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Abstract

Optimization problems arising in signal and image processing involve an in-

creasingly large number of variables. In addition to the curse of dimensionality,

another difficulty to overcome is that the cost function usually reads as the

sum of several loss/regularization terms, non-necessarily smooth and possibly

composed with large-size linear operators. Proximal splitting approaches are

fundamental tools to address such problems, with demonstrated efficiency in

many applicative fields. In this paper, we present a new distributed algorithm

for computing the proximity operator of a sum of non-necessarily smooth con-

vex functions composed with arbitrary linear operators. Our algorithm relies

on a primal-dual splitting strategy, and benefits from established convergence

guaranties. Each involved function is associated with a node of a hypergraph,

with the ability to communicate with neighboring nodes sharing the same hy-

peredge. Thanks to this structure, our method can be efficiently implemented

on modern parallel computing architectures, allowing to distribute computa-

tions on different nodes or machines while limiting the need for synchronization

steps. Its good numerical performance and scalability properties are illustrated

on a problem of video sequence denoising.
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1. Introduction

Numerous problems in data science such as video restoration require the

processing of huge datasets. Optimal processing are often obtained by solving

nonsmooth optimization problems, for which proximity operators appear as fun-

damental tools. In this context, it is necessary to propose parallel/distributed5

methods to compute proximity operators involved in the solution of high-dimensional

problems, especially when the objective function is the sum of several convex

non-necessarily smooth functions [1, 2]. In the general case, a closed form ex-

pression of the proximity operator of such composite term does not exist, and

developing iterative strategies becomes necessary.10

Primal-dual splitting methods are prominently used when dealing with con-

vex optimization problems where large-size linear operators are involved [3, 4,

5, 6]. The main advantage of many of these algorithms is that none of the

linear operators needs to be inverted which makes this class of algorithms well

suited for large-scale problems encountered in various application fields [7, 8, 9].15

Primal-dual techniques are based on several well-known strategies such as the

Forward-Backward iteration [10, 11], the Forward-Backward-Forward iteration

[12, 13], the Douglas-Rachford algorithm [14, 15], or the Alternating Direction

Method of Multipliers [16, 17, 18, 19, 20]. Moreover, primal-dual algorithms can

be combined with a block-coordinate approach, where at each iteration only a20

few blocks are activated following a specific selection rule [21, 22]. These algo-

rithms can achieve fast convergence speed with reasonable memory requirement.

Both stochastic [23, 24] and deterministic [25, 26] versions of these have been

used in image processing and machine learning applications. In the latter con-

text, algorithms based on a dual Forward-Backward approach are often refereed25

to as dual ascent methods.

The aforementioned algorithms were originally proposed with single-node
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implementations, which may be suboptimal or even unsuitable, when dealing

with massive datasets. Therefore, various asynchronous or distributed exten-

sions have been proposed [16, 27, 18, 28, 29], where each term is handled inde-30

pendently by a processing unit and the convergence toward an aggregate solution

to the optimization problem is ensured via a suitable communication strategy

between those processing units. However, the convergence analysis of primal-

dual distributed algorithms is usually based on fixed-point theory tools, that

require specific probabilistic assumptions on the block update rule. Moreover,35

the integration of accelerations, such as preconditioning, into those, is difficult.

In this paper, we focus instead on another approach, namely the dual block

preconditioned forward-backward algorithm that we recently proposed in [25],

which can be viewed as a block-coordinate implementation of the dual ascent

method. We propose here a distributed asynchronous version for the latter, by40

considering each involved function as locally related to a node of a connected

hypergraph, where communications are allowed between neighboring nodes that

share the same hyperedge. This leads to a novel scheme for computing the prox-

imity operator of any sum of convex functions involving linear operators, that

is well-suited to implementation in architectures involving multiple computing45

units. As its centralized counterpart [25], our method takes advantage of vari-

able metric techniques that have been shown to be efficient for accelerating the

convergence speed of proximal approaches [30, 31, 32]. It also benefits from the

classical key advantage of proximal splitting strategies, namely its ability to han-

dle a finite sum of convex functions without inverting any of the involved linear50

operators. Furthermore, its convergence is guaranteed under mild assumptions

on the node activation and synchronization rules.

The remainder of this paper is organized as follows: in Section 2 we recall

some fundamental background and present the centralized dual block-coordinate

forward-backward algorithm from [25] for computing proximity operators. In55

Section 3, we introduce our novel asynchronous version for this algorithm, its

convergence properties and a dimension reduction strategy for limiting commu-

nication cost within nodes. In Section 4, we discuss a useful special case of
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our algorithm for an important class of hypergraph structure and we describe

its practical implementation on a distributed architecture. Section 5 shows the60

good performance of the proposed algorithm in the context of video denoising.

Finally, some conclusions are drawn in Section 6.

2. Problem formulation

2.1. Optimization background

Let Γ0pRN q denote the class of proper lower-semicontinuous convex functions

from RN to s ´ 8,`8s and let B P RNˆN be a symmetric positive definite

matrix. The proximity operator of ψ P Γ0pRN q at rx P RN relative to the metric

induced by B is denoted by proxB,ψprxq and defined as the unique solution to

the following minimization problem [33, 1]:

minimize
xPRN

ψpxq `
1

2
}x´ rx}2B , (1)

where the weighted norm } ¨ }B is defined as x ¨ |B ¨ y1{2
with x ¨ | ¨ y the usual

scalar product of RN . When B is set to IN , the identity matrix of RN , the

standard proximity operator proxψ is recovered.

Let us now define the conjugate of a function ψ P Γ0pRN q as

ψ˚ : RN Ñ s´8,`8s : x ÞÑ sup
vPRN

pxv | xy ´ ψpvqq . (2)

Following Moreau’s decomposition theorem [34],

proxB,ψ˚ “ IN ´B´1proxB´1,ψpB ¨q. (3)

2.2. Minimization problem65

This paper addresses the problem of computing the proximity operator of

the following sum of functions at some given point rx of RN :

`
@x P R

N
˘

Gpxq “
Jÿ

j“1

gjpAjxq, (4)
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where, for every j P t1, . . . , Ju, gj : RMj Ñs ´ 8,`8s is a proper lower-

semicontinuous convex possibly nonsmooth function and Aj is a linear operator

in RMjˆN . In addition, it is assumed that XJ
j“1dom pgj ˝Ajq ‰ ∅.

Computing the proximity operator of G amounts to finding the solution to the

following minimization problem:

Find px “ proxGprxq “ argmin
xPRN

Jÿ

j“1

gjpAjxq `
1

2
}x´ rx}2. (5)

As we will see in Section 5, the latter problem also arises in the computation of

the maximum a posteriori solution for the denoising problem which consists of

recovering px from a noisy observation rx in the presence of an additive zero-mean

white Gaussian noise and of a prior density expp´Gq [1].

Primal-dual algorithms [10, 14, 15, 16] amounts to solve Problem (5) by

making use of its dual formulation given by:

Find py “ argmin
y“pyjq1ďjďJPRM

1

2

›››rx´
Jÿ

j“1

AJ
j y

j
›››
2

`
Jÿ

j“1

g˚
j pyjq, (6)

where M “
řJ
j“1Mj and pg˚

j q1ďjďJ are the Fenchel-Legendre conjugate func-70

tions of pgjq1ďjďJ . Particularly efficient primal-dual approaches take advantage

of the strongly convex term involved in the cost function in (5) [35, 36, 25]. In

this work, we will focus on the Dual Block Preconditioned Forward-Backward

algorithm, recently proposed in [25] (see Algorithm 1).

75

Algorithm 1 benefits from the acceleration provided by variable metric meth-

ods through the introduction of preconditioning matrices pBjq1ďjďJ . Note that

a non-preconditioned version is obtained by setting p@j P t1, . . . , Juq Bj “

}Aj}
2IMj

where }Aj} denotes the spectral norm of Aj . Moreover, when at it-

eration n P N, all the dual variables yjnn with jn P t1, . . . , Ju are updated in a80

parallel manner followed by an update of the primal variable xn, one recovers

the Parallel Dual Forward-Backward proposed in [35]. Convergence guaranties
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Algorithm 1: Dual Block Preconditioned Forward-Backward

1 Initialization:

2 Bj P RMjˆMj with Bj ľ AjA
J
j , @j P t1, . . . , Ju

3 ǫ Ps0, 1s, pyj0q1ďjďJ P R
M , x0 “ rx´

Jÿ

j“1

AJ
j y

j
0.

