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. No novel analytical achievements are made by Sadeghi & Oberlack, as the title of their study misleadingly wants to suggest. In fact, the already established self-similar scaling laws obtained by Bahri through simple dimensional analysis are already more general in the application than the ones obtained by Sadeghi & Oberlack through an overly complicated and therefore unnecessarily performed Lie-group symmetry analysis. The claim that it has the virtue of not being an ad-hoc method is not true. Because, instead of using an a priori set of scales as the classical method, the Lie-group method has to make use of an a priori set of symmetries, namely to select the correct relevant symmetries from an infinite and thus unclosed set. For example, a nonphysical scaling symmetry is selected which in the course of the analysis has to be discarded since it is not compatible with the data simulated. Hence, the Lie-group symmetry method in turbulence is just another common trial-and-error method and not a first-principle method that can bypass the closure problem.

Proof that the scaling laws in [1] are not new

To have an overview of what will be proven in this section, here a brief summary:

1. The first key result (4.24) derived in [1, Sadeghi & Oberlack (2020)] corresponds exactly to the already published result (4.20) in [2, Bahri (2016)], or alternatively to the result (2.14) in [3, Bahri et al. (2015)].

2. The second key result (4.25) in [1, Sadeghi & Oberlack (2020)] corresponds exactly to the result (5.10) in [2, Bahri (2016)]. Note that this result was not published in [3, Bahri et al. (2015)] and thus can only be found in [2, Bahri (2016)], but which is not mentioned or cited in [1, Sadeghi & Oberlack (2020)].

3. The third result (4.26) in [1, Sadeghi & Oberlack (2020)] also constitutes no new result as claimed, since it is just a direct consequence of Bahri's scaling laws when applied correctly to the underlying equations. The same is true of their results (5.7)-(5.10), which again are just a direct consequence of Bahri's results. In particular, the last result (5.10) was already established back in the 1990s by George & Speziale et al.

4.

While [1, Sadeghi & Oberlack (2020)] considers in their scaling only the case of zero thermal diffusivity (α = 0), Bahri et al. considered the case of non-zero thermal diffusivity (α = 0). Hence, one could assert that the scaling laws (4.24)-(4.26) derived in [1, Sadeghi & Oberlack (2020)] are indeed different and thus can be claimed as novel. But, as will be proven below, such an assertion is invalid. The self-similarity results of Bahri et al. include and clearly go beyond those of Sadeghi & Oberlack.

1.1. Proof that (4.24) and (4.25) in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] are not new

The two key results, the temporal scaling law (4.24) and (4.25) in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] θ 2 ∝ (t + t 0 ) 2n+m , u 2 θ ∝ (t + t 0 ) 2n+m-1 , (

where t 0 , n and m are arbitrary constants, correspond exactly to the already published scaling laws (2.14) in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF], and to (4.20) and (5.10) in [START_REF] Bahri | Fundamentals and scaling of passive scalar fields in isotropic turbulence[END_REF], respectively

θ 2 = C 2 [ℓ θ ] 2C 1 α/A θ -1 , vθ = C 2 α β [ℓ θ ] 2C 1 α/A θ -3 , (1.2)
where the scalar (temperature) length scale ℓ θ is given by (2.10) in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF], or alternatively by (4.16) in [START_REF] Bahri | Fundamentals and scaling of passive scalar fields in isotropic turbulence[END_REF], as

ℓ 2 θ = ℓ 2 0θ + A θ (t -t 0 ), (1.3) 
where ℓ 0θ , A θ and t 0 are arbitrary constants. To note is the typo in [START_REF] Bahri | Fundamentals and scaling of passive scalar fields in isotropic turbulence[END_REF], where the exponent for the scaling law (5.10) misses an additional -2, which can be easily seen when deriving (5.10) from the correctly printed relations (5.9) and (5.6).

