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Abstract

In this paper, we present a new distributed algorithm for computing the proximity operator of a sum of non-

necessarily differentiable convex functions composed with arbitrary linear operators. Each involved function is

associated with a node of a hypergraph, with the ability to communicate with neighboring nodes sharing the same

hyperedge. Our algorithm relies on a primal-dual splitting strategy with established convergence guaranties. We

show how it can be efficiently implemented to take full advantage of a multi-core architecture. The good numerical

performance of the proposed approach is illustrated with a problem of video sequence denoising, where a significant

speedup is achieved.

Index Terms

Convex optimization, proximal methods, video restoration, parallel programming.

I. INTRODUCTION

Numerous problems in data science such as video restoration require the processing of huge datasets. Optimal

processing are often obtained by solving nonsmooth optimization problems, for which proximity operators appear

as fundamental tools. In this context, it is necessary to propose parallel/distributed methods to compute proximity

operators involved in the solution of high-dimensional problems, especially when the objective function is the sum

of several convex non-necessarily smooth functions [1], [2]. In the general case, a closed form expression of the

proximity operator of such sum does not exist, and developing iterative strategies becomes necessary.

Primal-dual splitting methods are prominently used when dealing with convex optimization problems where

large-size linear operators are involved [3]–[6]. The main advantage of many of these algorithms is that none of

the linear operators needs to be inverted which makes this class of algorithms well suited for large-scale problems
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encountered in various application fields [7]–[9]. Primal-dual techniques are based on several well-known strategies

such as the Forward-Backward iteration [10], [11], the Forward-Backward-Forward iteration [12], [13], the Douglas-

Rachford algorithm [14], [15], or the Alternating Direction Method of Multipliers [16]–[20]. Moreover, primal-dual

algorithms have been combined with a block-coordinate approach recently, where at each iteration only a few blocks

are activated following a specific selection rule [21], [22]. These algorithms can achieve fast convergence speed

with reasonable memory requirement. Both stochastic [23], [24] and deterministic [25], [26] versions of these have

been used in image processing and machine learning applications. In the latter context, algorithms based on a dual

Forward-Backward approach are often refereed to as dual ascent methods.

The aforementioned algorithms were originally proposed with single-node implementations, which may be

suboptimal or even unsuitable, when dealing with massive datasets. Therefore, various asynchronous or distributed

extensions have been proposed [16], [18], [27], [28], where each term is handled independently by a processing

unit and the convergence toward an aggregate solution to the optimization problem is ensured via a suitable

communication strategy between those processing units.

In this paper, we propose a new distributed algorithm for computing the proximity operator of a sum of convex

functions involving linear operators. The proposed algorithm extends the dual block preconditioned forward-

backward algorithm that was recently proposed in [25] to a distributed asynchronous scenario. Each involved

function is now considered as locally related to a node of a connected hypergraph, where communications are

allowed between neighboring nodes that share the same hyperedge. Our method takes advantage of variable metric

techniques that have been shown to be efficient for accelerating the convergence speed of proximal approaches [29]–

[31]. Our proposal also benefits from the classical key advantages of primal-dual splitting strategies, in particular

their ability to handle a finite sum of convex functions without inverting none of the involved linear operators, and

its convergence is guaranteed.

The remainder of this paper is organized as follows: in Section II we recall some fundamental background

and present a centralized dual block-coordinate forward-backward algorithm for computing proximity operators. In

Section III, we introduce an asynchronous version of this algorithm. In Section IV, we discuss a useful special case

and we describe its practical implementation on a distributed architecture. Section V shows the good performance of

the proposed algorithm in the context of video denoising problems. Finally, some conclusions are drawn in Section

VI.

II. PROBLEM FORMULATION

A. Optimization background

Let Γ0pRN q denote the class of proper lower-semicontinuous convex functions from RN to s ´8,`8s and let

B P RNˆN be a symmetric positive definite matrix. The proximity operator of ψ P Γ0pRN q at rx P RN relative to

the metric induced by B is denoted by proxB,ψprxq and defined as the unique solution to the following minimization

problem [1], [32]:

minimize
xPRN

ψpxq `
1

2
}x´ rx}2B , (1)
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where the weighted norm } ¨ }B is defined as x ¨ |B ¨ y1{2 with x ¨ | ¨ y the usual scalar product of RN . When B is

set to the identity matrix, the standard proximity operator proxψ is recovered.

Let us now define the conjugate of a function ψ P Γ0pRN q as

ψ˚ : RN Ñ s´8,`8s : x ÞÑ sup
vPRN

pxv | xy ´ ψpvqq . (2)

Following Moreau’s decomposition theorem [33],

proxB,ψ˚ “ Id ´B´1proxB´1,ψpB ¨q. (3)

B. Minimization problem

This paper addresses the problem of computing the proximity operator of the following sum of functions at some

given point rx of RN :
`

@x P RN
˘

Gpxq “
J
ÿ

j“1

gjpAjxq, (4)

where, for every j P t1, . . . , Ju, gj : RMj Ñs ´ 8,`8s is a proper lower-semicontinuous convex possibly

nonsmooth function and Aj is a linear operator in RMjˆN . In addition, it is assumed that XJj“1dom pgj ˝Ajq ‰ ∅.

Computing the proximity operator of G amounts to finding the solution to the following minimization problem:

Find px “ proxGprxq “ argmin
xPRN

J
ÿ

j“1

gjpAjxq `
1

2
}x´ rx}2. (5)

A number of primal-dual algorithms [10], [14]–[16] can be applied to solve Problem (5) by making use of its dual

formulation given by:

Find py “ argmin
y“pyjq1ďjďJPRM

1

2

›

›

›
rx´

J
ÿ

j“1

AJj y
j
›

›

›

2

`

J
ÿ

j“1

g˚j py
jq, (6)

where pg˚j q1ďjďJ are the Fenchel-Legendre conjugate functions of pgjq1ďjďJ .

Among existing efficient primal-dual approaches [34], we can mention the Dual Block Preconditioned Forward-

Backward algorithm recently proposed in [25], presented in Algorithm 1.

Algorithm 1 benefits from the acceleration provided by variable metric methods through the introduction of

preconditioning matrices pBjq1ďjďJ . Note that a non-preconditioned version is obtained by setting p@j P t1, . . . , Juq

Bj “ }Aj}
2IMj

where }Aj} denotes the spectral norm of Aj . Moreover, when at iteration n P N, all the dual

variables yjnn with jn P t1, . . . , Ju are updated in a parallel manner followed by an update of the primal variable

xn, one recovers the Parallel Dual Forward-Backward proposed in [34]. Convergence guaranties on both generated

primal sequence pxnqnPN and dual sequences pyjnqnPN˚ with j P t1, . . . , Ju have been established in [25] under

a quasi-cyclic rule on the block selection (i.e., each block must be updated at least once every K iterations, with

K ě J).
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Algorithm 1: Dual Block Preconditioned Forward-Backward

1 Initialization:
2 Bj P RMjˆMj with Bj ľ AjA

J
j , @j P t1, . . . , Ju

3 ε Ps0, 1s, pyj0q1ďjďJ P R
M , x0 “ rx´

J
ÿ

j“1

AJj y
j
0.