4 Main loop:

5 for n “ 0, 1, . . . do
6 γn P rǫ, 2 ´ ǫs
7 jn P t1, . . . , Ju

8 ryjnn “ yjnn ` γnB
´1
jn
Ajnxn

9 y
jn
n`1 “ ryjnn ´ γnB

´1
jn

proxγnB´1

jn
,gjn

`
γ´1
n Bjnryjnn

˘

10 y
j
n`1 “ yjn, @j P t1, . . . , Juztjnu

11 xn`1 “ xn ´AJ
jn

pyjnn`1 ´ yjnn q.

12 end

on both generated primal sequence pxnqnPN and dual sequences pyjnqnPN˚ with

j P t1, . . . , Ju have been established in [25] under a quasi-cyclic rule on the block

selection (i.e., each block must be updated at least once every K iterations, with85

K ě J). Furthermore, results in terms of practical convergence speed have re-

vealed the effectiveness of the above algorithm compared to existing algorithms

in the literature.

3. Proposed distributed algorithm

Let us ground on the previous algorithm in order to design a novel distributed

(i.e., multi-node) solution to Problem (5). This can be achieved by resorting

to a global consensus technique [37, 16, 27, 3] and rewriting the problem in the

following form:

Find px “ argmin
x“pxjq1ďjďJPΛ

Jÿ

j“1

gjpAjx
jq `

1

2

Jÿ

j“1

}xj ´ rx}2Ωj
, (7)

where pΩjq1ďjďJ are diagonal N ˆN matrices with positive diagonal elements

and Λ is the vector subspace of RNJ defined so as to introduce suitable cou-

pling constraints on the vectors pxjq1ďjďJ . The most standard choice for such
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constraint set is

Λ “

$
’’’&
’’’%

»
———–

x1

...

xJ

fi
ffiffiffifl P R

NJ | x1 “ . . . “ xJ

,
///.
///-
. (8)

Provided that
Jÿ

j“1

Ωj “ IN , (9)

we notice that the solution to Problem (7) yields a vector in RNJ whose com-90

ponents pxjq1ďjďJ are all equal, and equals the solution px to Problem (5).

3.1. Local form of consensus

Let us now split the constraint set Λ into L local linear constraints pΛℓq1ďℓďL.

For every ℓ P t1, . . . , Lu, each constraint set Λℓ handles a nonempty subset Vℓ

of t1, . . . , Ju with cardinality κℓ such that, for every x “ rpx1qJ, . . . , pxJ qJsJ P

RNJ ,

x P Λ ô p@ℓ P t1, . . . , Luq pxjqjPVℓ
P Λℓ. (10)

Examples of vector subspaces pΛℓq1ďℓďL allowing this condition to be satisfied

will be discussed in Section 3.3. Each node j P t1, . . . , Ju is associated with

function gj , which is considered local and processes its own private data. More-95

over, each node j is allowed to communicate with nodes that belong to the same

set Vℓ. The sets pVℓq1ďℓďL can thus be viewed as the hyperedges of a hyper-

graph with J nodes. It is worth noticing that the case of a graph topology is

encompassed by this formulation when setting the cardinality of the set Vℓ to

κℓ “ 2 for every ℓ P t1, . . . , Lu.100

Figure 1 shows an illustrative example, where the hypergraph is composed of

J “ 7 nodes associated with functions pgjq1ďjď7 and L “ 4 hyperedges rep-

resented by the sets pVℓq1ďℓď4 with cardinalities κ1 “ 3, κ2 “ 2, κ3 “ 2, and

κ4 “ 3, respectively. Node 4 belonging to the set V2 can communicate with node

5. Besides, node 3 belongs to V1 and V4, hence it is allowed to communicate105
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with nodes t1, 2, 5, 7u.

1

2

4

3

5

6
7

V1

V2

V3

V4

Figure 1: Connected hypergraph of J “ 7 nodes and L “ 4 hyperedges.

Let us define, for every ℓ P t1, . . . , Lu, the matrix Sℓ P RNκℓˆNJ associated

with constraint set Λℓ, which extracts the vector pxjqjPVℓ
from the concatenated

vector x “ rpx1qJ, . . . , pxJ qJsJ P RNJ :

pxjqjPVℓ
“ rpxipℓ,1qqJ, . . . , pxipℓ,κℓqqJsJ “ Sℓ x, (11)

where ipℓ, 1q, . . . , ipℓ, κℓq denote the elements of Vℓ ordered in an increasing

manner. The transpose matrix of pSℓq1ďℓďL is such that, for every vℓ “

pvℓ,kq1ďkďκℓ
P RNκℓ ,

x “ rpx1qJ, . . . , pxJ qJs “ SJ
ℓ v

ℓ, (12)

where

xj “

$
’&
’%
vℓ,k if j “ ipℓ, kq with k P t1, . . . , κℓu

0 otherwise.

(13)

From a signal processing standpoint, the matrix Sℓ can be viewed as a decima-

tion operator while its transpose is the associated interpolator.

The above definitions allow us to propose the following equivalent formula-

tion of Problem (7):
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Find px “ argmin
x“pxjq1ďjďJPRNJ

Jÿ

j“1

gjpAjx
jq `

Lÿ

ℓ“1

ιΛℓ
pSℓ xq `

1

2

Jÿ

j“1

}xj ´ rx}2Ωj
.

(14)

The main difference between formulations (7) and (14) is the introduction of

the term
řL
ℓ“1 ιΛℓ

pSℓ xq, where ιΛℓ
denotes the indicator function of the set Λℓ,110

which is equal to 0 for every z P Λℓ, and `8 elsewhere.

This latter formulation makes the link with Problem (5) more explicit.

More precisely, in order to solve Problem (14) using Algorithm 1, it is nec-

essary to set:

• J 1 “ J ` L,115

• p@ℓ P t1, . . . , Luq MJ`ℓ “ Nκℓ,

• M 1 “
řJ 1

j“1Mj ,

• p@j P t1, . . . , Juq Aj “ r 0 . . . 0loomoon
Npj´1qˆ

AjΩ
´1{2
j 0 . . . 0loomoon

NpJ´jqˆ

s,

• D “ Diag pΩ
´1{2
1 , . . . ,Ω

´1{2
J q,

• p@ℓ P t1, . . . , Luq gJ`ℓ “ ιΛℓ
and AJ`ℓ “ SℓD.120

Then, Problem (14) is recast in the following way:

Find px “ Dpx1 such that

px1 “ argmin
x

1PRNJ

J 1ÿ

j“1

gjpAjx
1q `

1

2
}x1 ´ rx1}2, (15)

where rx1 “ rΩ
1{2
1 rxJ, . . . ,Ω

1{2
J rxJsJ P RNJ .
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3.2. Derivation of the proposed algorithm

The application of Algorithm 1 for the resolution of Problem (15) yields:

——————————–

Bj P RMjˆMj with Bj ľ AjA
J
j , j P t1, . . . , J 1u

ǫ Ps0, 1s

pyj0q1ďjďJ 1 P RM
1

x1
0 “ rx1 ´

řJ 1

j“1 A
J
j y

j
0.

For n “ 0, 1, . . .
————————————————–

γn P rǫ, 2 ´ ǫs

jn P t1, . . . , J 1u

ryjnn “ yjnn ` γnpBjnq´1Ajnx
1
n

y
jn
n`1 “ ryjnn ´ γnpBjnq´1proxγnpBjn q´1,gjn

`
γ´1
n Bjnryjnn

˘

y
j
n`1 “ yjn, j P t1, . . . , J 1uztjnu

x1
n`1 “ x1

n ´ AJ
jn

pyjnn`1 ´ yjnn q.

