of computations to be performed during the projection step is also sharply diminished.

This yields Algorithm 3 where, in the synchronization step, averaging operations corresponding to the projection onto $\Lambda_{\ell_{n}}$ have been substituted for lines $22 \mid 25$ in Algorithm (2) The notation

$$
\begin{equation*}
(\forall t \in\{1, \ldots, T\}) \quad \mathbb{T}_{t}^{*}=\left\{j \in\{1, \ldots, J\} \mid t \in \mathbb{T}_{j}\right\} \tag{36}
\end{equation*}
$$

has been introduced for the computation of the averages. In particular, in line 29] of Algorithm[3, if $\mathbb{V}_{\ell} \cap \mathbb{T}_{t}^{*}$ is a singleton, which means that the $t$-th block component of the vector $x$ appears only once in the expression of $g_{j}\left(A_{j} x\right)$ for indices $j$ in the $\ell_{n}$-th hyperedge, then the averaging reduces to setting $\left[x_{n+1}^{j}\right]_{t}=\left[x_{n}^{j}\right]_{t}$. It is also worthwhile to note that, when $(\forall j \in\{1, \ldots, J\}) \mathbb{T}_{j}=\{1, \ldots, T\}$, the

[^1]consensus solution described in Section 3.3.1 is recovered. It must be however pointed out that, in general, to have the equivalence between the minimization of (34) subject to Constraint (33) and the resolution of Problem (5), the following condition has to be substituted for (9):
\[

$$
\begin{equation*}
(\forall t \in\{1, \ldots, T\}) \quad \sum_{j \in \mathbb{T}_{t}^{*}} \Omega_{j, t}=I_{L} \tag{37}
\end{equation*}
$$

\]

In Algorithm 3 this has been simply achieved by setting $(\forall j \in\{1, \ldots, J\})$ $\left(\forall t \in \mathbb{T}_{j}\right) \Omega_{j, t}=\omega_{j, t} I_{L}$, where $\left(\omega_{j, t}\right)_{1 \leqslant j \leqslant J, t \in \mathbb{T}_{j}}$ are positive real such that $(\forall t \in$ $\{1, \ldots, T\}) \sum_{j \in \mathbb{T}_{t}^{*}} \omega_{j, t}=1$. In turn, the notation $\left(\Omega_{j, t}\right)_{1 \leqslant j \leqslant J, t \notin \mathbb{T}_{j}}$ is no longer used in this algorithm.

Algorithm 3 can give rise to a variety of distributed implementations. In the remainder of the paper, we will focus on a simple particular instance of this algorithm.

## 4. A useful special case

Let us consider the case when $C \leqslant J$ processing units are available. To simplify our presentation, we will restrict our attention to a case of practical interest, that arises for example in the video denoising application described in Section 5. by making the following assumptions.

205 Assumption 4.1.
(i) The hyperedges $\left(\mathbb{V}_{\ell}\right)_{1 \leqslant \ell \leqslant C}$ form a partition of $\{1, \ldots, J\}$.
(ii) For every $\ell \in\{1, \ldots, C\}$, let $\mathbb{T}_{\mathbb{V}_{\ell}}=\bigcup_{j \in \mathbb{V}_{\ell}} \mathbb{T}_{j}$.
(a) For every $\left(\ell, \ell^{\prime}\right) \in\{1, \ldots, C\}^{2}, \mathbb{T}_{\mathbb{V}_{\ell}} \cap \mathbb{T}_{\mathbb{V}_{\ell^{\prime}}}=\varnothing$ if $\left|\ell-\ell^{\prime}\right|>1$.
(b) For every $\ell \in\{2, \ldots, C-1\}$, $\mathbb{T}_{\mathbb{V}_{\ell-1}} \cap \mathbb{T}_{\mathbb{V}_{\ell}} \cap \mathbb{T}_{\mathbb{V}_{\ell+1}}=\varnothing$.

210 An example of hypergraph satisfying Assumption 4.11(i) is displayed in Figure 2 For every $\ell \in\{1, \ldots, C\}, \mathbb{T}_{\mathbb{V}_{\ell}}$ is the set of the block indices $t$ of the components

```
Algorithm 3: Distributed Preconditioned Dual Forward-Backward af-
ter Dimension Reduction
    Initialization:
    \(\mathbb{V}_{\ell} \equiv\) index set of nodes in hyperedge \(\ell \in\{1, \ldots, L\}\)
    \(\mathbb{T}_{j} \equiv\) index set of blocks used at node \(j \in\{1, \ldots, J\}\)
    \(4 \mathbb{T}_{t}^{*} \equiv\) index set of nodes using block \(t \in\{1, \ldots, T\}\)
    \(\left.\left.{ }_{5}\left\{\omega_{j, t} \mid 1 \leqslant j \leqslant J, t \in \mathbb{T}_{j}\right\} \subset\right] 0,1\right]\) such that \((\forall t \in\{1, \ldots, T\}) \sum_{j \in \mathbb{T}_{t}^{*}} \omega_{j, t}=1\)
    \({ }^{6} B_{j} \in \mathbb{R}^{M_{j} \times M_{j}}\) with \(B_{j} \geq \sum_{t \in \mathbb{T}_{j}} \omega_{j, t}^{-1} \mathcal{A}_{j, t} \mathcal{A}_{j, t}^{\top}, \quad j \in\{1, \ldots, J\}\)
    \(7 \vartheta_{\ell}=\min _{j \in \mathbb{V}_{\ell}, t \mathbb{T}_{j}} \omega_{j, t}, \quad \ell \in\{1, \ldots, L\}\)
    \(8 \epsilon \in] 0,1]\)
    9 \(y_{0}^{j} \in \mathbb{R}^{M_{j}},\left[x_{0}^{j}\right]_{t}=[\tilde{x}]_{t}-\omega_{j, t}^{-1} \mathcal{A}_{j, t}^{\top} y_{0}^{j}, \quad j \in\{1, \ldots, J\}, t \in \mathbb{T}_{j}\).
    Main loop:
    for \(n=0,1, \ldots\) do
        \(\gamma_{n} \in[\epsilon, 2-\epsilon]\)
        \(j_{n} \in\{1, \ldots, J+L\}\)
        if \(j_{n} \leqslant J\) then
            Local optimization:
            \(\widetilde{y}_{n}^{j_{n}}=y_{n}^{j_{n}}+\gamma_{n} B_{j_{n}}^{-1} \sum_{t \in \mathbb{T}_{j_{n}}} \mathcal{A}_{j_{n}, t}\left[x_{n}^{j_{n}}\right]_{t}\)
            \(y_{n+1}^{j_{n}}=\widetilde{y}_{n}^{j_{n}}-\gamma_{n} B_{j_{n}}^{-1} \operatorname{prox}_{\gamma_{n} B_{j_{n}}^{-1}, g_{j_{n}}}\left(\gamma_{n}^{-1} B_{j_{n}} \widetilde{y}_{n}^{j_{n}}\right)\)
            \(y_{n+1}^{j}=y_{n}^{j}, \quad j \in\{1, \ldots, J\} \backslash\left\{j_{n}\right\}\)
            for \(t \in \mathbb{T}_{j_{n}}\) do
                \(\left[x_{n+1}^{j_{n}}\right]_{t}=\left[x_{n}^{j_{n}}\right]_{t}-\omega_{j_{n}, t}^{-1} \mathcal{A}_{j_{n}, t}^{\top}\left(y_{n+1}^{j_{n}}-y_{n}^{j_{n}}\right)\)
            end
            \(\left(\left[x_{n+1}^{j}\right]_{t}\right)_{t \in \mathbb{T}_{j}}=\left(\left[x_{n}^{j}\right]_{t}\right)_{t \in \mathbb{T}_{j}}, \quad j \in\{1, \ldots, J\} \backslash\left\{j_{n}\right\}\)
        else
            Projection:
            \(\ell_{n}=j_{n}-J\)
            \(y_{n+1}^{j}=y_{n}^{j}, \quad j \in\{1, \ldots, J\}\)
            for \(j \in \mathbb{V}_{\ell_{n}}\) do
                for \(t \in \mathbb{T}_{j}\) do
                        \(\left[x_{n+1}^{j}\right]_{t}=\)
                        \(\left[x_{n}^{j}\right]_{t}+\gamma_{n} \vartheta_{\ell_{n}} \omega_{j, t}^{-1}\left(\operatorname{mean}\left(\left(\left[x_{n}^{j^{\prime}}\right]_{t}\right)_{j^{\prime} \in \mathbb{V}_{\ell_{n}} \cap \mathbb{T}_{t}^{*}}\right)-\left[x_{n}^{j}\right]_{t}\right)\)
            end
            end
            \(\left(\left[x_{n+1}^{j}\right]_{t}\right)_{t \in \mathbb{T}_{j}}=\left(\left[x_{n}^{j}\right]_{t}\right)_{t \in \mathbb{T}_{j}}, \quad j \notin \mathbb{V}_{\ell_{n}}\).
        end
    end
```

