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Abstract

Optimization problems arising in signal and image processing involve an in-
creasingly large number of variables. In addition to the curse of dimensionality,
another difficulty to overcome is that the cost function usually reads as the
sum of several loss/regularization terms, non-necessarily smooth and possibly
composed with large-size linear operators. Proximal splitting approaches are
fundamental tools to address such problems, with demonstrated efficiency in
many applicative fields. In this paper, we present a new distributed algorithm
for computing the proximity operator of a sum of non-necessarily smooth con-
vex functions composed with arbitrary linear operators. Our algorithm relies
on a primal-dual splitting strategy, and benefits from established convergence
guaranties. Each involved function is associated with a node of a hypergraph,
with the ability to communicate with neighboring nodes sharing the same hy-
peredge. Thanks to this structure, our method can be efficiently implemented
on modern parallel computing architectures, allowing to distribute computa-
tions on different nodes or machines while limiting the need for synchronization
steps. Its good numerical performance and scalability properties are illustrated

on a problem of video sequence denoising.
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1. Introduction

Numerous problems in data science such as video restoration require the
processing of huge datasets. Optimal processing are often obtained by solving
nonsmooth optimization problems, for which proximity operators appear as fun-

damental tools. In this context, it is necessary to propose parallel/distributed

methods to compute proximity operators involved in the solution of high-dimensional

problems, especially when the objective function is the sum of several convex
non-necessarily smooth functions [1, [2]. In the general case, a closed form ex-
pression of the proximity operator of such composite term does not exist, and
developing iterative strategies becomes necessary.

Primal-dual splitting methods are prominently used when dealing with con-
vex optimization problems where large-size linear operators are involved [3, 4,
9, 16]. The main advantage of many of these algorithms is that none of the
linear operators needs to be inverted which makes this class of algorithms well
suited for large-scale problems encountered in various application fields [7, 18, 19].
Primal-dual techniques are based on several well-known strategies such as the
Forward-Backward iteration [10, [11], the Forward-Backward-Forward iteration
[12,113], the Douglas-Rachford algorithm [14, [15], or the Alternating Direction
Method of Multipliers [16, (17, 18,119,120]. Moreover, primal-dual algorithms can
be combined with a block-coordinate approach, where at each iteration only a
few blocks are activated following a specific selection rule |21, 22]. These algo-
rithms can achieve fast convergence speed with reasonable memory requirement.
Both stochastic |23, [24] and deterministic [25, [26] versions of these have been
used in image processing and machine learning applications. In the latter con-
text, algorithms based on a dual Forward-Backward approach are often refereed
to as dual ascent methods.

The aforementioned algorithms were originally proposed with single-node
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implementations, which may be suboptimal or even unsuitable, when dealing
with massive datasets. Therefore, various asynchronous or distributed exten-
sions have been proposed [16, 27, [18, 28, 129], where each term is handled inde-
pendently by a processing unit and the convergence toward an aggregate solution
to the optimization problem is ensured via a suitable communication strategy
between those processing units. However, the convergence analysis of primal-
dual distributed algorithms is usually based on fixed-point theory tools, that
require specific probabilistic assumptions on the block update rule. Moreover,
the integration of accelerations, such as preconditioning, into those, is difficult.

In this paper, we focus instead on another approach, namely the dual block
preconditioned forward-backward algorithm that we recently proposed in [25],
which can be viewed as a block-coordinate implementation of the dual ascent
method. We propose here a distributed asynchronous version for the latter, by
considering each involved function as locally related to a node of a connected
hypergraph, where communications are allowed between neighboring nodes that
share the same hyperedge. This leads to a novel scheme for computing the prox-
imity operator of any sum of convex functions involving linear operators, that
is well-suited to implementation in architectures involving multiple computing
units. As its centralized counterpart [25], our method takes advantage of vari-
able metric techniques that have been shown to be efficient for accelerating the
convergence speed of proximal approaches [30, [31, [32]. It also benefits from the
classical key advantage of proximal splitting strategies, namely its ability to han-
dle a finite sum of convex functions without inverting any of the involved linear
operators. Furthermore, its convergence is guaranteed under mild assumptions
on the node activation and synchronization rules.

The remainder of this paper is organized as follows: in Section Pl we recall
some fundamental background and present the centralized dual block-coordinate
forward-backward algorithm from [25] for computing proximity operators. In
Section Bl we introduce our novel asynchronous version for this algorithm, its
convergence properties and a dimension reduction strategy for limiting commu-

nication cost within nodes. In Section M we discuss a useful special case of



60

65

our algorithm for an important class of hypergraph structure and we describe
its practical implementation on a distributed architecture. Section [0l shows the
good performance of the proposed algorithm in the context of video denoising.

Finally, some conclusions are drawn in Section [Gl

2. Problem formulation

2.1. Optimization background

Let I'o(R™V) denote the class of proper lower-semicontinuous convex functions
from RY to | — o0, +0] and let B € RV*Y be a symmetric positive definite
matrix. The proximity operator of 1 € T'o(RY) at & € RY relative to the metric
induced by B is denoted by proxg ,(¥) and defined as the unique solution to

the following minimization problem [33, [1]:

1
minimize ¥ (z) + <[z — 7|5, (1)
zeRY 2

where the weighted norm | - |5 is defined as (- | B->1/2 with (-]} the usual
scalar product of RV. When B is set to I, the identity matrix of RY, the
standard proximity operator prox,, is recovered.

Let us now define the conjugate of a function 1) € I'g(R"V) as

¥ RN - |-, +0] sz — sup (v | x)—1(v)). (2)

veERN

Following Moreau’s decomposition theorem [34],
proxp y« = In — B~ 'proxg-1 (B ). (3)

2.2. Minimization problem
This paper addresses the problem of computing the proximity operator of

the following sum of functions at some given point & of RV:

J
(veeRY)  G) = 3] 9;(4;2), (1)
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where, for every j € {1,...,J}, g; : R —] — o0, +00] is a proper lower-
semicontinuous convex possibly nonsmooth function and A; is a linear operator
in RMi %N In addition, it is assumed that m'jjzldom (gjo4j) # 2.
Computing the proximity operator of G amounts to finding the solution to the
following minimization problem:
! 1
Find Z = proxg(Z) = argmin 2 g;i(Ajx) + in — 72 (5)
zeRY ;53

As we will see in Section Bl the latter problem also arises in the computation of
the maximum a posteriori solution for the denoising problem which consists of
recovering T from a noisy observation Z in the presence of an additive zero-mean
white Gaussian noise and of a prior density exp(—G) [1].