(16)

The following convergence properties of the above algorithm can be deduced

from [25, Prop. 1-2]:

Theorem 3.1. Assume that125

(i) pgjq1ďjďJ are semi-algebraic functions, and for every j P t1, ..., Ju, the

restriction of g˚
j on its domain is continuous ;

(ii) the sequence pjnqnPN follows a quasi-cyclic rule, i.e., there exists K ě J 1

such that, for every n P N, t1, . . . , J 1u Ă tjn, . . . , jn`K´1u.

Let px1
nqnPN, pyn “ pyjnq1ďjďJ 1 qnPN be sequences generated by Algorithm (16),

and pxnqnPN “ pDx1
nqnPN. Then, if pynqnPN is bounded, then px1

nqnPN converges

to the solution px1 to Problem (15), and pxnqnPN converges to the solution px to

Problem (7). Moreover, there exists α Ps0,`8r such that

lim
nÑ`8

nα}xn ´ px} P R. (17)

130
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Let us now show how the above algorithm can be simplified.

First, note that p@j P t1, . . . , Juq AjA
J
j “ AjΩ

´1
j AJ

j and p@ℓ P t1, . . . , Luq

}SℓD} “ maxjPVℓ
}Ω

´1{2
j }. It can also be observed that p@ℓ P t1, . . . , Luq p@γ P

s0,`8rq,

proxγ´1gJ`ℓ
pγ´1¨q “ γ´1ΠΛℓ

, (18)

where ΠΛℓ
is the linear projector onto the vector space Λℓ.

Hence, by setting

p@ℓ P t1, . . . , Luq BJ`ℓ “ ϑ´1
ℓ INκℓ

(19)

with ϑℓ “ minjPVℓ
}Ωj}, and p@j P t1, . . . , Juq

V
˚
j “

 
pℓ, kq

ˇ̌
ℓ P t1, . . . , Lu, k P t1, . . . , κℓu and ipℓ, kq “ j

(
, (20)
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Algorithm (16) can be re-expressed as

—————————————————–

Bj P RMjˆMj with Bj ľ AjΩ
´1
j AJ

j , j P t1, . . . , Ju

ϑℓ “ min
jPVℓ

}Ωj}, ℓ P t1, . . . , Lu

ǫ Ps0, 1s

zℓ0 P RNκℓ , ℓ P t1, . . . , Lu

y
j
0 P R

Mj , j P t1, . . . , Ju

x
j
0 “ rx´ Ω´1

j

´
AJ
j y

j
0 `

ř
pℓ,kqPV˚

j
z
ℓ,k
0

¯
, j P t1, . . . , Ju.

For n “ 0, 1, . . .
————————————————————————————————————————————————————————–

γn P rǫ, 2 ´ ǫs

jn P t1, . . . , J ` Lu

If jn ď J
————————————————–

ryjnn “ yjnn ` γnpBjnq´1Ajnx
jn
n

y
jn
n`1 “ ryjnn ´ γnpBjnq´1proxγnpBjn q´1,gjn

`
γ´1
n Bjnryjnn

˘

y
j
n`1 “ yjn, j P t1, . . . , Juztjnu

zℓn`1 “ zℓn, ℓ P t1, . . . , Lu

x
jn
n`1 “ xjnn ´ Ω´1

jn
AJ
jn

pyjnn`1 ´ yjnn q

x
j
n`1 “ xjn, j P t1, . . . , Juztjnu

else
———————————————————————–

ℓn “ jn ´ J

rzℓnn “ zℓnn ` γnϑℓnpxjnqjPVℓn

zℓnn`1 “ rzℓnn ´ ΠΛℓn
przℓnn q

zℓn`1 “ zℓn, ℓ P t1, . . . , Luztℓnu

y
j
n`1 “ yjn, j P t1, . . . , Ju

For k “ 1, . . . , κℓnY
x
ipℓn,kq
n`1 “ x

ipℓn,kq
n ´ Ω´1

ipℓn,kqpzℓn,kn`1 ´ zℓn,kn q

x
j
n`1 “ xjn, j R Vℓn .

(21)
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In this algorithm, for increased readibility, we have set, for every n P N,

xn “ rpx1nqJ, . . . , pxJnqJsJ “ Dx1
n, (22)

zℓn “ yJ`ℓ
n P R

Nκℓ , rzℓn “ ryJ`ℓ
n P R

Nκℓ . (23)

Furthermore, it can be noticed that, for every n P N such that jn “ J ` ℓn ą J ,

ΠΛℓn
pzℓnn`1q “ ΠΛℓn

`
rzℓnn ´ ΠΛℓn

przℓnn q
˘

“ ΠΛℓn

`
rzℓnn

˘
´ ΠΛℓn

`
ΠΛℓn

przℓnn q
˘

“ 0. (24)

Since, for every ℓ P t1, . . . , Luztℓnu, zℓn`1 “ zℓn, the latter equality can be

extended by induction to

p@n P Nqp@ℓ P t1, . . . , Luq ΠΛℓ
pzℓnq “ 0, (25)

using an appropriate initialization of the algorithm (e.g., by choosing p@ℓ P

t1, . . . , Luq zℓ0 “ 0). Hence, for every n P N such that jn “ J ` ℓn ą J ,

ΠΛℓn
przℓnq “ γnϑℓnΠΛℓn

`
pxjnqjPVℓn

˘
, (26)

which implies that

zℓnn`1 ´ zℓnn “ γnϑℓn
`
pxjnqjPVℓn

´ ΠΛℓn

`
pxjnqjPVℓn

˘˘
. (27)

The second part of iteration n of (21) dealing with the case when jn ą J can

then be re-expressed as shown in the projection step of Algorithm 2 (lines 20 to

26). In the resulting algorithm, we were able to drop the variables pzℓnq1ďℓďL,

for every n P N.

135

The body of our proposed Algorithm 2 is composed of two main parts:
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Algorithm 2: Distributed Preconditioned Dual Forward-Backward

1 Initialization:

2 Vℓ ” index set of nodes in hyperedge ℓ P t1, . . . , Lu

3 Bj P RMjˆMj with Bj ľ AjΩ
´1
j AJ

j , j P t1, . . . , Ju

4 ϑℓ “ min
jPVℓ

}Ωj}, ℓ P t1, . . . , Lu

5 ǫ Ps0, 1s

6 y
j
0 P R

Mj , x
j
0 “ rx´ Ω´1

j AJ
j y

j
0, j P t1, . . . , Ju.

7 Main loop:

8 for n “ 0, 1, . . . do
9 γn P rǫ, 2 ´ ǫs

10 jn P t1, . . . , J ` Lu
11 if jn ď J then

12 Local optimization:

13 ryjnn “ yjnn ` γnpBjnq´1Ajnx
jn
n

14 y
jn
n`1 “ ryjnn ´ γnpBjnq´1proxγnpBjn q´1,gjn

`
γ´1
n Bjnryjnn

˘

15 y
j
n`1 “ yjn, j P t1, . . . , Juztjnu

16 x
jn
n`1 “ xjnn ´ Ω´1

jn
AJ
jn

pyjnn`1 ´ yjnn q

17 x
j
n`1 “ xjn, j P t1, . . . , Juztjnu

18 else

19 Projection:

20 ℓn “ jn ´ J

21 y
j
n`1 “ yjn, j P t1, . . . , Ju

22 pℓnn “ ΠΛℓn

`
pxjnqjPVℓn

˘

23 for k “ 1, . . . , κℓn do

24 x
ipℓn,kq
n`1 “ x

ipℓn,kq
n ` γnϑℓnΩ

´1
ipℓn,kqppℓn,kn ´ x

ipℓn,kq
n q

25 end

26 x
j
n`1 “ xjn, j R Vℓn .

27 end

28 end

14



• First a local optimization part (lines 13 to 17) which is reminiscent of

the Dual Block Forward-Backward algorithm where, at each iteration, a

block jn is selected and the associated dual and primal variables yjnn (line

14) and xjnn (line 16) are updated, respectively. Note that a fundamental140

difference between the proposed algorithm and Algorithm 1 lies in the

fact that each block jn is now associated with a local primal variable xjnn

whereas, in Algorithm 1, xn was a shared variable.