4 Main loop:
5 for n “ 0, 1, . . . do
6 γn P rε, 2´ εs
7 jn P t1, . . . , Ju
8 ryjnn “ yjnn ` γnB

´1
jn
Ajnxn

9 yjnn`1 “ ryjnn ´ γnB
´1
jn

proxγnB´1
jn
,gjn

`

γ´1
n Bjnry

jn
n

˘

10 yjn`1 “ yjn, @j P t1, . . . , Juztjnu

11 xn`1 “ xn ´A
J
jn
pyjnn`1 ´ y

jn
n q.

12 end

III. DISTRIBUTED ALGORITHM

Let us ground on the previous algorithm in order to design a distributed (i.e., multi-node) solution to Problem (5).

This can be achieved by resorting to a global consensus technique [3], [16], [27], [35] and rewriting the problem

in the following form:

Find px “ argmin
x“pxj

q1ďjďJPΛ

J
ÿ

j“1

gjpAjx
jq `

1

2

J
ÿ

j“1

}xj ´ rx}2Ωj
, (7)

where pΩjq1ďjďJ are diagonal N ˆ N matrices with positive diagonal elements and Λ is the vector subspace of

RNJ defined so as to introduce suitable coupling constraints on the vectors pxjq1ďjďJ . The most standard choice

for such constraint set is

Λ “

$

’

’

’

&

’

’

’

%

»

—

—

—

–

x1

...

xJ

fi

ffi

ffi

ffi

fl

P RNJ | x1 “ . . . “ xJ

,

/

/

/

.

/

/

/

-

. (8)

Provided that
J
ÿ

j“1

Ωj “ IN , (9)

we notice that the solution to Problem (7) yields a vector in RNJ whose components pxjq1ďjďJ are all equal, and

equals the solution px to Problem (5).

A. Local form of consensus

Let us now split the constraint set Λ into L local linear constraints Λ`. For every ` P t1, . . . , Lu, each constraint set

Λ` handles a nonempty subset V` of t1, . . . , Ju with cardinality κ` such that, for every x “ rpx1qJ, . . . , pxJqJsJ P

RNJ ,

x P Λ ô p@` P t1, . . . , Luq pxjqjPV`
P Λ`. (10)
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Examples of vector subspaces pΛ`q1ď`ďL allowing this condition to be satisfied will be discussed in Section III-C.

Each node j P t1, . . . , Ju is associated with function gj , which is considered local and processes its own private

data. Moreover, each node j is allowed to communicate with nodes that belong to the same set V`. The sets

pV`q1ď`ďL can thus be viewed as the hyperedges of a hypergraph with J nodes. It is worth noticing that the case

of a graph topology is encompassed by this formulation when setting the cardinality of the set V` to κ` “ 2 for

every ` P t1, . . . , Lu.

Figure 1 shows an illustrative example, where the hypergraph is composed of J “ 7 nodes associated with functions

pgjq1ďjď7 and L “ 4 hyperedges represented by the sets pV`q1ď`ď4 with cardinalities κ1 “ 3, κ2 “ 2, κ3 “ 2, and

κ4 “ 3, respectively. Node 4 belonging to the set V2 can communicate with node 5. Besides, node 3 belongs to

V1 and V4, hence it is allowed to communicate with nodes t1, 2, 5, 7u.

1

2

4

3

5

6
7

V1

V2V3

V4

Fig. 1: Connected hypergraph of J “ 7 nodes and L “ 4 hyperedges.

Let us define, for every ` P t1, . . . , Lu, the matrix S` P RNκ`ˆNJ associated with constraint set Λ`, which

extracts the vector pxjqjPV`
from the concatenated vector x “ rpx1qJ, . . . , pxJqJsJ P RNJ :

pxjqjPV`
“ rpxip`,1qqJ, . . . , pxip`,κ`qqJsJ “ S` x, (11)

where ip`, 1q, . . . , ip`, κ`q denote the elements of V` ordered in an increasing manner. The transpose matrix of

pS`q1ď`ďL is such that, for every v` “ pv`,kq1ďkďκ`
P RNκ` ,

x “ rpx1qJ, . . . , pxJqJs “ SJ` v
`, (12)

where

xj “

$

’

&

’

%

v`,k if j “ ip`, kq with k P t1, . . . , κ`u

0 otherwise.
(13)

From a signal processing standpoint, the matrix S` can be viewed as a decimation operator while its transpose is

the associated interpolator.

The above definitions allow us to propose the following equivalent formulation of Problem (7):

Find px “ argmin
x“pxj

q1ďjďJPRNJ

J
ÿ

j“1

gjpAjx
jq `

L
ÿ

`“1

ιΛ`
pS` xq `

1

2

J
ÿ

j“1

}xj ´ rx}2Ωj
. (14)
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The main difference between formulations (7) and (14) is the introduction of the term
řL
`“1 ιΛ`

pS` xq, where ιΛ`

denotes the indicator function of the set Λ`, which is equal to 0 for every z P Λ`, and `8 elsewhere.

This latter formulation makes the link with Problem (5) more explicit.

More precisely, in order to solve Problem (14) using Algorithm 1, it is necessary to set:

‚ J 1 “ J ` L,

‚ p@` P t1, . . . , Luq MJ`` “ Nκ`,

‚ M “
řJ 1

j“1Mj ,

‚ p@j P t1, . . . , Juq Aj “ r 0 . . . 0
loomoon

Npj´1qˆ

AjΩ
´1{2
j 0 . . . 0

loomoon

NpJ´jqˆ

s,

‚ D “ Diag pΩ´1{2
1 , . . . ,Ω

´1{2
J q,

‚ p@` P t1, . . . , Luq gJ`` “ ιΛ`
and AJ`` “ S`D.

Then, Problem (14) is recast in the following way:

Find px “Dpx1 such that

px1 “ argmin
x1PRNJ

J 1
ÿ

j“1

gjpAjx
1q `

1

2
}x1 ´ rx1}2, (15)

where rx1 “ rΩ
1{2
1 rxJ, . . . ,Ω

1{2
J rxJsJ P RNJ .

B. Derivation of the proposed algorithm

The application of Algorithm 1 for the resolution of Problem (15) yields:
—

—

—

—

—

—

—

—

—

—

–

Bj P RMjˆMj with Bj ľ AjA
J
j , j P t1, . . . , J 1u

ε Ps0, 1s

pyj0q1ďjďJ 1 P RM

x10 “ rx1 ´
řJ 1

j“1 A
J
j y

j
0.

For n “ 0, 1, . . .
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

γn P rε, 2´ εs

jn P t1, . . . , J
1u

ryjnn “ yjnn ` γnpBjnq
´1Ajnx

1
n

yjnn`1 “ ryjnn ´ γnpBjnq
´1proxγnpBjn q

´1,gjn

`

γ´1
n Bjnry

jn
n

˘

yjn`1 “ yjn, j P t1, . . . , J 1uztjnu

x1n`1 “ x1n ´AJjnpy
jn
n`1 ´ y

jn
n q.

(16)

Let us now show how the above algorithm can be simplified.

First, note that p@j P t1, . . . , Juq AjA
J
j “ AjΩ

´1
j AJj and p@` P t1, . . . , Luq }S`D} “ maxjPV`

}Ω
´1{2
j }. It can
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also be observed that p@` P t1, . . . , Luq p@γ P s0,`8rq,

proxγ´1gJ``
pγ´1¨q “ γ´1ΠΛ`

, (17)

where ΠΛ`
is the linear projector onto the vector space Λ`.