Proof: By re-defining the constant virtual time origin t 0 in (1.3) as

A θ t ′ 0 := def ℓ 2 0θ -A θ t 0 , ( 1.4) 
we can equivalently rewrite (1.3) as

ℓ 2 θ = A θ (t + t ′ 0 ), (1.5) 
and therefore both scaling laws in (1.2) as

θ 2 = C 2 [ℓ 2 θ ] C 1 α/A θ -1/2 , vθ = C 2 α β [ℓ 2 θ ] C 1 α/A θ -1/2-1 = C 2 [A θ (t + t ′ 0 )] C 1 α/A θ -1/2 , = C 2 α β [A θ (t + t ′ 0 )] C 1 α/A θ -1/2-1 ∝ (t + t ′ 0 ) C 1 α/A θ -1/2 , ∝ (t + t ′ 0 ) C 1 α/A θ -1/2-1 . (1.6)
If we now re-define the constant exponent in terms of the parameters used in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] as

C 1 α/A θ -1/2 =: def 2n + m, (1.7) 
then we get

θ 2 ∝ (t + t ′ 0 ) 2n+m , vθ ∝ (t + t ′ 0 ) 2n+m-1 , (1.8)
which are exactly the two "new" scaling laws (1.1) derived in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF], where v = u 2 is the cross stream velocity.

Two things should be noted here: First, Bahri et al. derive their scaling laws in spectral space, while Sadeghi & Oberlack in physical space. But this difference is not the issue here, especially since the scaling laws are purely temporal and thus for 1-point quantities exactly the same in spectral as in physical space. The issue here is that Sadeghi & Oberlack claim these laws as "new", which is not true. Second, the parameter m in (1.1) in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] results from a nonphysical scaling symmetry which the authors used. Their own analysis, however, later revealed this nonphysical feature when they tried to ensure compatibility with the simulated data, with the result that this symmetry, and thus its associated parameter m, must be set to zero (see the last sentence on p. 18 in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF]). Therefore, exactly as in (1.6), the scaling (1.8) due to m = 0 only exhibits one essential scaling exponent, and not two.

1.2. Proof that the self-similar results in [START_REF] Bahri | Fundamentals and scaling of passive scalar fields in isotropic turbulence[END_REF][START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF] are more general than in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] One could make the assertion that the proof in the previous section is inappropriate for the case studied in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF], for the reason that therein the case of zero thermal diffusivity (α = 0) was considered, while Bahri et al. considered the case of non-zero thermal diffusivity (α = 0). Hence, one could assert that the two scaling laws (4.24) and (4.25) in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] are indeed different and thus can be claimed as novel. But, as will be proven now, such an assertion is not valid.

First of all, Bahri et al. did not rule out the case α = 0. Their study is valid for all α ∈ R, and thus includes the special case α = 0 which Sadeghi & Oberlack considered. To demonstrate this, let's look more closely, for example,1 at the scaling law for the temperature variance (2.14) in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF] 

θ 2 = C 2 [ℓ θ ] 2C 1 α/A θ -1 , (1.9)
which, as was proven before in Sec. 1.1, can be rewritten as

θ 2 ∝ (t + t ′ 0 ) 2n+m , ( 1.10) 
where

ℓ 2 θ = ℓ 2 0θ + A θ (t -t 0 ), A θ t ′ 0 := def ℓ 2 0θ -A θ t 0 , C 1 α/A θ -1/2 =: def 2n + m, (1.11) with C 1 , C 2 , A θ , ℓ 2 0θ
, and t 0 being arbitrary constants. Now, if we naively put α = 0 in (1.9), it will result in a parameter-independent scaling exponent, which, according to (1.11), will imply the restriction 2n + m = -1/2 on the Sadeghi-Oberlackparameters (n, m) -a restriction, however, which is not present in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF], regardless of whether m is zero or not. Naively one can thus conclude that the scaling for α = 0 in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] is more general than in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF]. But this is a fallacy! There are two ways how to prove that [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] is not more general for α = 0 than [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF], where both proofs make use of the fact that the scaling can be made independent of α. Too see that, we have to go back to the derivation of (1.9) in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF]. The central terms therein are (2.2)-(2.4) and (2.12). Proof A (see below) directly puts α = 0 in (2.2) in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF], while Proof B separates out α in (2.2) in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF] by not specifying a particular value for it, thus showing that the scaling laws of Bahri et al. are valid for all α ∈ R, including the specific case α = 0.