Primal-dual algorithms [10, |14, [15, [16] amounts to solve Problem (&) by

making use of its dual formulation given by:

J

~ . 1)~ ,

Find 3y = argmin in — Z A;-ry]
Jj=1

y=(y")1<j<s€RM

2 J )
+ > g (), (6)
j=1

where M = Z}]=1 M; and (g7 )1<j<s are the Fenchel-Legendre conjugate func-
tions of (g;)1<;j<J- Particularly efficient primal-dual approaches take advantage
of the strongly convex term involved in the cost function in (@) |35, 136, 25]. In
this work, we will focus on the Dual Block Preconditioned Forward-Backward

algorithm, recently proposed in [25] (see Algorithm [I]).

Algorithm [l benefits from the acceleration provided by variable metric meth-
ods through the introduction of preconditioning matrices (B;)1<j<.s. Note that
a non-preconditioned version is obtained by setting (V5 € {1,...,J}) B; =
|A;2Irs, where |A;| denotes the spectral norm of A;j. Moreover, when at it-
eration n € N, all the dual variables y/» with j, € {1,...,J} are updated in a
parallel manner followed by an update of the primal variable z,,, one recovers

the Parallel Dual Forward-Backward proposed in [35]. Convergence guaranties
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Algorithm 1: Dual Block Preconditioned Forward-Backward

1 Initialization:
2 BjERMjX]wj WlthB] ZAjA?, V]G{l,,J}

J
3 €€]0,1], (W)1<j<s € R, 2o =7 — 2 Ay,

j=1
4 Main loop:
5 forn=0,1,... do
6 Yn € [€,2 — €]
7 | Jnefl,...,J}
8 Pin = yin + ’y"Bj_“lAjnxn
9 yﬁ{’ll = gvjz" - ’YnszyleOX,ynBj—nlﬁgjn (VTtlB.jn :ngn)

10 yg?r‘rl :ygu Vje {LvJ}\{Jn}
11 T+l = Tn — A;‘rn (yilﬂ-/‘rl =)
12 end

on both generated primal sequence (2, )nen and dual sequences (), en+ With
je{l,..., J} have been established in [25] under a quasi-cyclic rule on the block
selection (i.e., each block must be updated at least once every K iterations, with
K > J). Furthermore, results in terms of practical convergence speed have re-
vealed the effectiveness of the above algorithm compared to existing algorithms

in the literature.

3. Proposed distributed algorithm

Let us ground on the previous algorithm in order to design a novel distributed
(i.e., multi-node) solution to Problem (B). This can be achieved by resorting
to a global consensus technique [37, [16, [27, 13] and rewriting the problem in the

following form:

J
Find Z =  argmin Z g;(Aja7) +

z=(2")1<j<sEA j=1

J .
> le? =23, (7)
j=1

DN =

where (€;)1<;<s are diagonal N x N matrices with positive diagonal elements
and A is the vector subspace of RYY defined so as to introduce suitable cou-

pling constraints on the vectors (z7)1<j<s. The most standard choice for such
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constraint set is

Provided that ;
Z Qj =In, (9)
j=1

RNJ

we notice that the solution to Problem () yields a vector in whose com-

ponents (z7)1< < are all equal, and equals the solution Z to Problem ().

3.1. Local form of consensus

Let us now split the constraint set A into L local linear constraints (A¢)1<e<r -

For every ¢ € {1,..., L}, each constraint set A, handles a nonempty subset V,
of {1,...,J} with cardinality s, such that, for every = [(z!)T,...,(27)7]" €
RNJ

zeN < (Wefl,....,L}) (27)jev, € As. (10)

Examples of vector subspaces (As)1<r<z allowing this condition to be satisfied
will be discussed in Section B3l Each node j € {1,...,J} is associated with
function g;, which is considered local and processes its own private data. More-
over, each node j is allowed to communicate with nodes that belong to the same
set Vy. The sets (Vy)1<e<r can thus be viewed as the hyperedges of a hyper-
graph with J nodes. It is worth noticing that the case of a graph topology is
encompassed by this formulation when setting the cardinality of the set V, to
ke = 2 for every £ € {1,...,L}.

Figure [l shows an illustrative example, where the hypergraph is composed of
J = 7 nodes associated with functions (g;)1<j<7 and L = 4 hyperedges rep-
resented by the sets (Vy)i1<r<a with cardinalities k1 = 3,k = 2,k3 = 2, and
kg = 3, respectively. Node 4 belonging to the set V5 can communicate with node

5. Besides, node 3 belongs to V; and V4, hence it is allowed to communicate



with nodes {1,2,5,7}.

4

Vs
VS

\2

Figure 1: Connected hypergraph of J = 7 nodes and L = 4 hyperedges.

Let us define, for every £ € {1,..., L}, the matrix S, € RV**NJ associated

with constraint set A, which extracts the vector (27),ev, from the concatenated

vector & = [(z1)T,... (z7)T]T e RN/ :

(@)jev, = [T, @O = 8w, (11)
where i(¢,1),...,i(¢,x¢) denote the elements of V, ordered in an increasing
manner. The transpose matrix of (S¢)1<e<r is such that, for every vt =

(%) 1<k, € RV,
DT (@) = 8]0, (12)

where

‘ vbF if § =i, k) with ke {1,..., ke
o (£.) { } )

0 otherwise.
From a signal processing standpoint, the matrix S, can be viewed as a decima-
tion operator while its transpose is the associated interpolator.
The above definitions allow us to propose the following equivalent formula-

tion of Problem ():



J J
A : ; 1 P~
Find & = argmin Z gi(A;x7) + Z A, (Sex) + 3 Z [ —xH%j.
J=1

z=(27)1<;< RN’ j=1 (=1

(14)

The main difference between formulations (7)) and (I4) is the introduction of
1o the term Zle ta, (Sex), where ¢y, denotes the indicator function of the set Ay,
which is equal to 0 for every z € Ay, and 400 elsewhere.
This latter formulation makes the link with Problem (Bl more explicit.
More precisely, in order to solve Problem (I4]) using Algorithm [ it is nec-

essary to set:

115 o J =J+ L,

(We {17...,L}> MJJF( =N,‘€g,

J/
o M' = Zj:l Mj,

. —1/2
(Vie{l,....J})) A;=[0...0 4,0, 0...0],
N(j—1)x N(J—j)x

e D =Diag(Q;'?,...,Q;"%),

120

(Vf € {1,. .. ,L}) gi+e = LA, and A.]_;,_[ = S@D.

Then, Problem (I4)) is recast in the following way:

Find Z = Dz’ such that

J’

. . 1 N
@ = argmin D gi(A@) + sl =&, (15)
x'eR j=1
where & = [Q)/%%T,..., Q2277 e RN/,
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8.2. Derivation of the proposed algorithm

The application of Algorithm [ for the resolution of Problem (] yields:

Bj e RM*M; with B; > A;AT, je{l,...,J'}
€ €]0,1]

(yS)qu e RM

x( = & - Z;]/:l A;—y&

Forn=0,1,...