Hence, by setting

p@` P t1, . . . , Luq BJ`` “ ϑ´1
` INκ`

(18)

with ϑ` “ minjPV`
}Ωj}, and p@j P t1, . . . , Juq

V˚j “
 

p`, kq
ˇ

ˇ ` P t1, . . . , Lu, k P t1, . . . , κ`u and ip`, kq “ j
(

, (19)
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Algorithm (16) can be re-expressed as
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Bj P RMjˆMj with Bj ľ AjΩ
´1
j AJj , j P t1, . . . , Ju

ϑ` “ min
jPV`

}Ωj}, ` P t1, . . . , Lu

ε Ps0, 1s

z`0 P RNκ` , ` P t1, . . . , Lu

yj0 P R
Mj , j P t1, . . . , Ju

xj0 “ rx´ Ω´1
j

´

AJj y
j
0 `

ř

p`,kqPV˚j
z`,k0

¯

, j P t1, . . . , Ju.

For n “ 0, 1, . . .
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

γn P rε, 2´ εs

jn P t1, . . . , J ` Lu

If jn ď J
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

ryjnn “ yjnn ` γnpBjnq
´1Ajnx

jn
n

yjnn`1 “ ryjnn ´ γnpBjnq
´1proxγnpBjn q

´1,gjn

`

γ´1
n Bjnry

jn
n

˘

yjn`1 “ yjn, j P t1, . . . , Juztjnu

z`n`1 “ z`n, ` P t1, . . . , Lu

xjnn`1 “ xjnn ´ Ω´1
jn
AJjnpy

jn
n`1 ´ y

jn
n q

xjn`1 “ xjn, j P t1, . . . , Juztjnu

else
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

`n “ jn ´ J

rz`nn “ z`nn ` γnϑ`npx
j
nqjPV`n

z`nn`1 “ rz`nn ´ΠΛ`n
prz`nn q

z`n`1 “ z`n, ` P t1, . . . , Luzt`nu

yjn`1 “ yjn, j P t1, . . . , Ju

For k “ 1, . . . , κ`n
Y

x
ip`n,kq
n`1 “ x

ip`n,kq
n ´ Ω´1

ip`n,kq
pz`n,kn`1 ´ z

`n,k
n q

xjn`1 “ xjn, j R V`n .

(20)

In this algorithm, for increased readibility, we have set, for every n P N,

xn “ rpx
1
nq
J, . . . , pxJnq

JsJ “Dx1n, (21)

z`n “ yJ``n P RNκ` , rz`n “ ryJ``n P RNκ` . (22)
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Furthermore, it can be noticed that, for every n P N such that jn “ J ` `n ą J ,

ΠΛ`n
pz`nn`1q “ ΠΛ`n

`

rz`nn ´ΠΛ`n
prz`nn q

˘

“ ΠΛ`n

`

rz`nn
˘

´ΠΛ`n

`

ΠΛ`n
prz`nn q

˘

“ 0. (23)

Since, for every ` P t1, . . . , Luzt`nu, z`n`1 “ z`n. The latter equality can be extended by induction to

p@n P Nqp@` P t1, . . . , Luq ΠΛ`
pz`nq “ 0, (24)

using an appropriate initialization of the algorithm (e.g., by choosing p@` P t1, . . . , Luq z`0 “ 0). Hence, for every

n P N such that jn “ J ` `n ą J ,

ΠΛ`n
prz`nq “ γnϑ`nΠΛ`n

`

pxjnqjPV`n

˘

, (25)

which implies that

z`nn`1 ´ z
`n
n “ γnϑ`n

`

pxjnqjPV`n
´ΠΛ`n

`

pxjnqjPV`n

˘˘

. (26)

The second part of iteration n of (20) dealing with the case when jn ą J can then be re-expressed as shown in

the projection step of Algorithm 2 (lines 20 to 26). In the resulting algorithm, we were able to drop the variables

pz`nq1ď`ďL, for every n P N.

The body of Algorithm 2 is composed of two main parts:

‚ First a local optimization part (lines 13 to 17) which is reminiscent of the Dual Block Forward-Backward

algorithm where, at each iteration, a block jn is selected and the associated dual and primal variables yjnn (line

14) and xjnn (line 16) are updated, respectively. Note that the main difference between the proposed algorithm

and Algorithm 1 lies in the fact that each block jn is now associated with a local primal variable xjnn whereas,

in Algorithm 1, xn was a shared variable.

‚ The second part of Algorithm 2 is a projection step (lines 20 to 26) in which a set V`n is selected and all the

variables pxjnqjnPV`n
are updated by means of a projection operating over the selected set V`n .

In Algorithm 2, all computation steps only involve local variables, which is suitable for parallel processing. A high

degree of flexibility is allowed in the quasi-cyclic rule for choosing the indices jn and `n at each iteration n. The

distributed Algorithm 2 inherits all the advantages of primal-dual methods, in particular it requires no inversion

of the matrices pAjq1ďjďJ , which is critical when these matrices do not have a simple structure and are of very

large size. Note that the proposed approach is quite different from the ones developed in [27], [28] since it does

not assume a random sweeping rule for the block index selection, and its convergence analysis does not rely on

the nonexpansiveness property of the involved operators.
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Algorithm 2: Distributed Preconditioned Dual Forward-Backward

1 Initialization:
2 V` ” index set of nodes in hyperedge ` P t1, . . . , Lu
3 Bj P RMjˆMj with Bj ľ AjΩ

´1
j AJj , j P t1, . . . , Ju

4 ϑ` “ min
jPV`

}Ωj}, ` P t1, . . . , Lu

5 ε Ps0, 1s

6 yj0 P R
Mj , xj0 “ rx´ Ω´1

j AJj y
j
0, j P t1, . . . , Ju.

7 Main loop:
8 for n “ 0, 1, . . . do
9 γn P rε, 2´ εs

10 jn P t1, . . . , J ` Lu
11 if jn ď J then
12 Local optimization:
13 ryjnn “ yjnn ` γnpBjnq

´1Ajnx
jn
n

14 yjnn`1 “ ryjnn ´ γnpBjnq
´1proxγnpBjn q

´1,gjn

`

γ´1
n Bjnry

jn
n

˘

15 yjn`1 “ yjn, j P t1, . . . , Juztjnu

16 xjnn`1 “ xjnn ´ Ω´1
jn
AJjnpy

jn
n`1 ´ y

jn
n q

17 xjn`1 “ xjn, j P t1, . . . , Juztjnu
18 else
19 Projection:
20 `n “ jn ´ J

21 yjn`1 “ yjn, j P t1, . . . , Ju
22 p`nn “ ΠΛ`n

`

pxjnqjPV`n

˘

23 for k “ 1, . . . , κ`n do
24 x

ip`n,kq
n`1 “ x

ip`n,kq
n ` γnϑ`nΩ´1

ip`n,kq
pp`n,kn ´ x

ip`n,kq
n q

25 end
26 xjn`1 “ xjn, j R V`n .
27 end
28 end

C. Consensus choice

1) Generic case: When the operators pAjq1ďjďJ have no specific structure, a natural choice for the vector spaces

pΛ`q1ď`ďL is to adopt a form similar to that of Λ in (8):

p@` P t1, . . . , Luq Λ` “

$

’

’

’

&

’

’

’

%

»

—

—

—

–

v`,1

...

v`,κ`

fi

ffi

ffi

ffi

fl

P RNκ` | v`,1 “ . . . “ v`,κ`

,

/

/

/

.