Hence, the self-similarity results of Proof A: Starting off with (2.2) in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF] and directly putting α to zero, we get:

[ Ės,θ ]f 1 + E s,θ lθ ℓ θ f ′ 1 γ = -[βE s,vθ ]f 2 -[T s,θ ]g 1 . (1.12)
Dividing this whole equation by E s,θ /ℓ2 θ , we then get

Ės,θ ℓ 2 θ E s,θ f 1 + ℓ θ lθ f ′ 1 γ = -β E s,vθ E s,θ ℓ 2 θ f 2 - T s,θ E s,θ ℓ 2 θ g 1 , (1.13) 
which, if self-similarity should hold, leads to the following conditions

Ės,θ ℓ 2 θ E s,θ = ǫ 0 1 , (1.14) ℓ θ lθ = ǫ 0 2 , (1.15) β E s,vθ E s,θ ℓ 2 θ = ǫ 0 3 , (1.16) T s,θ E s,θ ℓ 2 θ = ǫ 0 4 , (1.17) 
where ǫ 0 1 , ǫ 0 2 , ǫ 0 3 , and ǫ 0 4 are arbitrary constants without any restrictions, with the 0-index indicating that α = 0. The above conditions (1.14)-(1.17) are the same as (2.3)-(2.6) in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF], yet, only independent of α. Hence, when renaming the first two ǫ-constants2 

ǫ 0 1 = C 0 1 , ǫ 0 2 = A 0 θ /2, (1.18)
as in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF], but now indicating that α = 0, then solving for (1.14) and (1.15), and finally using the relation (2.12) in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF], we end up with the same scaling law (2.14) as before,

θ 2 = C 2 [ℓ θ ] 2C 0 1 /A 0 θ -1 , (1.19) 
but, now, only independent of α. Result (1.19) shows that for α = 0 the scaling exponent is indeed parameter-dependent, thus implying the identity C 0 1 /A 0 θ -1/2 = 2n + m without any restrictions on the Sadeghi-Oberlack-parameters (n, m).

Proof B: We start again with (2.2) in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF], but now we do not specify any value for α, but leave it arbitrary, i.e., α ∈ R (including thus also the case α = 0):

[ Ės,θ ]f 1 + E s,θ lθ ℓ θ f ′ 1 γ = -[βE s,vθ ]f 2 -[T s,θ ]g 1 -α E s,θ ℓ 2 θ 2γ 2 f 1 , α ∈ R. (1.20)
Dividing this whole equation again by E s,θ /ℓ 2 θ , we then get

Ės,θ ℓ 2 θ E s,θ f 1 + ℓ θ lθ f ′ 1 γ = -β E s,vθ E s,θ ℓ 2 θ f 2 - T s,θ E s,θ ℓ 2 θ g 1 -α • 2γ 2 f 1 , α ∈ R, (1.21) 
which, if self-similarity should hold, leads to the following conditions

Ės,θ ℓ 2 θ E s,θ = ǫ α 1 , (1.22) ℓ θ lθ = ǫ α 2 , (1.23) β E s,vθ E s,θ ℓ 2 θ = ǫ α 3 , (1.24) T s,θ E s,θ ℓ 2 θ = ǫ α 4 , (1.25)
where ǫ α 1 , ǫ α 2 , ǫ α 3 , and ǫ α 4 are arbitrary constants without any restrictions, with the α-index now indicating that α can take any value in the defining equation (1.21), including the value α = 0. If we now rename the first two ǫ-constants again as before in (1.18), but now indicating these as being constants for arbitrary α,