Yn € [€,2 — €] (16)
jnef{l,.... J"}

Ui =yl +(Bj,) " A,
yg;;l = gg‘{, - ’yn(Bjn)_1prOX'yn(Bjn)71,gjn (IYEIB]H’:J%”)
yf—hLl :y%» ]e{lvvjl}\{jn}

/ ol AT (2Jn o dn
LTpny1 = Ty Ajn, (ynJrl Yy )

The following convergence properties of the above algorithm can be deduced

from |25, Prop. 1-2]:
Theorem 3.1. Assume that

(1) (g5)1<j<s are semi-algebraic functions, and for every j € {1,...,J}, the
restriction of g;‘ on its domain is continuous ;
(i) the sequence (jn)nen follows a quasi-cyclic rule, i.e., there exists K = J’

such that, for everymn e N, {1,...,J'} < {jn, -+, Jntk—1}-
Let (2),)nen, (Y, = (Y))1<j<s)nen be sequences generated by Algorithm (LG,
and (@ )nen = (D)) nen. Then, if (Y,,)nen s bounded, then (x!,)nen converges
to the solution @' to Problem (I5), and (,)nen converges to the solution @ to
Problem (). Moreover, there exists « €]0, +00[ such that

lim n%|z, — 2| €R. (17)
n—+00

10



Let us now show how the above algorithm can be simplified.
First, note that (Vj € {1,...,J}) A;A] = A;Q7'A] and (V¢ € {1,...,L})
|S¢D| = maxjey, |2 /?|. It can also be observed that (V€€ {1,...,L}) (¥y e
10, +o0),
prox,1g, (Y1) =774, (18)

where II,, is the linear projector onto the vector space Ay.

Hence, by setting
(Vee{l,...,L})  Byye=19;"Ing, (19)
with ¥, = minjey, |, and (Vje {1,...,J})

VE={(tk) | e{1,....L}, ke {l,... k} and i((, k) = j}, (20)

11



Algorithm (8] can be re-expressed as

Bj € RMi*M; with By > A;Q7 1Al je{l,....J}
e = min|Q;], £e{l,.... L}

€ €]0,1]

zbeRNRe fe{l,... L}

v eRMi jefl,...,J}

i~ - j 0k .
xf):x—le(AJTyéJrZ(&k)eV;kzo ) jefl,..., Jh.

Forn=0,1,...
Vn € [€,2 — €]
jne{l,...,J+ L}
Ifj,<J

U =yl +m(B,) " Aj

91'11 =g — ’Yn(Bj7L)_1PTOX7,,L(Bjn)—1,gjn (v ' Bj.3ir)

Ui = Yho G TN} (21)
zﬁH =2, tefl,...,L}

xi’ll =l - Qj_nlAjT (yiﬁl —yln)

n

| @l =, el TN}

else
én = Jn -J
Z =2+ e, (@) jev,,

4 ~ ~
Znil = Zfin - HAen (Zan)

zle :zf;, Ce{l,....,LI\{¢,}
yi+1:y%, jel{l,...,J}
Fork=1,... ke,

i(bn,k) _ i(€n,k) -1 Lo,k Lok
[ Tpt1 = Tn - i(emk)(zn+1 —z"")

Tyl = 1‘%‘, J ¢ V€n~

12
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In this algorithm, for increased readibility, we have set, for every n € N,

Ln = [(x}z)—r?"'ﬂ(xr{)—r]—r = Dw;w (22)

Zf; _ yr{-&-é c RNW, zl; _ gr{-&-f c RNHZ. (23)

Furthermore, it can be noticed that, for every n € N such that j, = J+ ¢, > J,

= 0. (24)

Since, for every ¢ € {1,...,L}\{€,}, 25, = 2!, the latter equality can be

extended by induction to
(VneN)(Yle{l,...,L}) Iy,(z%) =0, (25)

using an appropriate initialization of the algorithm (e.g., by choosing (V¢ €

{1,...,L}) z§ = 0). Hence, for every n € N such that j, = J + £, > J,

HAen (5781) = ’Wﬂ%n HA/zn ((xZL)jEVen )7 (26)
which implies that
ZfLT-LH - Zfz" = ’Ynﬁ@n ((Igz)jeven - HAzn ((l”fzbewn))- (27)

The second part of iteration n of ([ZI)) dealing with the case when j, > J can
then be re-expressed as shown in the projection step of Algorithm 2] (lines 20l to
26). In the resulting algorithm, we were able to drop the variables (2%)1</s<r,

for every n € N.

The body of our proposed Algorithm [2lis composed of two main parts:

13



Algorithm 2: Distributed Preconditioned Dual Forward-Backward

1 Initialization:

2 V, = index set of nodes in hyperedge £ € {1,..., L}
8 Bj e RMi*Mi with B; = A;Q0'AT, jefl,...,J}
4 Yy = mlnHQ [, ¢e{1,...,L}
5 € €]0, 1]
6 yg € RMJ',J:% =T — Qj_lAJTyg7 je{l,...,J}.
7 Main loop:
8 forn=0,1,... do
9 Yn € [€,2 — €]
10 | jned{l,...,J+ L}
11 if j, < J then
12 Local optimization:
13 Jar =yl +a(Bj,) A, @l
14 ?/f;ll = %(Bjn)_1PTOX%(BJ-")—1,9J-” (’YﬁlBjn?j%”)
15 yn+1 - y7u .7 € {1 J}\{]n}
16 a:fl”g_l =xin —QF 1AJ" (yf;fH — yin)
17 xl =l jG{l,...,J}\{]n}
18 else
19 Projection:
20 by = jJn—J
21 yﬁLJrl:yzm jE{l,...,J}
22 pfzn = HAzn ((%)jewn)
23 for k=1,...,k, do
24 ‘ :E,Eﬂlk) k) + Ve, QI(ZI 0 (25 n ok —xiﬁm’“))
25 end
26 vy =l j¢Ve,.
27 end
28 end

14
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e First a local optimization part (lines [[3] to 7)) which is reminiscent of
the Dual Block Forward-Backward algorithm where, at each iteration, a
block j, is selected and the associated dual and primal variables y/» (line
[[4) and 2/ (line [[6) are updated, respectively. Note that a fundamental
difference between the proposed algorithm and Algorithm [ lies in the
fact that each block 7, is now associated with a local primal variable zJ»

whereas, in Algorithm [I z,, was a shared variable.

e The second part of Algorithm 2] is a projection step (lines to 26) in
which a set V,, is selected and all the variables (z77) jnev,, are updated

by means of a projection operating over the selected set Vy,, .