/

/

/

-

. (27)

Note that (8), (10) and (27) imply that the hypergraph induced by the hyperedges pV`q1ď`ďL is connected (Figure

1 is an example of such a connected hypergraph). In this context, the connectivity of the hypergraph is essential in

order to allow the global consensus solution to be reached.

For every ` P t1, . . . , Lu, the projection onto Λ` is then simply expressed as

`

@pv`,kq1ďkďκ`
P RNκ`

˘

ΠΛ`

`

pv`,kq1ďkďκ`

˘

“ rpv`qJ, . . . , pv`qJsJ, (28)



11

where

v` “ mean
`

pv`,kq1ďkďκ`

˘

(29)

and meanp¨q designates the arithmetic mean operation (i.e. mean
`

pv`,kq1ďkďκ`

˘

“ κ´1
`

řκ`

k“1 v
`,k).

In addition, Condition (9) is met by simply choosing p@j P t1, . . . , Juq Ωj “ ωjIN , where pωjq1ďjďJ Ps0, 1sJ

are such that
řJ
j“1 ωj “ 1

These simplification lead to the following modifications of lines 22-25 in Algorithm 2:

x`nn “ mean
`

pxjnqjPV`n

˘

For k “ 1, . . . , κ`n
Y

x
ip`n,kq
n`1 “ x

ip`n,kq
n ` γnϑ`nω

´1
ip`n,kq

px`nn ´ x
ip`n,kq
n q.

(30)

2) Dimension reduction: Under its previous form, Algorithm 2 requires each node of the hypergraph to handle

a local copy of several variables. In particular, for the j-th node, a vector xjn of dimension N needs to be stored,

which may be prohibitive for highly dimensional problems. However, very often in image processing applications,

the operators pAjq1ďjďJ have a sparse block structure, which makes it possible to ameliorate this problem. More

specifically, it will be assumed subsequently that

p@j P t1, . . . , Juq
`

@xj “ prxjstq1ďtďT P RN
˘

Ajx
j “

ÿ

tPTj

Aj,trx
jst (31)

where, for every j P t1, . . . , Ju, rxjst is a vector corresponding to a block of data of dimension L, T is the overall

number of blocks (i.e., N “ TL), and Tj Ă t1, . . . , T u defines the reduced index subset of the components of

vector xj acting on the operator Aj . In the above equation, pAj,tqtPTj are the associated reduced-size matrices

of dimensions Mj ˆ L. Similarly to the way xj has been block-decomposed, we split the diagonal matrix Ωj

as Ωj “ Diag pΩj,1, . . . ,Ωj,T q where, for every t P t1, . . . , T u, Ωj,t is a diagonal matrix of size L ˆ L. It then

obviously holds that AjΩ´1
j AJj “

ř

tPTj
Aj,tΩ

´1
j,tAJj,t. To avoid degenerate cases, we will subsequently assume

that p@j P t1, . . . , Juq Tj ‰ ∅ and
J
ď

j“1

Tj “ t1, . . . , T u.

In our distributed formulation, the specific form of the operators pAjq1ďjďJ suggests to set the vector subspaces

pΛ`q1ď`ďL so as to reach the consensus only for the components prxjstq1ďjďJ,tPTj
of vectors pxjq1ďjďJ . This

means that the space Λ (resp. Λ` with ` P t1, . . . , Lu) is defined as

pxjq1ďjďJ P Λ ô
p@pj, j1q P t1, . . . , Ju2q

p@t P Tj X Tj1q rxjst “ rx
j1st

(32)

(resp. pxjqjPV`
P Λ` ô

p@pj, j1q P V2
`qp@t P Tj X Tj1q

rxjst “ rx
j1stq.

It can be noticed that, although the hypergraph must still be built so that (10) holds, Λ is no longer given by (8),

since the components prxjstq1ďjďJ,tRTj
are unconstrained. The main advantage of this choice is that Problem (7)

then decouples into two optimization problems:
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‚ the minimization of the function

prxjstq1ďjďJ,tPTj
ÞÑ

J
ÿ

j“1

gj

´

ÿ

tPTj

Aj,trx
jst

¯

`
1

2

J
ÿ

j“1

ÿ

tPTj

}rxjst ´ rrxst}
2
Ωj,t

(33)

subject to Constraint (32);

‚ the unconstrained minimization of the function

prxjstq1ďjďJ,tRTj ÞÑ

J
ÿ

j“1

ÿ

tRTj

}rxjst ´ rrxst}
2
Ωj,t

. (34)

Since the second problem is trivial, the variables prxjnstq1ďjďJ,tRTj
generated at each iteration n P N of Algorithm

2 are useless and, consequently, they can be discarded. By doing so, only the |Tj | vectors1 prxjnstqtPTj of dimension

L need to be stored at the j-th node (instead of T vectors of this size) and the number of computations to be

performed during the projection step is also sharply diminished.

This yields Algorithm 3 where, in the synchronization step, averaging operations corresponding to the projection

onto Λ`n have been substituted for lines 22-25 in Algorithm 2. The notation

p@t P t1, . . . , T uq T˚t “
 

j P t1, . . . , Ju
ˇ

ˇ t P Tj
(

, (35)

has been introduced for the computation of the averages. In particular, in line 29 of Algorithm 3, if V` X T˚t is a

singleton, which means that the t-th block component of the vector x appears only once in the expression of gjpAjxq

for indices j in the `n-th hyperedge, then the averaging reduces to setting rxjn`1st “ rx
j
nst. It is also worthwhile to

note that, when p@j P t1, . . . , Juq Tj “ t1, . . . , T u, the consensus solution described in Section III-C1 is recovered.

It must be however pointed out that, in general, to have the equivalence between the minimization of (33) subject

to Constraint (32) and the resolution of Problem (5), the following condition has to be substituted for (9):

p@t P t1, . . . , T uq
ÿ

jPT˚t

Ωj,t “ IL. (36)

In Algorithm 3, this has been simply achieved by setting p@j P t1, . . . , Juq p@t P Tjq Ωj,t “ ωj,tIL, where

pωj,tq1ďjďJ,tPTj
are positive real such that p@t P t1, . . . , T uq

ř

jPT˚t
ωj,t “ 1. In turn, the notation pΩj,tq1ďjďJ,tRTj

is no longer used in this algorithm.

Although Algorithm 3 can give rise to a variety of distributed implementations, we will focus on a simpler

instance of this algorithm in the remainder of this paper.

IV. A USEFUL SPECIAL CASE

Let us consider the case when C ď J processing units are available. In the remainder of the paper, to simplify

our presentation, we will restrict our attention to a case of practical interest for the video application described in

1|S| is the cardinality of a set S.
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Algorithm 3: Distributed Preconditioned Dual Forward-Backward after Dimension Reduction

1 Initialization:
2 V` ” index set of nodes in hyperedge ` P t1, . . . , Lu
3 Tj ” index set of blocks used at node j P t1, . . . , Ju
4 T˚t ” index set of nodes using block t P t1, . . . , T u
5 tωj,t | 1 ď j ď J, t P Tju Ăs0, 1s such that p@t P t1, . . . , T uq

ÿ

jPT˚t

ωj,t “ 1

6 Bj P RMjˆMj with Bj ľ
ÿ

tPTj

ω´1
j,tAj,tAJj,t, j P t1, . . . , Ju

7 ϑ` “ min
jPV`,tPTj

ωj,t, ` P t1, . . . , Lu

8 ε Ps0, 1s

9 yj0 P R
Mj , rxj0st “ rrxst ´ ω

´1
j,tA

J
j,ty

j
0, j P t1, . . . , Ju, t P Tj .