• The second part of Algorithm 2 is a projection step (lines 20 to 26) in

which a set Vℓn is selected and all the variables pxjnqjnPVℓn
are updated145

by means of a projection operating over the selected set Vℓn .

In Algorithm 2, all computation steps only involve local variables, which is

suitable for parallel processing. A high degree of flexibility is allowed in the

quasi-cyclic rule for choosing the indices jn and ℓn at each iteration n. The

distributed Algorithm 2 inherits all the advantages of primal-dual methods, in150

particular it requires no inversion of the matrices pAjq1ďjďJ , which is critical

when these matrices do not have a simple structure and are of very large size.

Note that the proposed approach is quite different from the ones developed in

[27, 28] since it does not assume a random sweeping rule for the block index

selection, and its convergence analysis, secured by Theorem 3.1, does not rely155

on the nonexpansiveness property of the involved operators.

3.3. Consensus choice

Let us now discuss practical settings for the vector spaces pΛℓq1ďℓďL and the160

weights and the weight matrices pΩjq1ďjďJ , that parameterize our consensus for-

mulation (14). Such choice is of main importance to devise efficient distributed

schemes with limited communication cost and good practical convergence speed.
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3.3.1. Generic case

When the operators pAjq1ďjďJ have no specific structure, a natural choice

for the vector spaces pΛℓq1ďℓďL is to adopt a form similar to that of Λ in (8):

p@ℓ P t1, . . . , Luq Λℓ “

$
’’’&
’’’%

»
———–

vℓ,1

...

vℓ,κℓ

fi
ffiffiffifl P R

Nκℓ | vℓ,1 “ . . . “ vℓ,κℓ

,
///.
///-
. (28)

Note that (8), (10) and (28) imply that the hypergraph induced by the hy-165

peredges pVℓq1ďℓďL is connected (Figure 1 is an example of such a connected

hypergraph). In this context, the connectivity of the hypergraph is essential in

order to allow the global consensus solution to be reached.

For every ℓ P t1, . . . , Lu, the projection onto Λℓ is then simply expressed as

`
@pvℓ,kq1ďkďκℓ

P R
Nκℓ

˘
ΠΛℓ

`
pvℓ,kq1ďkďκℓ

˘
“ rpvℓqJ, . . . , pvℓqJsJ, (29)

where

vℓ “ mean
`
pvℓ,kq1ďkďκℓ

˘
(30)

and meanp¨q designates the arithmetic mean operation (i.e. mean
`
pvℓ,kq1ďkďκℓ

˘
“

κ´1
ℓ

řκℓ

k“1 v
ℓ,k). In addition, Condition (9) is met by simply choosing p@j P

t1, . . . , Juq Ωj “ ωjIN , where pωjq1ďjďJ Ps0, 1sJ are such that
řJ
j“1 ωj “ 1.

These simplifications lead to the following modifications of lines 22-25 in Algo-

rithm 2:

xℓnn “ mean
`
pxjnqjPVℓn

˘

For k “ 1, . . . , κℓnY
x
ipℓn,kq
n`1 “ x

ipℓn,kq
n ` γnϑℓnω

´1
ipℓn,kqpxℓnn ´ x

ipℓn,kq
n q.

(31)

3.3.2. Dimension reduction

Under its previous form, Algorithm 2 requires each node of the hypergraph

to handle a local copy of several variables. In particular, for the j-th node,

a vector xjn of dimension N needs to be stored, which may be prohibitive for

16



highly dimensional problems. Hopefully, very often in signal and image pro-

cessing applications, the operators pAjq1ďjďJ have a sparse block structure,

which makes it possible to ameliorate this problem. More specifically, it will be

assumed subsequently that

p@j P t1, . . . , Juq
`
@xj “ prxjstq1ďtďT P R

N
˘

Ajx
j “

ÿ

tPTj

Aj,trx
jst (32)

where, for every j P t1, . . . , Ju, rxjst is a vector corresponding to a block of170

data of dimension L, T is the overall number of blocks (i.e., N “ TL), and

Tj Ă t1, . . . , T u defines the reduced index subset of the components of vector xj

acting on the operator Aj . In the above equation, pAj,tqtPTj
are the associated

reduced-size matrices of dimensions Mj ˆ L. Similarly to the way xj has been

block-decomposed, we split the diagonal matrix Ωj as Ωj “ Diag pΩj,1, . . . ,Ωj,T q175

where, for every t P t1, . . . , T u, Ωj,t is a diagonal matrix of size L ˆ L. It

then obviously holds that AjΩ
´1
j AJ

j “
ř
tPTj

Aj,tΩ
´1
j,tA

J
j,t. To avoid degenerate

cases, we will subsequently assume that p@j P t1, . . . , Juq Tj ‰ ∅ and
Jď

j“1

Tj “

t1, . . . , T u.

In our distributed formulation, the specific form of the operators pAjq1ďjďJ

suggests to set the vector subspaces pΛℓq1ďℓďL so as to reach the consensus only

for the components prxjstq1ďjďJ,tPTj
of vectors pxjq1ďjďJ . This means that the

space Λ (resp. Λℓ with ℓ P t1, . . . , Lu) is defined as

pxjq1ďjďJ P Λ ô p@pj, j1q P t1, . . . , Ju2qp@t P Tj X Tj1 q rxjst “ rxj
1

st

(33)

(resp. pxjqjPVℓ
P Λℓ ô p@pj, j1q P V

2
ℓqp@t P Tj X Tj1 q rxjst “ rxj

1

stq.

It can be noticed that, although the hypergraph must still be built so that (10)180

holds, Λ is no longer given by (8), since the components prxjstq1ďjďJ,tRTj
are

unconstrained. The main advantage of this choice is that Problem (7) then

17



decouples into two optimization problems:

• the minimization of the function

prxjstq1ďjďJ,tPTj
ÞÑ

Jÿ

j“1

gj

´ ÿ

tPTj

Aj,trx
jst

¯
`
1

2

Jÿ

j“1

ÿ

tPTj

}rxjst´rrxst}
2
Ωj,t

(34)

subject to Constraint (33);

• the unconstrained minimization of the function

prxjstq1ďjďJ,tRTj
ÞÑ

Jÿ

j“1

ÿ

tRTj

}rxjst ´ rrxst}
2
Ωj,t

. (35)

Since the second problem is trivial, the variables prxjnstq1ďjďJ,tRTj
generated at185

each iteration n P N of Algorithm 2 are useless and, consequently, they can

be discarded. By doing so, only the |Tj | vectors1 prxjnstqtPTj
of dimension L

need to be stored at the j-th node (instead of T vectors of this size) and the

number of computations to be performed during the projection step is also

sharply diminished.190

This yields Algorithm 3 where, in the synchronization step, averaging oper-

ations corresponding to the projection onto Λℓn have been substituted for lines

22-25 in Algorithm 2. The notation

p@t P t1, . . . , T uq T
˚
t “

 
j P t1, . . . , Ju

ˇ̌
t P Tj

(
, (36)

has been introduced for the computation of the averages. In particular, in line

29 of Algorithm 3, if VℓXT˚
t is a singleton, which means that the t-th block com-

ponent of the vector x appears only once in the expression of gjpAjxq for indices

j in the ℓn-th hyperedge, then the averaging reduces to setting rxjn`1st “ rxjnst.

It is also worthwhile to note that, when p@j P t1, . . . , Juq Tj “ t1, . . . , T u, the

1|S| is the cardinality of a set S.

18



consensus solution described in Section 3.3.1 is recovered. It must be however

pointed out that, in general, to have the equivalence between the minimiza-

tion of (34) subject to Constraint (33) and the resolution of Problem (5), the

following condition has to be substituted for (9):

p@t P t1, . . . , T uq
ÿ

jPT˚

t

Ωj,t “ IL. (37)

In Algorithm 3, this has been simply achieved by setting p@j P t1, . . . , Juq

p@t P Tjq Ωj,t “ ωj,tIL, where pωj,tq1ďjďJ,tPTj
are positive real such that p@t P

t1, . . . , T uq
ř
jPT˚

t
ωj,t “ 1. In turn, the notation pΩj,tq1ďjďJ,tRTj

is no longer

used in this algorithm.