$\left[x^{j}\right]_{t}$ where $j$ is any node in $\mathbb{V}_{\ell}$. According to Assumption 4.1 (ii)(a), these indices may only be common to hyperedges having preceding or following index values (i.e. $\ell-1$ or $\ell+1$ ). Finally, Assumption 4.1)(ii)(b) means that no overlap

### 4.1. Form of the algorithm

An interesting instance of Algorithm 3 is then obtained by setting $L=C+1$ and by assuming that each hyperedge $\mathbb{V}_{\ell}$ with $\ell \in\{1, \ldots, C\}$ corresponds to a given computing unit where the computations are locally synchronized. In addition, hyperedge $\mathbb{V}_{L}$ is set to $\{1, \ldots, J\}$ in order to model global synchronization steps consisting of an averaging over all the available nodes. At each iteration $n$, only a subset $\mathbb{J}_{n, \ell}$ of dual variable indices is activated within the $\ell$-th hyperedge. Their update is followed by either a possible local synchronization or a global one.

Algorithm 4 summarizes the proposed approach. For simplicity, the index $L$ has been dropped in variable $\vartheta_{L}$. Note that, if the local synchronization step is omitted (by setting $\left[x_{n+1}^{j}\right]_{t}=\left[x_{n+1 / 2}^{j}\right]_{t}$ in line [29), the algorithm still makes sense since it can be easily shown that it actually corresponds to a rewriting of Algorithm 3 in the case when $L=1$ and $\mathbb{V}_{1}=\{1, \ldots, J\}$. Unlikely, the global synchronization is mandatory although it has not to be performed at each iteration but only in a quasi-cyclic manner.

It should be emphasized that even in the case when all the dual variables are updated iteratively (i.e., $\left.(\forall \ell \in\{1, \ldots, L\})(\forall n \in \mathbb{N}) \mathbb{J}_{n, \ell}=\mathbb{V}_{\ell}\right)$, Algorithm 4 exhibits a different structure from the one of the parallel dual forward-backward algorithm in (35].

### 4.2. Distributed implementation

We now look more precisely at the implementation of Algorithm 4 on a distributed architecture with $C \in \mathbb{N}^{*}$ computing units, each computing unit being

```
Algorithm 4: Special case of distributed Preconditioned Dual
Forward-Backward
    Initialization:
    \(\mathbb{V}_{\ell} \equiv\) index set of nodes associated with computing unit \(\ell \in\{1, \ldots, C\}\)
    \(\mathbb{T}_{j} \equiv\) index set of blocks used at node \(j \in\{1, \ldots, J\}\)
    \(\mathbb{T}_{t}^{*} \equiv\) index set of nodes using block \(t \in\{1, \ldots, T\}\)
    \(\left.\left.\left\{\omega_{j, t} \mid 1 \leqslant j \leqslant J, t \in \mathbb{T}_{j}\right\} \subset\right] 0,1\right]\) such that \((\forall t \in\{1, \ldots, T\}) \sum_{j \in \mathbb{T}_{t}^{*}} \omega_{j, t}=1\)
    \({ }^{6} B_{j} \in \mathbb{R}^{M_{j} \times M_{j}}\) with \(B_{j} \geq \sum_{t \in \mathbb{T}_{j}} \omega_{j, t}^{-1} \mathcal{A}_{j, t} \mathcal{A}_{j, t}^{\top}, \quad j \in\{1, \ldots, J\}\)
    \(\vartheta=\min _{1 \leqslant j \leqslant J, 1 \leqslant t \leqslant T} \omega_{j, t}, \quad \vartheta_{\ell}=\min _{j \in \mathbb{V}_{\ell}, t \in \mathbb{T}_{j}} \omega_{j, t}, \quad \ell \in\{1, \ldots, C\}\)
    \(\epsilon \in] 0,1]\)
    \(y_{0}^{j} \in \mathbb{R}^{M_{j}},\left[x_{0}^{j}\right]_{t}=[\widetilde{x}]_{t}-\omega_{j, t}^{-1} \mathcal{A}_{j, t}^{\top} y_{0}^{j}, \quad j \in\{1, \ldots, J\}, t \in \mathbb{T}_{j}\).
    Main loop:
    for \(n=0,1, \ldots\) do
        for \(\ell=1, \ldots, C\) do
        \(\mathbb{J}_{n, \ell} \subset \mathbb{V}_{\ell}\)
        for \(j \in \mathbb{J}_{n, \ell}\) do
            Local optimization:
            \(\widetilde{y}_{n}^{j}=y_{n}^{j}+\gamma_{n} B_{j}^{-1} \sum_{t \in \mathbb{T}_{j}} \mathcal{A}_{j, t}\left[x_{n}^{j}\right]_{t}\)
            \(y_{n+1}^{j}=\widetilde{y}_{n}^{j}-\gamma_{n} B_{j}^{-1} \operatorname{prox}_{\gamma_{n} B_{j}^{-1}, g_{j}}\left(\gamma_{n}^{-1} B_{j} \widetilde{y}_{n}^{j}\right)\)
            for \(t \in \mathbb{T}_{j}\) do
                \(\left[x_{n+1 / 2}^{j}\right]_{t}=\left[x_{n}^{j}\right]_{t}-\omega_{j, t}^{-1} \mathcal{A}_{j, t}^{\top}\left(y_{n+1}^{j}-y_{n}^{j}\right)\)
            end
        end
        for \(j \in \mathbb{V}_{\ell} \backslash \mathbb{J}_{n, \ell}\) do
            \(y_{n+1}^{j}=y_{n}^{j}\)
            \(\left(\left[x_{n+1 / 2}^{j}\right]_{t}\right)_{t \in \mathbb{T}_{j}}=\left(\left[x_{n}^{j}\right]_{t}\right)_{t \in \mathbb{T}_{j}}\)
        end
        if local synchronization is requested then
            for \(j \in \mathbb{V}_{\ell}\) do
                for \(t \in \mathbb{T}_{j}\) do
                        \(\left[x_{n+1}^{j}\right]_{t}=\left[x_{n+1 / 2}^{j}\right]_{t}+\)
                        \(\gamma_{n} \vartheta_{\ell} \omega_{j, t}^{-1}\left(\operatorname{mean}\left(\left(\left[x_{n+1 / 2}^{j^{\prime}}\right]_{t}\right)_{j^{\prime} \in \mathbb{V}_{\ell} \cap \mathbb{T}_{t}^{*}}\right)-\left[x_{n+1 / 2}^{j}\right]_{t}\right)\)
                        end
            end
        end
        end
        if global synchronization is requested then
            for \(t=1, \ldots, T\) do \(\left[\bar{x}_{n}\right]_{t}=\) mean \(\left(\left(\left[x_{n+1 / 2}^{j}\right]_{t}\right)_{j \in \mathbb{T}_{t}^{*}}\right)\);
            for \(j=1, \ldots, J\) do
            for \(t \in \mathbb{T}_{j}\) do
                \(\left[x_{n+1}^{j}\right]_{t}=\left[x_{n+1 / 2}^{j}\right]_{t}+22_{n} \vartheta \omega_{j, t}^{-1}\left(\left[\bar{x}_{n}\right]_{t}-\left[x_{n+1 / 2}^{j}\right]_{t}\right)\)
            end
        end
        end
    end
```