In Algorithm B all computation steps only involve local variables, which is
suitable for parallel processing. A high degree of flexibility is allowed in the
quasi-cyclic rule for choosing the indices j, and ¢, at each iteration n. The
distributed Algorithm [2] inherits all the advantages of primal-dual methods, in
particular it requires no inversion of the matrices (A;)1<;<s, which is critical
when these matrices do not have a simple structure and are of very large size.
Note that the proposed approach is quite different from the ones developed in
[27, 28] since it does not assume a random sweeping rule for the block index
selection, and its convergence analysis, secured by Theorem Bl does not rely

on the nonexpansiveness property of the involved operators.

3.3. Consensus choice

Let us now discuss practical settings for the vector spaces (Ay)1<r<r and the
weights and the weight matrices (€2;)1<;<J, that parameterize our consensus for-
mulation ([I4). Such choice is of main importance to devise efficient distributed

schemes with limited communication cost and good practical convergence speed.

15
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3.8.1. Generic case

When the operators (A;)i1<j<s have no specific structure, a natural choice
for the vector spaces (A¢)1<e<r is to adopt a form similar to that of A in (8):
Al
(V¢ e {1,...,L}) A, = Do e RNRe bl = = b h o (28)

,UZ,K,[

Note that &), (I0) and @8) imply that the hypergraph induced by the hy-
peredges (Vy)1<e<r is connected (Figure [Il is an example of such a connected
hypergraph). In this context, the connectivity of the hypergraph is essential in
order to allow the global consensus solution to be reached.

For every £ € {1,..., L}, the projection onto Ay is then simply expressed as

(V0" M) 1<her, € RY™)  TIp, (0 )1<ken,) = [@9)7,..., @)1, (29)

where

7" = mean ((ve’k)Kkgm) (30)

and mean(-) designates the arithmetic mean operation (i.e. mean ((v*)1<p<y,) =
kSt vPF). In addition, Condition (@) is met by simply choosing (Vj €
{1,...,J}) Q; = w;Iy, where (w;)1<j<s €]0,1]7 are such that Z'j]:l w; = L
These simplifications lead to the following modifications of lines in Algo-
rithm

fff = mean ((x%)jewn)
Fork=1,..., Ky,

i(0n,k i(£n .k _ _ i(Cn,k
{ mrgﬂ ) — :mg ) 4 vnﬁgnwi(élmk)(mf{‘ - x,S )).

(31)

3.83.2. Dimension reduction
Under its previous form, Algorithm [l requires each node of the hypergraph
to handle a local copy of several variables. In particular, for the j-th node,

a vector xJ, of dimension N needs to be stored, which may be prohibitive for

16
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highly dimensional problems. Hopefully, very often in signal and image pro-
cessing applications, the operators (A;)1<j<s have a sparse block structure,
which makes it possible to ameliorate this problem. More specifically, it will be

assumed subsequently that

(Vj € {1’_”"]})(ij = ([xj]t)1stsT € RN) Ajl‘j = Z Aj,t[xj]t (32)
teT;
where, for every j € {1,...,J}, [#7]; is a vector corresponding to a block of
data of dimension L, T' is the overall number of blocks (i.e., N = TL), and
T; < {1,...,T} defines the reduced index subset of the components of vector z
acting on the operator A;. In the above equation, (Aj;)«t, are the associated
reduced-size matrices of dimensions M; x L. Similarly to the way 27 has been
block-decomposed, we split the diagonal matrix ; as ; = Diag (;.1,...,Q; 1)
where, for every t € {1,...,T}, Q;, is a diagonal matrix of size L x L. It
then obviously holds that Aij_lAJT = Dter, .Ajthj_’tl AjJ ;. To avoid degenerate
cases, we will subsequently assume that (V5 € {1,...,J}) T; # @ and LJJ T, =
(1,...,T}. !
In our distributed formulation, the specific form of the operators (A;)1<;j<J
suggests to set the vector subspaces (Ay)1<e<r, S0 as to reach the consensus only
for the components ([xj]t)lgjgjiejfj of vectors (irj)lgjg]. This means that the

space A (resp. Ay with £ € {1,...,L}) is defined as

(27 )1cjcs €A < (V7)€ {l,...,J)(VteT; nTy) [a7], = [27];
(33)

(resp. (¢7)jev, € Ae & (V(j,5) e VH(Vte T; nTy)  [27], = [27],).

It can be noticed that, although the hypergraph must still be built so that (IQ)
holds, A is no longer given by (8), since the components ([27]¢)1<;< Jt¢T; are

unconstrained. The main advantage of this choice is that Problem (7)) then

17
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decouples into two optimization problems:

e the minimization of the function

L\J\H

J
Z Z {IJ] ti HQJf
j=1teT;

(34)

J
([27]0)1<j<per, = Y, gj( DAl t)
j=1

tETj

subject to Constraint ([B3]);

e the unconstrained minimization of the function

([ ]1)1<i<rtgr, — Z 2 a7l = 21, .- (35)

J=1t¢T;

Since the second problem is trivial, the variables ([24]:)1<;< J,t¢T,; generated at
each iteration n € N of Algorithm [2] are useless and, consequently, they can
be discarded. By doing so, only the |T| vector ([z2]¢)ter, of dimension L
need to be stored at the j-th node (instead of T vectors of this size) and the
number of computations to be performed during the projection step is also
sharply diminished.

This yields Algorithm B] where, in the synchronization step, averaging oper-
ations corresponding to the projection onto A, have been substituted for lines

in Algorithm 2l The notation
(Vte{l,...,T}) Tf={je{l,....,J}|teT;}, (36)

has been introduced for the computation of the averages. In particular, in line
29 of Algorithm [B] if V, T} is a singleton, which means that the ¢-th block com-
ponent of the vector = appears only once in the expression of g;(A;x) for indices
j in the £,-th hyperedge, then the averaging reduces to setting [z n+1]t = [z];.
It is also worthwhile to note that, when (Vj € {1,...,J}) T; = {1,...,T}, the

1|5 is the cardinality of a set S.
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consensus solution described in Section [3.3.1] is recovered. It must be however
pointed out that, in general, to have the equivalence between the minimiza-
tion of (B4)) subject to Constraint (B3] and the resolution of Problem (&), the

following condition has to be substituted for ([@):

(Vte{l,...,T}) D =1p. (37)
JjeTy

In Algorithm B] this has been simply achieved by setting (Vj € {1,...,J})
(Vt € Tj) Q¢ = wjlr, where (wj)1<j<Jer; are positive real such that (Vt e
{1,....T}) Xjerr wje = 1. In turn, the notation (€2;¢)1<j<st¢t, is no longer

used in this algorithm.
Algorithm [3] can give rise to a variety of distributed implementations. In
the remainder of the paper, we will focus on a simple particular instance of this

algorithm.