10 Main loop:
11 for n “ 0, 1, . . . do
12 γn P rε, 2´ εs
13 jn P t1, . . . , J ` Lu
14 if jn ď J then
15 Local optimization:
16 ryjnn “ yjnn ` γnB

´1
jn

ÿ

tPTjn

Ajn,trx
jn
n st

17 yjnn`1 “ ryjnn ´ γnB
´1
jn

proxγnB´1
jn
,gjn

`

γ´1
n Bjnry

jn
n

˘

18 yjn`1 “ yjn, j P t1, . . . , Juztjnu
19 for t P Tjn do
20 rxjnn`1st “ rx

jn
n st ´ ω

´1
jn,t

AJjn,tpy
jn
n`1 ´ y

jn
n q

21 end
22 prxjn`1stqtPTj

“ prxjnstqtPTj
, j P t1, . . . , Juztjnu

23 else
24 Projection:
25 `n “ jn ´ J

26 yjn`1 “ yjn, j P t1, . . . , Ju
27 for j P V`n do
28 for t P Tj do
29 rxjn`1st “ rx

j
nst ` γnϑ`nω

´1
j,t

`

mean
`

prxj
1

n stqj1PV`nXT˚t

˘

´ rxjnst
˘

30 end
31 end
32 prxjn`1stqtPTj “ prx

j
nstqtPTj , j R V`n .

33 end
34 end

Section V by making the following assumptions.

Assumption 4.1:

(i) The hyperedges pV`q1ď`ďC form a partition of t1, . . . , Ju.

(ii) For every ` P t1, . . . , Cu, let TV`
“
Ť

jPV`
Tj .

(a) For every p`, `1q P t1, . . . , Cu2, TV`
X TV`1

“ ∅ if |`´ `1| ą 1.

(b) For every ` P t2, . . . , C ´ 1u, TV`´1
X TV`

X TV``1
“ ∅.

An example of hypergraph satisfying Assumption 4.1(i) is displayed in Figure 2. For every ` P t1, . . . , Cu, TV`

is the set of the block indices t of the components rxjst where j is any node in V`. According to Assumption
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4.1-(ii)(a), these indices may only be common to hyperedges having preceding or following index values (i.e. `´ 1

or `` 1). Finally, Assumption 4.1-(ii)(b) means that no overlap is allowed between block indices shared with the

preceding hyperedge and the following one.

A. Form of the algorithm

An interesting instance of Algorithm 3 is then obtained by setting L “ C`1 and by assuming that each hyperedge

V` with ` P t1, . . . , Cu corresponds to a given computing unit where the computations are locally synchronized.

In addition, hyperedge VL is set to t1, . . . , Ju in order to model global synchronization steps consisting of an

averaging over all the available nodes. At each iteration n, only a subset Jn,` of dual variable indices is activated

within the `-th hyperedge. Their update is followed by either a possible local synchronization or a global one.

Algorithm 4 summarizes the proposed approach. For simplicity, the index L has been dropped in variable ϑL.

Note that, if the local synchronization step is omitted (by setting rxjn`1st “ rx
j
n`1{2st in line 28), the algorithm

still makes sense since it can be easily shown that it actually corresponds to a rewriting of Algorithm 3 in the case

when L “ 1 and V1 “ t1, . . . , Ju. Unlikely, the global synchronization is mandatory although it has not to be

performed at each iteration but only in a quasi-cyclic manner.

It should be emphasized that even in the case when all the dual variables are updated iteratively (i.e., p@` P

t1, . . . , Luq p@n P Nq Jn,` “ V`), Algorithm 4 exhibits a different structure from the one of the parallel dual

forward-backward algorithm in [34].

1

2

4

3

5

6 7

V1

V2

V3

V4

V5

Fig. 2: Hypergraph of J “ 7 nodes, C “ 4 computing units and L “ 5 hyperedges.

B. Distributed implementation

We now look more precisely at the implementation of Algorithm 4 on a distributed architecture with C P N˚

computing units, each computing unit being indexed by an integer c P t1, . . . , Cu. Figure 3 (top) shows an illustrative

example of C “ 4 computing units based on the hypergraph defined in Figure 2.
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Algorithm 4: Special case of distributed Preconditioned Dual Forward-Backward

1 Initialization:
2 V` ” index set of nodes associated with computing unit ` P t1, . . . , Cu
3 Tj ” index set of blocks used at node j P t1, . . . , Ju
4 T˚t ” index set of nodes using block t P t1, . . . , T u
5 tωj,t | 1 ď j ď J, t P Tju Ăs0, 1s such that p@t P t1, . . . , T uq

ÿ

jPT˚t

ωj,t “ 1

6 Bj P RMjˆMj with Bj ľ
ÿ

tPTj

ω´1
j,tAj,tAJj,t, j P t1, . . . , Ju

7 ϑ “ min
1ďjďJ,1ďtďT

ωj,t, ϑ` “ min
jPV`,tPTj

ωj,t, ` P t1, . . . , Cu

8 ε Ps0, 1s

9 yj0 P R
Mj , rxj0st “ rrxst ´ ω

´1
j,tA

J
j,ty

j
0, j P t1, . . . , Ju, t P Tj .

10 Main loop:
11 for n “ 0, 1, . . . do
12 for ` “ 1, . . . , C do
13 Jn,` Ă V`
14 for j P Jn,` do
15 Local optimization:
16 ryjn “ yjn ` γnB

´1
j

ÿ

tPTj

Aj,trx
j
nst

17 yjn`1 “ ryjn ´ γnB
´1
j proxγnB´1

j ,gj

`

γ´1
n Bjry

j
n

˘

18 for t P Tj do
19 rxjn`1{2st “ rx

j
nst ´ ω

´1
j,tAJj,tpy

j
n`1 ´ y

j
nq

20 end
21 end
22 for j P V`zJn,` do
23 yjn`1 “ yjn
24 prxjn`1{2stqtPTj

“ prxjnstqtPTj

25 end
26 if local synchronization is requested then
27 for j P V` do
28 for t P Tj do
29 rxjn`1st “ rx

j
n`1{2st ` γnϑ`ω

´1
j,t

`

mean
`

prxj
1

n`1{2stqj1PV`XT˚t

˘

´ rxjn`1{2st
˘

30 end
31 end
32 end
33 end
34 if global synchronization is requested then
35 for t “ 1, . . . , T do rxnst “ mean

`

prxjn`1{2stqjPT˚t

˘

;
36 for j “ 1, . . . , J do
37 for t P Tj do
38 rxjn`1st “ rx

j
n`1{2st ` γnϑω

´1
j,t prxnst ´ rx

j
n`1{2stq

39 end
40 end
41 end
42 end
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c “ 1 c “ 2 c “ 3 c “ 4

1 2 3 4 5 6 7

c “ 1 c “ 2 c “ 3 c “ 4

1 2 3 4 5 6 7V5

Fig. 3: (top) Partitioning of J “ 7 nodes and L “ 5 hyperedges on C “ 4 computing units. (bottom) Partitioning of J “ 7
nodes and L “ 1 hyperedge on C “ 4 computing systems.