Figure 2: Hypergraph of $J=7$ nodes, $C=4$ computing units and $L=5$ hyperedges. ple of $C=4$ computing units based on the hypergraph defined in Figure 2,


Figure 3: (top) Partitioning of $J=7$ nodes and $L=5$ hyperedges on $C=4$ computing units. (bottom) Partitioning of $J=7$ nodes and $L=1$ hyperedge on $C=4$ computing systems.

As we have seen, each computing unit $c \in\{1, \ldots, C\}$ handles $\kappa_{c}$ terms corresponding to the nodes in $\mathbb{V}_{c}$ of the hypergraph, and processes the functions $\left(g_{j}\right)_{j \in \mathbb{V}_{c}}$ associated with these nodes. Furthermore, a global synchronization step needs to be performed. This task could be assigned to one of the computing unit, say the first one, as modelled in Figure 3 (bottom) by adding a fictitious term corresponding to hyperedge $\mathbb{V}_{C+1}$. This would however lead to a centralized scheme where the computing load between the different units would end-up unbalanced.

A better strategy would consist of distributing the operations performed on
line 35 of Algorithm 4 over the different computing units. For this purpose, let us first note that at iteration $n$, the $c$-th computing unit only needs the block components $\left(\left[\bar{x}_{n}\right]_{t}\right)_{t \in \mathbb{V}_{V_{c}}}$. In addition, because of Assumption 4.1 (ii)(a), some of these variables may be shared with the computing units $c-1($ if $c \neq 1)$ and $c+1$ (if $c \neq C$ ), where part of the variables $\left[x_{n+1 / 2}^{j}\right]_{t}$ necessary to compute the averages are locally available. As a consequence of Assumption 4.1 (ii)(b), no other variables than those available in either $\mathbb{T}_{\mathbb{V}_{c-1}} \cap \mathbb{T}_{\mathbb{V}_{c}}$ or $\mathbb{T}_{\mathbb{V}_{c}} \cap \mathbb{T}_{\mathbb{V}_{c+1}}$ are necessary . For example, if $c \neq 1$ and $t \in \mathbb{T}_{\mathbb{V}_{c-1}} \cap \mathbb{T}_{\mathbb{V}_{c}}$, the averaging operation reads

$$
\begin{align*}
{\left[\bar{x}_{n}\right]_{t} } & =\frac{1}{\left|\mathbb{T}_{t}^{*}\right|} \sum_{j \in \mathbb{T}_{t}^{*}}\left[x_{n+1 / 2}^{j}\right]_{t} \\
& =\frac{1}{\left|\mathbb{T}_{t}^{*}\right|}\left(\left[s_{n, c-1}\right]_{t}+\left[s_{n, c}\right]_{t}\right) \tag{38}
\end{align*}
$$

where

$$
\begin{equation*}
\left[s_{n, c-1}\right]_{t}=\sum_{j \in \mathbb{V}_{c-1} \cap \mathbb{T}_{t}^{*}}\left[x_{n+1 / 2}^{j}\right]_{t} \tag{39}
\end{equation*}
$$

and $\left[s_{n, c}\right]_{t}$ is similarly defined. Since the variables $\left(\left[x_{n+1 / 2}^{j}\right]_{t}\right)_{j \in \mathbb{V}_{c-1} \cap \mathbb{T}_{t}^{*}}$ are not available at unit $c$, the latter summation must be performed by unit $c-1$ and the result must be transmitted to unit $c$. This one will then be able to compute $\left[\bar{x}_{n}\right]_{t}$, so as to update variables $\left(\left[x_{n+1}^{j}\right]_{t}\right)_{j \in \mathbb{V}_{c} \cap \mathbb{T}_{t}^{*}}$. Besides, $\left[\bar{x}_{n}\right]_{t}$ will be sent to unit $c-1$, which in turn will update its variables $\left(\left[x_{n+1}^{j}\right]_{t}\right)_{j \in \mathbb{V}_{c-1} \cap \mathbb{T}_{t}^{*} .}$ A similar synchronization process can be followed for blocks with indices $t \in \mathbb{T}_{\mathbb{V}_{c}} \cap \mathbb{T}_{\mathbb{V}_{c+1}}$ with $c \neq C$. Finally, for the block indices $t$ in $\mathbb{T}_{\mathbb{V}_{c}}$ which do not belong to $\mathbb{T}_{\mathbb{V}_{c-1}}$ or $\mathbb{T}_{\mathbb{V}_{c+1}}$,

$$
\begin{equation*}
\left[\bar{x}_{n}\right]_{t}=\operatorname{mean}\left(\left(\left[x_{n+1 / 2}^{j}\right]_{t}\right)_{j \in \mathbb{V}_{c} \cap \mathbb{T}_{t}^{*}}\right)=\frac{\left[s_{n, c}\right]_{t}}{\left|\mathbb{T}_{t}^{*}\right|} \tag{40}
\end{equation*}
$$

as we have then $\left|\mathbb{V}_{c} \cap \mathbb{T}_{t}^{*}\right|=\left|\mathbb{T}_{t}^{*}\right|$. This means that local averaging is only required for these blocks. In Figure 4, the synchronization workflow is summarized, while, in Algorithm 5, a more detailed account of the whole process is given.