ǫ α 1 = C α 1 , ǫ α 2 = A α θ /2, (1.26)
and then solving the corresponding equations (1.22)-(1.23), we end up again with the very same scaling law as given in (1. [START_REF] Avsarkisov | New scaling laws for turbulent Poiseuille flow with wall transpiration[END_REF]), yet, now for any value of α: 

θ 2 = C 2 [ℓ θ ] 2C α 1 /A α θ -1 , α ∈ R. ( 1 
∂θ ∂t + u 2 Γ + • • • = 0, (1.29) 
where the dots indicate the remaining terms of the equations, and where Γ is the constant mean scalar gradient. Multiplying (1.28) by θ, (1.29) by u 2 , and then adding both equations, we get the resulting equation

∂u 2 θ ∂t + u 2 2 Γ + • • • = 0, (1.30)
which then in statistically averaged form reads

∂u 2 θ ∂t + Γ • u 2 2 + • • • = 0. (1.31)
Now, when u 2 θ evolves according to Bahri's scaling law (1.8), then the evolution of the transverse fluctuation variance u 2 2 is dictated by the above equation as

u 2 2 ∝ ∂ ∂t u 2 θ ∝ d dt (t + t ′ 0 ) 2n+m-1 ∝ (t + t ′ 0 ) 2n+m-2 , (1.32)
which exactly is the result (4.26) in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF].

Proof that (5.7)-(5.10) in [1] are not new

Also the 2-point results (5.7)-(5.10) in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] do not constitute any new results, since also those are a direct consequence of Bahri's 1-point results (1.8). To demonstrate this, we take, for example, the considered 2-point equation (3.18) in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] (the proof for R θθ and R 2θ is analogous) where we make the ansatz of a self-similar spatial variable r := r/ξ(t). Inserting this ansatz into (1.33), we get:

∂R 22 ∂t + • • • = 0. ( 1 
0 = du 2 2 dt • R22 + u 2 2 • ∂ R22 ∂t + • • • ∝ (2n + m -2)(t + t ′ 0 ) 2n+m-3 • R22 + (t + t ′ 0 ) 2n+m-2 ∂r k ∂t ∂ R22 ∂r k + • • • = (2n + m -2)(t + t ′ 0 ) 2n+m-3 • R22 -(t + t ′ 0 ) 2n+m-2 r k ξ 2 dξ dt ∂ R22 ∂r k + • • • = (2n + m -2)(t + t ′ 0 ) 2n+m-3 • R22 - (t + t ′ 0 ) 2n+m-2 ξ dξ dt • rk ∂ R22 ∂r k + • • • (1.35)
which, in order to achieve a t-independent invariant equation, implies the relation

dξ dt = γ • ξ t + t ′ 0 , (1.36)
where γ is some arbitrary proportionality constant. Hence, we get the solution

ξ ∝ (t + t ′ 0 ) γ , (1.37)
which then yields the self-similar variable (5.10) in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] 

r = r (t + t ′ 0 ) n , (1.38) 
if γ is particularly specified as n, as was done in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] in choosing a particular symmetry configuration.

Hence, only by using the results of Bahri et al. [START_REF] Bahri | Fundamentals and scaling of passive scalar fields in isotropic turbulence[END_REF][START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF] and simple dimensional analysis, we yield the very same results as Sadeghi & Oberlack in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF], thus showing that their results are not novel as claimed.

Further remarks and points for correction in [1]

1. The structure of Fig. 1 in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] is a repetition of Fig. 4.1 in [START_REF] Bahri | Fundamentals and scaling of passive scalar fields in isotropic turbulence[END_REF] and Fig. 1 in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF], only displayed for new DNS data. However, since [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF] in particular is not mentioned or cited at this position or in the corresponding text on p. 18,3 the reader gets again the misleading impression that this figure and its power-law fits are unique to [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF]. The reader is not made aware of the fact that Bahri et al. achieved power-law fits of similar quality first, and also that they were the first to recognize the fact that the scalar variance θ 2 is not decaying but growing in time.