4. A useful special case

Let us consider the case when C' < J processing units are available. To
simplify our presentation, we will restrict our attention to a case of practical
interest, that arises for example in the video denoising application described in

Section [B] by making the following assumptions.

Assumption 4.1.
1 e hyperedges (Vy)1<e<c form a partition o yeeeyd |l
i) The h d, \% f 173 f {1 J
(i) For every Le{l,...,C}, let Ty, = ey, Tj-
(a) For every ((,0)e{1,...,C}?, Ty, Ty, =@ if { — | > 1.
(b) For everyle{2,...,C -1}, Ty, , n Ty, nTy,,, = @.

An example of hypergraph satisfying Assumption is displayed in Figure
For every ¢ € {1,...,C}, Ty, is the set of the block indices ¢ of the components

19



Algorithm 3: Distributed Preconditioned Dual Forward-Backward af-
ter Dimension Reduction

1 Initialization:

2 V; = index set of nodes in hyperedge ¢ € {1,..., L}
3 T; = index set of blocks used at node j € {1,...,J}
4 TF = index set of nodes using block t € {1,...,T}
5 {wje |1 <j<JteT;}<]0,1] such that (Vi e {1,...,T}) > wjs=1
jeT¥
6 B e RM>Miwith B; > > wi [ Aj Al jefl,....J}
teT;

Uy = i j te{l,...,L
7T Uy jE‘I}},ltIéTj Wi t, € { 3 ) }
8 €€]0,1]

o y) e RM [al], = [3], —wj Al Wl jef{l,... J}teT;
10 Main loop:

11 forn=20,1,... do

12 Yn € [€,2 — €]
13 jne{l,...,J+ L}
14 if j, < J then
15 Local optimization:
16 P o=ylr +mB;t Y Ayl
€Ty,
17 ynn = U —mB; prox, pov (771 By L )
18 yZL+1 :ygw jE {L?J}\{]n}
19 for t €T, do 4
20 ‘ [xZLn+1]t = [z ]e — wjjll,t‘A;'r,l,t(yiLll —yir)
21 end
22 (2741 ]0)ter; = ([ ]e)eer,, G e {L- o T\ {in}
23 else
24 Projection:
25 by = jJn—J
26 yiﬂ:y%a je{]-vv‘]}
27 for j eV, do
28 for t€T; do
29 [x‘;ﬂ]t = _ '
[#)] + 0,05, (mean (([2]0) ey, ~rx) — [#4]0)
30 end
31 end
32 ([9C£L+1]t)te1rj = ([w%]t)te’]l‘jv J¢Vy,.
33 end
34 end

20
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[27]; where j is any node in V,. According to Assumption these
indices may only be common to hyperedges having preceding or following index
values (i.e. £—1 or £+1). Finally, Assumption means that no overlap
is allowed between block indices shared with the preceding hyperedge and the

following one.

4.1. Form of the algorithm

An interesting instance of Algorithm [Bis then obtained by setting L = C'+1
and by assuming that each hyperedge V, with ¢ € {1,...,C} corresponds to a
given computing unit where the computations are locally synchronized. In addi-
tion, hyperedge V7, is set to {1,...,J} in order to model global synchronization
steps consisting of an averaging over all the available nodes. At each iteration n,
only a subset J,, ¢ of dual variable indices is activated within the ¢-th hyperedge.
Their update is followed by either a possible local synchronization or a global
one.

Algorithm [ summarizes the proposed approach. For simplicity, the index
L has been dropped in variable ¢;,. Note that, if the local synchronization step
is omitted (by setting [z ], = [mi +1/2]t in line B9), the algorithm still makes
sense since it can be easily shown that it actually corresponds to a rewriting
of Algorithm [ in the case when L = 1 and V; = {1,...,J}. Unlikely, the
global synchronization is mandatory although it has not to be performed at
each iteration but only in a quasi-cyclic manner.

It should be emphasized that even in the case when all the dual variables
are updated iteratively (i.e., (V¢e{1,...,L}) (Vn e N) J, = V), Algorithm [
exhibits a different structure from the one of the parallel dual forward-backward

algorithm in [35].

4.2. Distributed implementation

We now look more precisely at the implementation of Algorithm [ on a dis-

tributed architecture with C € N* computing units, each computing unit being

21



Algorithm 4: Special case of distributed Preconditioned Dual
Forward-Backward

1 Initialization:
2 V, = index set of nodes associated with computing unit £ € {1,...,C}

T; = index set of blocks used at node j € {1,...,J}

3
4 T¥ = index set of nodes using block t € {1,...,T}
5 {w;|1<j<JteT;}c]0,1] such that (Vte {1,...,T}) Z wip =1
jeT¥
6 B e RM>Miwith B; > > wiJAj Al jefl,....J}
teT;
7 9= min  wjy, Y= min_ wj, CLe{l,...,C}
1<j<Jist<T JEVe,teT;
8 €€]0,1]
oyl e RMi [)], = (7], — wjftlAlItyg, jef{l,...,J},teT,.

10 Main loop:
11 forn=20,1,... do

12 for/=1,...,C do
13 JnecVy
14 for je J, do
15 Local optimization:
16 T = vh By Y Ajlal]e
teT;

17 yiLJrl = ygz - ’YnBj_lprOX%sz—l’gj (77:1ng;1)
18 for t € T; do
19 ‘ [$i+1/2]t = [¢]] - w;gAIt(yi+1 —yl)
20 end
21 end
22 for j e V)\J,,, do
2s -
24 ([xiy,+1/2]t)tETj = ([»’U%]t)teir,-
25 end
26 if local synchronization is requested then
27 for j eV, do
28 for t € T; do
29 [27 1] = [wiH/Q]t +

VHﬁfw;tl (mean (([xflJrl/Z]t)j'EVzﬁT;k) - [xilﬂ/z]t)
30 end
31 end
32 end
33 end
34 if global synchronization is requested then
35 fort=1,...,7 do [Z,]; = mean (([fol/Q]t)jeTf) ;
36 forj=1,...,J do
37 for t € T; do
38 ‘ [x{m+1]t = [xi+1/2]t +22’n79wj_,tl([fn]t - [$£L+1/2]t)
39 end
40 end
41 end

42 end




Vs,
1 4 5 Vs

Vi V3

A

Figure 2: Hypergraph of J = 7 nodes, C = 4 computing units and L = 5 hyperedges.

20 indexed by an integer c € {1,...,C}. Figure[d (top) shows an illustrative exam-

ple of C' = 4 computing units based on the hypergraph defined in Figure 2

c=3 c=4
c=1 c=2 c=3 c=4

Figure 3: (top) Partitioning of J = 7 nodes and L = 5 hyperedges on C' = 4 computing
units. (bottom) Partitioning of J = 7 nodes and L = 1 hyperedge on C' = 4 computing
systems.