Figure 4: Global synchronisation process: Transmission of local summations to the next computing unit (top) ; Transmission of averaged blocks to the previous computing unit (bottom).

## Remark 4.2.

(i) It must be emphasized that, in order to facilitate the derivation of our algorithm, a common iteration variable $n$ has been used for each computing unit. However, units have the ability to process data at their own speed. In particular, each unit may perform a different number of local synchronizations before a global one is made. In this sense, our algorithm is asynchronous. To understand why such behavior is allowed, it suffices to note that if no global synchronization arises and $\mathbb{J}_{n, c}=\varnothing$, then $\left(x_{n+1}^{j}\right)_{j \in \mathbb{V}_{c}}=\left(x_{n}^{j}\right)_{j \in \mathbb{V}_{c}}$. This means that such a null iteration can be used to model a time when the $c$-th computing unit is idle while others are locally updating their variables.
(ii) When the c-th computing unit operates a global synchronization, it will suspend its activities until it receives data from units c-1 (line (35) and/or $c+1$ (line (39), which happens only when these units also are globally synchronizing their variables. To ensure low latencies, global synchronization steps however have to be scheduled (quasi-)periodically for each computing unit based on their processing speeds (faster ones should schedule less frequent synchronizations than slower ones). Alternatively, when one unit decides to perform a global synchronization, it can broadcast a message to

## 5. Application to video denoising

the others to warn them to do the same. to avoid deadlocks, contrary to our previous example.

### 5.1. Observation model

(iii) Other forms of local consensus could be devised. For example, another choice would consist in setting $L=2 C-1$ and $(\forall c \in\{1, \ldots, C-1\})$ $\mathbb{V}_{C+c}=\mathbb{V}_{c} \cup \mathbb{V}_{c+1}$. Then, each node $c \in\{1, \ldots, C-1\}$ could be responsible for driving the synchronization with its neighbor of index $c+1$. However, it appears more difficult, in this context, to devise an efficient procedure

In this section, we illustrate the performance of the proposed distributed algorithm for denoising video sequences. The original sequence $\bar{x}=\left([\bar{x}]_{t}\right)_{1 \leqslant t \leqslant T} \in$ $\mathbb{R}^{T L}$ is naturally decomposed in $T$ blocks of data, each corresponding to one image composed of $L$ pixels. The degradation model relating the observed noisy sequence $y=\left([y]_{t}\right)_{1 \leqslant t \leqslant T} \in \mathbb{R}^{T L}$ to the sought sequence $\bar{x}$ with $T L=N$ is given by

$$
\begin{equation*}
(\forall t \in\{1, \ldots, T\}) \quad[y]_{t}=[\bar{x}]_{t}+[w]_{t} \tag{41}
\end{equation*}
$$

where $\left([w]_{t}\right)_{1 \leqslant t \leqslant T} \in \mathbb{R}^{T L}$ represents an additive zero-mean white Gaussian noise. An estimate of the unknown video can be inferred by solving Problem (15) where $J=T$ and $\widetilde{x}=y$. The last quadratic term in (5) is a least squares data fidelity term ensuring compliance with model (41), and functions $\left(g_{j}\right)_{1 \leqslant j \leqslant T}$ stand for regularization functions that incorporate both temporal and spatial prior knowledge on each video frame. The temporal regularization is fulfilled by taking into account motion compensation between the previous and next neighbouring frames. More precisely, at each time $t \in\{2, \ldots, T-1\}$, the linear operator $A_{t}$ extracts the current frame $x_{t}$ and its neighbors $\left(x_{t-1}, x_{t+1}\right)$ as

## Algorithm 5: Special case of distributed PDFB for the $c$-th computing unit

Setting of global constants:
$\mathbb{T}_{j} \equiv$ index set of blocks used at node $j \in\{1, \ldots, J\}$
$\mathbb{T}_{t}^{*} \equiv$ index set of nodes using block $t \in\{1, \ldots, T\}$
$\left.\left.4\left\{\omega_{j, t} \mid 1 \leqslant j \leqslant J, t \in \mathbb{T}_{j}\right\} \subset\right] 0,1\right]$ such that $(\forall t \in\{1, \ldots, T\}) \sum_{j \in \mathbb{T}_{t}^{*}} \omega_{j, t}=1$
5 $\left.\left.\vartheta=\min _{1 \leqslant j \leqslant J, 1 \leqslant t \leqslant T} \omega_{j, t}, \epsilon \in\right] 0,1\right]$, $\left(\gamma_{n}\right)_{n \in \mathbb{N}}$ sequence of $[\epsilon, 2-\epsilon]$ with $\left.\left.\epsilon \in\right] 0,1\right]$

## 6 Initialization:

$7 \mathbb{V}_{c} \equiv$ index set of nodes associated with computing unit $c$
$8 \mathbb{T}_{\mathbb{V}_{c}} \equiv$ set of block indices used in $\mathbb{V}_{c}$ (with the convention $\mathbb{V}_{\mathbb{V}_{0}}=\mathbb{T}_{\mathbb{V}_{C+1}}=\varnothing$ )
$9 B_{j} \in \mathbb{R}^{M_{j} \times M_{j}}$ with $B_{j} \geq \sum_{t \in \mathbb{T}_{j}} \omega_{j, t}^{-1} \mathcal{A}_{j, t} \mathcal{A}_{j, t}^{\top}, \quad j \in \mathbb{V}_{c}$

```
\(\vartheta_{c}=\min _{j \in \mathbb{V}_{c}, t \in \mathbb{T}_{j}} \omega_{j, t}, \quad \ell \in\{1, \ldots, C\}\)
```