2.

In [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] it is stated that "the Lie symmetry yields the interrelation among the various scaling exponents, as it leads to a connection between the temporal scaling of the velocity and scalar variance" [p. 15]. This result, however, is not a merit of Lie symmetry groups. C. Bahri got this result first without using Lie-groups, and in the process also obtained more information than Liegroups could give. Her result (5.10) in [START_REF] Bahri | Fundamentals and scaling of passive scalar fields in isotropic turbulence[END_REF] for the temporal scaling of the scalar (heat) flux vθ leads to the conclusion "that the heat flux is governed only by parameters related to the temperature field. Thus, no information is needed about the velocity field to determine the heat flux in this particular flow configuration. This is of major importance to the turbulence community, and particularly the atmospheric sciences where the scalar flux is of main interest" [p. 78]. This important information cannot be obtained by the Lie-group method as performed by Sadeghi & Oberlack in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF], which clearly is a serious drawback compared to the successful method used by Bahri et al.

3.

In [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] it is said that in " [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF] it has been suggested that the TPC [2-point correlation] may not scale on the integral length scale, but instead on the Kolmogorov length scale, the Taylor microscale or rather the scalar Taylor microscale" [p. 20]. This statement is misleading, since Bahri et al. [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF] considers 2-point correlations in spectral space and not in physical space as Sadeghi & Oberlack in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF]. In clear contrast to 1-point quantities, the 2-point quantities for the considered flow configuration may show a different sensitivity on the scaling behaviour in spectral space than in physical space. Furthermore, Bahri et al. did not consider the velocity integral scale in their analysis, as it was done in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF], but instead considered only the scalar integral scale at that point. Hence, the 2-point correlation analysis in [START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF] cannot be compared with the one done in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF].

4.

In Fig. 4 in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] it is not clear why for the velocity correlations only R22 is displayed. What about the other 2-point velocity correlations R11 , R33 , R12 , etc.? Were they just omitted because they maybe don't show such a good collapse when using the velocity integral length scale?

5.

The term 2ΓR 2θ in (3.13) in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] is not correct, since R 2θ = R θ2 . It either has to be replaced by Γ(R 2θ (r) + R θ2 (r)), or by Γ(R 2θ (r) + R 2θ (-r)).

6.

The last remark is on the usefulness of a Lie-group symmetry analysis in turbulence as it is carried out in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF]. As was proven in the previous sections, a Lie-group symmetry analysis is only overly complicated and thus unnecessary for the flow configuration considered in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF], since a classical selfsimilarity analysis already suffices to yield the same results. The classical approach in [START_REF] Bahri | Fundamentals and scaling of passive scalar fields in isotropic turbulence[END_REF][START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF] even led to more general results than the ones obtained in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF]. But also for other turbulent flow configurations, the Lie-group symmetry method is of no significant analytical relevance as long as the equations are not modelled and remain unclosed [START_REF] Frewer | A closer look at predicting turbulence statistics of arbitrary moments when based on a non-modelled symmetry approach[END_REF]. The problem here is that we have turbulence, which unfortunately comes along with unclosed statistical equations. Hence, the set of symmetries is also unclosed, which means that if modelling of the statistical equations is not considered as in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF], then (nearly) any symmetry can be generated, and thus also (nearly) any desirable scaling law. The simple reason for this is that at each order of the infinite hierarchy almost any change due to a variable transformation can always be balanced or compensated by an unclosed term at the next higher order. Ultimately this means that the choice of an invariance is made by the user and not dictated by theory, simply because one has an infinite set of invariant possibilities to choose from when performing a full and correct Lie-group symmetry analysis for unclosed equations, as explicitly shown and discussed e.g. in [START_REF] Frewer | A closer look at predicting turbulence statistics of arbitrary moments when based on a non-modelled symmetry approach[END_REF][START_REF] Frewer | A critical examination of the conformal invariance in the statistical equations of 2D turbulent scalar fields[END_REF][START_REF] Frewer | On new scalings in a temporally evolving turbulent plane jet using a different and physical choice of equivalence transformations[END_REF][START_REF] Frewer | On the use of applying Lie-group symmetry analysis to turbulent channel flow with streamwise rotation[END_REF][START_REF] Frewer | Is the log-law a first principle result from Lie-group invariance analysis?[END_REF]. A crucial information which is not shared with the reader in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF]. Instead, as a deflection of the issue, false claims are made regarding the use of Lie-group symmetry method in turbulence, thus raising false hopes, like the following statement on p. 3 in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF]:

"Despite the fact that the classical self-similarity to construct scaling parameters for the passive scalars has been known for a long time, there are still several open challenges. First and foremost, the classical self-similarity hypothesis can only be carried out when using an a priori set of similarity scales for all of the statistical moments in the transport equations. Therefore, it is one of the outstanding goals to obtain the similarity scales based on a more general analytical approach rather than in an ad hoc manner. In addition, the interaction between the velocity and passive scalar (temperature) fields becomes important in several cases, for example, when a constant mean temperature gradient is present. However, the lack of a unified approach that can predict the direct link between the scaling laws for the passive scalar and velocity moments is noted in the literature. Therefore, it is the main aim of this paper to use a more general technique, which is known as Lie symmetry analysis, to formally derive the scaling laws and similarity variables for a passive scalar flow advected by a turbulent flow."

Or, more compact in their abstract: "It is shown that, in contrast to the classical self-similarity approach, the general invariant solutions, respectively scaling laws, of the two-point functions are constructed using the symmetry approach, without requiring an a priori set of similarity scales to carry on the analysis."

Considering the proofs in Sec. 1, which demonstrate that a simple dimensional analysis is already fully sufficient to confront the current scaling problem, as correctly derived by Bahri et al. in [START_REF] Bahri | Fundamentals and scaling of passive scalar fields in isotropic turbulence[END_REF][START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF], and the fact that the set of symmetries in turbulence is unclosed, it is easy to unmask the above claims by Sadeghi & Oberlack as false. It is not true, that the Lie-group symmetry method in turbulence is free of assumptions. It is an ad-hoc method too, not in the same but in a similar way as the classical self-similarity method: Instead of using an a priori set of scales, the Lie-group method has to make use of an a priori set of symmetries, namely to select the correct relevant symmetries from an infinite (unclosed) set. In other words, the particular selection of the chosen symmetries (4.7) in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] is a plain assumption, because when performing a full and correct Lie-group symmetry analysis on the considered (unclosed) equations (3.16)-(3.18), one gets an infinite set of possible symmetries, 4 which is not mentioned in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF].

Another problematic issue not mentioned in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] is the fact that due to the arbitrariness involved when making a particular choice from an infinite (unclosed) set of symmetries, there is the high chance that one will select a nonphysical symmetry which is not reflected by experiment or numerical simulation. This clearly is the case for the chosen statistical scaling symmetry (4.6) in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF], with the group parameter a s , and later m (4.20), which clearly is nonphysical -see e.g. [START_REF] Frewer | A closer look at predicting turbulence statistics of arbitrary moments when based on a non-modelled symmetry approach[END_REF][START_REF] Frewer | Comment on 'Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multi-point probability density functions of turbulent flow[END_REF][START_REF] Frewer | Comment on "Symmetry analysis and invariant solutions of the multipoint infinite systems describing turbulence[END_REF][START_REF] Khujadze | Revisiting the Lie-group symmetry method for turbulent channel flow with wall transpiration[END_REF][START_REF] Frewer | A note on the notion "statistical symmetry[END_REF][START_REF] Frewer | Objections to a Reply of Oberlack et al[END_REF][START_REF] Frewer | Comment on "Statistical symmetries of the Lundgren-Monin-Novikov hierarchy[END_REF][START_REF] Frewer | On the physical inconsistency of a new statistical scaling symmetry in incompressible Navier-Stokes turbulence[END_REF].