As we have seen, each computing unit ¢ € {1,...,C} handles k. terms cor-

25 responding to the nodes in V. of the hypergraph, and processes the functions

(95)jev, associated with these nodes. Furthermore, a global synchronization

step needs to be performed. This task could be assigned to one of the com-

puting unit, say the first one, as modelled in Figure B (bottom) by adding a

fictitious term corresponding to hyperedge Vo 41. This would however lead to a

0 centralized scheme where the computing load between the different units would
end-up unbalanced.

A better strategy would consist of distributing the operations performed on
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line B3] of Algorithm [ over the different computing units. For this purpose, let

us first note that at iteration n, the c-th computing unit only needs the block

components ([T, ]¢)ter,, . In addition, because of Assumption ELI}(ii)(a), some

of these variables may be shared with the computing units ¢ — 1 (if ¢ # 1) and

¢+ 1 (if ¢ # C), where part of the variables [z ¢+ necessary to compute the

J
n+1/2]
averages are locally available. As a consequence of Assumption AIH(ii)(b)} no

other variables than those available in either Ty, , n Ty, or Ty, n Ty are

c+1

necessary . For example, if ¢ # 1 and ¢t € Ty,_, n Ty,, the averaging operation

reads
_ 1 j
[n]e = ITF| Z [xn+1/2]t
tl et
1
= @([Sn,c—l]t + [Sn,c]t)a (38)
t
where

[sn,C—l]t = Z [xZL.:,.l/g]ta (39)

jeVe1nTF

and [sp, ]+ is similarly defined. Since the variables ([zz‘t+1/2]t)j€VC7lmT:k are not
available at unit ¢, the latter summation must be performed by unit ¢ — 1 and
the result must be transmitted to unit ¢. This one will then be able to compute
[Z.]:, so as to update variables ([, +1)t) jev.~r#- Besides, [Z,]; will be sent to
unit ¢ — 1, which in turn will update its variables ([z7, +1)t)jev,_ A A similar
synchronization process can be followed for blocks with indices t € Ty, n Ty, ,

with ¢ # C. Finally, for the block indices ¢ in Ty, which do not belong to Ty, ,

or TV

c+17

[Z,,]: = mean (([:EiH/Q]t)jeVmT:k) = [T%Z:]t’ (40)

as we have then |V, n TF| = |TF|. This means that local averaging is only
required for these blocks. In Figure [, the synchronization workflow is summa-
rized, while, in Algorithm [l a more detailed account of the whole process is

given.
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Transmit ([sn,c—1 ]‘)tGTvc, Ty, Transmit ([sn,c]¢ )te’[r,",u ATy,

< Veo1 S < Ve M o Ve M
[zi(“’l'l)]t [zi(c—lwc,l)]t [mi(“'m]( [zi(c,xc)]t [1i<c+l'l)]t [zi(c+1.nc+1)]t
Transmit ([En]f)te'yrv‘371 ATy, Transmit ([fn]t,)te'rvc ATy,
1 I 1 1 I 1 1 I 1
0 Ve 1 Ve 3 0 Ve
[wi(c—l,l)]t [zi(n—l,nr,l)h [xi(l,c)]! [(L‘i(C’KC)]t [zi(c+l,l)]t [zi(c+l.r‘;r+1)]/’

Figure 4: Global synchronisation process: Transmission of local summations to the next
computing unit (top) ; Transmission of averaged blocks to the previous computing unit
(bottom).

Remark 4.2.

(i)

It must be emphasized that, in order to facilitate the derivation of our
algorithm, a common iteration variable n has been used for each comput-
ing unit. However, units have the ability to process data at their own
speed. In particular, each unit may perform a different number of local
synchronizations before a global one is made. In this sense, our algo-
rithm is asynchronous. To understand why such behavior is allowed, it
suffices to note that if no global synchronization arises and J, . = @, then
(mflﬂ)jevc = (#)jev,. This means that such a null iteration can be used
to model a time when the c-th computing unit is idle while others are locally
updating their variables.

When the c-th computing unit operates a global synchronization, it will sus-
pend its activities until it receives data from units ¢ — 1 (line[33) and/or
c+1 (linel39), which happens only when these units also are globally syn-
chronizing their variables. To ensure low latencies, global synchronization
steps however have to be scheduled (quasi-)periodically for each comput-
ing unit based on their processing speeds (faster ones should schedule less
frequent synchronizations than slower ones). Alternatively, when one unit

decides to perform a global synchronization, it can broadcast a message to
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the others to warn them to do the same.

(iii) Other forms of local consensus could be devised. For example, another
choice would consist in setting L = 2C — 1 and (Ve € {1,...,C — 1})
Veoie =Ve.uVeiy. Then, each node ce {1,...,C—1} could be responsible
for driving the synchronization with its neighbor of index ¢ + 1. However,
it appears more difficult, in this context, to devise an efficient procedure

to avoid deadlocks, contrary to our previous example.

5. Application to video denoising

5.1. Observation model

In this section, we illustrate the performance of the proposed distributed al-
gorithm for denoising video sequences. The original sequence T = ([T]¢)1<t<T €
RTT is naturally decomposed in T blocks of data, each corresponding to one
image composed of L pixels. The degradation model relating the observed noisy
sequence y = ([y]t)1<t<r € RTL to the sought sequence Z with TL = N is given
by

(Vte{l,....,T}H) [yl: = [=]: + [w]s, (41)

where ([w];)i<i<r € RTE represents an additive zero-mean white Gaussian
noise. An estimate of the unknown video can be inferred by solving Problem
@) where J =T and & = y. The last quadratic term in (@) is a least squares
data fidelity term ensuring compliance with model (I), and functions (g;), <j<T
stand for regularization functions that incorporate both temporal and spatial
prior knowledge on each video frame. The temporal regularization is fulfilled
by taking into account motion compensation between the previous and next
neighbouring frames. More precisely, at each time ¢ € {2,...,T — 1}, the lin-

ear operator A; extracts the current frame z; and its neighbors (z;_1,z:41) as
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Algorithm 5: Special case of distributed PDFB for the c-th computing
unit

1 Setting of global constants:

2 T, = index set of blocks used at node j € {1,...,J}
3 T} = index set of nodes using block t € {1,...,7T}
4 {wje |1 <j < JteT;}]0,1] such that (Vte {1,...,T}) > wju=1
jeT¥
5 0= 1<j<r9,i1n<t<T wjt, € €]0,1], (Yn)nen sequence of [e,2 — €] with € €]0,1]
6 Initialization:
7 V. = index set of nodes associated with computing unit ¢
8 Ty, = set of block indices used in V. (with the convention Ty, = Ty,,, = @)
9o B; e R™Miwith B; = Y wi jAj Ay, jeVe
teT;
10 9. = min_ w;¢, £e{l,...,C}