$y_{0}^{j} \in \mathbb{R}^{M_{j}},\left[x_{0}^{j}\right]_{t}=[\widetilde{x}]_{t}-\omega_{j, t}^{-1} \mathcal{A}_{j, t}^{\top} y_{0}^{j}, \quad j \in \mathbb{V}_{c}, t \in \mathbb{T}_{j}$.
Main loop:
for $n=0,1, \ldots$ do
$\mathbb{J}_{n, c} \subset \mathbb{V}_{c}$
for $j \in \mathbb{J}_{n, c}$ do
$\widetilde{y}_{n}^{j}=y_{n}^{j}+\gamma_{n} B_{j}^{-1} \sum_{t \in \mathbb{T}_{j}} \mathcal{A}_{j, t}\left[x_{n}^{j}\right]_{t}$
$y_{n+1}^{j}=\widetilde{y}_{n}^{j}-\gamma_{n} B_{j}^{-1} \operatorname{prox}_{\gamma_{n} B_{j}^{-1}, g_{j}}\left(\gamma_{n}^{-1} B_{j} \widetilde{y}_{n}^{j}\right)$
for $t \in \mathbb{T}_{j}$ do $\left[x_{n+1 / 2}^{j}\right]_{t}=\left[x_{n}^{j}\right]_{t}-\omega_{j, t}^{-1} \mathcal{A}_{j, t}^{\top}\left(y_{n+1}^{j}-y_{n}^{j}\right)$;
end
for $j \in \mathbb{V}_{c} \backslash \mathbb{J}_{n, c}$ do
$y_{n+1}^{j}=y_{n}^{j}$
$\left(\left[x_{n+1 / 2}^{j}\right]_{t}\right)_{t \in \mathbb{T}_{j}}=\left(\left[x_{n}^{j}\right]_{t}\right)_{t \in \mathbb{T}_{j}}$
end
for $t \in \mathbb{T}_{\mathbb{V}_{c}}$ do $\left[s_{n, c}\right]_{t}=\sum_{j \in \mathbb{V}_{c} \cap \mathbb{T}_{t}^{*}}\left[x_{n+1 / 2}^{j}\right]_{t} ;$
if synchronization is local then
for $j \in \mathbb{V}_{c}$ do
for $t \in \mathbb{T}_{j}$ do
$\left[x_{n+1}^{j}\right]_{t}=\left[x_{n+1 / 2}^{j}\right]_{t}+\gamma_{n} \vartheta_{c} \omega_{j, t}^{-1}\left(\frac{\left[s_{n, c}\right]_{t}}{\left|\mathbb{V}_{c} \cap \mathbb{T}_{t}^{*}\right|}-\left[x_{n+1 / 2}^{j}\right]_{t}\right)$
end
end
else
Global synchronization:
if $c \neq C$ then send $\left(\left[s_{n, c}\right]_{t}\right)_{t \in \mathbb{T}_{V_{c}} \cap \mathbb{T}_{V_{c+1}}}$ to unit $c+1$;
if $c \neq 1$ then
wait for receiving $\left(\left[s_{n, c-1}\right]_{t}\right)_{t \in \mathbb{T}_{V_{c-1}} \cap \mathbb{T}_{V_{c}}}$ from unit $c-1$
for $t \in \mathbb{T}_{\mathbb{v}_{c-1}} \cap \mathbb{T}_{\mathbb{V}_{c}}$ do $\left[\bar{x}_{n}\right]_{t}=\frac{1}{\left|\mathbb{T}_{t}^{*}\right|}\left(\left[s_{n, c-1}\right]_{t}+\left[s_{n, c}\right]_{t}\right)$;
send $\left(\left[\bar{x}_{n}\right]_{t}\right)_{t \in \mathbb{T}_{\mathrm{V}_{c-1}} \cap \mathbb{T}_{\mathbf{V}_{c}}}$ to unit $c-1$
end
if $c \neq C$ then wait for receiving $\left(\left[\bar{x}_{n}\right]_{t}\right)_{t \in \mathbb{T}_{V_{c}} \cap \mathbb{T}_{V_{c+1}}}$ from unit $c+1$
;
for $t \in \mathbb{T}_{\mathbb{V}_{c}} \backslash\left(\mathbb{V}_{\mathbb{v}_{c-1}} \cup \mathbb{T}_{\mathrm{v}_{c+1}}\right) \mathbf{d} \mathbf{\theta}^{7}\left[\bar{x}_{n}\right]_{t}=\frac{\left[s_{n, c}\right]_{t}}{\left|\mathbb{T}_{t}^{*}\right|}$;
for $j \in \mathbb{V}_{c}$ do
for $t \in \mathbb{T}_{j}$ do
$\left[x_{n+1}^{j}\right]_{t}=\left[x_{n+1 / 2}^{j}\right]_{t}+\gamma_{n} \vartheta \omega_{j, t}^{-1}\left(\left[\bar{x}_{n}\right]_{t}-\left[x_{n+1 / 2}^{j}\right]_{t}\right)$
end
end
end
end
shown by:

$$
\begin{equation*}
\left[[x]_{1} \ldots[x]_{t-1}[x]_{t}[x]_{t+1} \ldots[x]_{T}\right] \xrightarrow{A_{t}}\left[[x]_{t-1}[x]_{t}[x]_{t+1}\right] . \tag{42}
\end{equation*}
$$

The linear operators $\left(A_{t}\right)_{1 \leqslant t \leqslant T}$ thus have the block sparse structure expressed by (32) with

$$
\begin{equation*}
(\forall t \in\{1, \ldots, T\}) \quad \mathbb{T}_{t}=\{\max \{t-1,1\}, t, \min \{t+1, T\}\} \tag{43}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathcal{A}_{1,1}=\left[\begin{array}{ll}
I_{L} & 0
\end{array}\right]^{\top}, \quad \mathcal{A}_{1,2}=\left[\begin{array}{ll}
0 & I_{L}
\end{array}\right]^{\top},  \tag{44}\\
& (\forall t \in\{2, \ldots, T-1\}) \quad \mathcal{A}_{t, t-1}=\left[\begin{array}{lll}
I_{L} & 0 & 0
\end{array}\right]^{\top}  \tag{45}\\
& \mathcal{A}_{t, t}=\left[\begin{array}{lll}
0 & I_{L} & 0
\end{array}\right]^{\top}  \tag{46}\\
& \mathcal{A}_{t, t+1}=\left[\begin{array}{lll}
0 & 0 & I_{L}
\end{array}\right]^{\top}  \tag{47}\\
& \mathcal{A}_{T, T-1}=\left[\begin{array}{ll}
I_{L} & 0
\end{array}\right]^{\top}, \quad \mathcal{A}_{T, T}=\left[\begin{array}{ll}
0 & I_{L}
\end{array}\right]^{\top} . \tag{48}
\end{align*}
$$

For every $t \in\{1, \ldots T\}$, each regularization function $g_{t}: \mathbb{R}^{M_{t}} \rightarrow[0,+\infty[$ is convex, proper, lower semi-continuous and such that

$$
M_{t}= \begin{cases}3 L & \text { if } t \neq 1 \text { and } t \neq T  \tag{49}\\ 2 L & \text { otherwise }\end{cases}
$$

and, for every $x=\left([x]_{t}\right)_{1 \leqslant t \leqslant T}$,

$$
\begin{equation*}
g_{t}\left(\left([x]_{t^{\prime}}\right)_{t^{\prime} \in \mathbb{T}_{t}}\right)=\eta \operatorname{tgv}\left([x]_{t}\right)+\iota_{\left[x_{\min }, x_{\max }\right]^{L}}\left([x]_{t}\right)+h_{t}\left(\left([x]_{t^{\prime}}\right)_{t^{\prime} \in \mathbb{T}_{t}}\right) \tag{50}
\end{equation*}
$$

where "tgv" denotes the Total Generalized Variation regularization from [38],
defined as

$$
\begin{equation*}
\left(\forall z \in \mathbb{R}^{L}\right) \quad \operatorname{tgv}(z)=\min _{d \in \mathbb{R}^{2 L}} \alpha_{0} \chi_{2}(D z-d)+\alpha_{1} \chi_{3}(\mathrm{G} d) \tag{51}
\end{equation*}
$$