As we have seen, each computing unit c P t1, . . . , Cu handles κc terms corresponding to the nodes in Vc of the

hypergraph, and processes the functions pgjqjPVc associated with these nodes. Furthermore, a global synchronization

step needs to be performed. This task could be assigned to one of the computing unit, say the first one, as modelled

in Figure 3 (bottom) by adding a fictitious term corresponding to hyperedge VC`1. This would however lead to a

centralized scheme where the computing load between the different units would end-up unbalanced.

A better strategy would consist of distributing the operations performed on line 35 of Algorithm 4 over the

different computing units. For this purpose, let us first note that at iteration n, the c-th computing unit only needs

the block components prxnstqtPTVc
. In addition, because of Assumption 4.1-(ii)(a), some of these variables may be

shared with the computing units c´1 (if c ‰ 1) and c`1 (if c ‰ C), where part of the variables rxjn`1{2st necessary

to compute the averages are locally available. As a consequence of Assumption 4.1-(ii)(b), no other variables than

those available in either TVc´1
X TVc

or TVc
X TVc`1

are necessary . For example, if c ‰ 1 and t P TVc´1
X TVc

,

the averaging operation reads

rxnst “
1

|T˚t |
ÿ

jPT˚t

rxjn`1{2st

“
1

|T˚t |
`

rsn,c´1st ` rsn,cst
˘

, (37)

where

rsn,c´1st “
ÿ

jPVc´1XT˚t

rxjn`1{2st, (38)

and rsn,cst is similarly defined. Since the variables prxjn`1{2stqjPVc´1XT˚t
are not available at unit c, the latter

summation must be performed by unit c ´ 1 and the result must be transmitted to unit c. This one will then be

able to compute rxnst, so as to update variables prxjn`1stqjPVcXT˚t
. Besides, rxnst will be sent to unit c´ 1, which

in turn will update its variables prxjn`1stqjPVc´1XT˚t
. A similar synchronization process can be followed for blocks

with indices t P TVc XTVc`1 with c ‰ C. Finally, for the block indices t in TVc which do not belong to TVc´1 or

TVc`1
,

rxnst “ mean
`

prxjn`1{2stqjPVcXT˚t

˘

“
rsn,cst
|T˚t |

, (39)

as we have then |Vc X T˚t | “ |T˚t |. This means that local averaging is only required for these blocks. In Figure 4,

the synchronization workflow is summarized, while, in Algorithm 5, a more detailed account of the whole process
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is given.

Vc´1 Vc Vc`1

ipc´ 1, 1q ipc´ 1, κc´1q ipc, 1q ipc, κcq ipc` 1, 1q ipc` 1, κc`1q. . . . . .. . .

rxipc´1,1qst rxipc´1,κc´1qst rxipc,1qst rxipc,κcqst rxipc`1,1qst rxipc`1,κc`1qst

Transmit prsn,c´1stqtPTVc´1
XTVc

Transmit prsn,cstqtPTVcXTVc`1

Vc´1 Vc Vc`1

ipc´ 1, 1q ipc´ 1, κc´1q ipc, 1q ipc, κcq ipc` 1, 1q ipc` 1, κc`1q. . . . . .. . .

rxipc´1,1qst rxipc´1,κc´1qst rxip1,cqst rxipc,κcqst rxipc`1,1qst rxipc`1,κc`1qst

Transmit prxnstqtPTVc´1
XTVc

Transmit prxnstqtPTVcXTVc`1

Fig. 4: Global synchronisation process: Transmission of local summations to the next computing unit (top) ; Transmission of
averaged blocks to the previous computing unit (bottom).

Remark 4.2:

(i) It must be emphasized that, in order to facilitate the derivation of our algorithm, a common iteration variable

n has been used for each computing unit. However, units have the ability to process data at their own speed.

In particular, each unit may perform a different number of local synchronizations before a global one is made.

In this sense, our algorithm is asynchronous. To understand why such behavior is allowed, it suffices to note

that if no global synchronization arises and Jn,c “ ∅, then pxjn`1qjPVc
“ pxjnqjPVc

. This means that such

a null iteration can be used to model a time when the c-th computing unit is idle while others are locally

updating their variables.

(ii) When the c-th computing unit operates a global synchronization, it will suspend its activities until it receives

data from units c´ 1 (line 35) and/or c` 1 (line 39), which happens only when these units also are globally

synchronizing their variables. To ensure low latencies, global synchronization steps however have to be

scheduled (quasi-)periodically for each computing unit based on their processing speeds (faster ones should

schedule less frequent synchronizations than slower ones). Alternatively, when one unit decides to perform a

global synchronization, it can broadcast a message to the others to warn them to do the same.

(iii) Other forms of local consensus could be devised. For example, another choice would consist in setting

L “ 2C ´ 1 and p@c P t1, . . . , C ´ 1uq VC`c “ Vc Y Vc`1. Then, each node c P t1, . . . , C ´ 1u could

be responsible for driving the synchronization with its neighbor of index c ` 1. However, it appears more

difficult, in this context, to devise an efficient procedure to avoid deadlocks, contrary to our previous example.
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Algorithm 5: Special case of distributed PDFB for the c-th computing unit
1 Setting of global constants:
2 Tj ” index set of blocks used at node j P t1, . . . , Ju
3 T˚t ” index set of nodes using block t P t1, . . . , T u
4 tωj,t | 1 ď j ď J, t P Tju Ăs0, 1s such that p@t P t1, . . . , T uq

ÿ

jPT˚t

ωj,t “ 1

5 ϑ “ min
1ďjďJ,1ďtďT

ωj,t, ε Ps0, 1s, pγnqnPN sequence of rε, 2´ εs with ε Ps0, 1s

6 Initialization:
7 Vc ” index set of nodes associated with computing unit c
8 TVc ” set of block indices used in Vc (with the convention TV0 “ TVC`1 “ ∅)
9 Bj P RMjˆMj with Bj ľ

ÿ

tPTj

ω´1
j,tAj,tAJj,t, j P Vc

10 ϑc “ min
jPVc,tPTj

ωj,t, ` P t1, . . . , Cu

11 yj0 P RMj , rxj0st “ rrxst ´ ω
´1
j,tA

J
j,ty

j
0, j P Vc, t P Tj .

12 Main loop:
13 for n “ 0, 1, . . . do
14 Jn,c Ă Vc
15 for j P Jn,c do
16 ryjn “ yjn ` γnB

´1
j

ÿ

tPTj

Aj,trx
j
nst

17 yjn`1 “ ryjn ´ γnB
´1
j prox

γnB
´1
j ,gj

`

γ´1
n Bjry

j
n

˘

18 for t P Tj do rxjn`1{2st “ rx
j
nst ´ ω

´1
j,tA

J
j,tpy

j
n`1 ´ y

j
nq ;

19 end
20 for j P VczJn,c do
21 yjn`1 “ yjn
22 prxjn`1{2stqtPTj “ prx

j
nstqtPTj

23 end
24 for t P TVc do rsn,cst “

ÿ

jPVcXT˚t

rxjn`1{2st ;