JEVc, teT;
11y e R [2f]: = [3]e —wj  Alyd, jeVeteT;.
12 Main loop:
13 for n=0,1,... do

14 Jn,eccV,
15 for jeJ,, do
~J J -1 J
16 Yn = Yn + ’Y’ﬂBj 2 Ajyt[xn]t
teT;
J — 3 —~ B! -1 i
17 Ynir = o = mByprox, o (v ' Bjh)
18 for te T; do [z} )]t = [22]e — wj_,tlAjT,t(yZLH —yh);
19 end
20 for j e Vc\Jy,c do
21 yjn+1 =y
22 ([x']n+1/2]t)t€1rj = ([=7,]¢)ter;
23 end
24 for t € Ty, do [sn,c|t = Z [fo_l/Q]t ;
jeVenTF
25 if synchronization is local then
26 for j €V, do
27 for t € T; do
28 [0 Je = [27 ol + 19wfl(Mf[xj ])
n+1lt n+1/21t T InVeWjy Ve n TF| n+1/21t
29 end
30 end
31 else
32 Global synchronization:
33 if ¢ # C then send ([sn,c]t)tery, ATy,,, tounit c+1;
34 if ¢ # 1 then
35 wait for receiving ([snc-1]t)ter, _ 1y, from unit ¢ —1
1
36 for te Ty, , n Ty, do [Z,]: = W([snyﬁl]t + [sn,c]t) ;
t
37 send ([Zn]¢)tery _ Ty, to unit ¢ — 1
38 end
39 if ¢ # C then wait for receiving ([fn]t)tewc ATy, from unit ¢ + 1
40 for t € Ty \(Tv,_, v Tv_,,) dé7 [Zn]e = % ;
t
41 for je V. do
42 forteT; do ,
43 ‘ [2741]e = [miz+1/2]t + VHﬁW;;([fn]t - [xi+1/2]t)
44 end
45 end
46 end

47 end



shown by:

[[z]y - (2l [@lilalisn - [2)r) = (2] [2]ilzlian] (42)

The linear operators (A;)1<t<7 thus have the block sparse structure ex-

pressed by ([(B2) with

(Vte{l,...,T}) Ty={max{t—1,1},¢t, min{t + 1,7}} (43)
and

ai=[r o] a=[o 1] (a4)

.
(Vtel{2,...,T—1}) Am_l:[]L 0 o] (45)
A=o 1 O]T (46)

T
A =[0 0 1] (47)
AT,T—lZ[IL O]T, AT,T:[O IL]T- (48)

For every t € {1,...T}, each regularization function g;: RM¢ — [0, +oo[ is

convex, proper, lower semi-continuous and such that

3L ift#landt#T

2L  otherwise,

and, for every z = ([x]:)1<t<T,

St

ge ([z]e)ver,) = ntev(lz]) + topmamandt ([2]) + he ([2]e)rver,),  (50)

where “tgv” denotes the Total Generalized Variation regularization from [3§],
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defined as
(VzeRL)  tgv(z) = drrﬁglL agx2 (Dz —d) + a1 x3 (Gd) , (51)
S

with (g, 1) €]0, +o0[?, D € R22*L s the concatenation of the horizontal and

vertical spatial gradient operators:

\Y
D=| " |, with VyeRL*E, vyeRLXL (52)
Vv

and G € R37%2L ig the Jacobian operator given by

-
VuVy 0

0 Vu Vv

while, for every ¢ € N*, x,: R — R is given by

L
(Vet,ee v 2) € RE) xg(eneszg) = D Af(ia)? 4o (2gn)®. (54)
k=1

The indicator function ¢ 1z in (B0) imposes a range [Tmin; Tmax] on the

ZTmin;Tmax

pixel values in each frame. In addition, h; is a function introducing a temporal
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regularization of the form

Bi—1e x1([z] = My—15¢ [2]e-1)

+ Bes1e x1([z]e — M1 [2]i41)

ift#1landt#T
ht t')t'eTy) = "
((ele)rer) =5 B2.1 x1([z]r — Mooy [7]2) )
ift=1

Br-1,r x1([x]r = Mr_17 [2]7-1)

ift =T,

where M;_1_,; € REXE (vesp. Myyq1; € REXE) is a motion compensation
operator between the reference frame x;_; (resp. z;41) and the current frame
xy, defined as described in [25, Section 5.2.2]. Finally, 0, (Bi—1t)2<t<r and
(Bi+1,1)1<t<T—1 are positive regularization parameters controlling the strength
of the contribution of their associated terms. The values of these parameters
were set optimized by grid-search so as to achieve the best denoising perfor-

mance.

5.2. Proposed method

We employ our proposed asynchronous distributed framework to address the
previous denoising problem. More precisely, we use the practical implementa-
tion detailed in Algorithm Bl Functions (g¢)1<t<7 and their associated primal
variables ([z']/)per, for t € {1,...,T}, are spread over C computing units, each
of them handling the same number of nodes, i.e., (Vce {1,...,C}) k. = x (with

T = k(). The associated hyperedges are then given by

(Vee{1,...,C}) Ve={(c=1)rk+1,...,ck}. (56)
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Note that, since

(Vee{l,....C})  Tv, ={max{(c— 1)k, 1},...,min{fex + 1,T}}  (57)
, we have

(Vee{l,...,C —1}) Ty, nTy,,, = {cK,ck + 1}, (58)

so that Assumption 1] holds provided that x > 1.

In the local optimization first performed at the n-th iteration of Algorithm
Bl we used, for every j € {1,...,T}, B; = ZteTj w;tlle and ~y, = 1.7. Then,
the local or global synchronization steps are performed as described in Section
In our case, for every t € {1,...,T}, Tf =T,;. Ilf t € Ty, withce {1,...,C}
corresponds neither to the smallest nor the largest index in V., then 3 values
need to be summed to compute (s, ;. If ¢ is the smallest or the largest index
in V., then the summation involves only two terms. Finally, if ¢ > 1 and
t = (¢c— 1)k (resp. ¢ < C and t = ck + 1)), then [s,.c]; = [acf:fl/z]t (resp.
[Snclt = [:cf;ll /Q]t). In global synchronization steps, by virtue of (B8]), only
variables [sp.c|ex and [Sn.c|ex+1 need to be transmitted from computing unit
¢ # C to computing unit ¢+ 1, which in return sends back the updated averages
[Zn]ex and [Tp]exs+1. This workflow is illustrated in Figures Bl and [@ by an

example showing two computing units handling x = 3 nodes.