Algorithm 3 can give rise to a variety of distributed implementations. In195

the remainder of the paper, we will focus on a simple particular instance of this

algorithm.

4. A useful special case200

Let us consider the case when C ď J processing units are available. To

simplify our presentation, we will restrict our attention to a case of practical

interest, that arises for example in the video denoising application described in

Section 5, by making the following assumptions.

Assumption 4.1.205

(i) The hyperedges pVℓq1ďℓďC form a partition of t1, . . . , Ju.

(ii) For every ℓ P t1, . . . , Cu, let TVℓ
“
Ť
jPVℓ

Tj.

(a) For every pℓ, ℓ1q P t1, . . . , Cu2, TVℓ
X TVℓ1 “ ∅ if |ℓ´ ℓ1| ą 1.

(b) For every ℓ P t2, . . . , C ´ 1u, TVℓ´1
X TVℓ

X TVℓ`1
“ ∅.

An example of hypergraph satisfying Assumption 4.1(i) is displayed in Figure 2.210

For every ℓ P t1, . . . , Cu, TVℓ
is the set of the block indices t of the components
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Algorithm 3: Distributed Preconditioned Dual Forward-Backward af-
ter Dimension Reduction

1 Initialization:

2 Vℓ ” index set of nodes in hyperedge ℓ P t1, . . . , Lu
3 Tj ” index set of blocks used at node j P t1, . . . , Ju
4 T˚

t ” index set of nodes using block t P t1, . . . , T u

5 tωj,t | 1 ď j ď J, t P Tju Ăs0, 1s such that p@t P t1, . . . , T uq
ÿ

jPT˚

t

ωj,t “ 1

6 Bj P R
MjˆMj with Bj ľ

ÿ

tPTj

ω´1
j,tAj,tA

J
j,t, j P t1, . . . , Ju

7 ϑℓ “ min
jPVℓ,tPTj

ωj,t, ℓ P t1, . . . , Lu

8 ǫ Ps0, 1s

9 y
j
0 P R

Mj , rxj0st “ rrxst ´ ω´1
j,tA

J
j,ty

j
0, j P t1, . . . , Ju, t P Tj .

10 Main loop:

11 for n “ 0, 1, . . . do
12 γn P rǫ, 2 ´ ǫs
13 jn P t1, . . . , J ` Lu
14 if jn ď J then

15 Local optimization:

16 ryjnn “ yjnn ` γnB
´1
jn

ÿ

tPTjn

Ajn,trx
jn
n st

17 y
jn
n`1 “ ryjnn ´ γnB

´1
jn

proxγnB´1

jn
,gjn

`
γ´1
n Bjnryjnn

˘

18 y
j
n`1 “ yjn, j P t1, . . . , Juztjnu

19 for t P Tjn do

20 rxjnn`1st “ rxjnn st ´ ω´1
jn,t

AJ
jn,t

pyjnn`1 ´ yjnn q

21 end

22 prxjn`1stqtPTj
“ prxjnstqtPTj

, j P t1, . . . , Juztjnu

23 else

24 Projection:

25 ℓn “ jn ´ J

26 y
j
n`1 “ yjn, j P t1, . . . , Ju

27 for j P Vℓn do

28 for t P Tj do

29 rxjn`1st “

rxjnst ` γnϑℓnω
´1
j,t

`
mean

`
prxj

1

n stqj1PVℓnXT
˚

t

˘
´ rxjnst

˘

30 end

31 end

32 prxjn`1stqtPTj
“ prxjnstqtPTj

, j R Vℓn .

33 end

34 end
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rxjst where j is any node in Vℓ. According to Assumption 4.1-(ii)(a), these

indices may only be common to hyperedges having preceding or following index

values (i.e. ℓ´1 or ℓ`1). Finally, Assumption 4.1-(ii)(b) means that no overlap

is allowed between block indices shared with the preceding hyperedge and the215

following one.

4.1. Form of the algorithm

An interesting instance of Algorithm 3 is then obtained by setting L “ C`1

and by assuming that each hyperedge Vℓ with ℓ P t1, . . . , Cu corresponds to a

given computing unit where the computations are locally synchronized. In addi-220

tion, hyperedge VL is set to t1, . . . , Ju in order to model global synchronization

steps consisting of an averaging over all the available nodes. At each iteration n,

only a subset Jn,ℓ of dual variable indices is activated within the ℓ-th hyperedge.

Their update is followed by either a possible local synchronization or a global

one.225

Algorithm 4 summarizes the proposed approach. For simplicity, the index

L has been dropped in variable ϑL. Note that, if the local synchronization step

is omitted (by setting rxjn`1st “ rxj
n`1{2st in line 29), the algorithm still makes

sense since it can be easily shown that it actually corresponds to a rewriting

of Algorithm 3 in the case when L “ 1 and V1 “ t1, . . . , Ju. Unlikely, the230

global synchronization is mandatory although it has not to be performed at

each iteration but only in a quasi-cyclic manner.

It should be emphasized that even in the case when all the dual variables

are updated iteratively (i.e., p@ℓ P t1, . . . , Luq p@n P Nq Jn,ℓ “ Vℓ), Algorithm 4

exhibits a different structure from the one of the parallel dual forward-backward235

algorithm in [35].

4.2. Distributed implementation

We now look more precisely at the implementation of Algorithm 4 on a dis-

tributed architecture with C P N˚ computing units, each computing unit being
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Algorithm 4: Special case of distributed Preconditioned Dual
Forward-Backward

1 Initialization:

2 Vℓ ” index set of nodes associated with computing unit ℓ P t1, . . . , Cu
3 Tj ” index set of blocks used at node j P t1, . . . , Ju
4 T˚

t ” index set of nodes using block t P t1, . . . , T u

5 tωj,t | 1 ď j ď J, t P Tju Ăs0, 1s such that p@t P t1, . . . , T uq
ÿ

jPT˚

t

ωj,t “ 1

6 Bj P R
MjˆMj with Bj ľ

ÿ

tPTj

ω´1
j,tAj,tA

J
j,t, j P t1, . . . , Ju

7 ϑ “ min
1ďjďJ,1ďtďT

ωj,t, ϑℓ “ min
jPVℓ,tPTj

ωj,t, ℓ P t1, . . . , Cu

8 ǫ Ps0, 1s

9 y
j
0 P R

Mj , rxj0st “ rrxst ´ ω´1
j,tA

J
j,ty

j
0, j P t1, . . . , Ju, t P Tj .

10 Main loop:

11 for n “ 0, 1, . . . do
12 for ℓ “ 1, . . . , C do

13 Jn,ℓ Ă Vℓ

14 for j P Jn,ℓ do

15 Local optimization:

16 ryjn “ yjn ` γnB
´1
j

ÿ

tPTj

Aj,trx
j
nst

17 y
j
n`1 “ ryjn ´ γnB

´1
j proxγnB´1

j
,gj

`
γ´1
n Bjryjn

˘

18 for t P Tj do

19 rxj
n`1{2st “ rxjnst ´ ω´1

j,tA
J
j,tpy

j
n`1 ´ yjnq

20 end

21 end

22 for j P VℓzJn,ℓ do

23 y
j
n`1 “ yjn

24 prxj
n`1{2stqtPTj

“ prxjnstqtPTj

25 end

26 if local synchronization is requested then

27 for j P Vℓ do

28 for t P Tj do

29 rxjn`1st “ rxj
n`1{2st `

γnϑℓω
´1
j,t

`
mean

`
prxj

1

n`1{2stqj1PVℓXT
˚

t

˘
´ rxj

n`1{2st
˘

30 end

31 end

32 end

33 end

34 if global synchronization is requested then

35 for t “ 1, . . . , T do rxnst “ mean
`
prxj

n`1{2stqjPT˚

t

˘
;

36 for j “ 1, . . . , J do

37 for t P Tj do

38 rxjn`1st “ rxj
n`1{2st ` γnϑω

´1
j,t prxnst ´ rxj

n`1{2stq

39 end

40 end

41 end

42 end
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Figure 2: Hypergraph of J “ 7 nodes, C “ 4 computing units and L “ 5 hyperedges.

indexed by an integer c P t1, . . . , Cu. Figure 3 (top) shows an illustrative exam-240

ple of C “ 4 computing units based on the hypergraph defined in Figure 2.

c “ 1 c “ 2 c “ 3 c “ 4

1 2 3 4 5 6 7

c “ 1 c “ 2 c “ 3 c “ 4

1 2 3 4 5 6 7V5

Figure 3: (top) Partitioning of J “ 7 nodes and L “ 5 hyperedges on C “ 4 computing
units. (bottom) Partitioning of J “ 7 nodes and L “ 1 hyperedge on C “ 4 computing
systems.