25 if synchronization is local then
26 for j P Vc do
27 for t P Tj do

28 rxjn`1st “ rx
j
n`1{2st ` γnϑc ω

´1
j,t

´

rsn,cst
|Vc X T˚t |

´ rxjn`1{2st

¯

29 end
30 end
31 else
32 Global synchronization:
33 if c ‰ C then send prsn,cstqtPTVcXTVc`1

to unit c` 1 ;
34 if c ‰ 1 then
35 wait for receiving prsn,c´1stqtPTVc´1

XTVc from unit c´ 1

36 for t P TVc´1 X TVc do rxnst “
1

|T˚t |
`

rsn,c´1st ` rsn,cst
˘

;

37 send prxnstqtPTVc´1
XTVc to unit c´ 1

38 end
39 if c ‰ C then wait for receiving prxnstqtPTVcXTVc`1

from unit c` 1 ;

40 for t P TVczpTVc´1 Y TVc`1q do rxnst “
rsn,cst
|T˚t |

;

41 for j P Vc do
42 for t P Tj do
43 rxjn`1st “ rx

j
n`1{2st ` γnϑω

´1
j,t

`

rxnst ´ rx
j
n`1{2st

˘

44 end
45 end
46 end
47 end
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V. APPLICATION TO VIDEO DENOISING

A. Observation model

In this section, we provide a validation of the proposed distributed algorithm for denoising video sequences. The

original sequence x “ prxstq1ďtďT P RTL is naturally decomposed in T blocks of data, each corresponding to one

image composed of L pixels. The degradation model relating the observed noisy sequence y “ prystq1ďtďT P RTL

to the sought sequence x with TL “ N is given by

p@t P t1, . . . , T uq ryst “ rxst ` rwst, (40)

where prwstq1ďtďT P RTL represents an additive zero-mean white Gaussian noise. An estimate of the unknown

video can be inferred by solving Problem (5) where J “ T and rx “ y. The last quadratic term in (5) is a least squares

data fidelity term ensuring compliance with model (40), and functions pgjq1ďjďT stand for regularization functions

that incorporate both temporal and spatial prior knowledge on each video frame. The temporal regularization is

fulfilled by taking into account motion compensation between the previous and next neighbouring frames. More

precisely, at each time t P t2, . . . , T ´ 1u, the linear operator At extracts the current frame xt and its neighbors

pxt´1, xt`1q as shown by:

rrxs1 . . . rxst´1rxstrxst`1 . . . rxsT s
At
Ñ rrxst´1rxstrxst`1s (41)

The linear operators pAtq1ďtďT thus have the block sparse structure expressed by (31) with

p@t P t1, . . . , T uq Tt “
 

maxtt´ 1, 1u, t,mintt` 1, T u
(

(42)

and

A1,1 “

”

IL 0
ıJ

, A1,2 “

”

0 IL

ıJ

, (43)

p@t P t2, . . . , T ´ 1uq At,t´1 “

”

IL 0 0
ıJ

(44)

At,t “

”

0 IL 0
ıJ

(45)

At,t`1 “

”

0 0 IL

ıJ

(46)

AT,T´1 “

”

IL 0
ıJ

, AT,T “

”

0 IL

ıJ

. (47)

For every t P t1, . . . T u, each regularization function gt : RMt Ñ r0,`8r is convex, proper, lower semi-continuous

and such that

Mt “

$

’

&

’

%

3L if t ‰ 1 and t ‰ T

2L otherwise,
(48)

and, for every x “ prxstq1ďtďT ,

gt pprxst1qt1PTt
q “ η tgvprxstq ` ιrxmin,xmaxsLprxstq ` ht pprxst1qt1PTt

q , (49)
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where “tgv” denotes the Total Generalized Variation regularization from [36], defined as

p@z P RLq tgvpzq “ min
qPR2L

α0 χ2 pDz ´ qq ` α1 χ3 pGqq , (50)

with pα0, α1q Ps0,`8r
2, D P R2LˆL is the concatenation of the horizontal and vertical spatial gradient operators:

D “

»

–

∇H

∇V

fi

fl , with ∇H P RLˆL, ∇V P RLˆL, (51)

and G P R3Lˆ2L is the Jacobian operator given by

G “

»

—

—

–

∇H ∇V 0

0 ∇H ∇V

fi

ffi

ffi

fl

J

, (52)

while, for every q P N˚, χq : RqL Ñ R is given by

`

@pz1, . . . , zqq P pRLqq
˘

χqpz1, . . . , zqq “
L
ÿ

k“1

b

pz1,kq
2
` ¨ ¨ ¨ ` pzq,kq

2
. (53)

The indicator function ιrxmin,xmaxsL in (49) imposes a range rxmin, xmaxs on the pixel values in each frame. In

addition, ht is a function introducing a temporal regularization of the form

ht pprxst1qt1PTt
q “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

βt´1,t χ1prxst ´Mt´1Ñt rxst´1q

` βt`1,t χ1prxst ´Mt`1Ñt rxst`1q

if t ‰ 1 and t ‰ T

β2,1 χ1prxs1 ´M2Ñ1 rxs2q

if t “ 1

βT´1,T χ1prxsT ´MT´1ÑT rxsT´1q

if t “ T ,

(54)

where Mt´1Ñt P RLˆL (resp. Mt`1Ñt P RLˆL) is a motion compensation operator between the reference frame

xt´1 (resp. xt`1) and the current frame xt, defined as described in [25, Section 5.2.2]. Finally, η, pβt´1,tq2ďtďT

and pβt`1,tq1ďtďT´1 are positive regularization parameters controlling the strength of the contribution of their

associated terms. The values of these parameters were set optimized by grid-search so as to achieve the best

denoising performance.

B. Proposed method

We employ our proposed asynchronous distributed framework to address the previous denoising problem. More

precisely, we use the practical implementation detailed in Algorithm 5. Functions pgtq1ďtďT and their associated

primal variables prxtst1qt1PTt
for t P t1, . . . , T u, are spread over C computing units, each of them handling the
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same number of nodes, i.e., p@c P t1, . . . , Cuq κc “ κ (with T “ κC). The associated hyperedges are then given

by

p@c P t1, . . . , Cuq Vc “ tpc´ 1qκ` 1, . . . , cκu. (55)

Note that, since

p@c P t1, . . . , Cuq TVc “

 

maxtpc´ 1qκ, 1u, . . . ,

mintcκ` 1, T u
(

(56)

ñ p@c P t1, . . . , C ´ 1uq TVc X TVc`1 “ tcκ, cκ` 1u, (57)

Assumption 4.1 holds provided that κ ą 1.

In the local optimization first performed at the n-th iteration of Algorithm 5, we used, for every j P t1, . . . , T u,

Bj “
ř

tPTj
ω´1
j,t IMj

and γn ” 1.7. Then, the local or global synchronization steps are performed as described in

Section IV-B. In our case, for every t P t1, . . . , T u,

T˚t “ Tt. (58)

If t P TVc with c P t1, . . . , Cu corresponds neither to the smallest nor the largest index in Vc, then 3 values need

to be summed to compute rsn,cst. If t is the smallest or the largest index in Vc, then the summation involves only

two terms. Finally, if c ą 1 and t “ pc ´ 1qκ (resp. c ă C and t “ cκ ` 1q), then rsn,cst “ rxt`1
n`1{2st (resp.

rsn,cst “ rx
t´1
n`1{2st). In global synchronization steps, by virtue of (57), only variables rsn,cscκ and rsn,cscκ`1 need

to be transmitted from computing unit c ‰ C to computing unit c ` 1, which in return sends back the updated

averages rxnscκ and rxnscκ`1. This workflow is illustrated in Figures 5 and 6 by an example showing two computing

units handling κ “ 3 nodes.

c “ 2 c “ 3

4 5 6 7 8 9

»

—

—

–

x3

x4

x5

fi

ffi

ffi

fl

»

—

—

–

x4

x5

x6

fi

ffi

ffi

fl

»

—

—

–

x5

x6

x7

fi

ffi

ffi

fl

»

—

—

–

x6

x7

x8

fi

ffi

ffi

fl

»

—

—

–

x7

x8

x9

fi

ffi

ffi

fl

»

—

—

–

x8

x9

x10

fi

ffi

ffi

fl

rx4nst1 rx5nst1 rx6nst1 rx7nst1 rx8nst1 rx9nst1

Transmit prsn,2st1qt1Pt6,7u

. . .. . .. . . . . .. . .. . .