Although this nonphysical symmetry (4.6) later had to be put to zero in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] once a specific initial condition with a prescribed energy spectrum was chosen for the simulation (see p. 18 in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] where the case m = 0 is discussed), its nonphysical feature is still downplayed as being only a symmetry where "We do not have an indication from the DNS data that the statistical symmetry (4.6a-n) connected to m plays a role here. Hence, in the following we set m = 0" [p. 18].

Despite all these signs and warnings, this nonphysical symmetry (4.6) keeps being propagated in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] as a scaling symmetry that plays "a key role for the understanding of moment scalings in wall-bounded shear flows" [p. 13], and that "this symmetry is a measure of intermittency" [p. 8]. In particular the latter statement about intermittency,5 here the authors should ask themselves why this symmetry was forced to zero in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] for a flow configuration that exhibits intermittency, regardless of the initial condition considered. In other words, if this scaling symmetry (4.6) truly is a measure of intermittency, then the parameter m for the currently considered flow configuration should be non-zero, or? Independent of this apparent conflict, the connection to intermittency of this scaling symmetry (4.6) is not true and has been clearly refuted several times by now within different statistical frameworks -see e.g. [START_REF] Frewer | A closer look at predicting turbulence statistics of arbitrary moments when based on a non-modelled symmetry approach[END_REF][START_REF] Frewer | Comment on 'Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multi-point probability density functions of turbulent flow[END_REF][START_REF] Frewer | Comment on "Symmetry analysis and invariant solutions of the multipoint infinite systems describing turbulence[END_REF][START_REF] Khujadze | Revisiting the Lie-group symmetry method for turbulent channel flow with wall transpiration[END_REF][START_REF] Frewer | A note on the notion "statistical symmetry[END_REF][START_REF] Frewer | Objections to a Reply of Oberlack et al[END_REF][START_REF] Frewer | Comment on "Statistical symmetries of the Lundgren-Monin-Novikov hierarchy[END_REF][START_REF] Frewer | On the physical inconsistency of a new statistical scaling symmetry in incompressible Navier-Stokes turbulence[END_REF]. Also from a pure phenomenological viewpoint, it is abundantly clear that intermittency is a symmetry-breaking phenomenon and not a symmetry-existing or symmetrypreserving one. Even if we would wrongly assume this to be the case, intermittency is definitely not described or featured by any global scaling symmetry, particularly not by the one given by (4.6) in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF], which actually just mimics the standard scaling of a linear system when applied to an unclosed nonlinear system. Obviously, such a symmetry is only a mathematical artefact of the unclosed system itself and therefore indeed nonphysical, independent of the fact, of course, that this symmetry also violates the classical principle of cause and effect [START_REF] Frewer | Comment on 'Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multi-point probability density functions of turbulent flow[END_REF][START_REF] Frewer | A note on the notion "statistical symmetry[END_REF][START_REF] Frewer | Comment on "Statistical symmetries of the Lundgren-Monin-Novikov hierarchy[END_REF].

Finally it needs to be noted that in various other publications by Oberlack et al., regarding Liegroup symmetries and turbulence, a second nonphysical symmetry is constantly included, the nonphysical statistical translation symmetry, which led to serious errors, e.g. in [START_REF] Avsarkisov | New scaling laws for turbulent Poiseuille flow with wall transpiration[END_REF] and [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], which then led to the forced Corrigenda [START_REF] Avsarkisov | New scaling laws for turbulent Poiseuille flow with wall transpiration -CORRIGENDUM[END_REF] and [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation -CORRIGENDUM[END_REF], respectively. Although [START_REF] Avsarkisov | New scaling laws for turbulent Poiseuille flow with wall transpiration -CORRIGENDUM[END_REF] is a Corrigendum, it is still seriously in error -for a detailed discussion on this matter, see Appendix D in [START_REF] Frewer | A closer look at predicting turbulence statistics of arbitrary moments when based on a non-modelled symmetry approach[END_REF]. Also in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation -CORRIGENDUM[END_REF], although a correction is given, it does not provide an explanation or a correction to the originally published Fig. 7, a figure in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] that still cannot be reproduced from the data provided. Instead, a completely new figure based on new results is presented and therefore unrelated to the original one. Hence, in both cases [START_REF] Avsarkisov | New scaling laws for turbulent Poiseuille flow with wall transpiration -CORRIGENDUM[END_REF] and [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation -CORRIGENDUM[END_REF], the same central question: How and with what tools did the authors manage to do the original Fig. 9(a) in [START_REF] Avsarkisov | New scaling laws for turbulent Poiseuille flow with wall transpiration[END_REF] and Fig. 7 in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF]? Nevertheless, although this nonphysical translation symmetry is not included in [START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF], it can, however, be found again in several recent studies by Oberlack et al. 