As we have seen, each computing unit c P t1, . . . , Cu handles κc terms cor-

responding to the nodes in Vc of the hypergraph, and processes the functions245

pgjqjPVc
associated with these nodes. Furthermore, a global synchronization

step needs to be performed. This task could be assigned to one of the com-

puting unit, say the first one, as modelled in Figure 3 (bottom) by adding a

fictitious term corresponding to hyperedge VC`1. This would however lead to a

centralized scheme where the computing load between the different units would250

end-up unbalanced.

A better strategy would consist of distributing the operations performed on
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line 35 of Algorithm 4 over the different computing units. For this purpose, let

us first note that at iteration n, the c-th computing unit only needs the block

components prxnstqtPTVc
. In addition, because of Assumption 4.1-(ii)(a), some

of these variables may be shared with the computing units c ´ 1 (if c ‰ 1) and

c` 1 (if c ‰ C), where part of the variables rxj
n`1{2st necessary to compute the

averages are locally available. As a consequence of Assumption 4.1-(ii)(b), no

other variables than those available in either TVc´1
X TVc

or TVc
X TVc`1

are

necessary . For example, if c ‰ 1 and t P TVc´1
X TVc

, the averaging operation

reads

rxnst “
1

|T˚
t |

ÿ

jPT˚

t

rxj
n`1{2st

“
1

|T˚
t |

`
rsn,c´1st ` rsn,cst

˘
, (38)

where

rsn,c´1st “
ÿ

jPVc´1XT
˚

t

rxj
n`1{2st, (39)

and rsn,cst is similarly defined. Since the variables prxj
n`1{2stqjPVc´1XT

˚

t
are not

available at unit c, the latter summation must be performed by unit c ´ 1 and

the result must be transmitted to unit c. This one will then be able to compute

rxnst, so as to update variables prxjn`1stqjPVcXT
˚

t
. Besides, rxnst will be sent to

unit c´ 1, which in turn will update its variables prxjn`1stqjPVc´1XT
˚

t
. A similar

synchronization process can be followed for blocks with indices t P TVc
X TVc`1

with c ‰ C. Finally, for the block indices t in TVc
which do not belong to TVc´1

or TVc`1
,

rxnst “ mean
`
prxj

n`1{2stqjPVcXT
˚

t

˘
“

rsn,cst
|T˚
t |

, (40)

as we have then |Vc X T˚
t | “ |T˚

t |. This means that local averaging is only

required for these blocks. In Figure 4, the synchronization workflow is summa-

rized, while, in Algorithm 5, a more detailed account of the whole process is

given.255
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Vc´1 Vc Vc`1

ipc ´ 1, 1q ipc ´ 1, κc´1q ipc, 1q ipc, κcq ipc ` 1, 1q ipc ` 1, κc`1q. . . . . .. . .

rxipc´1,1qst rxipc´1,κc´1qst rxipc,1qst rxipc,κcqst rxipc`1,1qst rxipc`1,κc`1qst

Transmit prsn,c´1stqtPTVc´1
XTVc

Transmit prsn,cstqtPTVc
XTVc`1

Vc´1 Vc Vc`1

ipc ´ 1, 1q ipc ´ 1, κc´1q ipc, 1q ipc, κcq ipc ` 1, 1q ipc ` 1, κc`1q. . . . . .. . .

rxipc´1,1qst rxipc´1,κc´1qst rxip1,cqst rxipc,κcqst rxipc`1,1qst rxipc`1,κc`1qst

Transmit prxnstqtPTVc´1
XTVc

Transmit prxnstqtPTVc
XTVc`1

Figure 4: Global synchronisation process: Transmission of local summations to the next
computing unit (top) ; Transmission of averaged blocks to the previous computing unit
(bottom).

Remark 4.2.

(i) It must be emphasized that, in order to facilitate the derivation of our

algorithm, a common iteration variable n has been used for each comput-

ing unit. However, units have the ability to process data at their own

speed. In particular, each unit may perform a different number of local260

synchronizations before a global one is made. In this sense, our algo-

rithm is asynchronous. To understand why such behavior is allowed, it

suffices to note that if no global synchronization arises and Jn,c “ ∅, then

pxjn`1qjPVc
“ pxjnqjPVc

. This means that such a null iteration can be used

to model a time when the c-th computing unit is idle while others are locally265

updating their variables.

(ii) When the c-th computing unit operates a global synchronization, it will sus-

pend its activities until it receives data from units c ´ 1 (line 35) and/or

c` 1 (line 39), which happens only when these units also are globally syn-

chronizing their variables. To ensure low latencies, global synchronization270

steps however have to be scheduled (quasi-)periodically for each comput-

ing unit based on their processing speeds (faster ones should schedule less

frequent synchronizations than slower ones). Alternatively, when one unit

decides to perform a global synchronization, it can broadcast a message to
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the others to warn them to do the same.275

(iii) Other forms of local consensus could be devised. For example, another

choice would consist in setting L “ 2C ´ 1 and p@c P t1, . . . , C ´ 1uq

VC`c “ VcYVc`1. Then, each node c P t1, . . . , C´1u could be responsible

for driving the synchronization with its neighbor of index c` 1. However,

it appears more difficult, in this context, to devise an efficient procedure280

to avoid deadlocks, contrary to our previous example.

5. Application to video denoising

5.1. Observation model285

In this section, we illustrate the performance of the proposed distributed al-

gorithm for denoising video sequences. The original sequence x “ prxstq1ďtďT P

RTL is naturally decomposed in T blocks of data, each corresponding to one

image composed of L pixels. The degradation model relating the observed noisy

sequence y “ prystq1ďtďT P RTL to the sought sequence x with TL “ N is given

by

p@t P t1, . . . , T uq ryst “ rxst ` rwst, (41)

where prwstq1ďtďT P RTL represents an additive zero-mean white Gaussian

noise. An estimate of the unknown video can be inferred by solving Problem

(5) where J “ T and rx “ y. The last quadratic term in (5) is a least squares

data fidelity term ensuring compliance with model (41), and functions pgjq1ďjďT

stand for regularization functions that incorporate both temporal and spatial

prior knowledge on each video frame. The temporal regularization is fulfilled

by taking into account motion compensation between the previous and next

neighbouring frames. More precisely, at each time t P t2, . . . , T ´ 1u, the lin-

ear operator At extracts the current frame xt and its neighbors pxt´1, xt`1q as
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Algorithm 5: Special case of distributed PDFB for the c-th computing
unit
1 Setting of global constants:

2 Tj ” index set of blocks used at node j P t1, . . . , Ju
3 T

˚
t ” index set of nodes using block t P t1, . . . , T u

4 tωj,t | 1 ď j ď J, t P Tju Ăs0, 1s such that p@t P t1, . . . , T uq
ÿ

jPT˚

t

ωj,t “ 1

5 ϑ “ min
1ďjďJ,1ďtďT

ωj,t, ǫ Ps0, 1s, pγnqnPN sequence of rǫ, 2 ´ ǫs with ǫ Ps0, 1s

6 Initialization:

7 Vc ” index set of nodes associated with computing unit c
8 TVc ” set of block indices used in Vc (with the convention TV0

“ TVC`1
“ ∅)

9 Bj P R
MjˆMj with Bj ľ

ÿ

tPTj

ω
´1

j,t Aj,tA
J
j,t, j P Vc

10 ϑc “ min
jPVc,tPTj

ωj,t, ℓ P t1, . . . , Cu

11 y
j
0

P R
Mj , rxj

0
st “ rrxst ´ ω

´1

j,t A
J
j,ty

j
0
, j P Vc, t P Tj .