with $\left.\left(\alpha_{0}, \alpha_{1}\right) \in\right] 0,+\infty\left[^{2}, D \in \mathbb{R}^{2 L \times L}\right.$ is the concatenation of the horizontal and vertical spatial gradient operators:

$$
D=\left[\begin{array}{c}
\nabla_{\mathrm{H}}  \tag{52}\\
\nabla_{\mathrm{V}}
\end{array}\right], \quad \text { with } \quad \nabla_{\mathrm{H}} \in \mathbb{R}^{L \times L}, \quad \nabla_{\mathrm{V}} \in \mathbb{R}^{L \times L},
$$

and $G \in \mathbb{R}^{3 L \times 2 L}$ is the Jacobian operator given by

$$
\mathrm{G}=\left[\begin{array}{ccc}
\nabla_{\mathrm{H}} & \nabla_{\mathrm{V}} & 0  \tag{53}\\
0 & \nabla_{\mathrm{H}} & \nabla_{\mathrm{V}}
\end{array}\right]^{\top}
$$

while, for every $q \in \mathbb{N}^{*}, \chi_{q}: \mathbb{R}^{q L} \rightarrow \mathbb{R}$ is given by

$$
\begin{equation*}
\left(\forall\left(z_{1}, \ldots, z_{q}\right) \in\left(\mathbb{R}^{L}\right)^{q}\right) \quad \chi_{q}\left(z_{1}, \ldots, z_{q}\right)=\sum_{k=1}^{L} \sqrt{\left(z_{1, k}\right)^{2}+\cdots+\left(z_{q, k}\right)^{2}} \tag{54}
\end{equation*}
$$

The indicator function $\iota_{\left[x_{\min }, x_{\max }\right]^{L} \text { in (50) imposes a range }\left[x_{\min }, x_{\max }\right] \text { on the }{ }^{\text {(1) }} \text {. }}$ pixel values in each frame. In addition, $h_{t}$ is a function introducing a temporal
regularization of the form

$$
h_{t}\left(\left([x]_{t^{\prime}}\right)_{t^{\prime} \in \mathbb{T}_{t}}\right)=\left\{\begin{array}{r}
\beta_{t-1, t} \chi_{1}\left([x]_{t}-\mathcal{M}_{t-1 \rightarrow t}[x]_{t-1}\right)  \tag{55}\\
+\beta_{t+1, t} \chi_{1}\left([x]_{t}-\mathcal{M}_{t+1 \rightarrow t}[x]_{t+1}\right) \\
\text { if } t \neq 1 \text { and } t \neq T \\
\beta_{2,1} \chi_{1}\left([x]_{1}-\mathcal{M}_{2 \rightarrow 1}[x]_{2}\right) \\
\beta_{T-1, T} \chi_{1}\left([x]_{T}-\mathcal{M}_{T-1 \rightarrow T}[x]_{T-1}\right) \\
\text { if } t=1 \\
\text { if } t=T,
\end{array}\right.
$$

where $\mathcal{M}_{t-1 \rightarrow t} \in \mathbb{R}^{L \times L}$ (resp. $\mathcal{M}_{t+1 \rightarrow t} \in \mathbb{R}^{L \times L}$ ) is a motion compensation operator between the reference frame $x_{t-1}\left(\right.$ resp. $\left.x_{t+1}\right)$ and the current frame $x_{t}$, defined as described in [25, Section 5.2.2]. Finally, $\eta,\left(\beta_{t-1, t}\right)_{2 \leqslant t \leqslant T}$ and $\left(\beta_{t+1, t}\right)_{1 \leqslant t \leqslant T-1}$ are positive regularization parameters controlling the strength of the contribution of their associated terms. The values of these parameters were set optimized by grid-search so as to achieve the best denoising performance.

### 5.2. Proposed method

We employ our proposed asynchronous distributed framework to address the previous denoising problem. More precisely, we use the practical implementation detailed in Algorithm 5. Functions $\left(g_{t}\right)_{1 \leqslant t \leqslant T}$ and their associated primal variables $\left(\left[x^{t}\right]_{t^{\prime}}\right)_{t^{\prime} \in \mathbb{T}_{t}}$ for $t \in\{1, \ldots, T\}$, are spread over $C$ computing units, each of them handling the same number of nodes, i.e., $(\forall c \in\{1, \ldots, C\}) \kappa_{c}=\kappa$ (with $T=\kappa C)$. The associated hyperedges are then given by

$$
\begin{equation*}
(\forall c \in\{1, \ldots, C\}) \quad \mathbb{V}_{c}=\{(c-1) \kappa+1, \ldots, c \kappa\} \tag{56}
\end{equation*}
$$

Note that, since

$$
\begin{equation*}
(\forall c \in\{1, \ldots, C\}) \quad \mathbb{T}_{\mathbb{V}_{c}}=\{\max \{(c-1) \kappa, 1\}, \ldots, \min \{c \kappa+1, T\}\} \tag{57}
\end{equation*}
$$

, we have

$$
\begin{equation*}
(\forall c \in\{1, \ldots, C-1\}) \quad \mathbb{T}_{\mathbb{V}_{c}} \cap \mathbb{T}_{\mathbb{V}_{c+1}}=\{c \kappa, c \kappa+1\}, \tag{58}
\end{equation*}
$$

so that Assumption 4.1 holds provided that $\kappa>1$.

In the local optimization first performed at the $n$-th iteration of Algorithm 5. we used, for every $j \in\{1, \ldots, T\}, B_{j}=\sum_{t \in \mathbb{T}_{j}} \omega_{j, t}^{-1} I_{M_{j}}$ and $\gamma_{n} \equiv 1.7$. Then, the local or global synchronization steps are performed as described in Section 4.2. In our case, for every $t \in\{1, \ldots, T\}$, $\mathbb{T}_{t}^{*}=\mathbb{T}_{t}$. If $t \in \mathbb{T}_{\mathbb{V}_{c}}$ with $c \in\{1, \ldots, C\}$ corresponds neither to the smallest nor the largest index in $\mathbb{V}_{c}$, then 3 values need to be summed to compute $\left[s_{n, c}\right]_{t}$. If $t$ is the smallest or the largest index in $\mathbb{V}_{c}$, then the summation involves only two terms. Finally, if $c>1$ and $t=(c-1) \kappa($ resp. $c<C$ and $t=c \kappa+1)$ ), then $\left[s_{n, c}\right]_{t}=\left[x_{n+1 / 2}^{t+1}\right]_{t}$ (resp. $\left.\left[s_{n, c}\right]_{t}=\left[x_{n+1 / 2}^{t-1}\right]_{t}\right)$. In global synchronization steps, by virtue of (58), only variables $\left[s_{n, c}\right]_{c \kappa}$ and $\left[s_{n, c}\right]_{c \kappa+1}$ need to be transmitted from computing unit $c \neq C$ to computing unit $c+1$, which in return sends back the updated averages $\left[\bar{x}_{n}\right]_{c \kappa}$ and $\left[\bar{x}_{n}\right]_{c \kappa+1}$. This workflow is illustrated in Figures 5 and 6 by an example showing two computing units handling $\kappa=3$ nodes.