Fig. 5: Transmission of local sums prsn,2st1qt1Pt6,7u shared between TV2 “ t3, 4, 5, 6, 7u and TV3 “ t6, 7, 8, 9, 10u from
computing unit c “ 2 to computing unit c “ 3.
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c “ 2 c “ 3

4 5 6 7 8 9
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x5

fi

ffi

ffi

fl

»

—

—

–

x4

x5

x6

fi

ffi

ffi

fl

»

—

—

–

x5

x6

x7

fi

ffi

ffi

fl

»

—

—

–

x6

x7

x8

fi

ffi

ffi

fl

»

—

—

–

x7

x8

x9

fi

ffi

ffi

fl

»

—

—

–

x8

x9

x10

fi

ffi

ffi

fl

rx4nst1 rx5nst1 rx6nst1 rx7nst1 rx8nst1 rx9nst1

Transmit prxnst1qt1Pt6,7u

. . .. . .. . . . . .. . .. . .

Fig. 6: Transmission of averaged images prxnst1qt1Pt6,7u from computing unit c “ 3 to computing unit c “ 2.

In our simulations, the global synchronizations are activated every 4 iterations. This synchronization frequency

was chosen in order to achieve a good trade-off between the communication overhead and a satisfactory convergence

speed. The weights pωj,tq1ďtďT,jPT˚t are set to 1
|T˚t |

.

C. Simulation results

The performance of the proposed denoising method are evaluated on the standard test video sequences Foreman,

Claire and Irene with T “ 72 frames. These frames are of size 348 ˆ 284 for Foreman sequence, 300 ˆ 278

and 352 ˆ 288 of Claire and Irene respectively, hence N “ 7115904 (resp. N “ 6004800 and N “ 7299072).

The degraded videos are obtained by adding zero-mean white Gaussian noise to the original video sequences,

resulting in an initial SNR (signal-to-noise ratio) of 24.41 dB, 24.77 dB and 25.51 dB for the three sequences

respectively. We apply our algorithm only on the luminance channel, while the chrominance is restored with a

median filter. Our method is implemented with Julia-0.4.6 and a Message Passing Interface (MPI) wrapper for

managing communication between cores [37], [38]. We use a multi-core architecture using 2 Intel(R) Xeon(R) E5-

2670 v3 CPU @ 2.3 GHz processors, each with 12 cores, hence C “ 24. The experiments are run using 60 iterations

of Algorithm 5, which is sufficient to reach convergence. We evaluate the proposed distributed approach in terms

of restoration quality and acceleration provided by our algorithm with respect to the number of computing units.

The images composing the video sequences are partitioned in groups of equal size κ processed by the computing

units, thereby we consider the cases when C P t1, 2, 3, 4, 6, 8, 9, 12, 18, 24u cores are employed, as shown in Table

I.

TABLE I: Investigated simulation scenarios and the number of images per core in each case.

Number of cores C 1 2 3 4 6 8 9 12 18 24

Number of images per core κ 72 36 24 18 12 9 8 6 4 3

Figure 7 shows the speedup in execution time with respect to the number of cores, which is estimated as follows:

Speedup forC cores “
Execution time with 1 core

Execution time withC cores
. (59)
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The execution time with one core is equal to 107003 s, 84247 s and 115711 s for Foreman, Claire and Irene

sequences respectively.

Number of cores
1 2 3 4 6 8 9 12 18 24

S
p

e
e
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u

p
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(a) Foreman sequence.
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(b) Claire sequence.
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(c) Irene sequence.

Fig. 7: Speedup with respect to the number of used cores: proposed method (solid, blue, diamond), linear speedup (dashed,
green).

Figure 7 shows that the speedup increases super linearly as we increase the number of cores from 1 to 9. Indeed,

when a small number of cores are used, the dataset cannot be stored in the cache memory, due to its large size.

Hence, a significant amount of time is spent in RAM access [39]. By increasing the number of cores, the data seem

to fit better in the cache size, which reduces the RAM access time and consequently the global execution time

despite the communication overhead. However, as the number of core exceeds 9, a saturation effect is observed (in

agreement with Amdahl’s law [40]) .

In order to investigate this behavior, we display in Figure 8 the execution times per core on the Foreman

sequence, for the three main steps of Algorithm 5. Namely, the local optimization, local synchronization, and

global synchronization when either C “ 8 or C “ 24 cores are used. As expected we observe a significant

reduction of the execution time for the local optimization step when going from 8 to 24 cores, but the gain factor

is less than 3, although the computations are then performed independently on each core. The average execution

time for the local synchronization step is also reduced as the number of images handled by each core decreases.

One can finally observe that the global communication overhead increases as a larger number of cores is used. This

behavior appears to be consistent, however it can be noticed on Figure 8(b) that the second set of cores (13 to 24q

is much slower than the first one, which is detrimental to the global synchronization process. This seems to point

out hardware limitations of the Intel-based two-processor computer architecture that we use.

Our method achieves satisfactory restoration results with an improvement of 7.6 dB for Foreman, 9 dB for

Claire and 5.46 dB for Irene, with respect to the degraded video. Moreover, according to our observations, the

convergence to the sought solution was reached in each experiment regardless the number of used cores. Figures

9 and 10 show some frames illustrative of the degraded and restored sequences. These illustrate the good visual

quality of the performed denoising.

VI. CONCLUSION

This paper has introduced a fully parallelized version of the preconditioned dual block-coordinate forward-

backward algorithm for computing proximity operators. Our algorithm benefits from all the advantages of primal-

dual methods and the acceleration provided by a block-coordinate strategy combined with a variable metric approach.
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(a) 8 cores (b) 24 cores

Fig. 8: Execution time of Algorithm 5 steps: local optimization (top), local synchronization (middle), global synchronization
(bottom).

Fig. 9: Foreman sequence: Input degraded images (top) initial SNR = 24.41 dB, associated restored images (bottom) final SNR
= 32.04 dB.

We mainly focused on an instance of the proposed approach for which we proposed an asynchronous implementation,

assuming that a given number of computing units is available. Although our distributed algorithm can be applied

to a wide range of inverse problems, we investigated its application to video sequence denoising. The experimental

results we obtained are quite promising and demonstrate the ability of our algorithm to take advantage of multiple
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Fig. 10: Irene sequence: Input degraded images (top) initial SNR = 25.51 dB, associated restored images (bottom) final SNR
= 30.97 dB.

cores. An acceleration of about 15 was reached with a standard two-processor computer configuration. In future

works, we intend to experiment different distributed implementations based on other partitioning strategies and

hypergraph topologies and to study the application of our distributed framework to other proximal optimization

algorithms.
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