12 Main loop:

13 for n “ 0, 1, . . . do
14 Jn,c Ă Vc

15 for j P Jn,c do

16 ryj
n “ y

j
n ` γnB

´1

j

ÿ

tPTj

Aj,trx
j
nst

17 y
j
n`1

“ ryj
n ´ γnB

´1

j prox
γnB

´1

j
,gj

`
γ´1

n Bjryj
n

˘

18 for t P Tj do rxj

n`1{2st “ rxj
nst ´ ω´1

j,t A
J
j,tpy

j
n`1

´ yj
nq ;

19 end

20 for j P VczJn,c do

21 y
j
n`1

“ yj
n

22 prxj

n`1{2stqtPTj
“ prxj

nstqtPTj

23 end

24 for t P TVc do rsn,cst “
ÿ

jPVcXT
˚

t

rxj

n`1{2st ;

25 if synchronization is local then

26 for j P Vc do

27 for t P Tj do

28 rxj
n`1

st “ rxj

n`1{2st ` γnϑc ω
´1

j,t

´ rsn,cst
|Vc X T

˚
t |

´ rxj

n`1{2st
¯

29 end

30 end

31 else

32 Global synchronization:

33 if c ‰ C then send prsn,cstqtPTVc
XTVc`1

to unit c ` 1 ;

34 if c ‰ 1 then

35 wait for receiving prsn,c´1stqtPTVc´1
XTVc

from unit c ´ 1

36 for t P TVc´1
X TVc do rxnst “

1

|T˚
t |

`
rsn,c´1st ` rsn,cst

˘
;

37 send prxnstqtPTVc´1
XTVc

to unit c ´ 1

38 end

39 if c ‰ C then wait for receiving prxnstqtPTVc
XTVc`1

from unit c ` 1

;

40 for t P TVczpTVc´1
Y TVc`1

q do rxnst “
rsn,cst
|T˚

t |
;

41 for j P Vc do

42 for t P Tj do

43 rxj
n`1

st “ rxj

n`1{2st ` γnϑω
´1

j,t

`
rxnst ´ rxj

n`1{2st
˘

44 end

45 end

46 end

47 end
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shown by:

rrxs1 . . . rxst´1rxstrxst`1 . . . rxsT s
AtÑ rrxst´1rxstrxst`1s . (42)

The linear operators pAtq1ďtďT thus have the block sparse structure ex-

pressed by (32) with

p@t P t1, . . . , T uq Tt “
 
maxtt´ 1, 1u, t,mintt` 1, T u

(
(43)

and

A1,1 “
”
IL 0

ıJ

, A1,2 “
”
0 IL

ıJ

, (44)

p@t P t2, . . . , T ´ 1uq At,t´1 “
”
IL 0 0

ıJ

(45)

At,t “
”
0 IL 0

ıJ

(46)

At,t`1 “
”
0 0 IL

ıJ

(47)

AT,T´1 “
”
IL 0

ıJ

, AT,T “
”
0 IL

ıJ

. (48)

For every t P t1, . . . T u, each regularization function gt : R
Mt Ñ r0,`8r is

convex, proper, lower semi-continuous and such that

Mt “

$
’&
’%
3L if t ‰ 1 and t ‰ T

2L otherwise,

(49)

and, for every x “ prxstq1ďtďT ,

gt pprxst1 qt1PTt
q “ η tgvprxstq ` ιrxmin,xmaxsLprxstq ` ht pprxst1 qt1PTt

q , (50)

where “tgv” denotes the Total Generalized Variation regularization from [38],
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defined as

p@z P R
Lq tgvpzq “ min

dPR2L
α0 χ2 pDz ´ dq ` α1 χ3 pGdq , (51)

with pα0, α1q Ps0,`8r2, D P R2LˆL is the concatenation of the horizontal and

vertical spatial gradient operators:

D “

»
– ∇H

∇V

fi
fl , with ∇H P R

LˆL, ∇V P R
LˆL, (52)

and G P R3Lˆ2L is the Jacobian operator given by

G “

»
——–
∇H ∇V 0

0 ∇H ∇V

fi
ffiffifl

J

, (53)

while, for every q P N˚, χq : R
qL Ñ R is given by

`
@pz1, . . . , zqq P pRLqq

˘
χqpz1, . . . , zqq “

Lÿ

k“1

b
pz1,kq2 ` ¨ ¨ ¨ ` pzq,kq2. (54)

The indicator function ιrxmin,xmaxsL in (50) imposes a range rxmin, xmaxs on the

pixel values in each frame. In addition, ht is a function introducing a temporal

29



regularization of the form

ht pprxst1 qt1PTt
q “

$
’’’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’’’%

βt´1,t χ1prxst ´ Mt´1Ñt rxst´1q

` βt`1,t χ1prxst ´ Mt`1Ñt rxst`1q

if t ‰ 1 and t ‰ T

β2,1 χ1prxs1 ´ M2Ñ1 rxs2q

if t “ 1

βT´1,T χ1prxsT ´ MT´1ÑT rxsT´1q

if t “ T ,

(55)

where Mt´1Ñt P RLˆL (resp. Mt`1Ñt P RLˆL) is a motion compensation

operator between the reference frame xt´1 (resp. xt`1) and the current frame

xt, defined as described in [25, Section 5.2.2]. Finally, η, pβt´1,tq2ďtďT and

pβt`1,tq1ďtďT´1 are positive regularization parameters controlling the strength

of the contribution of their associated terms. The values of these parameters290

were set optimized by grid-search so as to achieve the best denoising perfor-

mance.

5.2. Proposed method

We employ our proposed asynchronous distributed framework to address the

previous denoising problem. More precisely, we use the practical implementa-

tion detailed in Algorithm 5. Functions pgtq1ďtďT and their associated primal

variables prxtst1 qt1PTt
for t P t1, . . . , T u, are spread over C computing units, each

of them handling the same number of nodes, i.e., p@c P t1, . . . , Cuq κc “ κ (with

T “ κC). The associated hyperedges are then given by

p@c P t1, . . . , Cuq Vc “ tpc´ 1qκ` 1, . . . , cκu. (56)
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Note that, since

p@c P t1, . . . , Cuq TVc
“

 
maxtpc´ 1qκ, 1u, . . . ,mintcκ` 1, T u

(
(57)

, we have

p@c P t1, . . . , C ´ 1uq TVc
X TVc`1

“ tcκ, cκ` 1u, , (58)

so that Assumption 4.1 holds provided that κ ą 1.

In the local optimization first performed at the n-th iteration of Algorithm295

5, we used, for every j P t1, . . . , T u, Bj “
ř
tPTj

ω´1
j,t IMj

and γn ” 1.7. Then,

the local or global synchronization steps are performed as described in Section

4.2. In our case, for every t P t1, . . . , T u, T˚
t “ Tt. If t P TVc

with c P t1, . . . , Cu

corresponds neither to the smallest nor the largest index in Vc, then 3 values

need to be summed to compute rsn,cst. If t is the smallest or the largest index300

in Vc, then the summation involves only two terms. Finally, if c ą 1 and

t “ pc ´ 1qκ (resp. c ă C and t “ cκ ` 1q), then rsn,cst “ rxt`1
n`1{2st (resp.

rsn,cst “ rxt´1
n`1{2st). In global synchronization steps, by virtue of (58), only

variables rsn,cscκ and rsn,cscκ`1 need to be transmitted from computing unit

c ‰ C to computing unit c`1, which in return sends back the updated averages305

rxnscκ and rxnscκ`1. This workflow is illustrated in Figures 5 and 6 by an

example showing two computing units handling κ “ 3 nodes.

c “ 2 c “ 3

4 5 6 7 8 9

»
———–

x3

x4

x5

fi
ffiffiffifl

»
———–

x4

x5

x6

fi
ffiffiffifl

»
———–

x5

x6

x7

fi
ffiffiffifl

»
———–

x6

x7

x8

fi
ffiffiffifl

»
———–

x7

x8

x9

fi
ffiffiffifl

»
———–

x8

x9

x10

fi
ffiffiffifl

rx4

nst1 rx5

nst1 rx6

nst1 rx7

nst1 rx8

nst1 rx9

nst1

Transmit prsn,2st1 q
t1Pt6,7u

. . .. . .. . . . . .. . .. . .