Figure 5: Transmission of local sums $\left(\left[s_{n, 2}\right]_{t^{\prime}}\right)_{t^{\prime} \in\{6,7\}}$ shared between $\mathbb{T}_{\mathbb{V}_{2}}=\{3,4,5,6,7\}$ and $\mathbb{T}_{\mathbb{V}_{3}}=\{6,7,8,9,10\}$ from computing unit $c=2$ to computing unit $c=3$.


Figure 6: Transmission of averaged images $\left(\left[\bar{x}_{n}\right]_{t^{\prime}}\right)_{t^{\prime} \in\{6,7\}}$ from computing unit $c=3$ to computing unit $c=2$.

In our simulations, the global synchronizations are activated every 4 iterations. This synchronization frequency was chosen in order to achieve a good trade-off between the communication overhead and a satisfactory convergence speed. The weights $\left(\omega_{j, t}\right)_{1 \leqslant t \leqslant T, j \in \mathbb{T}_{t}^{*}}$ are set to $\frac{1}{\left|\mathbb{T}_{t}^{*}\right|}$.

### 5.3. Simulation results

The performance of the proposed denoising method are evaluated on the standard test video sequences Foreman, Claire and Irene with $T=72$ frames. These frames are of size $348 \times 284$ for Foreman sequence, $300 \times 278$ and $352 \times$ 288 of Claire and Irene respectively, hence $N=7115904$ (resp. $N=6004800$ and $N=7299072$ ). The degraded videos are obtained by adding zero-mean white Gaussian noise to the original video sequences, resulting in an initial SNR (signal-to-noise ratio) of $24.41 \mathrm{~dB}, 24.77 \mathrm{~dB}$ and 25.51 dB for the three sequences respectively. We apply our algorithm only on the luminance channel, while the chrominance is restored with a median filter. Our method is implemented with Julia-0.4.6 and a Message Passing Interface (MPI) wrapper for managing communication between cores [39, 40]. We use a multi-core architecture using 2 Intel(R) Xeon(R) E5-2670 v3 CPU @ 2.3 GHz processors, each with 12 cores, hence $C=24$. The experiments are run using 60 iterations of Algorithm [5] which is sufficient to reach convergence. We evaluate the proposed distributed approach in terms of restoration quality and acceleration provided by our algo-
rithm with respect to the number of computing units. The images composing the video sequences are partitioned in groups of equal size $\kappa$ processed by the computing units, thereby we consider the cases when $C \in\{1,2,3,4,6,8,9,12,18,24\}$ cores are employed, as shown in Table 1 .

Table 1: Investigated simulation scenarios and the number of images per core in each case.

| Number of cores $C$ | 1 | 2 | 3 | 4 | 6 | 8 | 9 | 12 | 18 | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Number of images per core $\kappa$ | 72 | 36 | 24 | 18 | 12 | 9 | 8 | 6 | 4 | 3 |

Our method achieves satisfactory restoration results with an improvement of 7.6 dB for Foreman, 9 dB for Claire and 5.46 dB for Irene, with respect to the degraded video. Moreover, according to our observations, the convergence to the sought solution was reached in each experiment regardless the number of used cores. Otherwise stated, the quality of the solution is identical, whatever the number of cores activated. Figures 7 and 8 show some frames illustrative of the degraded and restored sequences. These illustrate the good visual quality of the performed denoising.


Figure 7: Foreman sequence: Input degraded images (top) initial SNR $=24.41 \mathrm{~dB}$, associated restored images (bottom) final SNR $=32.04 \mathrm{~dB}$.

Figure 9 shows the speedup in execution time with respect to the number of


Figure 8: Irene sequence: Input degraded images (top) initial $\mathrm{SNR}=25.51 \mathrm{~dB}$, associated restored images (bottom) final SNR $=30.97 \mathrm{~dB}$.
cores, which is estimated as follows:

$$
\begin{equation*}
\text { Speedup for } C \text { cores }=\frac{\text { Execution time with } 1 \text { core }}{\text { Execution time with } C \text { cores }} . \tag{59}
\end{equation*}
$$

340 The execution time with one core is equal to $107003 \mathrm{~s}, 84247 \mathrm{~s}$ and 115711 s for Foreman, Claire and Irene sequences respectively. Those large values illustrate the difficulty in solving this high dimensional non-smooth optimization problem.


Figure 9: Speedup with respect to the number of used cores: proposed method (solid, blue, diamond), linear speedup (dashed, green).

Figure 9 shows that the speedup increases superlinearly as we increase the number of cores from 1 to 9 . Indeed, when a small number of cores are used, the dataset cannot be stored in the cache memory, due to its large size. Hence, a significant amount of time is spent in RAM access [41]. By increasing the number of cores, the data seem to fit better in the cache size, which reduces the RAM access time and consequently the global execution time despite the communication overhead. However, as the number of core exceeds 9, a saturation effect is observed (in agreement with Amdahl's law [42]).

In order to investigate this behavior, we display in Figure 10 the execution times per core on the Foreman sequence, for the three main steps of Algorithm 5. Namely, the local optimization, local synchronization, and global synchronization when either $C=8$ or $C=24$ cores are used. As expected we observe a significant reduction of the execution time for the local optimization step when going from 8 to 24 cores, but the gain factor is less than 3 , although the computations are then performed independently on each core. The average execution
time for the local synchronization step is also reduced as the number of images nication overhead increases as a larger number of cores is used. This behavior appears to be consistent, however it can be noticed on Figure 10(b) that the second set of cores (13 to 24 ) is much slower than the first one, which is detrimental to the global synchronization process. This seems to point out hardware limitations of the Intel-based two-processor computer architecture that we use. handled by each core decreases. One can finally observe that the global commu-


Figure 10: Execution time of Algorithm 5 steps: local optimization (top), local synchronization (middle), global synchronization (bottom).

## 6. Conclusion

This paper has introduced a fully parallelized version of the preconditioned dual block-coordinate forward-backward algorithm for computing proximity operators. Our algorithm benefits from all the advantages of primal-dual methods and the acceleration provided by a block-coordinate strategy combined with a variable metric approach. We mainly focused on an instance of the proposed approach for which we proposed a practical asynchronous implementation, assuming that a given number of computing units is available. Although our distributed algorithm can be applied to a wide range of problems, we investigated its application to video sequence denoising. The experimental results we obtained are quite promising and demonstrate the ability of our algorithm to take advantage of multiple cores. An acceleration of about 15 was reached with a standard two-processor computer configuration. In future works, we intend to experiment different distributed implementations based on other partitioning strategies and hypergraph topologies and to study the application of our distributed framework to other proximal optimization algorithms.

## Acknowledgments

This work was supported by the Institut Universitaire de France, and by the European Research Council Starting Grant MAJORIS ERC-2019-STG-850925.