Transmit ([sn,2]s)

t'e{6,7}

oo ]| IR

T4 Ts5 T6 X7 T8 T9

5 6 r7 s T9 T10

[iﬂi v [zi]t’ [CU?L]N [1Z]t’ [fﬂi]z’ [QUZL’
c=2 c=3

Figure 5: Transmission of local sums ([sn,2]¢) (6, 7, shared between Tv, = {3,4,5,6,7}
and Ty, = {6,7,8,9,10} from computing unit ¢ = 2 to computing unit ¢ = 3.
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Transmit ([Zn]e)ye 7

T4 Ts5 Te T7 xs Ty

Ts5 Z6 xT7 xg x9 Z10

[znle [#3]e  [=0]v [ PR ) R Py
c=2 c=3

Figure 6: Transmission of averaged images ([Zn]e),c(67) from computing unit ¢ = 3
to computing unit ¢ = 2.

In our simulations, the global synchronizations are activated every 4 itera-
tions. This synchronization frequency was chosen in order to achieve a good
trade-off between the communication overhead and a satisfactory convergence

1

speed. The weights (wj,¢); <4< jes are set to ik

5.8. Simulation results

The performance of the proposed denoising method are evaluated on the
standard test video sequences Foreman, Claire and Irene with 7" = 72 frames.
These frames are of size 348 x 284 for Foreman sequence, 300 x 278 and 352 x
288 of Claire and Irene respectively, hence N = 7115904 (resp. N = 6004800
and N = 7299072). The degraded videos are obtained by adding zero-mean
white Gaussian noise to the original video sequences, resulting in an initial SNR
(signal-to-noise ratio) of 24.41 dB, 24.77 dB and 25.51 dB for the three sequences
respectively. We apply our algorithm only on the luminance channel, while the
chrominance is restored with a median filter. Our method is implemented with
Julia-0.4.6 and a Message Passing Interface (MPI) wrapper for managing com-
munication between cores [39, 40]. We use a multi-core architecture using 2
Intel(R) Xeon(R) E5-2670 v3 CPU @ 2.3 GHz processors, each with 12 cores,
hence C = 24. The experiments are run using 60 iterations of Algorithm [l
which is sufficient to reach convergence. We evaluate the proposed distributed

approach in terms of restoration quality and acceleration provided by our algo-
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rithm with respect to the number of computing units. The images composing the
video sequences are partitioned in groups of equal size k processed by the com-
puting units, thereby we consider the cases when C € {1,2,3,4,6,8,9,12, 18,24}

cores are employed, as shown in Table [l

Table 1: Investigated simulation scenarios and the number of images per core in each
case.

Number of cores C 1 2 3 4 6 8 9 12 |18 | 24

Number of images per core s | 72 | 36 |24 |18 |12 |9 8 6 4 3

Our method achieves satisfactory restoration results with an improvement
of 7.6 dB for Foreman, 9 dB for Claire and 5.46 dB for Irene, with respect to
the degraded video. Moreover, according to our observations, the convergence
to the sought solution was reached in each experiment regardless the number of
used cores. Otherwise stated, the quality of the solution is identical, whatever
the number of cores activated. Figures [l and [§] show some frames illustrative of
the degraded and restored sequences. These illustrate the good visual quality

of the performed denoising.

L ¥

Figure 7: Foreman sequence: Input degraded images (top) initial SNR = 24.41 dB,
associated restored images (bottom) final SNR = 32.04 dB.

Figure [@ shows the speedup in execution time with respect to the number of
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Figure 8: Irene sequence: Input degraded images (top) initial SNR = 25.51 dB, asso-
ciated restored images (bottom) final SNR = 30.97 dB.

cores, which is estimated as follows:

Execution time with 1 core
Speedup for C' cores = . 59
P P Execution time with C cores (59)

The execution time with one core is equal to 107003 s, 84247 s and 115711
s for Foreman, Claire and Irene sequences respectively. Those large values
illustrate the difficulty in solving this high dimensional non-smooth optimization

problem.
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1234 6 8 9 12 18 24 1234 6 89 12 18 24

Number of cores Number of cores
(a) Foreman sequence. (b) Claire sequence.
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>151
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5-

1234 6 809 12 18 24
Number of cores

(c) Irene sequence.

Figure 9: Speedup with respect to the number of used cores: proposed method (solid,
blue, diamond), linear speedup (dashed, green).

Figure [ shows that the speedup increases superlinearly as we increase the
number of cores from 1 to 9. Indeed, when a small number of cores are used,
the dataset cannot be stored in the cache memory, due to its large size. Hence,
a significant amount of time is spent in RAM access [41]. By increasing the
number of cores, the data seem to fit better in the cache size, which reduces the
RAM access time and consequently the global execution time despite the com-
munication overhead. However, as the number of core exceeds 9, a saturation
effect is observed (in agreement with Amdahl’s law [42]) .

In order to investigate this behavior, we display in Figure [I0] the execution
times per core on the Foreman sequence, for the three main steps of Algorithm
Namely, the local optimization, local synchronization, and global synchro-
nization when either C' = 8 or C' = 24 cores are used. As expected we observe a
significant reduction of the execution time for the local optimization step when
going from 8 to 24 cores, but the gain factor is less than 3, although the compu-

tations are then performed independently on each core. The average execution
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time for the local synchronization step is also reduced as the number of images
handled by each core decreases. One can finally observe that the global commu-
nication overhead increases as a larger number of cores is used. This behavior
appears to be consistent, however it can be noticed on Figure [[0(b) that the
second set of cores (13 to 24) is much slower than the first one, which is detri-
mental to the global synchronization process. This seems to point out hardware

limitations of the Intel-based two-processor computer architecture that we use.
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Figure 10: Execution time of Algorithm [0 steps: local optimization (top), local syn-
chronization (middle), global synchronization (bottom).

36



370

375

380

385

390

6. Conclusion

This paper has introduced a fully parallelized version of the preconditioned
dual block-coordinate forward-backward algorithm for computing proximity op-
erators. Our algorithm benefits from all the advantages of primal-dual methods
and the acceleration provided by a block-coordinate strategy combined with a
variable metric approach. We mainly focused on an instance of the proposed
approach for which we proposed a practical asynchronous implementation, as-
suming that a given number of computing units is available. Although our
distributed algorithm can be applied to a wide range of problems, we investi-
gated its application to video sequence denoising. The experimental results we
obtained are quite promising and demonstrate the ability of our algorithm to
take advantage of multiple cores. An acceleration of about 15 was reached with
a standard two-processor computer configuration. In future works, we intend
to experiment different distributed implementations based on other partition-
ing strategies and hypergraph topologies and to study the application of our

distributed framework to other proximal optimization algorithms.
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