Figure 5: Transmission of local sums prsn,2st1 q
t1Pt6,7u shared between TV2

“ t3, 4, 5, 6, 7u
and TV3

“ t6, 7, 8, 9, 10u from computing unit c “ 2 to computing unit c “ 3.
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c “ 2 c “ 3

4 5 6 7 8 9

»
———–

x3

x4

x5

fi
ffiffiffifl

»
———–

x4

x5

x6

fi
ffiffiffifl

»
———–

x5

x6

x7

fi
ffiffiffifl

»
———–

x6

x7

x8

fi
ffiffiffifl

»
———–

x7

x8

x9

fi
ffiffiffifl

»
———–

x8

x9

x10

fi
ffiffiffifl

rx4

nst1 rx5

nst1 rx6

nst1 rx7

nst1 rx8

nst1 rx9

nst1

Transmit prxnst1 q
t1Pt6,7u

. . .. . .. . . . . .. . .. . .

Figure 6: Transmission of averaged images prxnst1 q
t1Pt6,7u from computing unit c “ 3

to computing unit c “ 2.

In our simulations, the global synchronizations are activated every 4 itera-

tions. This synchronization frequency was chosen in order to achieve a good

trade-off between the communication overhead and a satisfactory convergence310

speed. The weights pωj,tq1ďtďT,jPT˚

t
are set to 1

|T˚

t |
.

5.3. Simulation results

The performance of the proposed denoising method are evaluated on the

standard test video sequences Foreman, Claire and Irene with T “ 72 frames.

These frames are of size 348 ˆ 284 for Foreman sequence, 300 ˆ 278 and 352 ˆ315

288 of Claire and Irene respectively, hence N “ 7115904 (resp. N “ 6004800

and N “ 7299072). The degraded videos are obtained by adding zero-mean

white Gaussian noise to the original video sequences, resulting in an initial SNR

(signal-to-noise ratio) of 24.41 dB, 24.77 dB and 25.51 dB for the three sequences

respectively. We apply our algorithm only on the luminance channel, while the320

chrominance is restored with a median filter. Our method is implemented with

Julia-0.4.6 and a Message Passing Interface (MPI) wrapper for managing com-

munication between cores [39, 40]. We use a multi-core architecture using 2

Intel(R) Xeon(R) E5-2670 v3 CPU @ 2.3 GHz processors, each with 12 cores,

hence C “ 24. The experiments are run using 60 iterations of Algorithm 5,325

which is sufficient to reach convergence. We evaluate the proposed distributed

approach in terms of restoration quality and acceleration provided by our algo-
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rithm with respect to the number of computing units. The images composing the

video sequences are partitioned in groups of equal size κ processed by the com-

puting units, thereby we consider the cases when C P t1, 2, 3, 4, 6, 8, 9, 12, 18, 24u330

cores are employed, as shown in Table 1.

Table 1: Investigated simulation scenarios and the number of images per core in each
case.

Number of cores C 1 2 3 4 6 8 9 12 18 24

Number of images per core κ 72 36 24 18 12 9 8 6 4 3

Our method achieves satisfactory restoration results with an improvement

of 7.6 dB for Foreman, 9 dB for Claire and 5.46 dB for Irene, with respect to

the degraded video. Moreover, according to our observations, the convergence

to the sought solution was reached in each experiment regardless the number of335

used cores. Otherwise stated, the quality of the solution is identical, whatever

the number of cores activated. Figures 7 and 8 show some frames illustrative of

the degraded and restored sequences. These illustrate the good visual quality

of the performed denoising.

Figure 7: Foreman sequence: Input degraded images (top) initial SNR = 24.41 dB,
associated restored images (bottom) final SNR = 32.04 dB.

Figure 9 shows the speedup in execution time with respect to the number of
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Figure 8: Irene sequence: Input degraded images (top) initial SNR = 25.51 dB, asso-
ciated restored images (bottom) final SNR = 30.97 dB.

cores, which is estimated as follows:

Speedup forC cores “
Execution time with 1 core

Execution time withC cores
. (59)

The execution time with one core is equal to 107003 s, 84247 s and 115711340

s for Foreman, Claire and Irene sequences respectively. Those large values

illustrate the difficulty in solving this high dimensional non-smooth optimization

problem.
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(a) Foreman sequence.
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(b) Claire sequence.
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(c) Irene sequence.

Figure 9: Speedup with respect to the number of used cores: proposed method (solid,
blue, diamond), linear speedup (dashed, green).

Figure 9 shows that the speedup increases superlinearly as we increase the

number of cores from 1 to 9. Indeed, when a small number of cores are used,345

the dataset cannot be stored in the cache memory, due to its large size. Hence,

a significant amount of time is spent in RAM access [41]. By increasing the

number of cores, the data seem to fit better in the cache size, which reduces the

RAM access time and consequently the global execution time despite the com-

munication overhead. However, as the number of core exceeds 9, a saturation350

effect is observed (in agreement with Amdahl’s law [42]) .

In order to investigate this behavior, we display in Figure 10 the execution

times per core on the Foreman sequence, for the three main steps of Algorithm

5. Namely, the local optimization, local synchronization, and global synchro-

nization when either C “ 8 or C “ 24 cores are used. As expected we observe a355

significant reduction of the execution time for the local optimization step when

going from 8 to 24 cores, but the gain factor is less than 3, although the compu-

tations are then performed independently on each core. The average execution
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time for the local synchronization step is also reduced as the number of images

handled by each core decreases. One can finally observe that the global commu-360

nication overhead increases as a larger number of cores is used. This behavior

appears to be consistent, however it can be noticed on Figure 10(b) that the

second set of cores (13 to 24q is much slower than the first one, which is detri-

mental to the global synchronization process. This seems to point out hardware

limitations of the Intel-based two-processor computer architecture that we use.365

(a) 8 cores (b) 24 cores

Figure 10: Execution time of Algorithm 5 steps: local optimization (top), local syn-
chronization (middle), global synchronization (bottom).
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6. Conclusion

This paper has introduced a fully parallelized version of the preconditioned

dual block-coordinate forward-backward algorithm for computing proximity op-

erators. Our algorithm benefits from all the advantages of primal-dual methods

and the acceleration provided by a block-coordinate strategy combined with a370

variable metric approach. We mainly focused on an instance of the proposed

approach for which we proposed a practical asynchronous implementation, as-

suming that a given number of computing units is available. Although our

distributed algorithm can be applied to a wide range of problems, we investi-

gated its application to video sequence denoising. The experimental results we375

obtained are quite promising and demonstrate the ability of our algorithm to

take advantage of multiple cores. An acceleration of about 15 was reached with

a standard two-processor computer configuration. In future works, we intend

to experiment different distributed implementations based on other partition-

ing strategies and hypergraph topologies and to study the application of our380

distributed framework to other proximal optimization algorithms.
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Montréal, Canada, 2015, pp. 865–873.

[24] M. Jaggi, V. Smith, M. Takac, J. Terhorst, S. Krishnan, T. Hofmann,

M. I. Jordan, Communication-efficient distributed dual coordinate ascent,455

in: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Weinberger

(Eds.), Adv. Neural Inf. Process. Syst., Curran Associates, Inc., 2014, pp.

3068–3076.

[25] F. Abboud, E. Chouzenoux, J.-C. Pesquet, J.-H. Chenot, L. Laborelli, Dual

block coordinate forward-backward algorithm with application to deconvo-460

lution and deinterlacing of video sequences, J. Math. Imaging Vision 59 (3)

(2017) 415–431.

[26] A. Chambolle, T. Pock, A remark on accelerated block coordinate descent

for computing the proximity operators of a sum of convex functions, SIAM

J. Comput. Math. 1 (2015) 29–57.465

[27] J.-C. Pesquet, A. Repetti, A class of randomized primal-dual algorithms for

distributed optimization, J. Nonlinear Convex Anal. 16 (12) (2015) 2453–

2490.
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