  .33) Now, since we are on a search for temporal scaling laws, we redefine the 2-point function R 22 by factoring out the corresponding 1-point temporal scaling law (1.32) of Bahri et al.: R 22 (t, r) =:

  Bahri et al. go beyond those of Sadeghi & Oberlack. In other words, not the results of Sadeghi & Oberlack, but ultimately the results of Bahri et al. are the more general ones.

  .27)Result(1.27) shows that the scaling structure obtained in(1.19) is valid not only for α = 0, but for all α ∈ R. Hence, the scaling result obtained by Bahri et al. is more general than the result obtained by Sadeghi & Oberlack, who considered only the case α = 0.

	1.3. Proof that (4.26) in [1] is not new		
	Also result (4.26) in [1] is not a new result as claimed, but only a consequence of Bahri's results (1.8)
	when correctly applied to the underlying equations. The relevant equations are the equation for the
	cross stream velocity (3.5) in [1]		
	∂u 2 ∂t	+ • • • = 0,	(1.28)
	and the passive scalar (temperature) equation (3.4)	
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All arguments and proofs brought forward here for the scaling law of the temperature variance θ

, equally applies to Bahri's scaling law of the scalar flux vθ in[START_REF] Bahri | Fundamentals and scaling of passive scalar fields in isotropic turbulence[END_REF].

The renaming of ǫ2 in[START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF] above (2.10) has a typo, which easily can be verified when integrating (2.4) to (2.10) in[START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF]: Instead of 'ǫ2 = αA θ ' it should read 'ǫ2 = αA θ /2'.

To note is that although[START_REF] Bahri | Self-similarity of passive scalar flow in grid turbulence with a mean cross-stream gradient[END_REF] gets cited in[START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] for other findings and discussions, it is not cited correctly at the key positions in[START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF].

To note is that the implied linearity of the equations (3.16)-(3.18) in[START_REF] Sadeghi | New scaling laws of passive scalar with a constant mean gradient in decaying isotropic turbulence[END_REF] still amplifies the closure problem when correctly applying a Lie-group invariance analysis to it. It is the unpleasant effect of the linear superposition principle which adds an additional infinite dimension to the already infinite dimensional Lie-algebra of invariant transformations that already results from the unclosedness of the equations themselves.

To note is that the group Oberlack et al. use the term "intermittency" for the nonphysical scaling symmetry interchangeably either for external (large-scale) or internal (small-scale) intermittency, e.g. as done for jet flow in[START_REF] Sadeghi | New symmetry-induced scaling laws of passive scalar transport in turbulent plane jets[END_REF], or for the transition to turbulence in[START_REF] Wac | Symmetry analysis and invariant solutions of the multipoint infinite systems describing turbulence[END_REF], or for the center region of fully developed channel flow in[START_REF] Oberlack | Turbulence statistics of arbitrary moments of wall-bounded shear flows: A symmetry approach[END_REF]. For the latter case, see also the discussion in[START_REF] Frewer | A closer look at predicting turbulence statistics of arbitrary moments when based on a non-modelled symmetry approach[END_REF].