## References

[1] P. L. Combettes, J.-C. Pesquet, Proximal splitting methods in signal processing, in: H. H. Bauschke, R. Burachik, P. L. Combettes, V. Elser, D. R. Luke, H. Wolkowicz (Eds.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer-Verlag, New York, 2010, pp. 185-212.
[2] N. Parikh, S. Boyd, Proximal algorithms, Found. Trends Optim. 1 (3) (2014) 127-239.
[3] N. Komodakis, J.-C. Pesquet, Playing with duality : An overview of recent primal-dual approaches for solving large-scale optimization problems, IEEE Signal Process. Mag. 32 (6) (2015) 31-54.
[4] P. L. Combettes, D. Dung, B. C. Vũ, Dualization of signal recovery problems, Set-Valued Var. Anal. 18 (3) (2010) 373-404.
[5] L. Condat, A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms, J. Optim. Theory App. 158 (2) (2013) 460-479.
[6] S. R. Becker, P. L. Combettes, An algorithm for splitting parallel sums of linearly composed monotone operators, with applications to signal recovery, J. Nonlinear Convex Anal. 15 (1) (2014) 137-159.
[7] C. Couprie, L. Grady, L. Najman, J.-C. Pesquet, H. Talbot, Dual constrained tv-based regularization on graphs, SIAM J. Imaging Sci. 6 (2013) 1246-1273.
[8] A. Jezierska, E. Chouzenoux, J.-C. Pesquet, H. Talbot, A primal-dual proximal splitting approach for restoring data corrupted with poisson-gaussian noise, in: IEEE Int. Conf. Acoust. Speech and Signal Process. (ICASSP 2012), Kyoto, Japan, 2012, pp. 1085-1088.
[9] A. Onose, R. E. Carrillo, A. Repetti, J. D. McEwen, J.-T. Thiran, J.-C. Pesquet, Y. Wiaux, Scalable splitting algorithms for big-data interferometric imaging in the SKA era, Monthly Notices of the Royal Astronomical Society 462 (4) (2016) 4314-4335.
[10] A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imag. Vision 40 (1) (2010) 120-145.
[11] P. L. Combettes, L. Condat, J.-C. Pesquet, B. C. Vũ, A forward-backward view of some primal-dual optimization methods in image recovery, in: IEEE Int. Conf. Image Process. (ICIP 2014), Paris, France, 2014, pp. 4141-4145.
[12] R. I. Boţ, C. Hendrich, Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization, J. Math. Imaging Vision 49 (3) (2014) 551-568.
[13] P. L. Combettes, J.-C. Pesquet, Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued Var. Anal. 20 (2) (2012) 307-330.
[14] R. I. Boţ, C. Hendrich, A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators, SIAM J. Optim. 23 (4) (2013) 2541-2565.
[15] P. L. Combettes, J.-C. Pesquet, Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping, SIAM J. Optim. 25 (2) (2015) 1221-1248.
[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Machine Learn. 8 (1) (2011) 1-122.
[17] L. M. Briceño Arias, P. L. Combettes, A monotone+skew splitting model for composite monotone inclusions in duality, SIAM J. Optim. 21 (4) (2011) 1230-1250.
[18] F. Iutzeler, P. Bianchi, P. Ciblat, W. Hachem, Explicit convergence rate of a distributed alternating direction method of multipliers, IEEE Trans. Autom. Control 61 (4) (2016) 892-904.
[19] D. Davis, Convergence rate analysis of primal-dual splitting schemes, SIAM J. Optim. 25 (3) (2015) 1912-1943.
[20] L. Rosasco, S. Villa, B. C. Vũ, A first-order stochastic primal-dual algorithm with correction step, Numer. Funct. Anal. Optim. 38 (5) (2017) 602-626.
[21] S. Shalev-Shwartz, T. Zhang, Stochastic dual coordinate ascent methods for regularized loss minimization, J. Mach. Learn. Res. 14 (1) (2013) 567-599.
[22] P. Bianchi, W. Hachem, F. Iutzeler, A coordinate descent primal-dual algorithm and application to distributed asynchronous optimization, IEEE Trans. Autom. Control 61 (10) (2016) 2947-2957.
[23] Z. Qu, P. Richtárik, T. Zhang, Randomized dual coordinate ascent with arbitrary sampling, in: Adv. Neural Inf. Process. Syst. (NIPS 2015), Montréal, Canada, 2015, pp. 865-873.
[24] M. Jaggi, V. Smith, M. Takac, J. Terhorst, S. Krishnan, T. Hofmann, M. I. Jordan, Communication-efficient distributed dual coordinate ascent, in: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Weinberger (Eds.), Adv. Neural Inf. Process. Syst., Curran Associates, Inc., 2014, pp. 3068-3076.
[25] F. Abboud, E. Chouzenoux, J.-C. Pesquet, J.-H. Chenot, L. Laborelli, Dual block coordinate forward-backward algorithm with application to deconvolution and deinterlacing of video sequences, J. Math. Imaging Vision 59 (3) (2017) 415-431.
[26] A. Chambolle, T. Pock, A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions, SIAM J. Comput. Math. 1 (2015) 29-57.
[27] J.-C. Pesquet, A. Repetti, A class of randomized primal-dual algorithms for distributed optimization, J. Nonlinear Convex Anal. 16 (12) (2015) 24532490.
[28] P. Richtárik, M. Takác, Distributed coordinate descent method for learning with big data, J. Mach. Learn. Res. 17 (75) (2016) 1-25.
[29] J. Xu, Y. Sun, Y. Tian, G. Scutari, A unified contraction analysis of a class of distributed algorithms for composite optimization, https://arxiv.org/abs/1910.09817 (2019).
[30] E. Chouzenoux, J.-C. Pesquet, A. Repetti, Variable metric forwardbackward algorithm for minimizing the sum of a differentiable function and a convex function, J. Optim. Theory App. 162 (1) (2014) 107-132.
[31] E. Chouzenoux, J.-C. Pesquet, A. Repetti, A block coordinate variable metric forward-backward algorithm, J. Global Optim. 66 (3) (2016) 457485.
[38] K. Bredies, K. Kunisch, T. Pock, Total generalized variation, SIAM J. Imaging Sci. 3 (3) (2010) 492--526.
[39] M. P. I. Forum, MPI: A Message-Passing Interface standard, Tech. rep. (1994).
[40] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message Passing Interface, 2nd Edition, MIT Press, 1999.
[41] D. Janakiram, M. V. Reddy, A. V. Srinivas, M. A. M. Mohamed, S. S. Kumar, GDP: A paradigm for intertask communication in grid computing through distributed pipes, in: Int. Conf. Distrib. Comput. Internet Technol. (ICDCIT 2005), Bhubaneswar, India, 2005, pp. 235-241.
[42] G. M. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities, in: American Fed. Inform. Process. Soc. (AFIPS 1967), Atlantic City, USA, 1967, pp. 483-485.


[^0]:    * Corresponding author

    Email addresses: feriel.abboud@gmail.com (Feriel Abboud), emilie.chouzenoux@centralesupelec.fr (Emilie Chouzenoux), jean-christophe.pesquet@centralesupelec.fr (Jean-Christophe Pesquet), hugues.talbot@centralesupelec.fr (Hugues Talbot)

[^1]:    ${ }^{1}|S|$ is the cardinality of a set $S$.

